mm: memcontrol: generalize locking for the page->mem_cgroup binding
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
241994ed
JW
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
ee814fe2
JW
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
1da177e4
LT
108};
109
1da177e4
LT
110#ifdef ARCH_HAS_PREFETCH
111#define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120#else
121#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122#endif
123
124#ifdef ARCH_HAS_PREFETCHW
125#define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134#else
135#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136#endif
137
138/*
139 * From 0 .. 100. Higher means more swappy.
140 */
141int vm_swappiness = 60;
d0480be4
WSH
142/*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146unsigned long vm_total_pages;
1da177e4
LT
147
148static LIST_HEAD(shrinker_list);
149static DECLARE_RWSEM(shrinker_rwsem);
150
c255a458 151#ifdef CONFIG_MEMCG
89b5fae5
JW
152static bool global_reclaim(struct scan_control *sc)
153{
f16015fb 154 return !sc->target_mem_cgroup;
89b5fae5 155}
97c9341f
TH
156
157/**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170static bool sane_reclaim(struct scan_control *sc)
171{
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
178 return true;
179#endif
180 return false;
181}
91a45470 182#else
89b5fae5
JW
183static bool global_reclaim(struct scan_control *sc)
184{
185 return true;
186}
97c9341f
TH
187
188static bool sane_reclaim(struct scan_control *sc)
189{
190 return true;
191}
91a45470
KH
192#endif
193
a1c3bfb2 194static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57 195{
d031a157 196 unsigned long nr;
6e543d57 197
0db2cb8d
MH
198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
6e543d57
LD
201
202 if (get_nr_swap_pages() > 0)
0db2cb8d
MH
203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
6e543d57
LD
206
207 return nr;
208}
209
210bool zone_reclaimable(struct zone *zone)
211{
0db2cb8d 212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
0d5d823a 213 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
214}
215
4d7dcca2 216static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 217{
c3c787e8 218 if (!mem_cgroup_disabled())
4d7dcca2 219 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 220
074291fe 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
222}
223
1da177e4 224/*
1d3d4437 225 * Add a shrinker callback to be called from the vm.
1da177e4 226 */
1d3d4437 227int register_shrinker(struct shrinker *shrinker)
1da177e4 228{
1d3d4437
GC
229 size_t size = sizeof(*shrinker->nr_deferred);
230
1d3d4437
GC
231 if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 size *= nr_node_ids;
233
234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 if (!shrinker->nr_deferred)
236 return -ENOMEM;
237
8e1f936b
RR
238 down_write(&shrinker_rwsem);
239 list_add_tail(&shrinker->list, &shrinker_list);
240 up_write(&shrinker_rwsem);
1d3d4437 241 return 0;
1da177e4 242}
8e1f936b 243EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
244
245/*
246 * Remove one
247 */
8e1f936b 248void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
249{
250 down_write(&shrinker_rwsem);
251 list_del(&shrinker->list);
252 up_write(&shrinker_rwsem);
ae393321 253 kfree(shrinker->nr_deferred);
1da177e4 254}
8e1f936b 255EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
256
257#define SHRINK_BATCH 128
1d3d4437 258
cb731d6c
VD
259static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 struct shrinker *shrinker,
261 unsigned long nr_scanned,
262 unsigned long nr_eligible)
1d3d4437
GC
263{
264 unsigned long freed = 0;
265 unsigned long long delta;
266 long total_scan;
d5bc5fd3 267 long freeable;
1d3d4437
GC
268 long nr;
269 long new_nr;
270 int nid = shrinkctl->nid;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
273
d5bc5fd3
VD
274 freeable = shrinker->count_objects(shrinker, shrinkctl);
275 if (freeable == 0)
1d3d4437
GC
276 return 0;
277
278 /*
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
282 */
283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284
285 total_scan = nr;
6b4f7799 286 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 287 delta *= freeable;
6b4f7799 288 do_div(delta, nr_eligible + 1);
1d3d4437
GC
289 total_scan += delta;
290 if (total_scan < 0) {
8612c663 291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 292 shrinker->scan_objects, total_scan);
d5bc5fd3 293 total_scan = freeable;
1d3d4437
GC
294 }
295
296 /*
297 * We need to avoid excessive windup on filesystem shrinkers
298 * due to large numbers of GFP_NOFS allocations causing the
299 * shrinkers to return -1 all the time. This results in a large
300 * nr being built up so when a shrink that can do some work
301 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 302 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
303 * memory.
304 *
305 * Hence only allow the shrinker to scan the entire cache when
306 * a large delta change is calculated directly.
307 */
d5bc5fd3
VD
308 if (delta < freeable / 4)
309 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
310
311 /*
312 * Avoid risking looping forever due to too large nr value:
313 * never try to free more than twice the estimate number of
314 * freeable entries.
315 */
d5bc5fd3
VD
316 if (total_scan > freeable * 2)
317 total_scan = freeable * 2;
1d3d4437
GC
318
319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
320 nr_scanned, nr_eligible,
321 freeable, delta, total_scan);
1d3d4437 322
0b1fb40a
VD
323 /*
324 * Normally, we should not scan less than batch_size objects in one
325 * pass to avoid too frequent shrinker calls, but if the slab has less
326 * than batch_size objects in total and we are really tight on memory,
327 * we will try to reclaim all available objects, otherwise we can end
328 * up failing allocations although there are plenty of reclaimable
329 * objects spread over several slabs with usage less than the
330 * batch_size.
331 *
332 * We detect the "tight on memory" situations by looking at the total
333 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 334 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
335 * scanning at high prio and therefore should try to reclaim as much as
336 * possible.
337 */
338 while (total_scan >= batch_size ||
d5bc5fd3 339 total_scan >= freeable) {
a0b02131 340 unsigned long ret;
0b1fb40a 341 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 342
0b1fb40a 343 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
344 ret = shrinker->scan_objects(shrinker, shrinkctl);
345 if (ret == SHRINK_STOP)
346 break;
347 freed += ret;
1d3d4437 348
0b1fb40a
VD
349 count_vm_events(SLABS_SCANNED, nr_to_scan);
350 total_scan -= nr_to_scan;
1d3d4437
GC
351
352 cond_resched();
353 }
354
355 /*
356 * move the unused scan count back into the shrinker in a
357 * manner that handles concurrent updates. If we exhausted the
358 * scan, there is no need to do an update.
359 */
360 if (total_scan > 0)
361 new_nr = atomic_long_add_return(total_scan,
362 &shrinker->nr_deferred[nid]);
363 else
364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365
df9024a8 366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 367 return freed;
1495f230
YH
368}
369
6b4f7799 370/**
cb731d6c 371 * shrink_slab - shrink slab caches
6b4f7799
JW
372 * @gfp_mask: allocation context
373 * @nid: node whose slab caches to target
cb731d6c 374 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
375 * @nr_scanned: pressure numerator
376 * @nr_eligible: pressure denominator
1da177e4 377 *
6b4f7799 378 * Call the shrink functions to age shrinkable caches.
1da177e4 379 *
6b4f7799
JW
380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 382 *
cb731d6c
VD
383 * @memcg specifies the memory cgroup to target. If it is not NULL,
384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385 * objects from the memory cgroup specified. Otherwise all shrinkers
386 * are called, and memcg aware shrinkers are supposed to scan the
387 * global list then.
388 *
6b4f7799
JW
389 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
390 * the available objects should be scanned. Page reclaim for example
391 * passes the number of pages scanned and the number of pages on the
392 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
393 * when it encountered mapped pages. The ratio is further biased by
394 * the ->seeks setting of the shrink function, which indicates the
395 * cost to recreate an object relative to that of an LRU page.
b15e0905 396 *
6b4f7799 397 * Returns the number of reclaimed slab objects.
1da177e4 398 */
cb731d6c
VD
399static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
400 struct mem_cgroup *memcg,
401 unsigned long nr_scanned,
402 unsigned long nr_eligible)
1da177e4
LT
403{
404 struct shrinker *shrinker;
24f7c6b9 405 unsigned long freed = 0;
1da177e4 406
567e9ab2 407 if (memcg && !memcg_kmem_online(memcg))
cb731d6c
VD
408 return 0;
409
6b4f7799
JW
410 if (nr_scanned == 0)
411 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 412
f06590bd 413 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
414 /*
415 * If we would return 0, our callers would understand that we
416 * have nothing else to shrink and give up trying. By returning
417 * 1 we keep it going and assume we'll be able to shrink next
418 * time.
419 */
420 freed = 1;
f06590bd
MK
421 goto out;
422 }
1da177e4
LT
423
424 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
425 struct shrink_control sc = {
426 .gfp_mask = gfp_mask,
427 .nid = nid,
cb731d6c 428 .memcg = memcg,
6b4f7799 429 };
ec97097b 430
cb731d6c
VD
431 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
432 continue;
433
6b4f7799
JW
434 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
435 sc.nid = 0;
1da177e4 436
cb731d6c 437 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 438 }
6b4f7799 439
1da177e4 440 up_read(&shrinker_rwsem);
f06590bd
MK
441out:
442 cond_resched();
24f7c6b9 443 return freed;
1da177e4
LT
444}
445
cb731d6c
VD
446void drop_slab_node(int nid)
447{
448 unsigned long freed;
449
450 do {
451 struct mem_cgroup *memcg = NULL;
452
453 freed = 0;
454 do {
455 freed += shrink_slab(GFP_KERNEL, nid, memcg,
456 1000, 1000);
457 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
458 } while (freed > 10);
459}
460
461void drop_slab(void)
462{
463 int nid;
464
465 for_each_online_node(nid)
466 drop_slab_node(nid);
467}
468
1da177e4
LT
469static inline int is_page_cache_freeable(struct page *page)
470{
ceddc3a5
JW
471 /*
472 * A freeable page cache page is referenced only by the caller
473 * that isolated the page, the page cache radix tree and
474 * optional buffer heads at page->private.
475 */
edcf4748 476 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
477}
478
703c2708 479static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 480{
930d9152 481 if (current->flags & PF_SWAPWRITE)
1da177e4 482 return 1;
703c2708 483 if (!inode_write_congested(inode))
1da177e4 484 return 1;
703c2708 485 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
486 return 1;
487 return 0;
488}
489
490/*
491 * We detected a synchronous write error writing a page out. Probably
492 * -ENOSPC. We need to propagate that into the address_space for a subsequent
493 * fsync(), msync() or close().
494 *
495 * The tricky part is that after writepage we cannot touch the mapping: nothing
496 * prevents it from being freed up. But we have a ref on the page and once
497 * that page is locked, the mapping is pinned.
498 *
499 * We're allowed to run sleeping lock_page() here because we know the caller has
500 * __GFP_FS.
501 */
502static void handle_write_error(struct address_space *mapping,
503 struct page *page, int error)
504{
7eaceacc 505 lock_page(page);
3e9f45bd
GC
506 if (page_mapping(page) == mapping)
507 mapping_set_error(mapping, error);
1da177e4
LT
508 unlock_page(page);
509}
510
04e62a29
CL
511/* possible outcome of pageout() */
512typedef enum {
513 /* failed to write page out, page is locked */
514 PAGE_KEEP,
515 /* move page to the active list, page is locked */
516 PAGE_ACTIVATE,
517 /* page has been sent to the disk successfully, page is unlocked */
518 PAGE_SUCCESS,
519 /* page is clean and locked */
520 PAGE_CLEAN,
521} pageout_t;
522
1da177e4 523/*
1742f19f
AM
524 * pageout is called by shrink_page_list() for each dirty page.
525 * Calls ->writepage().
1da177e4 526 */
c661b078 527static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 528 struct scan_control *sc)
1da177e4
LT
529{
530 /*
531 * If the page is dirty, only perform writeback if that write
532 * will be non-blocking. To prevent this allocation from being
533 * stalled by pagecache activity. But note that there may be
534 * stalls if we need to run get_block(). We could test
535 * PagePrivate for that.
536 *
8174202b 537 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
538 * this page's queue, we can perform writeback even if that
539 * will block.
540 *
541 * If the page is swapcache, write it back even if that would
542 * block, for some throttling. This happens by accident, because
543 * swap_backing_dev_info is bust: it doesn't reflect the
544 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
545 */
546 if (!is_page_cache_freeable(page))
547 return PAGE_KEEP;
548 if (!mapping) {
549 /*
550 * Some data journaling orphaned pages can have
551 * page->mapping == NULL while being dirty with clean buffers.
