mm, cma: prevent nr_isolated_* counters from going negative
[deliverable/linux.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20 50atomic_long_t nr_swap_pages;
fb0fec50
CW
51/*
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
55 */
56EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 58long total_swap_pages;
78ecba08 59static int least_priority;
1da177e4 60
1da177e4
LT
61static const char Bad_file[] = "Bad swap file entry ";
62static const char Unused_file[] = "Unused swap file entry ";
63static const char Bad_offset[] = "Bad swap offset entry ";
64static const char Unused_offset[] = "Unused swap offset entry ";
65
adfab836
DS
66/*
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
69 */
18ab4d4c
DS
70PLIST_HEAD(swap_active_head);
71
72/*
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
83 */
84static PLIST_HEAD(swap_avail_head);
85static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 86
38b5faf4 87struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 88
fc0abb14 89static DEFINE_MUTEX(swapon_mutex);
1da177e4 90
66d7dd51
KS
91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92/* Activity counter to indicate that a swapon or swapoff has occurred */
93static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
8d69aaee 95static inline unsigned char swap_count(unsigned char ent)
355cfa73 96{
570a335b 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
98}
99
efa90a98 100/* returns 1 if swap entry is freed */
c9e44410
KH
101static int
102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103{
efa90a98 104 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
105 struct page *page;
106 int ret = 0;
107
33806f06 108 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
109 if (!page)
110 return 0;
111 /*
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
117 */
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
121 }
09cbfeaf 122 put_page(page);
c9e44410
KH
123 return ret;
124}
355cfa73 125
6a6ba831
HD
126/*
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
129 */
130static int discard_swap(struct swap_info_struct *si)
131{
132 struct swap_extent *se;
9625a5f2
HD
133 sector_t start_block;
134 sector_t nr_blocks;
6a6ba831
HD
135 int err = 0;
136
9625a5f2
HD
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 143 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
144 if (err)
145 return err;
146 cond_resched();
147 }
6a6ba831 148
9625a5f2
HD
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
152
153 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 154 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
155 if (err)
156 break;
157
158 cond_resched();
159 }
160 return err; /* That will often be -EOPNOTSUPP */
161}
162
7992fde7
HD
163/*
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
166 */
167static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
169{
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
172
173 while (nr_pages) {
7992fde7
HD
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
858a2990 178 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
179
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
184
185 if (!found_extent++)
186 si->curr_swap_extent = se;
187
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 191 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
192 break;
193 }
194
a8ae4991 195 se = list_next_entry(se, list);
7992fde7
HD
196 }
197}
198
048c27fd
HD
199#define SWAPFILE_CLUSTER 256
200#define LATENCY_LIMIT 256
201
2a8f9449
SL
202static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
204{
205 info->flags = flag;
206}
207
208static inline unsigned int cluster_count(struct swap_cluster_info *info)
209{
210 return info->data;
211}
212
213static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
215{
216 info->data = c;
217}
218
219static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
221{
222 info->flags = f;
223 info->data = c;
224}
225
226static inline unsigned int cluster_next(struct swap_cluster_info *info)
227{
228 return info->data;
229}
230
231static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
233{
234 info->data = n;
235}
236
237static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
239{
240 info->flags = f;
241 info->data = n;
242}
243
244static inline bool cluster_is_free(struct swap_cluster_info *info)
245{
246 return info->flags & CLUSTER_FLAG_FREE;
247}
248
249static inline bool cluster_is_null(struct swap_cluster_info *info)
250{
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
252}
253
254static inline void cluster_set_null(struct swap_cluster_info *info)
255{
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
258}
259
815c2c54
SL
260/* Add a cluster to discard list and schedule it to do discard */
261static void swap_cluster_schedule_discard(struct swap_info_struct *si,
262 unsigned int idx)
263{
264 /*
265 * If scan_swap_map() can't find a free cluster, it will check
266 * si->swap_map directly. To make sure the discarding cluster isn't
267 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
268 * will be cleared after discard
269 */
270 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
271 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
272
273 if (cluster_is_null(&si->discard_cluster_head)) {
274 cluster_set_next_flag(&si->discard_cluster_head,
275 idx, 0);
276 cluster_set_next_flag(&si->discard_cluster_tail,
277 idx, 0);
278 } else {
279 unsigned int tail = cluster_next(&si->discard_cluster_tail);
280 cluster_set_next(&si->cluster_info[tail], idx);
281 cluster_set_next_flag(&si->discard_cluster_tail,
282 idx, 0);
283 }
284
285 schedule_work(&si->discard_work);
286}
287
288/*
289 * Doing discard actually. After a cluster discard is finished, the cluster
290 * will be added to free cluster list. caller should hold si->lock.
291*/
292static void swap_do_scheduled_discard(struct swap_info_struct *si)
293{
294 struct swap_cluster_info *info;
295 unsigned int idx;
296
297 info = si->cluster_info;
298
299 while (!cluster_is_null(&si->discard_cluster_head)) {
300 idx = cluster_next(&si->discard_cluster_head);
301
302 cluster_set_next_flag(&si->discard_cluster_head,
303 cluster_next(&info[idx]), 0);
304 if (cluster_next(&si->discard_cluster_tail) == idx) {
305 cluster_set_null(&si->discard_cluster_head);
306 cluster_set_null(&si->discard_cluster_tail);
307 }
308 spin_unlock(&si->lock);
309
310 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
311 SWAPFILE_CLUSTER);
312
313 spin_lock(&si->lock);
314 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
315 if (cluster_is_null(&si->free_cluster_head)) {
316 cluster_set_next_flag(&si->free_cluster_head,
317 idx, 0);
318 cluster_set_next_flag(&si->free_cluster_tail,
319 idx, 0);
320 } else {
321 unsigned int tail;
322
323 tail = cluster_next(&si->free_cluster_tail);
324 cluster_set_next(&info[tail], idx);
325 cluster_set_next_flag(&si->free_cluster_tail,
326 idx, 0);
327 }
328 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
329 0, SWAPFILE_CLUSTER);
330 }
331}
332
333static void swap_discard_work(struct work_struct *work)
334{
335 struct swap_info_struct *si;
336
337 si = container_of(work, struct swap_info_struct, discard_work);
338
339 spin_lock(&si->lock);
340 swap_do_scheduled_discard(si);
341 spin_unlock(&si->lock);
342}
343
2a8f9449
SL
344/*
345 * The cluster corresponding to page_nr will be used. The cluster will be
346 * removed from free cluster list and its usage counter will be increased.
347 */
348static void inc_cluster_info_page(struct swap_info_struct *p,
349 struct swap_cluster_info *cluster_info, unsigned long page_nr)
350{
351 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
352
353 if (!cluster_info)
354 return;
355 if (cluster_is_free(&cluster_info[idx])) {
356 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
357 cluster_set_next_flag(&p->free_cluster_head,
358 cluster_next(&cluster_info[idx]), 0);
359 if (cluster_next(&p->free_cluster_tail) == idx) {
360 cluster_set_null(&p->free_cluster_tail);
361 cluster_set_null(&p->free_cluster_head);
362 }
363 cluster_set_count_flag(&cluster_info[idx], 0, 0);
364 }
365
366 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
367 cluster_set_count(&cluster_info[idx],
368 cluster_count(&cluster_info[idx]) + 1);
369}
370
371/*
372 * The cluster corresponding to page_nr decreases one usage. If the usage
373 * counter becomes 0, which means no page in the cluster is in using, we can
374 * optionally discard the cluster and add it to free cluster list.
375 */
376static void dec_cluster_info_page(struct swap_info_struct *p,
377 struct swap_cluster_info *cluster_info, unsigned long page_nr)
378{
379 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
380
381 if (!cluster_info)
382 return;
383
384 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
385 cluster_set_count(&cluster_info[idx],
386 cluster_count(&cluster_info[idx]) - 1);
387
388 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
389 /*
390 * If the swap is discardable, prepare discard the cluster
391 * instead of free it immediately. The cluster will be freed
392 * after discard.
393 */
edfe23da
SL
394 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
395 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
396 swap_cluster_schedule_discard(p, idx);
397 return;
398 }
399
2a8f9449
SL
400 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
401 if (cluster_is_null(&p->free_cluster_head)) {
402 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
403 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
404 } else {
405 unsigned int tail = cluster_next(&p->free_cluster_tail);
406 cluster_set_next(&cluster_info[tail], idx);
407 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
408 }
409 }
410}
411
412/*
413 * It's possible scan_swap_map() uses a free cluster in the middle of free
414 * cluster list. Avoiding such abuse to avoid list corruption.
415 */
ebc2a1a6
SL
416static bool
417scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
418 unsigned long offset)
419{
ebc2a1a6
SL
420 struct percpu_cluster *percpu_cluster;
421 bool conflict;
422
2a8f9449 423 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 424 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
425 offset != cluster_next(&si->free_cluster_head) &&
426 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
427
428 if (!conflict)
429 return false;
430
431 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
432 cluster_set_null(&percpu_cluster->index);
433 return true;
434}
435
436/*
437 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
438 * might involve allocating a new cluster for current CPU too.
439 */
440static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
441 unsigned long *offset, unsigned long *scan_base)
442{
443 struct percpu_cluster *cluster;
444 bool found_free;
445 unsigned long tmp;
446
447new_cluster:
448 cluster = this_cpu_ptr(si->percpu_cluster);
449 if (cluster_is_null(&cluster->index)) {
450 if (!cluster_is_null(&si->free_cluster_head)) {
451 cluster->index = si->free_cluster_head;
452 cluster->next = cluster_next(&cluster->index) *
453 SWAPFILE_CLUSTER;
454 } else if (!cluster_is_null(&si->discard_cluster_head)) {
455 /*
456 * we don't have free cluster but have some clusters in
457 * discarding, do discard now and reclaim them
458 */
459 swap_do_scheduled_discard(si);
460 *scan_base = *offset = si->cluster_next;
461 goto new_cluster;
462 } else
463 return;
464 }
465
466 found_free = false;
467
468 /*
469 * Other CPUs can use our cluster if they can't find a free cluster,
470 * check if there is still free entry in the cluster
471 */
472 tmp = cluster->next;
473 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
474 SWAPFILE_CLUSTER) {
475 if (!si->swap_map[tmp]) {
476 found_free = true;
477 break;
478 }
479 tmp++;
480 }
481 if (!found_free) {
482 cluster_set_null(&cluster->index);
483 goto new_cluster;
484 }
485 cluster->next = tmp + 1;
486 *offset = tmp;
487 *scan_base = tmp;
2a8f9449
SL
488}
489
24b8ff7c
CEB
490static unsigned long scan_swap_map(struct swap_info_struct *si,
491 unsigned char usage)
1da177e4 492{
ebebbbe9 493 unsigned long offset;
c60aa176 494 unsigned long scan_base;
7992fde7 495 unsigned long last_in_cluster = 0;
048c27fd 496 int latency_ration = LATENCY_LIMIT;
7dfad418 497
886bb7e9 498 /*
7dfad418
HD
499 * We try to cluster swap pages by allocating them sequentially
500 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
501 * way, however, we resort to first-free allocation, starting
502 * a new cluster. This prevents us from scattering swap pages
503 * all over the entire swap partition, so that we reduce
504 * overall disk seek times between swap pages. -- sct
505 * But we do now try to find an empty cluster. -Andrea
c60aa176 506 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
507 */
508
52b7efdb 509 si->flags += SWP_SCANNING;
c60aa176 510 scan_base = offset = si->cluster_next;
ebebbbe9 511
ebc2a1a6
SL
512 /* SSD algorithm */
513 if (si->cluster_info) {
514 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
515 goto checks;
516 }
517
ebebbbe9
HD
518 if (unlikely(!si->cluster_nr--)) {
519 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
520 si->cluster_nr = SWAPFILE_CLUSTER - 1;
521 goto checks;
522 }
2a8f9449 523
ec8acf20 524 spin_unlock(&si->lock);
7dfad418 525
c60aa176
HD
526 /*
527 * If seek is expensive, start searching for new cluster from
528 * start of partition, to minimize the span of allocated swap.
50088c44
CY
529 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
530 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 531 */
50088c44 532 scan_base = offset = si->lowest_bit;
7dfad418
HD
533 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
534
535 /* Locate the first empty (unaligned) cluster */
536 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 537 if (si->swap_map[offset])
7dfad418
HD
538 last_in_cluster = offset + SWAPFILE_CLUSTER;
539 else if (offset == last_in_cluster) {
ec8acf20 540 spin_lock(&si->lock);
ebebbbe9
HD
541 offset -= SWAPFILE_CLUSTER - 1;
542 si->cluster_next = offset;
543 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
544 goto checks;
545 }
546 if (unlikely(--latency_ration < 0)) {
547 cond_resched();
548 latency_ration = LATENCY_LIMIT;
549 }
550 }
551
552 offset = scan_base;
ec8acf20 553 spin_lock(&si->lock);
ebebbbe9 554 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 555 }
7dfad418 556
ebebbbe9 557checks:
ebc2a1a6
SL
558 if (si->cluster_info) {
559 while (scan_swap_map_ssd_cluster_conflict(si, offset))
560 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
561 }
ebebbbe9 562 if (!(si->flags & SWP_WRITEOK))
52b7efdb 563 goto no_page;
7dfad418
HD
564 if (!si->highest_bit)
565 goto no_page;
ebebbbe9 566 if (offset > si->highest_bit)
c60aa176 567 scan_base = offset = si->lowest_bit;
c9e44410 568
b73d7fce
HD
569 /* reuse swap entry of cache-only swap if not busy. */
570 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 571 int swap_was_freed;
ec8acf20 572 spin_unlock(&si->lock);
c9e44410 573 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 574 spin_lock(&si->lock);
c9e44410
KH
575 /* entry was freed successfully, try to use this again */
576 if (swap_was_freed)
577 goto checks;
578 goto scan; /* check next one */
579 }
580
ebebbbe9
HD
581 if (si->swap_map[offset])
582 goto scan;
583
584 if (offset == si->lowest_bit)
585 si->lowest_bit++;
586 if (offset == si->highest_bit)
587 si->highest_bit--;
588 si->inuse_pages++;
589 if (si->inuse_pages == si->pages) {
590 si->lowest_bit = si->max;
591 si->highest_bit = 0;
18ab4d4c
DS
592 spin_lock(&swap_avail_lock);
593 plist_del(&si->avail_list, &swap_avail_head);
594 spin_unlock(&swap_avail_lock);
1da177e4 595 }
253d553b 596 si->swap_map[offset] = usage;
2a8f9449 597 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
598 si->cluster_next = offset + 1;
599 si->flags -= SWP_SCANNING;
7992fde7 600
ebebbbe9 601 return offset;
7dfad418 602
ebebbbe9 603scan:
ec8acf20 604 spin_unlock(&si->lock);
7dfad418 605 while (++offset <= si->highest_bit) {
52b7efdb 606 if (!si->swap_map[offset]) {
ec8acf20 607 spin_lock(&si->lock);
52b7efdb
HD
608 goto checks;
609 }
c9e44410 610 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 611 spin_lock(&si->lock);
c9e44410
KH
612 goto checks;
613 }
048c27fd
HD
614 if (unlikely(--latency_ration < 0)) {
615 cond_resched();
616 latency_ration = LATENCY_LIMIT;
617 }
7dfad418 618 }
c60aa176 619 offset = si->lowest_bit;
a5998061 620 while (offset < scan_base) {
c60aa176 621 if (!si->swap_map[offset]) {
ec8acf20 622 spin_lock(&si->lock);
c60aa176
HD
623 goto checks;
624 }
c9e44410 625 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 626 spin_lock(&si->lock);
c9e44410
KH
627 goto checks;
628 }
c60aa176
HD
629 if (unlikely(--latency_ration < 0)) {
630 cond_resched();
631 latency_ration = LATENCY_LIMIT;
632 }
a5998061 633 offset++;
c60aa176 634 }
ec8acf20 635 spin_lock(&si->lock);
7dfad418
HD
636
637no_page:
52b7efdb 638 si->flags -= SWP_SCANNING;
1da177e4
LT
639 return 0;
640}
641
642swp_entry_t get_swap_page(void)
643{
adfab836 644 struct swap_info_struct *si, *next;
fb4f88dc 645 pgoff_t offset;
1da177e4 646
ec8acf20 647 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 648 goto noswap;
ec8acf20 649 atomic_long_dec(&nr_swap_pages);
fb4f88dc 650
18ab4d4c
DS
651 spin_lock(&swap_avail_lock);
652
653start_over:
654 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
655 /* requeue si to after same-priority siblings */
656 plist_requeue(&si->avail_list, &swap_avail_head);
657 spin_unlock(&swap_avail_lock);
ec8acf20 658 spin_lock(&si->lock);
adfab836 659 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
660 spin_lock(&swap_avail_lock);
661 if (plist_node_empty(&si->avail_list)) {
662 spin_unlock(&si->lock);
663 goto nextsi;
664 }
665 WARN(!si->highest_bit,
666 "swap_info %d in list but !highest_bit\n",
667 si->type);
668 WARN(!(si->flags & SWP_WRITEOK),
669 "swap_info %d in list but !SWP_WRITEOK\n",
670 si->type);
671 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 672 spin_unlock(&si->lock);
18ab4d4c 673 goto nextsi;
ec8acf20 674 }
fb4f88dc 675
355cfa73 676 /* This is called for allocating swap entry for cache */
253d553b 677 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
678 spin_unlock(&si->lock);
679 if (offset)
adfab836 680 return swp_entry(si->type, offset);
18ab4d4c
DS
681 pr_debug("scan_swap_map of si %d failed to find offset\n",
682 si->type);
683 spin_lock(&swap_avail_lock);
684nextsi:
adfab836
DS
685 /*
686 * if we got here, it's likely that si was almost full before,
687 * and since scan_swap_map() can drop the si->lock, multiple
688 * callers probably all tried to get a page from the same si
18ab4d4c
DS
689 * and it filled up before we could get one; or, the si filled
690 * up between us dropping swap_avail_lock and taking si->lock.
691 * Since we dropped the swap_avail_lock, the swap_avail_head
692 * list may have been modified; so if next is still in the
693 * swap_avail_head list then try it, otherwise start over.
adfab836 694 */
18ab4d4c
DS
695 if (plist_node_empty(&next->avail_list))
696 goto start_over;
1da177e4 697 }
fb4f88dc 698
18ab4d4c
DS
699 spin_unlock(&swap_avail_lock);
700
ec8acf20 701 atomic_long_inc(&nr_swap_pages);
fb4f88dc 702noswap:
fb4f88dc 703 return (swp_entry_t) {0};
1da177e4
LT
704}
705
2de1a7e4 706/* The only caller of this function is now suspend routine */
910321ea
HD
707swp_entry_t get_swap_page_of_type(int type)
708{
709 struct swap_info_struct *si;
710 pgoff_t offset;
711
910321ea 712 si = swap_info[type];
ec8acf20 713 spin_lock(&si->lock);
910321ea 714 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 715 atomic_long_dec(&nr_swap_pages);
910321ea
HD
716 /* This is called for allocating swap entry, not cache */
717 offset = scan_swap_map(si, 1);
718 if (offset) {
ec8acf20 719 spin_unlock(&si->lock);
910321ea
HD
720 return swp_entry(type, offset);
721 }
ec8acf20 722 atomic_long_inc(&nr_swap_pages);
910321ea 723 }
ec8acf20 724 spin_unlock(&si->lock);
910321ea
HD
725 return (swp_entry_t) {0};
726}
727
73c34b6a 728static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 729{
73c34b6a 730 struct swap_info_struct *p;
1da177e4
LT
731 unsigned long offset, type;
732
733 if (!entry.val)
734 goto out;
735 type = swp_type(entry);
736 if (type >= nr_swapfiles)
737 goto bad_nofile;
efa90a98 738 p = swap_info[type];
1da177e4
LT
739 if (!(p->flags & SWP_USED))
740 goto bad_device;
741 offset = swp_offset(entry);
742 if (offset >= p->max)
743 goto bad_offset;
744 if (!p->swap_map[offset])
745 goto bad_free;
ec8acf20 746 spin_lock(&p->lock);
1da177e4
LT
747 return p;
748
749bad_free:
465c47fd 750 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
751 goto out;
752bad_offset:
465c47fd 753 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
754 goto out;
755bad_device:
465c47fd 756 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
757 goto out;
758bad_nofile:
465c47fd 759 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
760out:
761 return NULL;
886bb7e9 762}
1da177e4 763
8d69aaee
HD
764static unsigned char swap_entry_free(struct swap_info_struct *p,
765 swp_entry_t entry, unsigned char usage)
1da177e4 766{
253d553b 767 unsigned long offset = swp_offset(entry);
8d69aaee
HD
768 unsigned char count;
769 unsigned char has_cache;
355cfa73 770
253d553b
HD
771 count = p->swap_map[offset];
772 has_cache = count & SWAP_HAS_CACHE;
773 count &= ~SWAP_HAS_CACHE;
355cfa73 774
253d553b 775 if (usage == SWAP_HAS_CACHE) {
355cfa73 776 VM_BUG_ON(!has_cache);
253d553b 777 has_cache = 0;
aaa46865
HD
778 } else if (count == SWAP_MAP_SHMEM) {
779 /*
780 * Or we could insist on shmem.c using a special
781 * swap_shmem_free() and free_shmem_swap_and_cache()...
782 */
783 count = 0;
570a335b
HD
784 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
785 if (count == COUNT_CONTINUED) {
786 if (swap_count_continued(p, offset, count))
787 count = SWAP_MAP_MAX | COUNT_CONTINUED;
788 else
789 count = SWAP_MAP_MAX;
790 } else
791 count--;
792 }
253d553b 793
253d553b
HD
794 usage = count | has_cache;
795 p->swap_map[offset] = usage;
355cfa73 796
355cfa73 797 /* free if no reference */
253d553b 798 if (!usage) {
37e84351 799 mem_cgroup_uncharge_swap(entry);
2a8f9449 800 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
801 if (offset < p->lowest_bit)
802 p->lowest_bit = offset;
18ab4d4c
DS
803 if (offset > p->highest_bit) {
804 bool was_full = !p->highest_bit;
355cfa73 805 p->highest_bit = offset;
18ab4d4c
DS
806 if (was_full && (p->flags & SWP_WRITEOK)) {
807 spin_lock(&swap_avail_lock);
808 WARN_ON(!plist_node_empty(&p->avail_list));
809 if (plist_node_empty(&p->avail_list))
810 plist_add(&p->avail_list,
811 &swap_avail_head);
812 spin_unlock(&swap_avail_lock);
813 }
814 }
ec8acf20 815 atomic_long_inc(&nr_swap_pages);
355cfa73 816 p->inuse_pages--;
38b5faf4 817 frontswap_invalidate_page(p->type, offset);
73744923
MG
818 if (p->flags & SWP_BLKDEV) {
819 struct gendisk *disk = p->bdev->bd_disk;
820 if (disk->fops->swap_slot_free_notify)
821 disk->fops->swap_slot_free_notify(p->bdev,
822 offset);
823 }
1da177e4 824 }
253d553b
HD
825
826 return usage;
1da177e4
LT
827}
828
829/*
2de1a7e4 830 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
831 * is still around or has not been recycled.
832 */
833void swap_free(swp_entry_t entry)
834{
73c34b6a 835 struct swap_info_struct *p;
1da177e4
LT
836
837 p = swap_info_get(entry);
838 if (p) {
253d553b 839 swap_entry_free(p, entry, 1);
ec8acf20 840 spin_unlock(&p->lock);
1da177e4
LT
841 }
842}
843
cb4b86ba
KH
844/*
845 * Called after dropping swapcache to decrease refcnt to swap entries.
846 */
0a31bc97 847void swapcache_free(swp_entry_t entry)
cb4b86ba 848{
355cfa73
KH
849 struct swap_info_struct *p;
850
355cfa73
KH
851 p = swap_info_get(entry);
852 if (p) {
0a31bc97 853 swap_entry_free(p, entry, SWAP_HAS_CACHE);
ec8acf20 854 spin_unlock(&p->lock);
355cfa73 855 }
cb4b86ba
KH
856}
857
1da177e4 858/*
c475a8ab 859 * How many references to page are currently swapped out?