552 */
266cf658 553 if (page_has_private(page)) {
1da177e4
LT
554 if (try_to_free_buffers(page)) {
555 ClearPageDirty(page);
b1de0d13 556 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
557 return PAGE_CLEAN;
558 }
559 }
560 return PAGE_KEEP;
561 }
562 if (mapping->a_ops->writepage == NULL)
563 return PAGE_ACTIVATE;
703c2708 564 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
565 return PAGE_KEEP;
566
567 if (clear_page_dirty_for_io(page)) {
568 int res;
569 struct writeback_control wbc = {
570 .sync_mode = WB_SYNC_NONE,
571 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
572 .range_start = 0,
573 .range_end = LLONG_MAX,
1da177e4
LT
574 .for_reclaim = 1,
575 };
576
577 SetPageReclaim(page);
578 res = mapping->a_ops->writepage(page, &wbc);
579 if (res < 0)
580 handle_write_error(mapping, page, res);
994fc28c 581 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
582 ClearPageReclaim(page);
583 return PAGE_ACTIVATE;
584 }
c661b078 585
1da177e4
LT
586 if (!PageWriteback(page)) {
587 /* synchronous write or broken a_ops? */
588 ClearPageReclaim(page);
589 }
3aa23851 590 trace_mm_vmscan_writepage(page);
e129b5c2 591 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
592 return PAGE_SUCCESS;
593 }
594
595 return PAGE_CLEAN;
596}
597
a649fd92 598/*
e286781d
NP
599 * Same as remove_mapping, but if the page is removed from the mapping, it
600 * gets returned with a refcount of 0.
a649fd92 601 */
a528910e
JW
602static int __remove_mapping(struct address_space *mapping, struct page *page,
603 bool reclaimed)
49d2e9cc 604{
c4843a75
GT
605 unsigned long flags;
606 struct mem_cgroup *memcg;
607
28e4d965
NP
608 BUG_ON(!PageLocked(page));
609 BUG_ON(mapping != page_mapping(page));
49d2e9cc 610
81f8c3a4 611 memcg = lock_page_memcg(page);
c4843a75 612 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 613 /*
0fd0e6b0
NP
614 * The non racy check for a busy page.
615 *
616 * Must be careful with the order of the tests. When someone has
617 * a ref to the page, it may be possible that they dirty it then
618 * drop the reference. So if PageDirty is tested before page_count
619 * here, then the following race may occur:
620 *
621 * get_user_pages(&page);
622 * [user mapping goes away]
623 * write_to(page);
624 * !PageDirty(page) [good]
625 * SetPageDirty(page);
626 * put_page(page);
627 * !page_count(page) [good, discard it]
628 *
629 * [oops, our write_to data is lost]
630 *
631 * Reversing the order of the tests ensures such a situation cannot
632 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
633 * load is not satisfied before that of page->_count.
634 *
635 * Note that if SetPageDirty is always performed via set_page_dirty,
636 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 637 */
e286781d 638 if (!page_freeze_refs(page, 2))
49d2e9cc 639 goto cannot_free;
e286781d
NP
640 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
641 if (unlikely(PageDirty(page))) {
642 page_unfreeze_refs(page, 2);
49d2e9cc 643 goto cannot_free;
e286781d 644 }
49d2e9cc
CL
645
646 if (PageSwapCache(page)) {
647 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 648 mem_cgroup_swapout(page, swap);
49d2e9cc 649 __delete_from_swap_cache(page);
c4843a75 650 spin_unlock_irqrestore(&mapping->tree_lock, flags);
81f8c3a4 651 unlock_page_memcg(memcg);
0a31bc97 652 swapcache_free(swap);
e286781d 653 } else {
6072d13c 654 void (*freepage)(struct page *);
a528910e 655 void *shadow = NULL;
6072d13c
LT
656
657 freepage = mapping->a_ops->freepage;
a528910e
JW
658 /*
659 * Remember a shadow entry for reclaimed file cache in
660 * order to detect refaults, thus thrashing, later on.
661 *
662 * But don't store shadows in an address space that is
663 * already exiting. This is not just an optizimation,
664 * inode reclaim needs to empty out the radix tree or
665 * the nodes are lost. Don't plant shadows behind its
666 * back.
f9fe48be
RZ
667 *
668 * We also don't store shadows for DAX mappings because the
669 * only page cache pages found in these are zero pages
670 * covering holes, and because we don't want to mix DAX
671 * exceptional entries and shadow exceptional entries in the
672 * same page_tree.
a528910e
JW
673 */
674 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 675 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 676 shadow = workingset_eviction(mapping, page);
c4843a75
GT
677 __delete_from_page_cache(page, shadow, memcg);
678 spin_unlock_irqrestore(&mapping->tree_lock, flags);
81f8c3a4 679 unlock_page_memcg(memcg);
6072d13c
LT
680
681 if (freepage != NULL)
682 freepage(page);
49d2e9cc
CL
683 }
684
49d2e9cc
CL
685 return 1;
686
687cannot_free:
c4843a75 688 spin_unlock_irqrestore(&mapping->tree_lock, flags);
81f8c3a4 689 unlock_page_memcg(memcg);
49d2e9cc
CL
690 return 0;
691}
692
e286781d
NP
693/*
694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
695 * someone else has a ref on the page, abort and return 0. If it was
696 * successfully detached, return 1. Assumes the caller has a single ref on
697 * this page.
698 */
699int remove_mapping(struct address_space *mapping, struct page *page)
700{
a528910e 701 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
702 /*
703 * Unfreezing the refcount with 1 rather than 2 effectively
704 * drops the pagecache ref for us without requiring another
705 * atomic operation.
706 */
707 page_unfreeze_refs(page, 1);
708 return 1;
709 }
710 return 0;
711}
712
894bc310
LS
713/**
714 * putback_lru_page - put previously isolated page onto appropriate LRU list
715 * @page: page to be put back to appropriate lru list
716 *
717 * Add previously isolated @page to appropriate LRU list.
718 * Page may still be unevictable for other reasons.
719 *
720 * lru_lock must not be held, interrupts must be enabled.
721 */
894bc310
LS
722void putback_lru_page(struct page *page)
723{
0ec3b74c 724 bool is_unevictable;
bbfd28ee 725 int was_unevictable = PageUnevictable(page);
894bc310 726
309381fe 727 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
728
729redo:
730 ClearPageUnevictable(page);
731
39b5f29a 732 if (page_evictable(page)) {
894bc310
LS
733 /*
734 * For evictable pages, we can use the cache.
735 * In event of a race, worst case is we end up with an
736 * unevictable page on [in]active list.
737 * We know how to handle that.
738 */
0ec3b74c 739 is_unevictable = false;
c53954a0 740 lru_cache_add(page);
894bc310
LS
741 } else {
742 /*
743 * Put unevictable pages directly on zone's unevictable
744 * list.
745 */
0ec3b74c 746 is_unevictable = true;
894bc310 747 add_page_to_unevictable_list(page);
6a7b9548 748 /*
21ee9f39
MK
749 * When racing with an mlock or AS_UNEVICTABLE clearing
750 * (page is unlocked) make sure that if the other thread
751 * does not observe our setting of PG_lru and fails
24513264 752 * isolation/check_move_unevictable_pages,
21ee9f39 753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
754 * the page back to the evictable list.
755 *
21ee9f39 756 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
757 */
758 smp_mb();
894bc310 759 }
894bc310
LS
760
761 /*
762 * page's status can change while we move it among lru. If an evictable
763 * page is on unevictable list, it never be freed. To avoid that,
764 * check after we added it to the list, again.
765 */
0ec3b74c 766 if (is_unevictable && page_evictable(page)) {
894bc310
LS
767 if (!isolate_lru_page(page)) {
768 put_page(page);
769 goto redo;
770 }
771 /* This means someone else dropped this page from LRU
772 * So, it will be freed or putback to LRU again. There is
773 * nothing to do here.
774 */
775 }
776
0ec3b74c 777 if (was_unevictable && !is_unevictable)
bbfd28ee 778 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 779 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
780 count_vm_event(UNEVICTABLE_PGCULLED);
781
894bc310
LS
782 put_page(page); /* drop ref from isolate */
783}
784
dfc8d636
JW
785enum page_references {
786 PAGEREF_RECLAIM,
787 PAGEREF_RECLAIM_CLEAN,
64574746 788 PAGEREF_KEEP,
dfc8d636
JW
789 PAGEREF_ACTIVATE,
790};
791
792static enum page_references page_check_references(struct page *page,
793 struct scan_control *sc)
794{
64574746 795 int referenced_ptes, referenced_page;
dfc8d636 796 unsigned long vm_flags;
dfc8d636 797
c3ac9a8a
JW
798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
799 &vm_flags);
64574746 800 referenced_page = TestClearPageReferenced(page);
dfc8d636 801
dfc8d636
JW
802 /*
803 * Mlock lost the isolation race with us. Let try_to_unmap()
804 * move the page to the unevictable list.
805 */
806 if (vm_flags & VM_LOCKED)
807 return PAGEREF_RECLAIM;
808
64574746 809 if (referenced_ptes) {
e4898273 810 if (PageSwapBacked(page))
64574746
JW
811 return PAGEREF_ACTIVATE;
812 /*
813 * All mapped pages start out with page table
814 * references from the instantiating fault, so we need
815 * to look twice if a mapped file page is used more
816 * than once.
817 *
818 * Mark it and spare it for another trip around the
819 * inactive list. Another page table reference will
820 * lead to its activation.
821 *
822 * Note: the mark is set for activated pages as well
823 * so that recently deactivated but used pages are
824 * quickly recovered.
825 */
826 SetPageReferenced(page);
827
34dbc67a 828 if (referenced_page || referenced_ptes > 1)
64574746
JW
829 return PAGEREF_ACTIVATE;
830
c909e993
KK
831 /*
832 * Activate file-backed executable pages after first usage.
833 */
834 if (vm_flags & VM_EXEC)
835 return PAGEREF_ACTIVATE;
836
64574746
JW
837 return PAGEREF_KEEP;
838 }
dfc8d636
JW
839
840 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 841 if (referenced_page && !PageSwapBacked(page))
64574746
JW
842 return PAGEREF_RECLAIM_CLEAN;
843
844 return PAGEREF_RECLAIM;
dfc8d636
JW
845}
846
e2be15f6
MG
847/* Check if a page is dirty or under writeback */
848static void page_check_dirty_writeback(struct page *page,
849 bool *dirty, bool *writeback)
850{
b4597226
MG
851 struct address_space *mapping;
852
e2be15f6
MG
853 /*
854 * Anonymous pages are not handled by flushers and must be written
855 * from reclaim context. Do not stall reclaim based on them
856 */
857 if (!page_is_file_cache(page)) {
858 *dirty = false;
859 *writeback = false;
860 return;
861 }
862
863 /* By default assume that the page flags are accurate */
864 *dirty = PageDirty(page);
865 *writeback = PageWriteback(page);
b4597226
MG
866
867 /* Verify dirty/writeback state if the filesystem supports it */
868 if (!page_has_private(page))
869 return;
870
871 mapping = page_mapping(page);
872 if (mapping && mapping->a_ops->is_dirty_writeback)
873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
874}
875
1da177e4 876/*
1742f19f 877 * shrink_page_list() returns the number of reclaimed pages
1da177e4 878 */
1742f19f 879static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 880 struct zone *zone,
f84f6e2b 881 struct scan_control *sc,
02c6de8d 882 enum ttu_flags ttu_flags,
8e950282 883 unsigned long *ret_nr_dirty,
d43006d5 884 unsigned long *ret_nr_unqueued_dirty,
8e950282 885 unsigned long *ret_nr_congested,
02c6de8d 886 unsigned long *ret_nr_writeback,
b1a6f21e 887 unsigned long *ret_nr_immediate,
02c6de8d 888 bool force_reclaim)
1da177e4
LT
889{
890 LIST_HEAD(ret_pages);
abe4c3b5 891 LIST_HEAD(free_pages);
1da177e4 892 int pgactivate = 0;
d43006d5 893 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
894 unsigned long nr_dirty = 0;
895 unsigned long nr_congested = 0;
05ff5137 896 unsigned long nr_reclaimed = 0;
92df3a72 897 unsigned long nr_writeback = 0;
b1a6f21e 898 unsigned long nr_immediate = 0;
1da177e4
LT
899
900 cond_resched();
901
1da177e4
LT
902 while (!list_empty(page_list)) {
903 struct address_space *mapping;
904 struct page *page;
905 int may_enter_fs;
02c6de8d 906 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 907 bool dirty, writeback;
854e9ed0
MK
908 bool lazyfree = false;
909 int ret = SWAP_SUCCESS;
1da177e4
LT
910
911 cond_resched();
912
913 page = lru_to_page(page_list);
914 list_del(&page->lru);
915
529ae9aa 916 if (!trylock_page(page))
1da177e4
LT
917 goto keep;
918
309381fe
SL
919 VM_BUG_ON_PAGE(PageActive(page), page);
920 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
921
922 sc->nr_scanned++;
80e43426 923
39b5f29a 924 if (unlikely(!page_evictable(page)))
b291f000 925 goto cull_mlocked;
894bc310 926
a6dc60f8 927 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
928 goto keep_locked;
929
1da177e4
LT
930 /* Double the slab pressure for mapped and swapcache pages */
931 if (page_mapped(page) || PageSwapCache(page))
932 sc->nr_scanned++;
933
c661b078
AW
934 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
936
e2be15f6
MG
937 /*
938 * The number of dirty pages determines if a zone is marked
939 * reclaim_congested which affects wait_iff_congested. kswapd
940 * will stall and start writing pages if the tail of the LRU
941 * is all dirty unqueued pages.