570a335b
HD
860 * This does not give an exact answer when swap count is continued,
861 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 862 */
bde05d1c 863int page_swapcount(struct page *page)
1da177e4 864{
c475a8ab
HD
865 int count = 0;
866 struct swap_info_struct *p;
1da177e4
LT
867 swp_entry_t entry;
868
4c21e2f2 869 entry.val = page_private(page);
1da177e4
LT
870 p = swap_info_get(entry);
871 if (p) {
355cfa73 872 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 873 spin_unlock(&p->lock);
1da177e4 874 }
c475a8ab 875 return count;
1da177e4
LT
876}
877
8334b962
MK
878/*
879 * How many references to @entry are currently swapped out?
880 * This considers COUNT_CONTINUED so it returns exact answer.
881 */
882int swp_swapcount(swp_entry_t entry)
883{
884 int count, tmp_count, n;
885 struct swap_info_struct *p;
886 struct page *page;
887 pgoff_t offset;
888 unsigned char *map;
889
890 p = swap_info_get(entry);
891 if (!p)
892 return 0;
893
894 count = swap_count(p->swap_map[swp_offset(entry)]);
895 if (!(count & COUNT_CONTINUED))
896 goto out;
897
898 count &= ~COUNT_CONTINUED;
899 n = SWAP_MAP_MAX + 1;
900
901 offset = swp_offset(entry);
902 page = vmalloc_to_page(p->swap_map + offset);
903 offset &= ~PAGE_MASK;
904 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
905
906 do {
a8ae4991 907 page = list_next_entry(page, lru);
8334b962
MK
908 map = kmap_atomic(page);
909 tmp_count = map[offset];
910 kunmap_atomic(map);
911
912 count += (tmp_count & ~COUNT_CONTINUED) * n;
913 n *= (SWAP_CONT_MAX + 1);
914 } while (tmp_count & COUNT_CONTINUED);
915out:
916 spin_unlock(&p->lock);
917 return count;
918}
919
1da177e4 920/*
7b1fe597
HD
921 * We can write to an anon page without COW if there are no other references
922 * to it. And as a side-effect, free up its swap: because the old content
923 * on disk will never be read, and seeking back there to write new content
924 * later would only waste time away from clustering.
1da177e4 925 */
7b1fe597 926int reuse_swap_page(struct page *page)
1da177e4 927{
c475a8ab
HD
928 int count;
929
309381fe 930 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
931 if (unlikely(PageKsm(page)))
932 return 0;
1f25fe20
KS
933 /* The page is part of THP and cannot be reused */
934 if (PageTransCompound(page))
935 return 0;
c475a8ab 936 count = page_mapcount(page);
7b1fe597 937 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 938 count += page_swapcount(page);
7b1fe597
HD
939 if (count == 1 && !PageWriteback(page)) {
940 delete_from_swap_cache(page);
941 SetPageDirty(page);
942 }
943 }
5ad64688 944 return count <= 1;
1da177e4
LT
945}
946
947/*
a2c43eed
HD
948 * If swap is getting full, or if there are no more mappings of this page,
949 * then try_to_free_swap is called to free its swap space.
1da177e4 950 */
a2c43eed 951int try_to_free_swap(struct page *page)
1da177e4 952{
309381fe 953 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
954
955 if (!PageSwapCache(page))
956 return 0;
957 if (PageWriteback(page))
958 return 0;
a2c43eed 959 if (page_swapcount(page))
1da177e4
LT
960 return 0;
961
b73d7fce
HD
962 /*
963 * Once hibernation has begun to create its image of memory,
964 * there's a danger that one of the calls to try_to_free_swap()
965 * - most probably a call from __try_to_reclaim_swap() while
966 * hibernation is allocating its own swap pages for the image,
967 * but conceivably even a call from memory reclaim - will free
968 * the swap from a page which has already been recorded in the
969 * image as a clean swapcache page, and then reuse its swap for
970 * another page of the image. On waking from hibernation, the
971 * original page might be freed under memory pressure, then
972 * later read back in from swap, now with the wrong data.
973 *
2de1a7e4 974 * Hibernation suspends storage while it is writing the image
f90ac398 975 * to disk so check that here.
b73d7fce 976 */
f90ac398 977 if (pm_suspended_storage())
b73d7fce
HD
978 return 0;
979
a2c43eed
HD
980 delete_from_swap_cache(page);
981 SetPageDirty(page);
982 return 1;
68a22394
RR
983}
984
1da177e4
LT
985/*
986 * Free the swap entry like above, but also try to
987 * free the page cache entry if it is the last user.
988 */
2509ef26 989int free_swap_and_cache(swp_entry_t entry)
1da177e4 990{
2509ef26 991 struct swap_info_struct *p;
1da177e4
LT
992 struct page *page = NULL;
993
a7420aa5 994 if (non_swap_entry(entry))
2509ef26 995 return 1;
0697212a 996
1da177e4
LT
997 p = swap_info_get(entry);
998 if (p) {
253d553b 999 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
1000 page = find_get_page(swap_address_space(entry),
1001 entry.val);
8413ac9d 1002 if (page && !trylock_page(page)) {
09cbfeaf 1003 put_page(page);
93fac704
NP
1004 page = NULL;
1005 }
1006 }
ec8acf20 1007 spin_unlock(&p->lock);
1da177e4
LT
1008 }
1009 if (page) {
a2c43eed
HD
1010 /*
1011 * Not mapped elsewhere, or swap space full? Free it!
1012 * Also recheck PageSwapCache now page is locked (above).
1013 */
93fac704 1014 if (PageSwapCache(page) && !PageWriteback(page) &&
5ccc5aba 1015 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1da177e4
LT
1016 delete_from_swap_cache(page);
1017 SetPageDirty(page);
1018 }
1019 unlock_page(page);
09cbfeaf 1020 put_page(page);
1da177e4 1021 }
2509ef26 1022 return p != NULL;
1da177e4
LT
1023}
1024
b0cb1a19 1025#ifdef CONFIG_HIBERNATION
f577eb30 1026/*
915bae9e 1027 * Find the swap type that corresponds to given device (if any).
f577eb30 1028 *
915bae9e
RW
1029 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1030 * from 0, in which the swap header is expected to be located.
1031 *
1032 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1033 */
7bf23687 1034int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1035{
915bae9e 1036 struct block_device *bdev = NULL;
efa90a98 1037 int type;
f577eb30 1038
915bae9e
RW
1039 if (device)
1040 bdev = bdget(device);
1041
f577eb30 1042 spin_lock(&swap_lock);
efa90a98
HD
1043 for (type = 0; type < nr_swapfiles; type++) {
1044 struct swap_info_struct *sis = swap_info[type];
f577eb30 1045
915bae9e 1046 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1047 continue;
b6b5bce3 1048
915bae9e 1049 if (!bdev) {
7bf23687 1050 if (bdev_p)
dddac6a7 1051 *bdev_p = bdgrab(sis->bdev);
7bf23687 1052
6e1819d6 1053 spin_unlock(&swap_lock);
efa90a98 1054 return type;
6e1819d6 1055 }
915bae9e 1056 if (bdev == sis->bdev) {
9625a5f2 1057 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1058
915bae9e 1059 if (se->start_block == offset) {
7bf23687 1060 if (bdev_p)
dddac6a7 1061 *bdev_p = bdgrab(sis->bdev);
7bf23687 1062
915bae9e
RW
1063 spin_unlock(&swap_lock);
1064 bdput(bdev);
efa90a98 1065 return type;
915bae9e 1066 }
f577eb30
RW
1067 }
1068 }
1069 spin_unlock(&swap_lock);
915bae9e
RW
1070 if (bdev)
1071 bdput(bdev);
1072
f577eb30
RW
1073 return -ENODEV;
1074}
1075
73c34b6a
HD
1076/*
1077 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1078 * corresponding to given index in swap_info (swap type).
1079 */
1080sector_t swapdev_block(int type, pgoff_t offset)
1081{
1082 struct block_device *bdev;
1083
1084 if ((unsigned int)type >= nr_swapfiles)
1085 return 0;
1086 if (!(swap_info[type]->flags & SWP_WRITEOK))
1087 return 0;
d4906e1a 1088 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1089}
1090
f577eb30
RW
1091/*
1092 * Return either the total number of swap pages of given type, or the number
1093 * of free pages of that type (depending on @free)
1094 *
1095 * This is needed for software suspend
1096 */
1097unsigned int count_swap_pages(int type, int free)
1098{
1099 unsigned int n = 0;
1100
efa90a98
HD
1101 spin_lock(&swap_lock);
1102 if ((unsigned int)type < nr_swapfiles) {
1103 struct swap_info_struct *sis = swap_info[type];
1104
ec8acf20 1105 spin_lock(&sis->lock);
efa90a98
HD
1106 if (sis->flags & SWP_WRITEOK) {
1107 n = sis->pages;
f577eb30 1108 if (free)
efa90a98 1109 n -= sis->inuse_pages;
f577eb30 1110 }
ec8acf20 1111 spin_unlock(&sis->lock);
f577eb30 1112 }
efa90a98 1113 spin_unlock(&swap_lock);
f577eb30
RW
1114 return n;
1115}
73c34b6a 1116#endif /* CONFIG_HIBERNATION */
f577eb30 1117
9f8bdb3f 1118static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1119{
9f8bdb3f 1120 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1121}
1122
1da177e4 1123/*
72866f6f
HD
1124 * No need to decide whether this PTE shares the swap entry with others,
1125 * just let do_wp_page work it out if a write is requested later - to
1126 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1127 */
044d66c1 1128static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1129 unsigned long addr, swp_entry_t entry, struct page *page)
1130{
9e16b7fb 1131 struct page *swapcache;
72835c86 1132 struct mem_cgroup *memcg;
044d66c1
HD
1133 spinlock_t *ptl;
1134 pte_t *pte;
1135 int ret = 1;
1136
9e16b7fb
HD
1137 swapcache = page;
1138 page = ksm_might_need_to_copy(page, vma, addr);
1139 if (unlikely(!page))
1140 return -ENOMEM;
1141
f627c2f5
KS
1142 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1143 &memcg, false)) {
044d66c1 1144 ret = -ENOMEM;
85d9fc89
KH
1145 goto out_nolock;
1146 }
044d66c1
HD
1147
1148 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1149 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1150 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1151 ret = 0;
1152 goto out;
1153 }
8a9f3ccd 1154
b084d435 1155 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1156 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1157 get_page(page);
1158 set_pte_at(vma->vm_mm, addr, pte,
1159 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1160 if (page == swapcache) {
d281ee61 1161 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1162 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1163 } else { /* ksm created a completely new copy */
d281ee61 1164 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1165 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1166 lru_cache_add_active_or_unevictable(page, vma);
1167 }
1da177e4
LT
1168 swap_free(entry);
1169 /*
1170 * Move the page to the active list so it is not
1171 * immediately swapped out again after swapon.
1172 */
1173 activate_page(page);
044d66c1
HD
1174out:
1175 pte_unmap_unlock(pte, ptl);
85d9fc89 1176out_nolock:
9e16b7fb
HD
1177 if (page != swapcache) {
1178 unlock_page(page);
1179 put_page(page);
1180 }
044d66c1 1181 return ret;
1da177e4
LT
1182}
1183
1184static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1185 unsigned long addr, unsigned long end,
1186 swp_entry_t entry, struct page *page)
1187{
1da177e4 1188 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1189 pte_t *pte;
8a9f3ccd 1190 int ret = 0;
1da177e4 1191
044d66c1
HD
1192 /*
1193 * We don't actually need pte lock while scanning for swp_pte: since
1194 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1195 * page table while we're scanning; though it could get zapped, and on
1196 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1197 * of unmatched parts which look like swp_pte, so unuse_pte must
1198 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1199 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1200 */
1201 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1202 do {
1203 /*
1204 * swapoff spends a _lot_ of time in this loop!
1205 * Test inline before going to call unuse_pte.
1206 */
9f8bdb3f 1207 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1208 pte_unmap(pte);
1209 ret = unuse_pte(vma, pmd, addr, entry, page);
1210 if (ret)
1211 goto out;
1212 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1213 }
1214 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1215 pte_unmap(pte - 1);
1216out:
8a9f3ccd 1217 return ret;
1da177e4
LT
1218}
1219
1220static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1221 unsigned long addr, unsigned long end,
1222 swp_entry_t entry, struct page *page)
1223{
1224 pmd_t *pmd;
1225 unsigned long next;
8a9f3ccd 1226 int ret;
1da177e4
LT
1227
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
1a5a9906 1231 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1232 continue;
8a9f3ccd
BS
1233 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1234 if (ret)
1235 return ret;
1da177e4
LT
1236 } while (pmd++, addr = next, addr != end);
1237 return 0;
1238}
1239
1240static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1241 unsigned long addr, unsigned long end,
1242 swp_entry_t entry, struct page *page)
1243{
1244 pud_t *pud;
1245 unsigned long next;
8a9f3ccd 1246 int ret;
1da177e4
LT
1247
1248 pud = pud_offset(pgd, addr);
1249 do {
1250 next = pud_addr_end(addr, end);
1251 if (pud_none_or_clear_bad(pud))
1252 continue;
8a9f3ccd
BS
1253 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1254 if (ret)
1255 return ret;
1da177e4
LT
1256 } while (pud++, addr = next, addr != end);
1257 return 0;
1258}
1259
1260static int unuse_vma(struct vm_area_struct *vma,
1261 swp_entry_t entry, struct page *page)
1262{
1263 pgd_t *pgd;
1264 unsigned long addr, end, next;
8a9f3ccd 1265 int ret;
1da177e4 1266
3ca7b3c5 1267 if (page_anon_vma(page)) {
1da177e4
LT
1268 addr = page_address_in_vma(page, vma);
1269 if (addr == -EFAULT)
1270 return 0;
1271 else
1272 end = addr + PAGE_SIZE;
1273 } else {
1274 addr = vma->vm_start;
1275 end = vma->vm_end;
1276 }
1277
1278 pgd = pgd_offset(vma->vm_mm, addr);
1279 do {
1280 next = pgd_addr_end(addr, end);
1281 if (pgd_none_or_clear_bad(pgd))
1282 continue;
8a9f3ccd
BS
1283 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1284 if (ret)
1285 return ret;
1da177e4
LT
1286 } while (pgd++, addr = next, addr != end);
1287 return 0;
1288}
1289
1290static int unuse_mm(struct mm_struct *mm,
1291 swp_entry_t entry, struct page *page)
1292{
1293 struct vm_area_struct *vma;
8a9f3ccd 1294 int ret = 0;
1da177e4
LT
1295
1296 if (!down_read_trylock(&mm->mmap_sem)) {
1297 /*
7d03431c
FLVC
1298 * Activate page so shrink_inactive_list is unlikely to unmap
1299 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1300 */
c475a8ab 1301 activate_page(page);
1da177e4
LT
1302 unlock_page(page);
1303 down_read(&mm->mmap_sem);
1304 lock_page(page);
1305 }
1da177e4 1306 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1307 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1308 break;
1309 }
1da177e4 1310 up_read(&mm->mmap_sem);
8a9f3ccd 1311 return (ret < 0)? ret: 0;
1da177e4
LT
1312}
1313
1314/*
38b5faf4
DM
1315 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1316 * from current position to next entry still in use.
1da177e4
LT
1317 * Recycle to start on reaching the end, returning 0 when empty.
1318 */
6eb396dc 1319static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1320 unsigned int prev, bool frontswap)
1da177e4 1321{
6eb396dc
HD
1322 unsigned int max = si->max;
1323 unsigned int i = prev;
8d69aaee 1324 unsigned char count;
1da177e4
LT
1325
1326 /*
5d337b91 1327 * No need for swap_lock here: we're just looking
1da177e4
LT
1328 * for whether an entry is in use, not modifying it; false
1329 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1330 * allocations from this area (while holding swap_lock).
1da177e4
LT
1331 */
1332 for (;;) {
1333 if (++i >= max) {
1334 if (!prev) {
1335 i = 0;
1336 break;
1337 }
1338 /*
1339 * No entries in use at top of swap_map,
1340 * loop back to start and recheck there.
1341 */
1342 max = prev + 1;
1343 prev = 0;
1344 i = 1;
1345 }
38b5faf4
DM
1346 if (frontswap) {
1347 if (frontswap_test(si, i))
1348 break;
1349 else
1350 continue;
1351 }
4db0c3c2 1352 count = READ_ONCE(si->swap_map[i]);
355cfa73 1353 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1354 break;
1355 }
1356 return i;
1357}
1358
1359/*
1360 * We completely avoid races by reading each swap page in advance,
1361 * and then search for the process using it. All the necessary
1362 * page table adjustments can then be made atomically.
38b5faf4
DM
1363 *
1364 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1365 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1366 */
38b5faf4
DM
1367int try_to_unuse(unsigned int type, bool frontswap,
1368 unsigned long pages_to_unuse)
1da177e4 1369{
efa90a98 1370 struct swap_info_struct *si = swap_info[type];
1da177e4 1371 struct mm_struct *start_mm;
edfe23da
SL
1372 volatile unsigned char *swap_map; /* swap_map is accessed without
1373 * locking. Mark it as volatile
1374 * to prevent compiler doing
1375 * something odd.
1376 */
8d69aaee 1377 unsigned char swcount;
1da177e4
LT
1378 struct page *page;
1379 swp_entry_t entry;
6eb396dc 1380 unsigned int i = 0;
1da177e4 1381 int retval = 0;
1da177e4
LT
1382
1383 /*
1384 * When searching mms for an entry, a good strategy is to
1385 * start at the first mm we freed the previous entry from
1386 * (though actually we don't notice whether we or coincidence
1387 * freed the entry). Initialize this start_mm with a hold.
1388 *
1389 * A simpler strategy would be to start at the last mm we
1390 * freed the previous entry from; but that would take less
1391 * advantage of mmlist ordering, which clusters forked mms
1392 * together, child after parent. If we race with dup_mmap(), we
1393 * prefer to resolve parent before child, lest we miss entries
1394 * duplicated after we scanned child: using last mm would invert
570a335b 1395 * that.
1da177e4
LT
1396 */
1397 start_mm = &init_mm;
1398 atomic_inc(&init_mm.mm_users);
1399
1400 /*
1401 * Keep on scanning until all entries have gone. Usually,
1402 * one pass through swap_map is enough, but not necessarily:
1403 * there are races when an instance of an entry might be missed.
1404 */
38b5faf4 1405 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1406 if (signal_pending(current)) {
1407 retval = -EINTR;
1408 break;
1409 }
1410
886bb7e9 1411 /*
1da177e4
LT
1412 * Get a page for the entry, using the existing swap
1413 * cache page if there is one. Otherwise, get a clean
886bb7e9 1414 * page and read the swap into it.
1da177e4
LT
1415 */
1416 swap_map = &si->swap_map[i];
1417 entry = swp_entry(type, i);
02098fea
HD
1418 page = read_swap_cache_async(entry,
1419 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1420 if (!page) {
1421 /*
1422 * Either swap_duplicate() failed because entry
1423 * has been freed independently, and will not be
1424 * reused since sys_swapoff() already disabled
1425 * allocation from here, or alloc_page() failed.
1426 */
edfe23da
SL
1427 swcount = *swap_map;
1428 /*
1429 * We don't hold lock here, so the swap entry could be
1430 * SWAP_MAP_BAD (when the cluster is discarding).
1431 * Instead of fail out, We can just skip the swap
1432 * entry because swapoff will wait for discarding
1433 * finish anyway.
1434 */
1435 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1436 continue;
1437 retval = -ENOMEM;
1438 break;
1439 }
1440
1441 /*
1442 * Don't hold on to start_mm if it looks like exiting.
1443 */
1444 if (atomic_read(&start_mm->mm_users) == 1) {
1445 mmput(start_mm);
1446 start_mm = &init_mm;
1447 atomic_inc(&init_mm.mm_users);
1448 }
1449
1450 /*
1451 * Wait for and lock page. When do_swap_page races with
1452 * try_to_unuse, do_swap_page can handle the fault much
1453 * faster than try_to_unuse can locate the entry. This
1454 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1455 * defer to do_swap_page in such a case - in some tests,
1456 * do_swap_page and try_to_unuse repeatedly compete.
1457 */
1458 wait_on_page_locked(page);
1459 wait_on_page_writeback(page);
1460 lock_page(page);
1461 wait_on_page_writeback(page);
1462
1463 /*
1464 * Remove all references to entry.
1da177e4 1465 */
1da177e4 1466 swcount = *swap_map;
aaa46865
HD
1467 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1468 retval = shmem_unuse(entry, page);
1469 /* page has already been unlocked and released */
1470 if (retval < 0)
1471 break;
1472 continue;
1da177e4 1473 }
aaa46865
HD
1474 if (swap_count(swcount) && start_mm != &init_mm)
1475 retval = unuse_mm(start_mm, entry, page);
1476
355cfa73 1477 if (swap_count(*swap_map)) {
1da177e4
LT
1478 int set_start_mm = (*swap_map >= swcount);
1479 struct list_head *p = &start_mm->mmlist;
1480 struct mm_struct *new_start_mm = start_mm;
1481 struct mm_struct *prev_mm = start_mm;
1482 struct mm_struct *mm;
1483
1484 atomic_inc(&new_start_mm->mm_users);
1485 atomic_inc(&prev_mm->mm_users);
1486 spin_lock(&mmlist_lock);
aaa46865 1487 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1488 (p = p->next) != &start_mm->mmlist) {
1489 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1490 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1491 continue;
1da177e4
LT
1492 spin_unlock(&mmlist_lock);
1493 mmput(prev_mm);
1494 prev_mm = mm;
1495
1496 cond_resched();
1497
1498 swcount = *swap_map;
355cfa73 1499 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1500 ;
aaa46865 1501 else if (mm == &init_mm)
1da177e4 1502 set_start_mm = 1;
aaa46865 1503 else
1da177e4 1504 retval = unuse_mm(mm, entry, page);
355cfa73 1505
32c5fc10 1506 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1507 mmput(new_start_mm);
1508 atomic_inc(&mm->mm_users);
1509 new_start_mm = mm;
1510 set_start_mm = 0;
1511 }
1512 spin_lock(&mmlist_lock);
1513 }
1514 spin_unlock(&mmlist_lock);
1515 mmput(prev_mm);
1516 mmput(start_mm);
1517 start_mm = new_start_mm;
1518 }
1519 if (retval) {
1520 unlock_page(page);
09cbfeaf 1521 put_page(page);
1da177e4
LT
1522 break;
1523 }
1524
1da177e4
LT
1525 /*
1526 * If a reference remains (rare), we would like to leave
1527 * the page in the swap cache; but try_to_unmap could
1528 * then re-duplicate the entry once we drop page lock,
1529 * so we might loop indefinitely; also, that page could
1530 * not be swapped out to other storage meanwhile. So:
1531 * delete from cache even if there's another reference,
1532 * after ensuring that the data has been saved to disk -
1533 * since if the reference remains (rarer), it will be
1534 * read from disk into another page. Splitting into two
1535 * pages would be incorrect if swap supported "shared
1536 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1537 *
1538 * Given how unuse_vma() targets one particular offset
1539 * in an anon_vma, once the anon_vma has been determined,
1540 * this splitting happens to be just what is needed to
1541 * handle where KSM pages have been swapped out: re-reading
1542 * is unnecessarily slow, but we can fix that later on.
1da177e4 1543 */
355cfa73
KH
1544 if (swap_count(*swap_map) &&
1545 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1546 struct writeback_control wbc = {
1547 .sync_mode = WB_SYNC_NONE,
1548 };
1549
1550 swap_writepage(page, &wbc);
1551 lock_page(page);
1552 wait_on_page_writeback(page);
1553 }
68bdc8d6
HD
1554
1555 /*
1556 * It is conceivable that a racing task removed this page from
1557 * swap cache just before we acquired the page lock at the top,
1558 * or while we dropped it in unuse_mm(). The page might even
1559 * be back in swap cache on another swap area: that we must not
1560 * delete, since it may not have been written out to swap yet.