942 */
943 page_check_dirty_writeback(page, &dirty, &writeback);
944 if (dirty || writeback)
945 nr_dirty++;
946
947 if (dirty && !writeback)
948 nr_unqueued_dirty++;
949
d04e8acd
MG
950 /*
951 * Treat this page as congested if the underlying BDI is or if
952 * pages are cycling through the LRU so quickly that the
953 * pages marked for immediate reclaim are making it to the
954 * end of the LRU a second time.
955 */
e2be15f6 956 mapping = page_mapping(page);
1da58ee2 957 if (((dirty || writeback) && mapping &&
703c2708 958 inode_write_congested(mapping->host)) ||
d04e8acd 959 (writeback && PageReclaim(page)))
e2be15f6
MG
960 nr_congested++;
961
283aba9f
MG
962 /*
963 * If a page at the tail of the LRU is under writeback, there
964 * are three cases to consider.
965 *
966 * 1) If reclaim is encountering an excessive number of pages
967 * under writeback and this page is both under writeback and
968 * PageReclaim then it indicates that pages are being queued
969 * for IO but are being recycled through the LRU before the
970 * IO can complete. Waiting on the page itself risks an
971 * indefinite stall if it is impossible to writeback the
972 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
973 * note that the LRU is being scanned too quickly and the
974 * caller can stall after page list has been processed.
283aba9f 975 *
97c9341f 976 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
977 * not marked for immediate reclaim, or the caller does not
978 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
979 * not to fs). In this case mark the page for immediate
97c9341f 980 * reclaim and continue scanning.
283aba9f 981 *
ecf5fc6e
MH
982 * Require may_enter_fs because we would wait on fs, which
983 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
984 * enter reclaim, and deadlock if it waits on a page for
985 * which it is needed to do the write (loop masks off
986 * __GFP_IO|__GFP_FS for this reason); but more thought
987 * would probably show more reasons.
988 *
7fadc820 989 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
990 * PageReclaim. memcg does not have any dirty pages
991 * throttling so we could easily OOM just because too many
992 * pages are in writeback and there is nothing else to
993 * reclaim. Wait for the writeback to complete.
994 */
c661b078 995 if (PageWriteback(page)) {
283aba9f
MG
996 /* Case 1 above */
997 if (current_is_kswapd() &&
998 PageReclaim(page) &&
57054651 999 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
1000 nr_immediate++;
1001 goto keep_locked;
283aba9f
MG
1002
1003 /* Case 2 above */
97c9341f 1004 } else if (sane_reclaim(sc) ||
ecf5fc6e 1005 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1006 /*
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1016 */
1017 SetPageReclaim(page);
e62e384e 1018 nr_writeback++;
c3b94f44 1019 goto keep_locked;
283aba9f
MG
1020
1021 /* Case 3 above */
1022 } else {
7fadc820 1023 unlock_page(page);
283aba9f 1024 wait_on_page_writeback(page);
7fadc820
HD
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1027 continue;
e62e384e 1028 }
c661b078 1029 }
1da177e4 1030
02c6de8d
MK
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1033
dfc8d636
JW
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1da177e4 1036 goto activate_locked;
64574746
JW
1037 case PAGEREF_KEEP:
1038 goto keep_locked;
dfc8d636
JW
1039 case PAGEREF_RECLAIM:
1040 case PAGEREF_RECLAIM_CLEAN:
1041 ; /* try to reclaim the page below */
1042 }
1da177e4 1043
1da177e4
LT
1044 /*
1045 * Anonymous process memory has backing store?
1046 * Try to allocate it some swap space here.
1047 */
b291f000 1048 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1049 if (!(sc->gfp_mask & __GFP_IO))
1050 goto keep_locked;
5bc7b8ac 1051 if (!add_to_swap(page, page_list))
1da177e4 1052 goto activate_locked;
854e9ed0 1053 lazyfree = true;
63eb6b93 1054 may_enter_fs = 1;
1da177e4 1055
e2be15f6
MG
1056 /* Adding to swap updated mapping */
1057 mapping = page_mapping(page);
1058 }
1da177e4
LT
1059
1060 /*
1061 * The page is mapped into the page tables of one or more
1062 * processes. Try to unmap it here.
1063 */
1064 if (page_mapped(page) && mapping) {
854e9ed0
MK
1065 switch (ret = try_to_unmap(page, lazyfree ?
1066 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1067 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1068 case SWAP_FAIL:
1069 goto activate_locked;
1070 case SWAP_AGAIN:
1071 goto keep_locked;
b291f000
NP
1072 case SWAP_MLOCK:
1073 goto cull_mlocked;
854e9ed0
MK
1074 case SWAP_LZFREE:
1075 goto lazyfree;
1da177e4
LT
1076 case SWAP_SUCCESS:
1077 ; /* try to free the page below */
1078 }
1079 }
1080
1081 if (PageDirty(page)) {
ee72886d
MG
1082 /*
1083 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1084 * avoid risk of stack overflow but only writeback
1085 * if many dirty pages have been encountered.
ee72886d 1086 */
f84f6e2b 1087 if (page_is_file_cache(page) &&
9e3b2f8c 1088 (!current_is_kswapd() ||
57054651 1089 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1090 /*
1091 * Immediately reclaim when written back.
1092 * Similar in principal to deactivate_page()
1093 * except we already have the page isolated
1094 * and know it's dirty
1095 */
1096 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1097 SetPageReclaim(page);
1098
ee72886d
MG
1099 goto keep_locked;
1100 }
1101
dfc8d636 1102 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1103 goto keep_locked;
4dd4b920 1104 if (!may_enter_fs)
1da177e4 1105 goto keep_locked;
52a8363e 1106 if (!sc->may_writepage)
1da177e4
LT
1107 goto keep_locked;
1108
d950c947
MG
1109 /*
1110 * Page is dirty. Flush the TLB if a writable entry
1111 * potentially exists to avoid CPU writes after IO
1112 * starts and then write it out here.
1113 */
1114 try_to_unmap_flush_dirty();
7d3579e8 1115 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1116 case PAGE_KEEP:
1117 goto keep_locked;
1118 case PAGE_ACTIVATE:
1119 goto activate_locked;
1120 case PAGE_SUCCESS:
7d3579e8 1121 if (PageWriteback(page))
41ac1999 1122 goto keep;
7d3579e8 1123 if (PageDirty(page))
1da177e4 1124 goto keep;
7d3579e8 1125
1da177e4
LT
1126 /*
1127 * A synchronous write - probably a ramdisk. Go
1128 * ahead and try to reclaim the page.
1129 */
529ae9aa 1130 if (!trylock_page(page))
1da177e4
LT
1131 goto keep;
1132 if (PageDirty(page) || PageWriteback(page))
1133 goto keep_locked;
1134 mapping = page_mapping(page);
1135 case PAGE_CLEAN:
1136 ; /* try to free the page below */
1137 }
1138 }
1139
1140 /*
1141 * If the page has buffers, try to free the buffer mappings
1142 * associated with this page. If we succeed we try to free
1143 * the page as well.
1144 *
1145 * We do this even if the page is PageDirty().
1146 * try_to_release_page() does not perform I/O, but it is
1147 * possible for a page to have PageDirty set, but it is actually
1148 * clean (all its buffers are clean). This happens if the
1149 * buffers were written out directly, with submit_bh(). ext3
894bc310 1150 * will do this, as well as the blockdev mapping.
1da177e4
LT
1151 * try_to_release_page() will discover that cleanness and will
1152 * drop the buffers and mark the page clean - it can be freed.
1153 *
1154 * Rarely, pages can have buffers and no ->mapping. These are
1155 * the pages which were not successfully invalidated in
1156 * truncate_complete_page(). We try to drop those buffers here
1157 * and if that worked, and the page is no longer mapped into
1158 * process address space (page_count == 1) it can be freed.
1159 * Otherwise, leave the page on the LRU so it is swappable.
1160 */
266cf658 1161 if (page_has_private(page)) {
1da177e4
LT
1162 if (!try_to_release_page(page, sc->gfp_mask))
1163 goto activate_locked;
e286781d
NP
1164 if (!mapping && page_count(page) == 1) {
1165 unlock_page(page);
1166 if (put_page_testzero(page))
1167 goto free_it;
1168 else {
1169 /*
1170 * rare race with speculative reference.
1171 * the speculative reference will free
1172 * this page shortly, so we may
1173 * increment nr_reclaimed here (and
1174 * leave it off the LRU).
1175 */
1176 nr_reclaimed++;
1177 continue;
1178 }
1179 }
1da177e4
LT
1180 }
1181
854e9ed0 1182lazyfree:
a528910e 1183 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1184 goto keep_locked;
1da177e4 1185
a978d6f5
NP
1186 /*
1187 * At this point, we have no other references and there is
1188 * no way to pick any more up (removed from LRU, removed
1189 * from pagecache). Can use non-atomic bitops now (and
1190 * we obviously don't have to worry about waking up a process
1191 * waiting on the page lock, because there are no references.
1192 */
48c935ad 1193 __ClearPageLocked(page);
e286781d 1194free_it:
854e9ed0
MK
1195 if (ret == SWAP_LZFREE)
1196 count_vm_event(PGLAZYFREED);
1197
05ff5137 1198 nr_reclaimed++;
abe4c3b5
MG
1199
1200 /*
1201 * Is there need to periodically free_page_list? It would
1202 * appear not as the counts should be low
1203 */
1204 list_add(&page->lru, &free_pages);
1da177e4
LT
1205 continue;
1206
b291f000 1207cull_mlocked:
63d6c5ad
HD
1208 if (PageSwapCache(page))
1209 try_to_free_swap(page);
b291f000 1210 unlock_page(page);
c54839a7 1211 list_add(&page->lru, &ret_pages);
b291f000
NP
1212 continue;
1213
1da177e4 1214activate_locked:
68a22394 1215 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1216 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1217 try_to_free_swap(page);
309381fe 1218 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1219 SetPageActive(page);
1220 pgactivate++;
1221keep_locked:
1222 unlock_page(page);
1223keep:
1224 list_add(&page->lru, &ret_pages);
309381fe 1225 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1226 }
abe4c3b5 1227
747db954 1228 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1229 try_to_unmap_flush();
b745bc85 1230 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1231
1da177e4 1232 list_splice(&ret_pages, page_list);
f8891e5e 1233 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1234
8e950282
MG
1235 *ret_nr_dirty += nr_dirty;
1236 *ret_nr_congested += nr_congested;
d43006d5 1237 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1238 *ret_nr_writeback += nr_writeback;
b1a6f21e 1239 *ret_nr_immediate += nr_immediate;
05ff5137 1240 return nr_reclaimed;
1da177e4
LT
1241}
1242
02c6de8d
MK
1243unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1244 struct list_head *page_list)
1245{
1246 struct scan_control sc = {
1247 .gfp_mask = GFP_KERNEL,
1248 .priority = DEF_PRIORITY,
1249 .may_unmap = 1,
1250 };
8e950282 1251 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1252 struct page *page, *next;
1253 LIST_HEAD(clean_pages);
1254
1255 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1256 if (page_is_file_cache(page) && !PageDirty(page) &&
1257 !isolated_balloon_page(page)) {
02c6de8d
MK
1258 ClearPageActive(page);
1259 list_move(&page->lru, &clean_pages);
1260 }
1261 }
1262
1263 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1264 TTU_UNMAP|TTU_IGNORE_ACCESS,
1265 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1266 list_splice(&clean_pages, page_list);
83da7510 1267 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1268 return ret;
1269}
1270
5ad333eb
AW
1271/*
1272 * Attempt to remove the specified page from its LRU. Only take this page
1273 * if it is of the appropriate PageActive status. Pages which are being
1274 * freed elsewhere are also ignored.
1275 *
1276 * page: page to consider
1277 * mode: one of the LRU isolation modes defined above
1278 *
1279 * returns 0 on success, -ve errno on failure.
1280 */
f3fd4a61 1281int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1282{
1283 int ret = -EINVAL;
1284
1285 /* Only take pages on the LRU. */
1286 if (!PageLRU(page))
1287 return ret;
1288
e46a2879
MK
1289 /* Compaction should not handle unevictable pages but CMA can do so */
1290 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1291 return ret;
1292
5ad333eb 1293 ret = -EBUSY;
08e552c6 1294
c8244935
MG
1295 /*
1296 * To minimise LRU disruption, the caller can indicate that it only
1297 * wants to isolate pages it will be able to operate on without
1298 * blocking - clean pages for the most part.