1561 */
1562 if (PageSwapCache(page) &&
1563 likely(page_private(page) == entry.val))
2e0e26c7 1564 delete_from_swap_cache(page);
1da177e4
LT
1565
1566 /*
1567 * So we could skip searching mms once swap count went
1568 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1569 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1570 */
1571 SetPageDirty(page);
1572 unlock_page(page);
09cbfeaf 1573 put_page(page);
1da177e4
LT
1574
1575 /*
1576 * Make sure that we aren't completely killing
1577 * interactive performance.
1578 */
1579 cond_resched();
38b5faf4
DM
1580 if (frontswap && pages_to_unuse > 0) {
1581 if (!--pages_to_unuse)
1582 break;
1583 }
1da177e4
LT
1584 }
1585
1586 mmput(start_mm);
1da177e4
LT
1587 return retval;
1588}
1589
1590/*
5d337b91
HD
1591 * After a successful try_to_unuse, if no swap is now in use, we know
1592 * we can empty the mmlist. swap_lock must be held on entry and exit.
1593 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1594 * added to the mmlist just after page_duplicate - before would be racy.
1595 */
1596static void drain_mmlist(void)
1597{
1598 struct list_head *p, *next;
efa90a98 1599 unsigned int type;
1da177e4 1600
efa90a98
HD
1601 for (type = 0; type < nr_swapfiles; type++)
1602 if (swap_info[type]->inuse_pages)
1da177e4
LT
1603 return;
1604 spin_lock(&mmlist_lock);
1605 list_for_each_safe(p, next, &init_mm.mmlist)
1606 list_del_init(p);
1607 spin_unlock(&mmlist_lock);
1608}
1609
1610/*
1611 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1612 * corresponds to page offset for the specified swap entry.
1613 * Note that the type of this function is sector_t, but it returns page offset
1614 * into the bdev, not sector offset.
1da177e4 1615 */
d4906e1a 1616static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1617{
f29ad6a9
HD
1618 struct swap_info_struct *sis;
1619 struct swap_extent *start_se;
1620 struct swap_extent *se;
1621 pgoff_t offset;
1622
efa90a98 1623 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1624 *bdev = sis->bdev;
1625
1626 offset = swp_offset(entry);
1627 start_se = sis->curr_swap_extent;
1628 se = start_se;
1da177e4
LT
1629
1630 for ( ; ; ) {
1da177e4
LT
1631 if (se->start_page <= offset &&
1632 offset < (se->start_page + se->nr_pages)) {
1633 return se->start_block + (offset - se->start_page);
1634 }
a8ae4991 1635 se = list_next_entry(se, list);
1da177e4
LT
1636 sis->curr_swap_extent = se;
1637 BUG_ON(se == start_se); /* It *must* be present */
1638 }
1639}
1640
d4906e1a
LS
1641/*
1642 * Returns the page offset into bdev for the specified page's swap entry.
1643 */
1644sector_t map_swap_page(struct page *page, struct block_device **bdev)
1645{
1646 swp_entry_t entry;
1647 entry.val = page_private(page);
1648 return map_swap_entry(entry, bdev);
1649}
1650
1da177e4
LT
1651/*
1652 * Free all of a swapdev's extent information
1653 */
1654static void destroy_swap_extents(struct swap_info_struct *sis)
1655{
9625a5f2 1656 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1657 struct swap_extent *se;
1658
a8ae4991 1659 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1660 struct swap_extent, list);
1661 list_del(&se->list);
1662 kfree(se);
1663 }
62c230bc
MG
1664
1665 if (sis->flags & SWP_FILE) {
1666 struct file *swap_file = sis->swap_file;
1667 struct address_space *mapping = swap_file->f_mapping;
1668
1669 sis->flags &= ~SWP_FILE;
1670 mapping->a_ops->swap_deactivate(swap_file);
1671 }
1da177e4
LT
1672}
1673
1674/*
1675 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1676 * extent list. The extent list is kept sorted in page order.
1da177e4 1677 *
11d31886 1678 * This function rather assumes that it is called in ascending page order.
1da177e4 1679 */
a509bc1a 1680int
1da177e4
LT
1681add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1682 unsigned long nr_pages, sector_t start_block)
1683{
1684 struct swap_extent *se;
1685 struct swap_extent *new_se;
1686 struct list_head *lh;
1687
9625a5f2
HD
1688 if (start_page == 0) {
1689 se = &sis->first_swap_extent;
1690 sis->curr_swap_extent = se;
1691 se->start_page = 0;
1692 se->nr_pages = nr_pages;
1693 se->start_block = start_block;
1694 return 1;
1695 } else {
1696 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1697 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1698 BUG_ON(se->start_page + se->nr_pages != start_page);
1699 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1700 /* Merge it */
1701 se->nr_pages += nr_pages;
1702 return 0;
1703 }
1da177e4
LT
1704 }
1705
1706 /*
1707 * No merge. Insert a new extent, preserving ordering.
1708 */
1709 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1710 if (new_se == NULL)
1711 return -ENOMEM;
1712 new_se->start_page = start_page;
1713 new_se->nr_pages = nr_pages;
1714 new_se->start_block = start_block;
1715
9625a5f2 1716 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1717 return 1;
1da177e4
LT
1718}
1719
1720/*
1721 * A `swap extent' is a simple thing which maps a contiguous range of pages
1722 * onto a contiguous range of disk blocks. An ordered list of swap extents
1723 * is built at swapon time and is then used at swap_writepage/swap_readpage
1724 * time for locating where on disk a page belongs.
1725 *
1726 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1727 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1728 * swap files identically.
1729 *
1730 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1731 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1732 * swapfiles are handled *identically* after swapon time.
1733 *
1734 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1735 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1736 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1737 * requirements, they are simply tossed out - we will never use those blocks
1738 * for swapping.
1739 *
b0d9bcd4 1740 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1741 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1742 * which will scribble on the fs.
1743 *
1744 * The amount of disk space which a single swap extent represents varies.
1745 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1746 * extents in the list. To avoid much list walking, we cache the previous
1747 * search location in `curr_swap_extent', and start new searches from there.
1748 * This is extremely effective. The average number of iterations in
1749 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1750 */
53092a74 1751static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1752{
62c230bc
MG
1753 struct file *swap_file = sis->swap_file;
1754 struct address_space *mapping = swap_file->f_mapping;
1755 struct inode *inode = mapping->host;
1da177e4
LT
1756 int ret;
1757
1da177e4
LT
1758 if (S_ISBLK(inode->i_mode)) {
1759 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1760 *span = sis->pages;
a509bc1a 1761 return ret;
1da177e4
LT
1762 }
1763
62c230bc 1764 if (mapping->a_ops->swap_activate) {
a509bc1a 1765 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1766 if (!ret) {
1767 sis->flags |= SWP_FILE;
1768 ret = add_swap_extent(sis, 0, sis->max, 0);
1769 *span = sis->pages;
1770 }
a509bc1a 1771 return ret;
62c230bc
MG
1772 }
1773
a509bc1a 1774 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1775}
1776
cf0cac0a 1777static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1778 unsigned char *swap_map,
1779 struct swap_cluster_info *cluster_info)
40531542 1780{
40531542
CEB
1781 if (prio >= 0)
1782 p->prio = prio;
1783 else
1784 p->prio = --least_priority;
18ab4d4c
DS
1785 /*
1786 * the plist prio is negated because plist ordering is
1787 * low-to-high, while swap ordering is high-to-low
1788 */
1789 p->list.prio = -p->prio;
1790 p->avail_list.prio = -p->prio;
40531542 1791 p->swap_map = swap_map;
2a8f9449 1792 p->cluster_info = cluster_info;
40531542 1793 p->flags |= SWP_WRITEOK;
ec8acf20 1794 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1795 total_swap_pages += p->pages;
1796
adfab836 1797 assert_spin_locked(&swap_lock);
adfab836 1798 /*
18ab4d4c
DS
1799 * both lists are plists, and thus priority ordered.
1800 * swap_active_head needs to be priority ordered for swapoff(),
1801 * which on removal of any swap_info_struct with an auto-assigned
1802 * (i.e. negative) priority increments the auto-assigned priority
1803 * of any lower-priority swap_info_structs.
1804 * swap_avail_head needs to be priority ordered for get_swap_page(),
1805 * which allocates swap pages from the highest available priority
1806 * swap_info_struct.
adfab836 1807 */
18ab4d4c
DS
1808 plist_add(&p->list, &swap_active_head);
1809 spin_lock(&swap_avail_lock);
1810 plist_add(&p->avail_list, &swap_avail_head);
1811 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1812}
1813
1814static void enable_swap_info(struct swap_info_struct *p, int prio,
1815 unsigned char *swap_map,
2a8f9449 1816 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1817 unsigned long *frontswap_map)
1818{
4f89849d 1819 frontswap_init(p->type, frontswap_map);
cf0cac0a 1820 spin_lock(&swap_lock);
ec8acf20 1821 spin_lock(&p->lock);
2a8f9449 1822 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1823 spin_unlock(&p->lock);
cf0cac0a
CEB
1824 spin_unlock(&swap_lock);
1825}
1826
1827static void reinsert_swap_info(struct swap_info_struct *p)
1828{
1829 spin_lock(&swap_lock);
ec8acf20 1830 spin_lock(&p->lock);
2a8f9449 1831 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1832 spin_unlock(&p->lock);
40531542
CEB
1833 spin_unlock(&swap_lock);
1834}
1835
c4ea37c2 1836SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1837{
73c34b6a 1838 struct swap_info_struct *p = NULL;
8d69aaee 1839 unsigned char *swap_map;
2a8f9449 1840 struct swap_cluster_info *cluster_info;
4f89849d 1841 unsigned long *frontswap_map;
1da177e4
LT
1842 struct file *swap_file, *victim;
1843 struct address_space *mapping;
1844 struct inode *inode;
91a27b2a 1845 struct filename *pathname;
adfab836 1846 int err, found = 0;
5b808a23 1847 unsigned int old_block_size;
886bb7e9 1848
1da177e4
LT
1849 if (!capable(CAP_SYS_ADMIN))
1850 return -EPERM;
1851
191c5424
AV
1852 BUG_ON(!current->mm);
1853
1da177e4 1854 pathname = getname(specialfile);
1da177e4 1855 if (IS_ERR(pathname))
f58b59c1 1856 return PTR_ERR(pathname);
1da177e4 1857
669abf4e 1858 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1859 err = PTR_ERR(victim);
1860 if (IS_ERR(victim))
1861 goto out;
1862
1863 mapping = victim->f_mapping;
5d337b91 1864 spin_lock(&swap_lock);
18ab4d4c 1865 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1866 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1867 if (p->swap_file->f_mapping == mapping) {
1868 found = 1;
1da177e4 1869 break;
adfab836 1870 }
1da177e4 1871 }
1da177e4 1872 }
adfab836 1873 if (!found) {
1da177e4 1874 err = -EINVAL;
5d337b91 1875 spin_unlock(&swap_lock);
1da177e4
LT
1876 goto out_dput;
1877 }
191c5424 1878 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1879 vm_unacct_memory(p->pages);
1880 else {
1881 err = -ENOMEM;
5d337b91 1882 spin_unlock(&swap_lock);
1da177e4
LT
1883 goto out_dput;
1884 }
18ab4d4c
DS
1885 spin_lock(&swap_avail_lock);
1886 plist_del(&p->avail_list, &swap_avail_head);
1887 spin_unlock(&swap_avail_lock);
ec8acf20 1888 spin_lock(&p->lock);
78ecba08 1889 if (p->prio < 0) {
adfab836
DS
1890 struct swap_info_struct *si = p;
1891
18ab4d4c 1892 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1893 si->prio++;
18ab4d4c
DS
1894 si->list.prio--;
1895 si->avail_list.prio--;
adfab836 1896 }
78ecba08
HD
1897 least_priority++;
1898 }
18ab4d4c 1899 plist_del(&p->list, &swap_active_head);
ec8acf20 1900 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1901 total_swap_pages -= p->pages;
1902 p->flags &= ~SWP_WRITEOK;
ec8acf20 1903 spin_unlock(&p->lock);
5d337b91 1904 spin_unlock(&swap_lock);
fb4f88dc 1905
e1e12d2f 1906 set_current_oom_origin();
adfab836 1907 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1908 clear_current_oom_origin();
1da177e4 1909
1da177e4
LT
1910 if (err) {
1911 /* re-insert swap space back into swap_list */
cf0cac0a 1912 reinsert_swap_info(p);
1da177e4
LT
1913 goto out_dput;
1914 }
52b7efdb 1915
815c2c54
SL
1916 flush_work(&p->discard_work);
1917
5d337b91 1918 destroy_swap_extents(p);
570a335b
HD
1919 if (p->flags & SWP_CONTINUED)
1920 free_swap_count_continuations(p);
1921
fc0abb14 1922 mutex_lock(&swapon_mutex);
5d337b91 1923 spin_lock(&swap_lock);
ec8acf20 1924 spin_lock(&p->lock);
5d337b91
HD
1925 drain_mmlist();
1926
52b7efdb 1927 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1928 p->highest_bit = 0; /* cuts scans short */
1929 while (p->flags >= SWP_SCANNING) {
ec8acf20 1930 spin_unlock(&p->lock);
5d337b91 1931 spin_unlock(&swap_lock);
13e4b57f 1932 schedule_timeout_uninterruptible(1);
5d337b91 1933 spin_lock(&swap_lock);
ec8acf20 1934 spin_lock(&p->lock);
52b7efdb 1935 }
52b7efdb 1936
1da177e4 1937 swap_file = p->swap_file;
5b808a23 1938 old_block_size = p->old_block_size;
1da177e4
LT
1939 p->swap_file = NULL;
1940 p->max = 0;
1941 swap_map = p->swap_map;
1942 p->swap_map = NULL;
2a8f9449
SL
1943 cluster_info = p->cluster_info;
1944 p->cluster_info = NULL;
4f89849d 1945 frontswap_map = frontswap_map_get(p);
ec8acf20 1946 spin_unlock(&p->lock);
5d337b91 1947 spin_unlock(&swap_lock);
adfab836 1948 frontswap_invalidate_area(p->type);
58e97ba6 1949 frontswap_map_set(p, NULL);
fc0abb14 1950 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1951 free_percpu(p->percpu_cluster);
1952 p->percpu_cluster = NULL;
1da177e4 1953 vfree(swap_map);
2a8f9449 1954 vfree(cluster_info);
4f89849d 1955 vfree(frontswap_map);
2de1a7e4 1956 /* Destroy swap account information */
adfab836 1957 swap_cgroup_swapoff(p->type);
27a7faa0 1958
1da177e4
LT
1959 inode = mapping->host;
1960 if (S_ISBLK(inode->i_mode)) {
1961 struct block_device *bdev = I_BDEV(inode);
5b808a23 1962 set_blocksize(bdev, old_block_size);
e525fd89 1963 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1964 } else {
5955102c 1965 inode_lock(inode);
1da177e4 1966 inode->i_flags &= ~S_SWAPFILE;
5955102c 1967 inode_unlock(inode);
1da177e4
LT
1968 }
1969 filp_close(swap_file, NULL);
f893ab41
WY
1970
1971 /*
1972 * Clear the SWP_USED flag after all resources are freed so that swapon
1973 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1974 * not hold p->lock after we cleared its SWP_WRITEOK.