1299 *
1300 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1301 * is used by reclaim when it is cannot write to backing storage
1302 *
1303 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1304 * that it is possible to migrate without blocking
1305 */
1306 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1307 /* All the caller can do on PageWriteback is block */
1308 if (PageWriteback(page))
1309 return ret;
1310
1311 if (PageDirty(page)) {
1312 struct address_space *mapping;
1313
1314 /* ISOLATE_CLEAN means only clean pages */
1315 if (mode & ISOLATE_CLEAN)
1316 return ret;
1317
1318 /*
1319 * Only pages without mappings or that have a
1320 * ->migratepage callback are possible to migrate
1321 * without blocking
1322 */
1323 mapping = page_mapping(page);
1324 if (mapping && !mapping->a_ops->migratepage)
1325 return ret;
1326 }
1327 }
39deaf85 1328
f80c0673
MK
1329 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1330 return ret;
1331
5ad333eb
AW
1332 if (likely(get_page_unless_zero(page))) {
1333 /*
1334 * Be careful not to clear PageLRU until after we're
1335 * sure the page is not being freed elsewhere -- the
1336 * page release code relies on it.
1337 */
1338 ClearPageLRU(page);
1339 ret = 0;
1340 }
1341
1342 return ret;
1343}
1344
1da177e4
LT
1345/*
1346 * zone->lru_lock is heavily contended. Some of the functions that
1347 * shrink the lists perform better by taking out a batch of pages
1348 * and working on them outside the LRU lock.
1349 *
1350 * For pagecache intensive workloads, this function is the hottest
1351 * spot in the kernel (apart from copy_*_user functions).
1352 *
1353 * Appropriate locks must be held before calling this function.
1354 *
1355 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1356 * @lruvec: The LRU vector to pull pages from.
1da177e4 1357 * @dst: The temp list to put pages on to.
f626012d 1358 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1359 * @sc: The scan_control struct for this reclaim session
5ad333eb 1360 * @mode: One of the LRU isolation modes
3cb99451 1361 * @lru: LRU list id for isolating
1da177e4
LT
1362 *
1363 * returns how many pages were moved onto *@dst.
1364 */
69e05944 1365static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1366 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1367 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1368 isolate_mode_t mode, enum lru_list lru)
1da177e4 1369{
75b00af7 1370 struct list_head *src = &lruvec->lists[lru];
69e05944 1371 unsigned long nr_taken = 0;
c9b02d97 1372 unsigned long scan;
1da177e4 1373
0b802f10
VD
1374 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1375 !list_empty(src); scan++) {
5ad333eb 1376 struct page *page;
fa9add64 1377 int nr_pages;
5ad333eb 1378
1da177e4
LT
1379 page = lru_to_page(src);
1380 prefetchw_prev_lru_page(page, src, flags);
1381
309381fe 1382 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1383
f3fd4a61 1384 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1385 case 0:
fa9add64
HD
1386 nr_pages = hpage_nr_pages(page);
1387 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1388 list_move(&page->lru, dst);
fa9add64 1389 nr_taken += nr_pages;
5ad333eb
AW
1390 break;
1391
1392 case -EBUSY:
1393 /* else it is being freed elsewhere */
1394 list_move(&page->lru, src);
1395 continue;
46453a6e 1396
5ad333eb
AW
1397 default:
1398 BUG();
1399 }
1da177e4
LT
1400 }
1401
f626012d 1402 *nr_scanned = scan;
75b00af7
HD
1403 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1404 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1405 return nr_taken;
1406}
1407
62695a84
NP
1408/**
1409 * isolate_lru_page - tries to isolate a page from its LRU list
1410 * @page: page to isolate from its LRU list
1411 *
1412 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1413 * vmstat statistic corresponding to whatever LRU list the page was on.
1414 *
1415 * Returns 0 if the page was removed from an LRU list.
1416 * Returns -EBUSY if the page was not on an LRU list.
1417 *
1418 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1419 * the active list, it will have PageActive set. If it was found on
1420 * the unevictable list, it will have the PageUnevictable bit set. That flag
1421 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1422 *
1423 * The vmstat statistic corresponding to the list on which the page was
1424 * found will be decremented.
1425 *
1426 * Restrictions:
1427 * (1) Must be called with an elevated refcount on the page. This is a
1428 * fundamentnal difference from isolate_lru_pages (which is called
1429 * without a stable reference).
1430 * (2) the lru_lock must not be held.
1431 * (3) interrupts must be enabled.
1432 */
1433int isolate_lru_page(struct page *page)
1434{
1435 int ret = -EBUSY;
1436
309381fe 1437 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1438 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1439
62695a84
NP
1440 if (PageLRU(page)) {
1441 struct zone *zone = page_zone(page);
fa9add64 1442 struct lruvec *lruvec;
62695a84
NP
1443
1444 spin_lock_irq(&zone->lru_lock);
fa9add64 1445 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1446 if (PageLRU(page)) {
894bc310 1447 int lru = page_lru(page);
0c917313 1448 get_page(page);
62695a84 1449 ClearPageLRU(page);
fa9add64
HD
1450 del_page_from_lru_list(page, lruvec, lru);
1451 ret = 0;
62695a84
NP
1452 }
1453 spin_unlock_irq(&zone->lru_lock);
1454 }
1455 return ret;
1456}
1457
35cd7815 1458/*
d37dd5dc
FW
1459 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1460 * then get resheduled. When there are massive number of tasks doing page
1461 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1462 * the LRU list will go small and be scanned faster than necessary, leading to
1463 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1464 */
1465static int too_many_isolated(struct zone *zone, int file,
1466 struct scan_control *sc)
1467{
1468 unsigned long inactive, isolated;
1469
1470 if (current_is_kswapd())
1471 return 0;
1472
97c9341f 1473 if (!sane_reclaim(sc))
35cd7815
RR
1474 return 0;
1475
1476 if (file) {
1477 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1478 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1479 } else {
1480 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1481 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1482 }
1483
3cf23841
FW
1484 /*
1485 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1486 * won't get blocked by normal direct-reclaimers, forming a circular
1487 * deadlock.
1488 */
d0164adc 1489 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1490 inactive >>= 3;
1491
35cd7815
RR
1492 return isolated > inactive;
1493}
1494
66635629 1495static noinline_for_stack void
75b00af7 1496putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1497{
27ac81d8
KK
1498 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1499 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1500 LIST_HEAD(pages_to_free);
66635629 1501
66635629
MG
1502 /*
1503 * Put back any unfreeable pages.
1504 */
66635629 1505 while (!list_empty(page_list)) {
3f79768f 1506 struct page *page = lru_to_page(page_list);
66635629 1507 int lru;
3f79768f 1508
309381fe 1509 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1510 list_del(&page->lru);
39b5f29a 1511 if (unlikely(!page_evictable(page))) {
66635629
MG
1512 spin_unlock_irq(&zone->lru_lock);
1513 putback_lru_page(page);
1514 spin_lock_irq(&zone->lru_lock);
1515 continue;
1516 }
fa9add64
HD
1517
1518 lruvec = mem_cgroup_page_lruvec(page, zone);
1519
7a608572 1520 SetPageLRU(page);
66635629 1521 lru = page_lru(page);
fa9add64
HD
1522 add_page_to_lru_list(page, lruvec, lru);
1523
66635629
MG
1524 if (is_active_lru(lru)) {
1525 int file = is_file_lru(lru);
9992af10
RR
1526 int numpages = hpage_nr_pages(page);
1527 reclaim_stat->recent_rotated[file] += numpages;
66635629 1528 }
2bcf8879
HD
1529 if (put_page_testzero(page)) {
1530 __ClearPageLRU(page);
1531 __ClearPageActive(page);
fa9add64 1532 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1533
1534 if (unlikely(PageCompound(page))) {
1535 spin_unlock_irq(&zone->lru_lock);
747db954 1536 mem_cgroup_uncharge(page);
2bcf8879
HD
1537 (*get_compound_page_dtor(page))(page);
1538 spin_lock_irq(&zone->lru_lock);
1539 } else
1540 list_add(&page->lru, &pages_to_free);
66635629
MG
1541 }
1542 }
66635629 1543
3f79768f
HD
1544 /*
1545 * To save our caller's stack, now use input list for pages to free.
1546 */
1547 list_splice(&pages_to_free, page_list);
66635629
MG
1548}
1549
399ba0b9
N
1550/*
1551 * If a kernel thread (such as nfsd for loop-back mounts) services
1552 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1553 * In that case we should only throttle if the backing device it is
1554 * writing to is congested. In other cases it is safe to throttle.
1555 */
1556static int current_may_throttle(void)
1557{
1558 return !(current->flags & PF_LESS_THROTTLE) ||
1559 current->backing_dev_info == NULL ||
1560 bdi_write_congested(current->backing_dev_info);
1561}
1562
1da177e4 1563/*
1742f19f
AM
1564 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1565 * of reclaimed pages
1da177e4 1566 */
66635629 1567static noinline_for_stack unsigned long
1a93be0e 1568shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1569 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1570{
1571 LIST_HEAD(page_list);
e247dbce 1572 unsigned long nr_scanned;
05ff5137 1573 unsigned long nr_reclaimed = 0;
e247dbce 1574 unsigned long nr_taken;
8e950282
MG
1575 unsigned long nr_dirty = 0;
1576 unsigned long nr_congested = 0;
e2be15f6 1577 unsigned long nr_unqueued_dirty = 0;
92df3a72 1578 unsigned long nr_writeback = 0;
b1a6f21e 1579 unsigned long nr_immediate = 0;
f3fd4a61 1580 isolate_mode_t isolate_mode = 0;
3cb99451 1581 int file = is_file_lru(lru);
1a93be0e
KK
1582 struct zone *zone = lruvec_zone(lruvec);
1583 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1584
35cd7815 1585 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1586 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1587
1588 /* We are about to die and free our memory. Return now. */
1589 if (fatal_signal_pending(current))
1590 return SWAP_CLUSTER_MAX;
1591 }
1592
1da177e4 1593 lru_add_drain();
f80c0673
MK
1594
1595 if (!sc->may_unmap)
61317289 1596 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1597 if (!sc->may_writepage)
61317289 1598 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1599
1da177e4 1600 spin_lock_irq(&zone->lru_lock);
b35ea17b 1601
5dc35979
KK
1602 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1603 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1604
1605 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1606 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1607
89b5fae5 1608 if (global_reclaim(sc)) {
0d5d823a 1609 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1610 if (current_is_kswapd())
75b00af7 1611 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1612 else
75b00af7 1613 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1614 }
d563c050 1615 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1616
d563c050 1617 if (nr_taken == 0)
66635629 1618 return 0;
5ad333eb 1619
02c6de8d 1620 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1621 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1622 &nr_writeback, &nr_immediate,
1623 false);
c661b078 1624
3f79768f
HD
1625 spin_lock_irq(&zone->lru_lock);
1626
95d918fc 1627 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1628
904249aa
YH
1629 if (global_reclaim(sc)) {
1630 if (current_is_kswapd())
1631 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1632 nr_reclaimed);
1633 else
1634 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1635 nr_reclaimed);
1636 }
a74609fa 1637
27ac81d8 1638 putback_inactive_pages(lruvec, &page_list);
3f79768f 1639
95d918fc 1640 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1641
1642 spin_unlock_irq(&zone->lru_lock);
1643
747db954 1644 mem_cgroup_uncharge_list(&page_list);
b745bc85 1645 free_hot_cold_page_list(&page_list, true);
e11da5b4 1646
92df3a72
MG
1647 /*
1648 * If reclaim is isolating dirty pages under writeback, it implies
1649 * that the long-lived page allocation rate is exceeding the page
1650 * laundering rate. Either the global limits are not being effective
1651 * at throttling processes due to the page distribution throughout
1652 * zones or there is heavy usage of a slow backing device. The
1653 * only option is to throttle from reclaim context which is not ideal
1654 * as there is no guarantee the dirtying process is throttled in the
1655 * same way balance_dirty_pages() manages.
1656 *
8e950282
MG
1657 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1658 * of pages under pages flagged for immediate reclaim and stall if any
1659 * are encountered in the nr_immediate check below.
92df3a72 1660 */
918fc718 1661 if (nr_writeback && nr_writeback == nr_taken)
57054651 1662 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1663
d43006d5 1664 /*
97c9341f
TH
1665 * Legacy memcg will stall in page writeback so avoid forcibly
1666 * stalling here.
d43006d5 1667 */
97c9341f 1668 if (sane_reclaim(sc)) {
8e950282
MG
1669 /*
1670 * Tag a zone as congested if all the dirty pages scanned were
1671 * backed by a congested BDI and wait_iff_congested will stall.
1672 */
1673 if (nr_dirty && nr_dirty == nr_congested)
57054651 1674 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1675
b1a6f21e
MG
1676 /*
1677 * If dirty pages are scanned that are not queued for IO, it
1678 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1679 * the zone ZONE_DIRTY and kswapd will start writing pages from
1680 * reclaim context.
b1a6f21e
MG
1681 */
1682 if (nr_unqueued_dirty == nr_taken)
57054651 1683 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1684
1685 /*
b738d764
LT
1686 * If kswapd scans pages marked marked for immediate
1687 * reclaim and under writeback (nr_immediate), it implies
1688 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1689 * they are written so also forcibly stall.
1690 */
b738d764 1691 if (nr_immediate && current_may_throttle())
b1a6f21e 1692 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1693 }
d43006d5 1694
8e950282
MG
1695 /*
1696 * Stall direct reclaim for IO completions if underlying BDIs or zone
1697 * is congested. Allow kswapd to continue until it starts encountering
1698 * unqueued dirty pages or cycling through the LRU too quickly.
1699 */
399ba0b9
N
1700 if (!sc->hibernation_mode && !current_is_kswapd() &&
1701 current_may_throttle())
8e950282
MG
1702 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1703
ba5e9579 1704 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1705 sc->priority, file);
05ff5137 1706 return nr_reclaimed;
1da177e4
LT
1707}
1708
1709/*
1710 * This moves pages from the active list to the inactive list.
1711 *
1712 * We move them the other way if the page is referenced by one or more
1713 * processes, from rmap.
1714 *
1715 * If the pages are mostly unmapped, the processing is fast and it is
1716 * appropriate to hold zone->lru_lock across the whole operation. But if
1717 * the pages are mapped, the processing is slow (page_referenced()) so we
1718 * should drop zone->lru_lock around each page. It's impossible to balance
1719 * this, so instead we remove the pages from the LRU while processing them.
1720 * It is safe to rely on PG_active against the non-LRU pages in here because
1721 * nobody will play with that bit on a non-LRU page.
1722 *
1723 * The downside is that we have to touch page->_count against each page.
1724 * But we had to alter page->flags anyway.
1725 */
1cfb419b 1726
fa9add64 1727static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1728 struct list_head *list,
2bcf8879 1729 struct list_head *pages_to_free,
3eb4140f
WF
1730 enum lru_list lru)
1731{
fa9add64 1732 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1733 unsigned long pgmoved = 0;
3eb4140f 1734 struct page *page;
fa9add64 1735 int nr_pages;
3eb4140f 1736
3eb4140f
WF
1737 while (!list_empty(list)) {
1738 page = lru_to_page(list);
fa9add64 1739 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1740
309381fe 1741 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1742 SetPageLRU(page);
1743
fa9add64
HD
1744 nr_pages = hpage_nr_pages(page);
1745 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1746 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1747 pgmoved += nr_pages;
3eb4140f 1748
2bcf8879
HD
1749 if (put_page_testzero(page)) {
1750 __ClearPageLRU(page);
1751 __ClearPageActive(page);
fa9add64 1752 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1753
1754 if (unlikely(PageCompound(page))) {
1755 spin_unlock_irq(&zone->lru_lock);
747db954 1756 mem_cgroup_uncharge(page);
2bcf8879
HD
1757 (*get_compound_page_dtor(page))(page);
1758 spin_lock_irq(&zone->lru_lock);
1759 } else
1760 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1761 }
1762 }
1763 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1764 if (!is_active_lru(lru))
1765 __count_vm_events(PGDEACTIVATE, pgmoved);
1766}
1cfb419b 1767
f626012d 1768static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1769 struct lruvec *lruvec,
f16015fb 1770 struct scan_control *sc,
9e3b2f8c 1771 enum lru_list lru)
1da177e4 1772{
44c241f1 1773 unsigned long nr_taken;
f626012d 1774 unsigned long nr_scanned;
6fe6b7e3 1775 unsigned long vm_flags;
1da177e4 1776 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1777 LIST_HEAD(l_active);
b69408e8 1778 LIST_HEAD(l_inactive);
1da177e4 1779 struct page *page;
1a93be0e 1780 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1781 unsigned long nr_rotated = 0;
f3fd4a61 1782 isolate_mode_t isolate_mode = 0;
3cb99451 1783 int file = is_file_lru(lru);
1a93be0e 1784 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1785
1786 lru_add_drain();
f80c0673
MK
1787
1788 if (!sc->may_unmap)
61317289 1789 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1790 if (!sc->may_writepage)
61317289 1791 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1792
1da177e4 1793 spin_lock_irq(&zone->lru_lock);
925b7673 1794
5dc35979
KK
1795 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1796 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1797 if (global_reclaim(sc))
0d5d823a 1798 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1799
b7c46d15 1800 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1801
f626012d 1802 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1803 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1804 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1805 spin_unlock_irq(&zone->lru_lock);
1806
1da177e4
LT
1807 while (!list_empty(&l_hold)) {
1808 cond_resched();
1809 page = lru_to_page(&l_hold);
1810 list_del(&page->lru);
7e9cd484 1811
39b5f29a 1812 if (unlikely(!page_evictable(page))) {
894bc310
LS
1813 putback_lru_page(page);
1814 continue;
1815 }
1816
cc715d99
MG
1817 if (unlikely(buffer_heads_over_limit)) {
1818 if (page_has_private(page) && trylock_page(page)) {
1819 if (page_has_private(page))
1820 try_to_release_page(page, 0);
1821 unlock_page(page);
1822 }
1823 }
1824
c3ac9a8a
JW
1825 if (page_referenced(page, 0, sc->target_mem_cgroup,
1826 &vm_flags)) {
9992af10 1827 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1828 /*
1829 * Identify referenced, file-backed active pages and
1830 * give them one more trip around the active list. So
1831 * that executable code get better chances to stay in
1832 * memory under moderate memory pressure. Anon pages
1833 * are not likely to be evicted by use-once streaming
1834 * IO, plus JVM can create lots of anon VM_EXEC pages,
1835 * so we ignore them here.
1836 */
41e20983 1837 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1838 list_add(&page->lru, &l_active);
1839 continue;
1840 }
1841 }
7e9cd484 1842
5205e56e 1843 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1844 list_add(&page->lru, &l_inactive);
1845 }
1846
b555749a 1847 /*
8cab4754 1848 * Move pages back to the lru list.
b555749a 1849 */
2a1dc509 1850 spin_lock_irq(&zone->lru_lock);
556adecb 1851 /*
8cab4754
WF
1852 * Count referenced pages from currently used mappings as rotated,
1853 * even though only some of them are actually re-activated. This
1854 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1855 * get_scan_count.
7e9cd484 1856 */
b7c46d15 1857 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1858
fa9add64
HD
1859 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1860 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1861 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1862 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1863
747db954 1864 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1865 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1866}
1867
74e3f3c3 1868#ifdef CONFIG_SWAP
42e2e457 1869static bool inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1870{
1871 unsigned long active, inactive;
1872
1873 active = zone_page_state(zone, NR_ACTIVE_ANON);
1874 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1875
29d06bbb 1876 return inactive * zone->inactive_ratio < active;
f89eb90e
KM
1877}
1878
14797e23
KM
1879/**
1880 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1881 * @lruvec: LRU vector to check
14797e23
KM
1882 *
1883 * Returns true if the zone does not have enough inactive anon pages,
1884 * meaning some active anon pages need to be deactivated.
1885 */
42e2e457 1886static bool inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1887{
74e3f3c3
MK
1888 /*
1889 * If we don't have swap space, anonymous page deactivation
1890 * is pointless.
1891 */
1892 if (!total_swap_pages)
42e2e457 1893 return false;
74e3f3c3 1894
c3c787e8 1895 if (!mem_cgroup_disabled())
c56d5c7d 1896 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1897
c56d5c7d 1898 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1899}
74e3f3c3 1900#else
42e2e457 1901static inline bool inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3 1902{
42e2e457 1903 return false;
74e3f3c3
MK
1904}
1905#endif
14797e23 1906
56e49d21
RR
1907/**
1908 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1909 * @lruvec: LRU vector to check
56e49d21
RR
1910 *
1911 * When the system is doing streaming IO, memory pressure here
1912 * ensures that active file pages get deactivated, until more
1913 * than half of the file pages are on the inactive list.
1914 *
1915 * Once we get to that situation, protect the system's working
1916 * set from being evicted by disabling active file page aging.
1917 *
1918 * This uses a different ratio than the anonymous pages, because
1919 * the page cache uses a use-once replacement algorithm.
1920 */
42e2e457 1921static bool inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1922{
e3790144
JW
1923 unsigned long inactive;
1924 unsigned long active;
1925
1926 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1927 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1928
e3790144 1929 return active > inactive;
56e49d21
RR
1930}
1931
42e2e457 1932static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1933{
75b00af7 1934 if (is_file_lru(lru))
c56d5c7d 1935 return inactive_file_is_low(lruvec);
b39415b2 1936 else
c56d5c7d 1937 return inactive_anon_is_low(lruvec);
b39415b2
RR
1938}
1939
4f98a2fe 1940static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1941 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1942{
b39415b2 1943 if (is_active_lru(lru)) {
75b00af7 1944 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1945 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1946 return 0;
1947 }
1948
1a93be0e 1949 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1950}
1951
9a265114
JW
1952enum scan_balance {
1953 SCAN_EQUAL,
1954 SCAN_FRACT,
1955 SCAN_ANON,
1956 SCAN_FILE,
1957};
1958
4f98a2fe
RR
1959/*
1960 * Determine how aggressively the anon and file LRU lists should be
1961 * scanned. The relative value of each set of LRU lists is determined
1962 * by looking at the fraction of the pages scanned we did rotate back
1963 * onto the active list instead of evict.
1964 *
be7bd59d
WL
1965 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1966 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1967 */
33377678 1968static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
1969 struct scan_control *sc, unsigned long *nr,
1970 unsigned long *lru_pages)
4f98a2fe 1971{
33377678 1972 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
1973 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1974 u64 fraction[2];
1975 u64 denominator = 0; /* gcc */
1976 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1977 unsigned long anon_prio, file_prio;
9a265114 1978 enum scan_balance scan_balance;
0bf1457f 1979 unsigned long anon, file;
9a265114 1980 bool force_scan = false;
4f98a2fe 1981 unsigned long ap, fp;
4111304d 1982 enum lru_list lru;
6f04f48d
SS
1983 bool some_scanned;
1984 int pass;
246e87a9 1985
f11c0ca5
JW
1986 /*
1987 * If the zone or memcg is small, nr[l] can be 0. This
1988 * results in no scanning on this priority and a potential
1989 * priority drop. Global direct reclaim can go to the next
1990 * zone and tends to have no problems. Global kswapd is for
1991 * zone balancing and it needs to scan a minimum amount. When
1992 * reclaiming for a memcg, a priority drop can cause high
1993 * latencies, so it's better to scan a minimum amount there as
1994 * well.
1995 */
90cbc250
VD
1996 if (current_is_kswapd()) {
1997 if (!zone_reclaimable(zone))
1998 force_scan = true;
eb01aaab 1999 if (!mem_cgroup_online(memcg))
90cbc250
VD
2000 force_scan = true;
2001 }
89b5fae5 2002 if (!global_reclaim(sc))
a4d3e9e7 2003 force_scan = true;
76a33fc3
SL
2004
2005 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2006 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2007 scan_balance = SCAN_FILE;
76a33fc3
SL
2008 goto out;
2009 }
4f98a2fe 2010
10316b31
JW
2011 /*
2012 * Global reclaim will swap to prevent OOM even with no
2013 * swappiness, but memcg users want to use this knob to
2014 * disable swapping for individual groups completely when
2015 * using the memory controller's swap limit feature would be
2016 * too expensive.
2017 */
02695175 2018 if (!global_reclaim(sc) && !swappiness) {
9a265114 2019 scan_balance = SCAN_FILE;
10316b31
JW
2020 goto out;
2021 }
2022
2023 /*
2024 * Do not apply any pressure balancing cleverness when the
2025 * system is close to OOM, scan both anon and file equally
2026 * (unless the swappiness setting disagrees with swapping).
2027 */
02695175 2028 if (!sc->priority && swappiness) {
9a265114 2029 scan_balance = SCAN_EQUAL;
10316b31
JW
2030 goto out;
2031 }
2032
62376251
JW
2033 /*
2034 * Prevent the reclaimer from falling into the cache trap: as
2035 * cache pages start out inactive, every cache fault will tip
2036 * the scan balance towards the file LRU. And as the file LRU
2037 * shrinks, so does the window for rotation from references.
2038 * This means we have a runaway feedback loop where a tiny
2039 * thrashing file LRU becomes infinitely more attractive than
2040 * anon pages. Try to detect this based on file LRU size.