1975 */
1976 spin_lock(&swap_lock);
1977 p->flags = 0;
1978 spin_unlock(&swap_lock);
1979
1da177e4 1980 err = 0;
66d7dd51
KS
1981 atomic_inc(&proc_poll_event);
1982 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1983
1984out_dput:
1985 filp_close(victim, NULL);
1986out:
f58b59c1 1987 putname(pathname);
1da177e4
LT
1988 return err;
1989}
1990
1991#ifdef CONFIG_PROC_FS
66d7dd51
KS
1992static unsigned swaps_poll(struct file *file, poll_table *wait)
1993{
f1514638 1994 struct seq_file *seq = file->private_data;
66d7dd51
KS
1995
1996 poll_wait(file, &proc_poll_wait, wait);
1997
f1514638
KS
1998 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1999 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2000 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2001 }
2002
2003 return POLLIN | POLLRDNORM;
2004}
2005
1da177e4
LT
2006/* iterator */
2007static void *swap_start(struct seq_file *swap, loff_t *pos)
2008{
efa90a98
HD
2009 struct swap_info_struct *si;
2010 int type;
1da177e4
LT
2011 loff_t l = *pos;
2012
fc0abb14 2013 mutex_lock(&swapon_mutex);
1da177e4 2014
881e4aab
SS
2015 if (!l)
2016 return SEQ_START_TOKEN;
2017
efa90a98
HD
2018 for (type = 0; type < nr_swapfiles; type++) {
2019 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2020 si = swap_info[type];
2021 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2022 continue;
881e4aab 2023 if (!--l)
efa90a98 2024 return si;
1da177e4
LT
2025 }
2026
2027 return NULL;
2028}
2029
2030static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2031{
efa90a98
HD
2032 struct swap_info_struct *si = v;
2033 int type;
1da177e4 2034
881e4aab 2035 if (v == SEQ_START_TOKEN)
efa90a98
HD
2036 type = 0;
2037 else
2038 type = si->type + 1;
881e4aab 2039
efa90a98
HD
2040 for (; type < nr_swapfiles; type++) {
2041 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2042 si = swap_info[type];
2043 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2044 continue;
2045 ++*pos;
efa90a98 2046 return si;
1da177e4
LT
2047 }
2048
2049 return NULL;
2050}
2051
2052static void swap_stop(struct seq_file *swap, void *v)
2053{
fc0abb14 2054 mutex_unlock(&swapon_mutex);
1da177e4
LT
2055}
2056
2057static int swap_show(struct seq_file *swap, void *v)
2058{
efa90a98 2059 struct swap_info_struct *si = v;
1da177e4
LT
2060 struct file *file;
2061 int len;
2062
efa90a98 2063 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2064 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2065 return 0;
2066 }
1da177e4 2067
efa90a98 2068 file = si->swap_file;
2726d566 2069 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2070 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2071 len < 40 ? 40 - len : 1, " ",
496ad9aa 2072 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2073 "partition" : "file\t",
efa90a98
HD
2074 si->pages << (PAGE_SHIFT - 10),
2075 si->inuse_pages << (PAGE_SHIFT - 10),
2076 si->prio);
1da177e4
LT
2077 return 0;
2078}
2079
15ad7cdc 2080static const struct seq_operations swaps_op = {
1da177e4
LT
2081 .start = swap_start,
2082 .next = swap_next,
2083 .stop = swap_stop,
2084 .show = swap_show
2085};
2086
2087static int swaps_open(struct inode *inode, struct file *file)
2088{
f1514638 2089 struct seq_file *seq;
66d7dd51
KS
2090 int ret;
2091
66d7dd51 2092 ret = seq_open(file, &swaps_op);
f1514638 2093 if (ret)
66d7dd51 2094 return ret;
66d7dd51 2095
f1514638
KS
2096 seq = file->private_data;
2097 seq->poll_event = atomic_read(&proc_poll_event);
2098 return 0;
1da177e4
LT
2099}
2100
15ad7cdc 2101static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2102 .open = swaps_open,
2103 .read = seq_read,
2104 .llseek = seq_lseek,
2105 .release = seq_release,
66d7dd51 2106 .poll = swaps_poll,
1da177e4
LT
2107};
2108
2109static int __init procswaps_init(void)
2110{
3d71f86f 2111 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2112 return 0;
2113}
2114__initcall(procswaps_init);
2115#endif /* CONFIG_PROC_FS */
2116
1796316a
JB
2117#ifdef MAX_SWAPFILES_CHECK
2118static int __init max_swapfiles_check(void)
2119{
2120 MAX_SWAPFILES_CHECK();
2121 return 0;
2122}
2123late_initcall(max_swapfiles_check);
2124#endif
2125
53cbb243 2126static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2127{
73c34b6a 2128 struct swap_info_struct *p;
1da177e4 2129 unsigned int type;
efa90a98
HD
2130
2131 p = kzalloc(sizeof(*p), GFP_KERNEL);
2132 if (!p)
53cbb243 2133 return ERR_PTR(-ENOMEM);
efa90a98 2134
5d337b91 2135 spin_lock(&swap_lock);
efa90a98
HD
2136 for (type = 0; type < nr_swapfiles; type++) {
2137 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2138 break;
efa90a98 2139 }
0697212a 2140 if (type >= MAX_SWAPFILES) {
5d337b91 2141 spin_unlock(&swap_lock);
efa90a98 2142 kfree(p);
730c0581 2143 return ERR_PTR(-EPERM);
1da177e4 2144 }
efa90a98
HD
2145 if (type >= nr_swapfiles) {
2146 p->type = type;
2147 swap_info[type] = p;
2148 /*
2149 * Write swap_info[type] before nr_swapfiles, in case a
2150 * racing procfs swap_start() or swap_next() is reading them.
2151 * (We never shrink nr_swapfiles, we never free this entry.)
2152 */
2153 smp_wmb();
2154 nr_swapfiles++;
2155 } else {
2156 kfree(p);
2157 p = swap_info[type];
2158 /*
2159 * Do not memset this entry: a racing procfs swap_next()
2160 * would be relying on p->type to remain valid.
2161 */
2162 }
9625a5f2 2163 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2164 plist_node_init(&p->list, 0);
2165 plist_node_init(&p->avail_list, 0);
1da177e4 2166 p->flags = SWP_USED;
5d337b91 2167 spin_unlock(&swap_lock);
ec8acf20 2168 spin_lock_init(&p->lock);
efa90a98 2169
53cbb243 2170 return p;
53cbb243
CEB
2171}
2172
4d0e1e10
CEB
2173static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2174{
2175 int error;
2176
2177 if (S_ISBLK(inode->i_mode)) {
2178 p->bdev = bdgrab(I_BDEV(inode));
2179 error = blkdev_get(p->bdev,
6f179af8 2180 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2181 if (error < 0) {
2182 p->bdev = NULL;
6f179af8 2183 return error;
4d0e1e10
CEB
2184 }
2185 p->old_block_size = block_size(p->bdev);
2186 error = set_blocksize(p->bdev, PAGE_SIZE);
2187 if (error < 0)
87ade72a 2188 return error;
4d0e1e10
CEB
2189 p->flags |= SWP_BLKDEV;
2190 } else if (S_ISREG(inode->i_mode)) {
2191 p->bdev = inode->i_sb->s_bdev;
5955102c 2192 inode_lock(inode);
87ade72a
CEB
2193 if (IS_SWAPFILE(inode))
2194 return -EBUSY;
2195 } else
2196 return -EINVAL;
4d0e1e10
CEB
2197
2198 return 0;
4d0e1e10
CEB
2199}
2200
ca8bd38b
CEB
2201static unsigned long read_swap_header(struct swap_info_struct *p,
2202 union swap_header *swap_header,
2203 struct inode *inode)
2204{
2205 int i;
2206 unsigned long maxpages;
2207 unsigned long swapfilepages;
d6bbbd29 2208 unsigned long last_page;
ca8bd38b
CEB
2209
2210 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2211 pr_err("Unable to find swap-space signature\n");
38719025 2212 return 0;
ca8bd38b
CEB
2213 }
2214
2215 /* swap partition endianess hack... */
2216 if (swab32(swap_header->info.version) == 1) {
2217 swab32s(&swap_header->info.version);
2218 swab32s(&swap_header->info.last_page);
2219 swab32s(&swap_header->info.nr_badpages);
2220 for (i = 0; i < swap_header->info.nr_badpages; i++)
2221 swab32s(&swap_header->info.badpages[i]);
2222 }
2223 /* Check the swap header's sub-version */
2224 if (swap_header->info.version != 1) {
465c47fd
AM
2225 pr_warn("Unable to handle swap header version %d\n",
2226 swap_header->info.version);
38719025 2227 return 0;
ca8bd38b
CEB
2228 }
2229
2230 p->lowest_bit = 1;
2231 p->cluster_next = 1;
2232 p->cluster_nr = 0;
2233
2234 /*
2235 * Find out how many pages are allowed for a single swap
9b15b817 2236 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2237 * of bits for the swap offset in the swp_entry_t type, and
2238 * 2) the number of bits in the swap pte as defined by the
9b15b817 2239 * different architectures. In order to find the
a2c16d6c 2240 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2241 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2242 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2243 * offset is extracted. This will mask all the bits from
2244 * the initial ~0UL mask that can't be encoded in either
2245 * the swp_entry_t or the architecture definition of a
9b15b817 2246 * swap pte.