2041 */
2042 if (global_reclaim(sc)) {
2ab051e1
JM
2043 unsigned long zonefile;
2044 unsigned long zonefree;
2045
2046 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2047 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2048 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2049
2ab051e1 2050 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2051 scan_balance = SCAN_ANON;
2052 goto out;
2053 }
2054 }
2055
7c5bd705 2056 /*
316bda0e
VD
2057 * If there is enough inactive page cache, i.e. if the size of the
2058 * inactive list is greater than that of the active list *and* the
2059 * inactive list actually has some pages to scan on this priority, we
2060 * do not reclaim anything from the anonymous working set right now.
2061 * Without the second condition we could end up never scanning an
2062 * lruvec even if it has plenty of old anonymous pages unless the
2063 * system is under heavy pressure.
7c5bd705 2064 */
316bda0e
VD
2065 if (!inactive_file_is_low(lruvec) &&
2066 get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2067 scan_balance = SCAN_FILE;
7c5bd705
JW
2068 goto out;
2069 }
2070
9a265114
JW
2071 scan_balance = SCAN_FRACT;
2072
58c37f6e
KM
2073 /*
2074 * With swappiness at 100, anonymous and file have the same priority.
2075 * This scanning priority is essentially the inverse of IO cost.
2076 */
02695175 2077 anon_prio = swappiness;
75b00af7 2078 file_prio = 200 - anon_prio;
58c37f6e 2079
4f98a2fe
RR
2080 /*
2081 * OK, so we have swap space and a fair amount of page cache
2082 * pages. We use the recently rotated / recently scanned
2083 * ratios to determine how valuable each cache is.
2084 *
2085 * Because workloads change over time (and to avoid overflow)
2086 * we keep these statistics as a floating average, which ends
2087 * up weighing recent references more than old ones.
2088 *
2089 * anon in [0], file in [1]
2090 */
2ab051e1
JM
2091
2092 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2093 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2094 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2095 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2096
90126375 2097 spin_lock_irq(&zone->lru_lock);
6e901571 2098 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2099 reclaim_stat->recent_scanned[0] /= 2;
2100 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2101 }
2102
6e901571 2103 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2104 reclaim_stat->recent_scanned[1] /= 2;
2105 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2106 }
2107
4f98a2fe 2108 /*
00d8089c
RR
2109 * The amount of pressure on anon vs file pages is inversely
2110 * proportional to the fraction of recently scanned pages on
2111 * each list that were recently referenced and in active use.
4f98a2fe 2112 */
fe35004f 2113 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2114 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2115
fe35004f 2116 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2117 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2118 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2119
76a33fc3
SL
2120 fraction[0] = ap;
2121 fraction[1] = fp;
2122 denominator = ap + fp + 1;
2123out:
6f04f48d
SS
2124 some_scanned = false;
2125 /* Only use force_scan on second pass. */
2126 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2127 *lru_pages = 0;
6f04f48d
SS
2128 for_each_evictable_lru(lru) {
2129 int file = is_file_lru(lru);
2130 unsigned long size;
2131 unsigned long scan;
6e08a369 2132
6f04f48d
SS
2133 size = get_lru_size(lruvec, lru);
2134 scan = size >> sc->priority;
9a265114 2135
6f04f48d
SS
2136 if (!scan && pass && force_scan)
2137 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2138
6f04f48d
SS
2139 switch (scan_balance) {
2140 case SCAN_EQUAL:
2141 /* Scan lists relative to size */
2142 break;
2143 case SCAN_FRACT:
2144 /*
2145 * Scan types proportional to swappiness and
2146 * their relative recent reclaim efficiency.
2147 */
2148 scan = div64_u64(scan * fraction[file],
2149 denominator);
2150 break;
2151 case SCAN_FILE:
2152 case SCAN_ANON:
2153 /* Scan one type exclusively */
6b4f7799
JW
2154 if ((scan_balance == SCAN_FILE) != file) {
2155 size = 0;
6f04f48d 2156 scan = 0;
6b4f7799 2157 }
6f04f48d
SS
2158 break;
2159 default:
2160 /* Look ma, no brain */
2161 BUG();
2162 }
6b4f7799
JW
2163
2164 *lru_pages += size;
6f04f48d 2165 nr[lru] = scan;
6b4f7799 2166
9a265114 2167 /*
6f04f48d
SS
2168 * Skip the second pass and don't force_scan,
2169 * if we found something to scan.
9a265114 2170 */
6f04f48d 2171 some_scanned |= !!scan;
9a265114 2172 }
76a33fc3 2173 }
6e08a369 2174}
4f98a2fe 2175
72b252ae
MG
2176#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2177static void init_tlb_ubc(void)
2178{
2179 /*
2180 * This deliberately does not clear the cpumask as it's expensive
2181 * and unnecessary. If there happens to be data in there then the
2182 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2183 * then will be cleared.
2184 */
2185 current->tlb_ubc.flush_required = false;
2186}
2187#else
2188static inline void init_tlb_ubc(void)
2189{
2190}
2191#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2192
9b4f98cd
JW
2193/*
2194 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2195 */
33377678
VD
2196static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2197 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2198{
33377678 2199 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
9b4f98cd 2200 unsigned long nr[NR_LRU_LISTS];
e82e0561 2201 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2202 unsigned long nr_to_scan;
2203 enum lru_list lru;
2204 unsigned long nr_reclaimed = 0;
2205 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2206 struct blk_plug plug;
1a501907 2207 bool scan_adjusted;
9b4f98cd 2208
33377678 2209 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2210
e82e0561
MG
2211 /* Record the original scan target for proportional adjustments later */
2212 memcpy(targets, nr, sizeof(nr));
2213
1a501907
MG
2214 /*
2215 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2216 * event that can occur when there is little memory pressure e.g.
2217 * multiple streaming readers/writers. Hence, we do not abort scanning
2218 * when the requested number of pages are reclaimed when scanning at
2219 * DEF_PRIORITY on the assumption that the fact we are direct
2220 * reclaiming implies that kswapd is not keeping up and it is best to
2221 * do a batch of work at once. For memcg reclaim one check is made to
2222 * abort proportional reclaim if either the file or anon lru has already
2223 * dropped to zero at the first pass.
2224 */
2225 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2226 sc->priority == DEF_PRIORITY);
2227
72b252ae
MG
2228 init_tlb_ubc();
2229
9b4f98cd
JW
2230 blk_start_plug(&plug);
2231 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2232 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2233 unsigned long nr_anon, nr_file, percentage;
2234 unsigned long nr_scanned;
2235
9b4f98cd
JW
2236 for_each_evictable_lru(lru) {
2237 if (nr[lru]) {
2238 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2239 nr[lru] -= nr_to_scan;
2240
2241 nr_reclaimed += shrink_list(lru, nr_to_scan,
2242 lruvec, sc);
2243 }
2244 }
e82e0561
MG
2245
2246 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2247 continue;
2248
e82e0561
MG
2249 /*
2250 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2251 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2252 * proportionally what was requested by get_scan_count(). We
2253 * stop reclaiming one LRU and reduce the amount scanning
2254 * proportional to the original scan target.
2255 */
2256 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2257 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2258
1a501907
MG
2259 /*
2260 * It's just vindictive to attack the larger once the smaller
2261 * has gone to zero. And given the way we stop scanning the
2262 * smaller below, this makes sure that we only make one nudge
2263 * towards proportionality once we've got nr_to_reclaim.
2264 */
2265 if (!nr_file || !nr_anon)
2266 break;
2267
e82e0561
MG
2268 if (nr_file > nr_anon) {
2269 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2270 targets[LRU_ACTIVE_ANON] + 1;
2271 lru = LRU_BASE;
2272 percentage = nr_anon * 100 / scan_target;
2273 } else {
2274 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2275 targets[LRU_ACTIVE_FILE] + 1;
2276 lru = LRU_FILE;
2277 percentage = nr_file * 100 / scan_target;
2278 }
2279
2280 /* Stop scanning the smaller of the LRU */
2281 nr[lru] = 0;
2282 nr[lru + LRU_ACTIVE] = 0;
2283
2284 /*
2285 * Recalculate the other LRU scan count based on its original
2286 * scan target and the percentage scanning already complete
2287 */
2288 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2289 nr_scanned = targets[lru] - nr[lru];
2290 nr[lru] = targets[lru] * (100 - percentage) / 100;
2291 nr[lru] -= min(nr[lru], nr_scanned);
2292
2293 lru += LRU_ACTIVE;
2294 nr_scanned = targets[lru] - nr[lru];
2295 nr[lru] = targets[lru] * (100 - percentage) / 100;
2296 nr[lru] -= min(nr[lru], nr_scanned);
2297
2298 scan_adjusted = true;
9b4f98cd
JW
2299 }
2300 blk_finish_plug(&plug);
2301 sc->nr_reclaimed += nr_reclaimed;
2302
2303 /*
2304 * Even if we did not try to evict anon pages at all, we want to
2305 * rebalance the anon lru active/inactive ratio.
2306 */
2307 if (inactive_anon_is_low(lruvec))
2308 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2309 sc, LRU_ACTIVE_ANON);
2310
2311 throttle_vm_writeout(sc->gfp_mask);
2312}
2313
23b9da55 2314/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2315static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2316{
d84da3f9 2317 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2318 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2319 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2320 return true;
2321
2322 return false;
2323}
2324
3e7d3449 2325/*
23b9da55
MG
2326 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2327 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2328 * true if more pages should be reclaimed such that when the page allocator
2329 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2330 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2331 */
9b4f98cd 2332static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2333 unsigned long nr_reclaimed,
2334 unsigned long nr_scanned,
2335 struct scan_control *sc)
2336{
2337 unsigned long pages_for_compaction;
2338 unsigned long inactive_lru_pages;
2339
2340 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2341 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2342 return false;
2343
2876592f
MG
2344 /* Consider stopping depending on scan and reclaim activity */
2345 if (sc->gfp_mask & __GFP_REPEAT) {
2346 /*
2347 * For __GFP_REPEAT allocations, stop reclaiming if the
2348 * full LRU list has been scanned and we are still failing
2349 * to reclaim pages. This full LRU scan is potentially
2350 * expensive but a __GFP_REPEAT caller really wants to succeed
2351 */
2352 if (!nr_reclaimed && !nr_scanned)
2353 return false;
2354 } else {
2355 /*
2356 * For non-__GFP_REPEAT allocations which can presumably
2357 * fail without consequence, stop if we failed to reclaim
2358 * any pages from the last SWAP_CLUSTER_MAX number of
2359 * pages that were scanned. This will return to the
2360 * caller faster at the risk reclaim/compaction and
2361 * the resulting allocation attempt fails
2362 */
2363 if (!nr_reclaimed)
2364 return false;
2365 }
3e7d3449
MG
2366
2367 /*
2368 * If we have not reclaimed enough pages for compaction and the
2369 * inactive lists are large enough, continue reclaiming
2370 */
2371 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2372 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2373 if (get_nr_swap_pages() > 0)
9b4f98cd 2374 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2375 if (sc->nr_reclaimed < pages_for_compaction &&
2376 inactive_lru_pages > pages_for_compaction)
2377 return true;
2378
2379 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2380 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2381 case COMPACT_PARTIAL:
2382 case COMPACT_CONTINUE:
2383 return false;
2384 default:
2385 return true;
2386 }
2387}
2388
6b4f7799
JW
2389static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2390 bool is_classzone)
1da177e4 2391{
cb731d6c 2392 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2393 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2394 bool reclaimable = false;
1da177e4 2395
9b4f98cd
JW
2396 do {
2397 struct mem_cgroup *root = sc->target_mem_cgroup;
2398 struct mem_cgroup_reclaim_cookie reclaim = {
2399 .zone = zone,
2400 .priority = sc->priority,
2401 };
6b4f7799 2402 unsigned long zone_lru_pages = 0;
694fbc0f 2403 struct mem_cgroup *memcg;
3e7d3449 2404
9b4f98cd
JW
2405 nr_reclaimed = sc->nr_reclaimed;
2406 nr_scanned = sc->nr_scanned;
1da177e4 2407
694fbc0f
AM
2408 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2409 do {
6b4f7799 2410 unsigned long lru_pages;
8e8ae645 2411 unsigned long reclaimed;
cb731d6c 2412 unsigned long scanned;
5660048c 2413
241994ed
JW
2414 if (mem_cgroup_low(root, memcg)) {
2415 if (!sc->may_thrash)
2416 continue;
2417 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2418 }
2419
8e8ae645 2420 reclaimed = sc->nr_reclaimed;
cb731d6c 2421 scanned = sc->nr_scanned;
f9be23d6 2422
33377678 2423 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
6b4f7799 2424 zone_lru_pages += lru_pages;
f16015fb 2425
cb731d6c
VD
2426 if (memcg && is_classzone)
2427 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2428 memcg, sc->nr_scanned - scanned,
2429 lru_pages);
2430
8e8ae645
JW
2431 /* Record the group's reclaim efficiency */
2432 vmpressure(sc->gfp_mask, memcg, false,
2433 sc->nr_scanned - scanned,
2434 sc->nr_reclaimed - reclaimed);
2435
9b4f98cd 2436 /*
a394cb8e
MH
2437 * Direct reclaim and kswapd have to scan all memory
2438 * cgroups to fulfill the overall scan target for the
9b4f98cd 2439 * zone.
a394cb8e
MH
2440 *
2441 * Limit reclaim, on the other hand, only cares about
2442 * nr_to_reclaim pages to be reclaimed and it will
2443 * retry with decreasing priority if one round over the
2444 * whole hierarchy is not sufficient.
9b4f98cd 2445 */
a394cb8e
MH
2446 if (!global_reclaim(sc) &&
2447 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2448 mem_cgroup_iter_break(root, memcg);
2449 break;
2450 }
241994ed 2451 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2452
6b4f7799
JW
2453 /*
2454 * Shrink the slab caches in the same proportion that
2455 * the eligible LRU pages were scanned.
2456 */
cb731d6c
VD
2457 if (global_reclaim(sc) && is_classzone)
2458 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2459 sc->nr_scanned - nr_scanned,
2460 zone_lru_pages);
2461
2462 if (reclaim_state) {
2463 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2464 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2465 }
2466
8e8ae645
JW
2467 /* Record the subtree's reclaim efficiency */
2468 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2469 sc->nr_scanned - nr_scanned,
2470 sc->nr_reclaimed - nr_reclaimed);
2471
2344d7e4
JW
2472 if (sc->nr_reclaimed - nr_reclaimed)
2473 reclaimable = true;
2474
9b4f98cd
JW
2475 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2476 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2477
2478 return reclaimable;
f16015fb
JW
2479}
2480
53853e2d
VB
2481/*
2482 * Returns true if compaction should go ahead for a high-order request, or
2483 * the high-order allocation would succeed without compaction.
2484 */
0b06496a 2485static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2486{
2487 unsigned long balance_gap, watermark;
2488 bool watermark_ok;
2489
fe4b1b24
MG
2490 /*
2491 * Compaction takes time to run and there are potentially other
2492 * callers using the pages just freed. Continue reclaiming until
2493 * there is a buffer of free pages available to give compaction
2494 * a reasonable chance of completing and allocating the page
2495 */
4be89a34
JZ
2496 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2497 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2498 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
e2b19197 2499 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
fe4b1b24
MG
2500
2501 /*
2502 * If compaction is deferred, reclaim up to a point where
2503 * compaction will have a chance of success when re-enabled
2504 */
0b06496a 2505 if (compaction_deferred(zone, order))
fe4b1b24
MG
2506 return watermark_ok;
2507
53853e2d
VB
2508 /*
2509 * If compaction is not ready to start and allocation is not likely
2510 * to succeed without it, then keep reclaiming.
2511 */
ebff3980 2512 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2513 return false;
2514
2515 return watermark_ok;
2516}
2517
1da177e4
LT
2518/*
2519 * This is the direct reclaim path, for page-allocating processes. We only
2520 * try to reclaim pages from zones which will satisfy the caller's allocation
2521 * request.
2522 *
41858966
MG
2523 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2524 * Because:
1da177e4
LT
2525 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2526 * allocation or
41858966
MG
2527 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2528 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2529 * zone defense algorithm.
1da177e4 2530 *
1da177e4
LT
2531 * If a zone is deemed to be full of pinned pages then just give it a light
2532 * scan then give up on it.
2344d7e4
JW
2533 *
2534 * Returns true if a zone was reclaimable.
1da177e4 2535 */
2344d7e4 2536static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2537{
dd1a239f 2538 struct zoneref *z;
54a6eb5c 2539 struct zone *zone;
0608f43d
AM
2540 unsigned long nr_soft_reclaimed;
2541 unsigned long nr_soft_scanned;
619d0d76 2542 gfp_t orig_mask;
9bbc04ee 2543 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2544 bool reclaimable = false;
1cfb419b 2545
cc715d99
MG
2546 /*
2547 * If the number of buffer_heads in the machine exceeds the maximum
2548 * allowed level, force direct reclaim to scan the highmem zone as
2549 * highmem pages could be pinning lowmem pages storing buffer_heads
2550 */
619d0d76 2551 orig_mask = sc->gfp_mask;
cc715d99
MG
2552 if (buffer_heads_over_limit)
2553 sc->gfp_mask |= __GFP_HIGHMEM;
2554
d4debc66 2555 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2556 requested_highidx, sc->nodemask) {
2557 enum zone_type classzone_idx;
2558
f3fe6512 2559 if (!populated_zone(zone))
1da177e4 2560 continue;
6b4f7799
JW
2561
2562 classzone_idx = requested_highidx;
2563 while (!populated_zone(zone->zone_pgdat->node_zones +
2564 classzone_idx))
2565 classzone_idx--;
2566
1cfb419b
KH
2567 /*
2568 * Take care memory controller reclaiming has small influence
2569 * to global LRU.
2570 */
89b5fae5 2571 if (global_reclaim(sc)) {
344736f2
VD
2572 if (!cpuset_zone_allowed(zone,
2573 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2574 continue;
65ec02cb 2575
6e543d57
LD
2576 if (sc->priority != DEF_PRIORITY &&
2577 !zone_reclaimable(zone))
1cfb419b 2578 continue; /* Let kswapd poll it */
0b06496a
JW
2579
2580 /*
2581 * If we already have plenty of memory free for
2582 * compaction in this zone, don't free any more.
2583 * Even though compaction is invoked for any
2584 * non-zero order, only frequent costly order
2585 * reclamation is disruptive enough to become a
2586 * noticeable problem, like transparent huge
2587 * page allocations.
2588 */
2589 if (IS_ENABLED(CONFIG_COMPACTION) &&
2590 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2591 zonelist_zone_idx(z) <= requested_highidx &&
2592 compaction_ready(zone, sc->order)) {
2593 sc->compaction_ready = true;
2594 continue;
e0887c19 2595 }
0b06496a 2596
0608f43d
AM
2597 /*
2598 * This steals pages from memory cgroups over softlimit
2599 * and returns the number of reclaimed pages and
2600 * scanned pages. This works for global memory pressure
2601 * and balancing, not for a memcg's limit.
2602 */
2603 nr_soft_scanned = 0;
2604 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2605 sc->order, sc->gfp_mask,
2606 &nr_soft_scanned);
2607 sc->nr_reclaimed += nr_soft_reclaimed;
2608 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2609 if (nr_soft_reclaimed)
2610 reclaimable = true;
ac34a1a3 2611 /* need some check for avoid more shrink_zone() */
1cfb419b 2612 }
408d8544 2613
6b4f7799 2614 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2615 reclaimable = true;
2616
2617 if (global_reclaim(sc) &&
2618 !reclaimable && zone_reclaimable(zone))
2619 reclaimable = true;
1da177e4 2620 }
e0c23279 2621
619d0d76
WY
2622 /*
2623 * Restore to original mask to avoid the impact on the caller if we
2624 * promoted it to __GFP_HIGHMEM.
2625 */
2626 sc->gfp_mask = orig_mask;
d1908362 2627
2344d7e4 2628 return reclaimable;
1da177e4 2629}
4f98a2fe 2630
1da177e4
LT
2631/*
2632 * This is the main entry point to direct page reclaim.
2633 *
2634 * If a full scan of the inactive list fails to free enough memory then we
2635 * are "out of memory" and something needs to be killed.
2636 *
2637 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2638 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2639 * caller can't do much about. We kick the writeback threads and take explicit
2640 * naps in the hope that some of these pages can be written. But if the
2641 * allocating task holds filesystem locks which prevent writeout this might not
2642 * work, and the allocation attempt will fail.
a41f24ea
NA
2643 *
2644 * returns: 0, if no pages reclaimed
2645 * else, the number of pages reclaimed
1da177e4 2646 */
dac1d27b 2647static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2648 struct scan_control *sc)
1da177e4 2649{
241994ed 2650 int initial_priority = sc->priority;
69e05944 2651 unsigned long total_scanned = 0;
22fba335 2652 unsigned long writeback_threshold;
2344d7e4 2653 bool zones_reclaimable;
241994ed 2654retry:
873b4771
KK
2655 delayacct_freepages_start();
2656
89b5fae5 2657 if (global_reclaim(sc))
1cfb419b 2658 count_vm_event(ALLOCSTALL);
1da177e4 2659
9e3b2f8c 2660 do {
70ddf637
AV
2661 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2662 sc->priority);
66e1707b 2663 sc->nr_scanned = 0;
2344d7e4 2664 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2665
66e1707b 2666 total_scanned += sc->nr_scanned;
bb21c7ce 2667 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2668 break;
2669
2670 if (sc->compaction_ready)
2671 break;
1da177e4 2672
0e50ce3b
MK
2673 /*
2674 * If we're getting trouble reclaiming, start doing
2675 * writepage even in laptop mode.
2676 */
2677 if (sc->priority < DEF_PRIORITY - 2)
2678 sc->may_writepage = 1;
2679
1da177e4
LT
2680 /*
2681 * Try to write back as many pages as we just scanned. This
2682 * tends to cause slow streaming writers to write data to the
2683 * disk smoothly, at the dirtying rate, which is nice. But
2684 * that's undesirable in laptop mode, where we *want* lumpy
2685 * writeout. So in laptop mode, write out the whole world.
2686 */
22fba335
KM
2687 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2688 if (total_scanned > writeback_threshold) {
0e175a18
CW
2689 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2690 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2691 sc->may_writepage = 1;
1da177e4 2692 }
0b06496a 2693 } while (--sc->priority >= 0);
bb21c7ce 2694
873b4771
KK
2695 delayacct_freepages_end();
2696
bb21c7ce
KM
2697 if (sc->nr_reclaimed)
2698 return sc->nr_reclaimed;
2699
0cee34fd 2700 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2701 if (sc->compaction_ready)
7335084d
MG
2702 return 1;
2703
241994ed
JW
2704 /* Untapped cgroup reserves? Don't OOM, retry. */
2705 if (!sc->may_thrash) {
2706 sc->priority = initial_priority;
2707 sc->may_thrash = 1;
2708 goto retry;
2709 }
2710
2344d7e4
JW
2711 /* Any of the zones still reclaimable? Don't OOM. */
2712 if (zones_reclaimable)
bb21c7ce
KM
2713 return 1;
2714
2715 return 0;
1da177e4
LT
2716}
2717
5515061d
MG
2718static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2719{
2720 struct zone *zone;
2721 unsigned long pfmemalloc_reserve = 0;
2722 unsigned long free_pages = 0;
2723 int i;
2724 bool wmark_ok;
2725
2726 for (i = 0; i <= ZONE_NORMAL; i++) {
2727 zone = &pgdat->node_zones[i];
f012a84a
NA
2728 if (!populated_zone(zone) ||
2729 zone_reclaimable_pages(zone) == 0)
675becce
MG
2730 continue;
2731
5515061d
MG
2732 pfmemalloc_reserve += min_wmark_pages(zone);
2733 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2734 }
2735
675becce
MG
2736 /* If there are no reserves (unexpected config) then do not throttle */
2737 if (!pfmemalloc_reserve)
2738 return true;
2739
5515061d
MG
2740 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2741
2742 /* kswapd must be awake if processes are being throttled */
2743 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2744 pgdat->classzone_idx = min(pgdat->classzone_idx,
2745 (enum zone_type)ZONE_NORMAL);
2746 wake_up_interruptible(&pgdat->kswapd_wait);
2747 }
2748
2749 return wmark_ok;
2750}
2751
2752/*
2753 * Throttle direct reclaimers if backing storage is backed by the network
2754 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2755 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2756 * when the low watermark is reached.
2757 *
2758 * Returns true if a fatal signal was delivered during throttling. If this
2759 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2760 */
50694c28 2761static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2762 nodemask_t *nodemask)
2763{
675becce 2764 struct zoneref *z;
5515061d 2765 struct zone *zone;
675becce 2766 pg_data_t *pgdat = NULL;
5515061d
MG
2767
2768 /*
2769 * Kernel threads should not be throttled as they may be indirectly
2770 * responsible for cleaning pages necessary for reclaim to make forward
2771 * progress. kjournald for example may enter direct reclaim while
2772 * committing a transaction where throttling it could forcing other
2773 * processes to block on log_wait_commit().
2774 */
2775 if (current->flags & PF_KTHREAD)
50694c28
MG
2776 goto out;
2777
2778 /*
2779 * If a fatal signal is pending, this process should not throttle.