ca8bd38b
CEB
2247 */
2248 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2249 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2250 last_page = swap_header->info.last_page;
2251 if (last_page > maxpages) {
465c47fd 2252 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2253 maxpages << (PAGE_SHIFT - 10),
2254 last_page << (PAGE_SHIFT - 10));
2255 }
2256 if (maxpages > last_page) {
2257 maxpages = last_page + 1;
ca8bd38b
CEB
2258 /* p->max is an unsigned int: don't overflow it */
2259 if ((unsigned int)maxpages == 0)
2260 maxpages = UINT_MAX;
2261 }
2262 p->highest_bit = maxpages - 1;
2263
2264 if (!maxpages)
38719025 2265 return 0;
ca8bd38b
CEB
2266 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2267 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2268 pr_warn("Swap area shorter than signature indicates\n");
38719025 2269 return 0;
ca8bd38b
CEB
2270 }
2271 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2272 return 0;
ca8bd38b 2273 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2274 return 0;
ca8bd38b
CEB
2275
2276 return maxpages;
ca8bd38b
CEB
2277}
2278
915d4d7b
CEB
2279static int setup_swap_map_and_extents(struct swap_info_struct *p,
2280 union swap_header *swap_header,
2281 unsigned char *swap_map,
2a8f9449 2282 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2283 unsigned long maxpages,
2284 sector_t *span)
2285{
2286 int i;
915d4d7b
CEB
2287 unsigned int nr_good_pages;
2288 int nr_extents;
2a8f9449
SL
2289 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2290 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2291
2292 nr_good_pages = maxpages - 1; /* omit header page */
2293
2a8f9449
SL
2294 cluster_set_null(&p->free_cluster_head);
2295 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2296 cluster_set_null(&p->discard_cluster_head);
2297 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2298
915d4d7b
CEB
2299 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2300 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2301 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2302 return -EINVAL;
915d4d7b
CEB
2303 if (page_nr < maxpages) {
2304 swap_map[page_nr] = SWAP_MAP_BAD;
2305 nr_good_pages--;
2a8f9449
SL
2306 /*
2307 * Haven't marked the cluster free yet, no list
2308 * operation involved
2309 */
2310 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2311 }
2312 }
2313
2a8f9449
SL
2314 /* Haven't marked the cluster free yet, no list operation involved */
2315 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2316 inc_cluster_info_page(p, cluster_info, i);
2317
915d4d7b
CEB
2318 if (nr_good_pages) {
2319 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2320 /*
2321 * Not mark the cluster free yet, no list
2322 * operation involved
2323 */
2324 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2325 p->max = maxpages;
2326 p->pages = nr_good_pages;
2327 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2328 if (nr_extents < 0)
2329 return nr_extents;
915d4d7b
CEB
2330 nr_good_pages = p->pages;
2331 }
2332 if (!nr_good_pages) {
465c47fd 2333 pr_warn("Empty swap-file\n");
bdb8e3f6 2334 return -EINVAL;
915d4d7b
CEB
2335 }
2336
2a8f9449
SL
2337 if (!cluster_info)
2338 return nr_extents;
2339
2340 for (i = 0; i < nr_clusters; i++) {
2341 if (!cluster_count(&cluster_info[idx])) {
2342 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2343 if (cluster_is_null(&p->free_cluster_head)) {
2344 cluster_set_next_flag(&p->free_cluster_head,
2345 idx, 0);
2346 cluster_set_next_flag(&p->free_cluster_tail,
2347 idx, 0);
2348 } else {
2349 unsigned int tail;
2350
2351 tail = cluster_next(&p->free_cluster_tail);
2352 cluster_set_next(&cluster_info[tail], idx);
2353 cluster_set_next_flag(&p->free_cluster_tail,
2354 idx, 0);
2355 }
2356 }
2357 idx++;
2358 if (idx == nr_clusters)
2359 idx = 0;
2360 }
915d4d7b 2361 return nr_extents;
915d4d7b
CEB
2362}
2363
dcf6b7dd
RA
2364/*
2365 * Helper to sys_swapon determining if a given swap
2366 * backing device queue supports DISCARD operations.
2367 */
2368static bool swap_discardable(struct swap_info_struct *si)
2369{
2370 struct request_queue *q = bdev_get_queue(si->bdev);
2371
2372 if (!q || !blk_queue_discard(q))
2373 return false;
2374
2375 return true;
2376}
2377
53cbb243
CEB
2378SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2379{
2380 struct swap_info_struct *p;
91a27b2a 2381 struct filename *name;
53cbb243
CEB
2382 struct file *swap_file = NULL;
2383 struct address_space *mapping;
40531542 2384 int prio;
53cbb243
CEB
2385 int error;
2386 union swap_header *swap_header;
915d4d7b 2387 int nr_extents;
53cbb243
CEB
2388 sector_t span;
2389 unsigned long maxpages;
53cbb243 2390 unsigned char *swap_map = NULL;
2a8f9449 2391 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2392 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2393 struct page *page = NULL;
2394 struct inode *inode = NULL;
53cbb243 2395
d15cab97
HD
2396 if (swap_flags & ~SWAP_FLAGS_VALID)
2397 return -EINVAL;
2398
53cbb243
CEB
2399 if (!capable(CAP_SYS_ADMIN))
2400 return -EPERM;
2401
2402 p = alloc_swap_info();
2542e513
CEB
2403 if (IS_ERR(p))
2404 return PTR_ERR(p);
53cbb243 2405
815c2c54
SL
2406 INIT_WORK(&p->discard_work, swap_discard_work);
2407
1da177e4 2408 name = getname(specialfile);
1da177e4 2409 if (IS_ERR(name)) {
7de7fb6b 2410 error = PTR_ERR(name);
1da177e4 2411 name = NULL;
bd69010b 2412 goto bad_swap;
1da177e4 2413 }
669abf4e 2414 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2415 if (IS_ERR(swap_file)) {
7de7fb6b 2416 error = PTR_ERR(swap_file);
1da177e4 2417 swap_file = NULL;
bd69010b 2418 goto bad_swap;
1da177e4
LT
2419 }
2420
2421 p->swap_file = swap_file;
2422 mapping = swap_file->f_mapping;
2130781e 2423 inode = mapping->host;
6f179af8 2424
5955102c 2425 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2426 error = claim_swapfile(p, inode);
2427 if (unlikely(error))
1da177e4 2428 goto bad_swap;
1da177e4 2429
1da177e4
LT
2430 /*
2431 * Read the swap header.
2432 */
2433 if (!mapping->a_ops->readpage) {
2434 error = -EINVAL;
2435 goto bad_swap;
2436 }
090d2b18 2437 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2438 if (IS_ERR(page)) {
2439 error = PTR_ERR(page);
2440 goto bad_swap;
2441 }
81e33971 2442 swap_header = kmap(page);
1da177e4 2443
ca8bd38b
CEB
2444 maxpages = read_swap_header(p, swap_header, inode);
2445 if (unlikely(!maxpages)) {
1da177e4
LT
2446 error = -EINVAL;
2447 goto bad_swap;
2448 }
886bb7e9 2449
81e33971 2450 /* OK, set up the swap map and apply the bad block list */
803d0c83 2451 swap_map = vzalloc(maxpages);
81e33971
HD
2452 if (!swap_map) {
2453 error = -ENOMEM;
2454 goto bad_swap;
2455 }
2a8f9449 2456 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8
HD
2457 int cpu;
2458
2a8f9449
SL
2459 p->flags |= SWP_SOLIDSTATE;
2460 /*
2461 * select a random position to start with to help wear leveling
2462 * SSD
2463 */
2464 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2465
2466 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2467 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2468 if (!cluster_info) {
2469 error = -ENOMEM;
2470 goto bad_swap;
2471 }
ebc2a1a6
SL
2472 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2473 if (!p->percpu_cluster) {
2474 error = -ENOMEM;
2475 goto bad_swap;
2476 }
6f179af8 2477 for_each_possible_cpu(cpu) {
ebc2a1a6 2478 struct percpu_cluster *cluster;
6f179af8 2479 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2480 cluster_set_null(&cluster->index);
2481 }
2a8f9449 2482 }
1da177e4 2483
1421ef3c
CEB
2484 error = swap_cgroup_swapon(p->type, maxpages);
2485 if (error)
2486 goto bad_swap;
2487
915d4d7b 2488 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2489 cluster_info, maxpages, &span);
915d4d7b
CEB
2490 if (unlikely(nr_extents < 0)) {
2491 error = nr_extents;
1da177e4
LT
2492 goto bad_swap;
2493 }
38b5faf4
DM
2494 /* frontswap enabled? set up bit-per-page map for frontswap */
2495 if (frontswap_enabled)
7b57976d 2496 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2497
2a8f9449
SL
2498 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2499 /*
2500 * When discard is enabled for swap with no particular
2501 * policy flagged, we set all swap discard flags here in
2502 * order to sustain backward compatibility with older
2503 * swapon(8) releases.
2504 */
2505 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2506 SWP_PAGE_DISCARD);
dcf6b7dd 2507
2a8f9449
SL
2508 /*
2509 * By flagging sys_swapon, a sysadmin can tell us to
2510 * either do single-time area discards only, or to just
2511 * perform discards for released swap page-clusters.
2512 * Now it's time to adjust the p->flags accordingly.
2513 */
2514 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2515 p->flags &= ~SWP_PAGE_DISCARD;
2516 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2517 p->flags &= ~SWP_AREA_DISCARD;
2518
2519 /* issue a swapon-time discard if it's still required */
2520 if (p->flags & SWP_AREA_DISCARD) {
2521 int err = discard_swap(p);
2522 if (unlikely(err))
2523 pr_err("swapon: discard_swap(%p): %d\n",
2524 p, err);
dcf6b7dd 2525 }
20137a49 2526 }
6a6ba831 2527
fc0abb14 2528 mutex_lock(&swapon_mutex);
40531542 2529 prio = -1;
78ecba08 2530 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2531 prio =
78ecba08 2532 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2533 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2534
756a025f 2535 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2536 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2537 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2538 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2539 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2540 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2541 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2542 (frontswap_map) ? "FS" : "");
c69dbfb8 2543
fc0abb14 2544 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2545 atomic_inc(&proc_poll_event);
2546 wake_up_interruptible(&proc_poll_wait);
2547
9b01c350
CEB
2548 if (S_ISREG(inode->i_mode))
2549 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2550 error = 0;
2551 goto out;
2552bad_swap:
ebc2a1a6
SL
2553 free_percpu(p->percpu_cluster);
2554 p->percpu_cluster = NULL;
bd69010b 2555 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2556 set_blocksize(p->bdev, p->old_block_size);
2557 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2558 }
4cd3bb10 2559 destroy_swap_extents(p);
e8e6c2ec 2560 swap_cgroup_swapoff(p->type);
5d337b91 2561 spin_lock(&swap_lock);
1da177e4 2562 p->swap_file = NULL;
1da177e4 2563 p->flags = 0;
5d337b91 2564 spin_unlock(&swap_lock);
1da177e4 2565 vfree(swap_map);
2a8f9449 2566 vfree(cluster_info);
52c50567 2567 if (swap_file) {
2130781e 2568 if (inode && S_ISREG(inode->i_mode)) {
5955102c 2569 inode_unlock(inode);
2130781e
CEB
2570 inode = NULL;
2571 }
1da177e4 2572 filp_close(swap_file, NULL);
52c50567 2573 }
1da177e4
LT
2574out:
2575 if (page && !IS_ERR(page)) {
2576 kunmap(page);
09cbfeaf 2577 put_page(page);
1da177e4
LT
2578 }
2579 if (name)
2580 putname(name);
9b01c350 2581 if (inode && S_ISREG(inode->i_mode))
5955102c 2582 inode_unlock(inode);
1da177e4
LT
2583 return error;
2584}
2585
2586void si_swapinfo(struct sysinfo *val)
2587{
efa90a98 2588 unsigned int type;
1da177e4
LT
2589 unsigned long nr_to_be_unused = 0;
2590
5d337b91 2591 spin_lock(&swap_lock);
efa90a98
HD
2592 for (type = 0; type < nr_swapfiles; type++) {
2593 struct swap_info_struct *si = swap_info[type];
2594
2595 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2596 nr_to_be_unused += si->inuse_pages;
1da177e4 2597 }
ec8acf20 2598 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2599 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2600 spin_unlock(&swap_lock);
1da177e4
LT
2601}
2602
2603/*
2604 * Verify that a swap entry is valid and increment its swap map count.
2605 *
355cfa73
KH
2606 * Returns error code in following case.
2607 * - success -> 0
2608 * - swp_entry is invalid -> EINVAL
2609 * - swp_entry is migration entry -> EINVAL
2610 * - swap-cache reference is requested but there is already one. -> EEXIST
2611 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2612 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2613 */
8d69aaee 2614static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2615{
73c34b6a 2616 struct swap_info_struct *p;
1da177e4 2617 unsigned long offset, type;
8d69aaee
HD
2618 unsigned char count;
2619 unsigned char has_cache;
253d553b 2620 int err = -EINVAL;
1da177e4 2621
a7420aa5 2622 if (non_swap_entry(entry))
253d553b 2623 goto out;
0697212a 2624
1da177e4
LT
2625 type = swp_type(entry);
2626 if (type >= nr_swapfiles)
2627 goto bad_file;
efa90a98 2628 p = swap_info[type];
1da177e4
LT
2629 offset = swp_offset(entry);
2630
ec8acf20 2631 spin_lock(&p->lock);
355cfa73
KH
2632 if (unlikely(offset >= p->max))
2633 goto unlock_out;
2634
253d553b 2635 count = p->swap_map[offset];
edfe23da
SL
2636
2637 /*
2638 * swapin_readahead() doesn't check if a swap entry is valid, so the
2639 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2640 */
2641 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2642 err = -ENOENT;
2643 goto unlock_out;
2644 }
2645
253d553b
HD
2646 has_cache = count & SWAP_HAS_CACHE;
2647 count &= ~SWAP_HAS_CACHE;
2648 err = 0;
355cfa73 2649
253d553b 2650 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2651
2652 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2653 if (!has_cache && count)
2654 has_cache = SWAP_HAS_CACHE;
2655 else if (has_cache) /* someone else added cache */
2656 err = -EEXIST;
2657 else /* no users remaining */
2658 err = -ENOENT;
355cfa73
KH
2659
2660 } else if (count || has_cache) {
253d553b 2661
570a335b
HD
2662 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2663 count += usage;
2664 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2665 err = -EINVAL;
570a335b
HD
2666 else if (swap_count_continued(p, offset, count))
2667 count = COUNT_CONTINUED;
2668 else
2669 err = -ENOMEM;
355cfa73 2670 } else
253d553b
HD
2671 err = -ENOENT; /* unused swap entry */
2672
2673 p->swap_map[offset] = count | has_cache;
2674
355cfa73 2675unlock_out:
ec8acf20 2676 spin_unlock(&p->lock);
1da177e4 2677out:
253d553b 2678 return err;
1da177e4
LT
2679
2680bad_file:
465c47fd 2681 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2682 goto out;
2683}
253d553b 2684
aaa46865
HD
2685/*
2686 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2687 * (in which case its reference count is never incremented).
2688 */
2689void swap_shmem_alloc(swp_entry_t entry)
2690{
2691 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2692}
2693
355cfa73 2694/*
08259d58
HD
2695 * Increase reference count of swap entry by 1.
2696 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2697 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2698 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2699 * might occur if a page table entry has got corrupted.
355cfa73 2700 */
570a335b 2701int swap_duplicate(swp_entry_t entry)
355cfa73 2702{
570a335b
HD
2703 int err = 0;
2704
2705 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2706 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2707 return err;
355cfa73 2708}
1da177e4 2709
cb4b86ba 2710/*
355cfa73
KH
2711 * @entry: swap entry for which we allocate swap cache.
2712 *
73c34b6a 2713 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2714 * This can return error codes. Returns 0 at success.
2715 * -EBUSY means there is a swap cache.
2716 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2717 */
2718int swapcache_prepare(swp_entry_t entry)
2719{
253d553b 2720 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2721}
2722
f981c595
MG
2723struct swap_info_struct *page_swap_info(struct page *page)
2724{
2725 swp_entry_t swap = { .val = page_private(page) };
2726 BUG_ON(!PageSwapCache(page));
2727 return swap_info[swp_type(swap)];
2728}
2729
2730/*
2731 * out-of-line __page_file_ methods to avoid include hell.
2732 */
2733struct address_space *__page_file_mapping(struct page *page)
2734{
309381fe 2735 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2736 return page_swap_info(page)->swap_file->f_mapping;
2737}
2738EXPORT_SYMBOL_GPL(__page_file_mapping);
2739
2740pgoff_t __page_file_index(struct page *page)
2741{
2742 swp_entry_t swap = { .val = page_private(page) };
309381fe 2743 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2744 return swp_offset(swap);
2745}
2746EXPORT_SYMBOL_GPL(__page_file_index);
2747
570a335b
HD
2748/*
2749 * add_swap_count_continuation - called when a swap count is duplicated
2750 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2751 * page of the original vmalloc'ed swap_map, to hold the continuation count
2752 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2753 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2754 *
2755 * These continuation pages are seldom referenced: the common paths all work
2756 * on the original swap_map, only referring to a continuation page when the
2757 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2758 *
2759 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2760 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2761 * can be called after dropping locks.
2762 */
2763int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2764{
2765 struct swap_info_struct *si;
2766 struct page *head;
2767 struct page *page;
2768 struct page *list_page;
2769 pgoff_t offset;
2770 unsigned char count;
2771
2772 /*
2773 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2774 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2775 */
2776 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2777
2778 si = swap_info_get(entry);
2779 if (!si) {
2780 /*
2781 * An acceptable race has occurred since the failing
2782 * __swap_duplicate(): the swap entry has been freed,
2783 * perhaps even the whole swap_map cleared for swapoff.
2784 */
2785 goto outer;
2786 }
2787
2788 offset = swp_offset(entry);
2789 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2790
2791 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2792 /*
2793 * The higher the swap count, the more likely it is that tasks
2794 * will race to add swap count continuation: we need to avoid
2795 * over-provisioning.
2796 */
2797 goto out;
2798 }
2799
2800 if (!page) {
ec8acf20 2801 spin_unlock(&si->lock);
570a335b
HD
2802 return -ENOMEM;
2803 }
2804
2805 /*
2806 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2807 * no architecture is using highmem pages for kernel page tables: so it
2808 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2809 */
2810 head = vmalloc_to_page(si->swap_map + offset);
2811 offset &= ~PAGE_MASK;
2812
2813 /*
2814 * Page allocation does not initialize the page's lru field,
2815 * but it does always reset its private field.
2816 */
2817 if (!page_private(head)) {
2818 BUG_ON(count & COUNT_CONTINUED);
2819 INIT_LIST_HEAD(&head->lru);
2820 set_page_private(head, SWP_CONTINUED);
2821 si->flags |= SWP_CONTINUED;
2822 }
2823
2824 list_for_each_entry(list_page, &head->lru, lru) {
2825 unsigned char *map;
2826
2827 /*
2828 * If the previous map said no continuation, but we've found
2829 * a continuation page, free our allocation and use this one.
2830 */
2831 if (!(count & COUNT_CONTINUED))
2832 goto out;
2833
9b04c5fe 2834 map = kmap_atomic(list_page) + offset;
570a335b 2835 count = *map;
9b04c5fe 2836 kunmap_atomic(map);
570a335b
HD
2837
2838 /*
2839 * If this continuation count now has some space in it,
2840 * free our allocation and use this one.
2841 */
2842 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2843 goto out;
2844 }
2845
2846 list_add_tail(&page->lru, &head->lru);
2847 page = NULL; /* now it's attached, don't free it */
2848out:
ec8acf20 2849 spin_unlock(&si->lock);
570a335b
HD
2850outer:
2851 if (page)
2852 __free_page(page);
2853 return 0;
2854}
2855
2856/*
2857 * swap_count_continued - when the original swap_map count is incremented
2858 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2859 * into, carry if so, or else fail until a new continuation page is allocated;
2860 * when the original swap_map count is decremented from 0 with continuation,
2861 * borrow from the continuation and report whether it still holds more.
2862 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2863 */
2864static bool swap_count_continued(struct swap_info_struct *si,
2865 pgoff_t offset, unsigned char count)
2866{
2867 struct page *head;
2868 struct page *page;
2869 unsigned char *map;
2870
2871 head = vmalloc_to_page(si->swap_map + offset);
2872 if (page_private(head) != SWP_CONTINUED) {
2873 BUG_ON(count & COUNT_CONTINUED);
2874 return false; /* need to add count continuation */
2875 }
2876
2877 offset &= ~PAGE_MASK;
2878 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2879 map = kmap_atomic(page) + offset;
570a335b
HD
2880
2881 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2882 goto init_map; /* jump over SWAP_CONT_MAX checks */
2883
2884 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2885 /*
2886 * Think of how you add 1 to 999
2887 */
2888 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2889 kunmap_atomic(map);
570a335b
HD
2890 page = list_entry(page->lru.next, struct page, lru);
2891 BUG_ON(page == head);
9b04c5fe 2892 map = kmap_atomic(page) + offset;
570a335b
HD
2893 }
2894 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2895 kunmap_atomic(map);
570a335b
HD
2896 page = list_entry(page->lru.next, struct page, lru);
2897 if (page == head)
2898 return false; /* add count continuation */
9b04c5fe 2899 map = kmap_atomic(page) + offset;
570a335b
HD
2900init_map: *map = 0; /* we didn't zero the page */
2901 }
2902 *map += 1;
9b04c5fe 2903 kunmap_atomic(map);
570a335b
HD
2904 page = list_entry(page->lru.prev, struct page, lru);
2905 while (page != head) {
9b04c5fe 2906 map = kmap_atomic(page) + offset;
570a335b 2907 *map = COUNT_CONTINUED;
9b04c5fe 2908 kunmap_atomic(map);
570a335b
HD
2909 page = list_entry(page->lru.prev, struct page, lru);
2910 }
2911 return true; /* incremented */
2912
2913 } else { /* decrementing */
2914 /*
2915 * Think of how you subtract 1 from 1000
2916 */
2917 BUG_ON(count != COUNT_CONTINUED);
2918 while (*map == COUNT_CONTINUED) {
9b04c5fe 2919 kunmap_atomic(map);
570a335b
HD
2920 page = list_entry(page->lru.next, struct page, lru);
2921 BUG_ON(page == head);
9b04c5fe 2922 map = kmap_atomic(page) + offset;
570a335b
HD
2923 }
2924 BUG_ON(*map == 0);
2925 *map -= 1;
2926 if (*map == 0)
2927 count = 0;
9b04c5fe 2928 kunmap_atomic(map);
570a335b
HD
2929 page = list_entry(page->lru.prev, struct page, lru);
2930 while (page != head) {
9b04c5fe 2931 map = kmap_atomic(page) + offset;
570a335b
HD
2932 *map = SWAP_CONT_MAX | count;
2933 count = COUNT_CONTINUED;
9b04c5fe 2934 kunmap_atomic(map);
570a335b
HD
2935 page = list_entry(page->lru.prev, struct page, lru);
2936 }
2937 return count == COUNT_CONTINUED;
2938 }
2939}
2940
2941/*
2942 * free_swap_count_continuations - swapoff free all the continuation pages
2943 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2944 */
2945static void free_swap_count_continuations(struct swap_info_struct *si)
2946{
2947 pgoff_t offset;
2948
2949 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2950 struct page *head;
2951 head = vmalloc_to_page(si->swap_map + offset);
2952 if (page_private(head)) {
0d576d20
GT
2953 struct page *page, *next;
2954
2955 list_for_each_entry_safe(page, next, &head->lru, lru) {
2956 list_del(&page->lru);
570a335b
HD
2957 __free_page(page);
2958 }
2959 }
2960 }
2961}
This page took 1.050212 seconds and 5 git commands to generate.