2780 * It should return quickly so it can exit and free its memory
2781 */
2782 if (fatal_signal_pending(current))
2783 goto out;
5515061d 2784
675becce
MG
2785 /*
2786 * Check if the pfmemalloc reserves are ok by finding the first node
2787 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2788 * GFP_KERNEL will be required for allocating network buffers when
2789 * swapping over the network so ZONE_HIGHMEM is unusable.
2790 *
2791 * Throttling is based on the first usable node and throttled processes
2792 * wait on a queue until kswapd makes progress and wakes them. There
2793 * is an affinity then between processes waking up and where reclaim
2794 * progress has been made assuming the process wakes on the same node.
2795 * More importantly, processes running on remote nodes will not compete
2796 * for remote pfmemalloc reserves and processes on different nodes
2797 * should make reasonable progress.
2798 */
2799 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2800 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2801 if (zone_idx(zone) > ZONE_NORMAL)
2802 continue;
2803
2804 /* Throttle based on the first usable node */
2805 pgdat = zone->zone_pgdat;
2806 if (pfmemalloc_watermark_ok(pgdat))
2807 goto out;
2808 break;
2809 }
2810
2811 /* If no zone was usable by the allocation flags then do not throttle */
2812 if (!pgdat)
50694c28 2813 goto out;
5515061d 2814
68243e76
MG
2815 /* Account for the throttling */
2816 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2817
5515061d
MG
2818 /*
2819 * If the caller cannot enter the filesystem, it's possible that it
2820 * is due to the caller holding an FS lock or performing a journal
2821 * transaction in the case of a filesystem like ext[3|4]. In this case,
2822 * it is not safe to block on pfmemalloc_wait as kswapd could be
2823 * blocked waiting on the same lock. Instead, throttle for up to a
2824 * second before continuing.
2825 */
2826 if (!(gfp_mask & __GFP_FS)) {
2827 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2828 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2829
2830 goto check_pending;
5515061d
MG
2831 }
2832
2833 /* Throttle until kswapd wakes the process */
2834 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2835 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2836
2837check_pending:
2838 if (fatal_signal_pending(current))
2839 return true;
2840
2841out:
2842 return false;
5515061d
MG
2843}
2844
dac1d27b 2845unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2846 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2847{
33906bc5 2848 unsigned long nr_reclaimed;
66e1707b 2849 struct scan_control sc = {
ee814fe2 2850 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2851 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2852 .order = order,
2853 .nodemask = nodemask,
2854 .priority = DEF_PRIORITY,
66e1707b 2855 .may_writepage = !laptop_mode,
a6dc60f8 2856 .may_unmap = 1,
2e2e4259 2857 .may_swap = 1,
66e1707b
BS
2858 };
2859
5515061d 2860 /*
50694c28
MG
2861 * Do not enter reclaim if fatal signal was delivered while throttled.
2862 * 1 is returned so that the page allocator does not OOM kill at this
2863 * point.
5515061d 2864 */
50694c28 2865 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2866 return 1;
2867
33906bc5
MG
2868 trace_mm_vmscan_direct_reclaim_begin(order,
2869 sc.may_writepage,
2870 gfp_mask);
2871
3115cd91 2872 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2873
2874 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2875
2876 return nr_reclaimed;
66e1707b
BS
2877}
2878
c255a458 2879#ifdef CONFIG_MEMCG
66e1707b 2880
72835c86 2881unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2882 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2883 struct zone *zone,
2884 unsigned long *nr_scanned)
4e416953
BS
2885{
2886 struct scan_control sc = {
b8f5c566 2887 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2888 .target_mem_cgroup = memcg,
4e416953
BS
2889 .may_writepage = !laptop_mode,
2890 .may_unmap = 1,
2891 .may_swap = !noswap,
4e416953 2892 };
6b4f7799 2893 unsigned long lru_pages;
0ae5e89c 2894
4e416953
BS
2895 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2896 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2897
9e3b2f8c 2898 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2899 sc.may_writepage,
2900 sc.gfp_mask);
2901
4e416953
BS
2902 /*
2903 * NOTE: Although we can get the priority field, using it
2904 * here is not a good idea, since it limits the pages we can scan.
2905 * if we don't reclaim here, the shrink_zone from balance_pgdat
2906 * will pick up pages from other mem cgroup's as well. We hack
2907 * the priority and make it zero.
2908 */
33377678 2909 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
bdce6d9e
KM
2910
2911 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2912
0ae5e89c 2913 *nr_scanned = sc.nr_scanned;
4e416953
BS
2914 return sc.nr_reclaimed;
2915}
2916
72835c86 2917unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2918 unsigned long nr_pages,
a7885eb8 2919 gfp_t gfp_mask,
b70a2a21 2920 bool may_swap)
66e1707b 2921{
4e416953 2922 struct zonelist *zonelist;
bdce6d9e 2923 unsigned long nr_reclaimed;
889976db 2924 int nid;
66e1707b 2925 struct scan_control sc = {
b70a2a21 2926 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2927 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2928 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2929 .target_mem_cgroup = memcg,
2930 .priority = DEF_PRIORITY,
2931 .may_writepage = !laptop_mode,
2932 .may_unmap = 1,
b70a2a21 2933 .may_swap = may_swap,
a09ed5e0 2934 };
66e1707b 2935
889976db
YH
2936 /*
2937 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2938 * take care of from where we get pages. So the node where we start the
2939 * scan does not need to be the current node.
2940 */
72835c86 2941 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2942
2943 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2944
2945 trace_mm_vmscan_memcg_reclaim_begin(0,
2946 sc.may_writepage,
2947 sc.gfp_mask);
2948
3115cd91 2949 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2950
2951 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2952
2953 return nr_reclaimed;
66e1707b
BS
2954}
2955#endif
2956
9e3b2f8c 2957static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2958{
b95a2f2d 2959 struct mem_cgroup *memcg;
f16015fb 2960
b95a2f2d
JW
2961 if (!total_swap_pages)
2962 return;
2963
2964 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2965 do {
c56d5c7d 2966 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2967
c56d5c7d 2968 if (inactive_anon_is_low(lruvec))
1a93be0e 2969 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2970 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2971
2972 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2973 } while (memcg);
f16015fb
JW
2974}
2975
60cefed4
JW
2976static bool zone_balanced(struct zone *zone, int order,
2977 unsigned long balance_gap, int classzone_idx)
2978{
2979 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
e2b19197 2980 balance_gap, classzone_idx))
60cefed4
JW
2981 return false;
2982
ebff3980
VB
2983 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2984 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2985 return false;
2986
2987 return true;
2988}
2989
1741c877 2990/*
4ae0a48b
ZC
2991 * pgdat_balanced() is used when checking if a node is balanced.
2992 *
2993 * For order-0, all zones must be balanced!
2994 *
2995 * For high-order allocations only zones that meet watermarks and are in a
2996 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2997 * total of balanced pages must be at least 25% of the zones allowed by
2998 * classzone_idx for the node to be considered balanced. Forcing all zones to
2999 * be balanced for high orders can cause excessive reclaim when there are
3000 * imbalanced zones.
1741c877
MG
3001 * The choice of 25% is due to
3002 * o a 16M DMA zone that is balanced will not balance a zone on any
3003 * reasonable sized machine
3004 * o On all other machines, the top zone must be at least a reasonable
25985edc 3005 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
3006 * would need to be at least 256M for it to be balance a whole node.
3007 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3008 * to balance a node on its own. These seemed like reasonable ratios.
3009 */
4ae0a48b 3010static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 3011{
b40da049 3012 unsigned long managed_pages = 0;
4ae0a48b 3013 unsigned long balanced_pages = 0;
1741c877
MG
3014 int i;
3015
4ae0a48b
ZC
3016 /* Check the watermark levels */
3017 for (i = 0; i <= classzone_idx; i++) {
3018 struct zone *zone = pgdat->node_zones + i;
1741c877 3019
4ae0a48b
ZC
3020 if (!populated_zone(zone))
3021 continue;
3022
b40da049 3023 managed_pages += zone->managed_pages;
4ae0a48b
ZC
3024
3025 /*
3026 * A special case here:
3027 *
3028 * balance_pgdat() skips over all_unreclaimable after
3029 * DEF_PRIORITY. Effectively, it considers them balanced so
3030 * they must be considered balanced here as well!
3031 */
6e543d57 3032 if (!zone_reclaimable(zone)) {
b40da049 3033 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3034 continue;
3035 }
3036
3037 if (zone_balanced(zone, order, 0, i))
b40da049 3038 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3039 else if (!order)
3040 return false;
3041 }
3042
3043 if (order)
b40da049 3044 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3045 else
3046 return true;
1741c877
MG
3047}
3048
5515061d
MG
3049/*
3050 * Prepare kswapd for sleeping. This verifies that there are no processes
3051 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3052 *
3053 * Returns true if kswapd is ready to sleep
3054 */
3055static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3056 int classzone_idx)
f50de2d3 3057{
f50de2d3
MG
3058 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3059 if (remaining)
5515061d
MG
3060 return false;
3061
3062 /*
9e5e3661
VB
3063 * The throttled processes are normally woken up in balance_pgdat() as
3064 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3065 * race between when kswapd checks the watermarks and a process gets
3066 * throttled. There is also a potential race if processes get
3067 * throttled, kswapd wakes, a large process exits thereby balancing the
3068 * zones, which causes kswapd to exit balance_pgdat() before reaching
3069 * the wake up checks. If kswapd is going to sleep, no process should
3070 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3071 * the wake up is premature, processes will wake kswapd and get
3072 * throttled again. The difference from wake ups in balance_pgdat() is
3073 * that here we are under prepare_to_wait().
5515061d 3074 */
9e5e3661
VB
3075 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3076 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3077
4ae0a48b 3078 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3079}
3080
75485363
MG
3081/*
3082 * kswapd shrinks the zone by the number of pages required to reach
3083 * the high watermark.
b8e83b94
MG
3084 *
3085 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3086 * reclaim or if the lack of progress was due to pages under writeback.
3087 * This is used to determine if the scanning priority needs to be raised.
75485363 3088 */
b8e83b94 3089static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3090 int classzone_idx,
75485363 3091 struct scan_control *sc,
2ab44f43 3092 unsigned long *nr_attempted)
75485363 3093{
7c954f6d
MG
3094 int testorder = sc->order;
3095 unsigned long balance_gap;
7c954f6d 3096 bool lowmem_pressure;
75485363
MG
3097
3098 /* Reclaim above the high watermark. */
3099 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3100
3101 /*
3102 * Kswapd reclaims only single pages with compaction enabled. Trying
3103 * too hard to reclaim until contiguous free pages have become
3104 * available can hurt performance by evicting too much useful data
3105 * from memory. Do not reclaim more than needed for compaction.
3106 */
3107 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3108 compaction_suitable(zone, sc->order, 0, classzone_idx)
3109 != COMPACT_SKIPPED)
7c954f6d
MG
3110 testorder = 0;
3111
3112 /*
3113 * We put equal pressure on every zone, unless one zone has way too
3114 * many pages free already. The "too many pages" is defined as the
3115 * high wmark plus a "gap" where the gap is either the low
3116 * watermark or 1% of the zone, whichever is smaller.
3117 */
4be89a34
JZ
3118 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3119 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3120
3121 /*
3122 * If there is no low memory pressure or the zone is balanced then no
3123 * reclaim is necessary
3124 */
3125 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3126 if (!lowmem_pressure && zone_balanced(zone, testorder,
3127 balance_gap, classzone_idx))
3128 return true;
3129
6b4f7799 3130 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3131
2ab44f43
MG
3132 /* Account for the number of pages attempted to reclaim */
3133 *nr_attempted += sc->nr_to_reclaim;
3134
57054651 3135 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3136
7c954f6d
MG
3137 /*
3138 * If a zone reaches its high watermark, consider it to be no longer
3139 * congested. It's possible there are dirty pages backed by congested
3140 * BDIs but as pressure is relieved, speculatively avoid congestion
3141 * waits.
3142 */
6e543d57 3143 if (zone_reclaimable(zone) &&
7c954f6d 3144 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3145 clear_bit(ZONE_CONGESTED, &zone->flags);
3146 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3147 }
3148
b8e83b94 3149 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3150}
3151
1da177e4
LT
3152/*
3153 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3154 * they are all at high_wmark_pages(zone).
1da177e4 3155 *
0abdee2b 3156 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3157 *
3158 * There is special handling here for zones which are full of pinned pages.
3159 * This can happen if the pages are all mlocked, or if they are all used by
3160 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3161 * What we do is to detect the case where all pages in the zone have been
3162 * scanned twice and there has been zero successful reclaim. Mark the zone as
3163 * dead and from now on, only perform a short scan. Basically we're polling
3164 * the zone for when the problem goes away.
3165 *
3166 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3167 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3168 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3169 * lower zones regardless of the number of free pages in the lower zones. This
3170 * interoperates with the page allocator fallback scheme to ensure that aging
3171 * of pages is balanced across the zones.
1da177e4 3172 */
99504748 3173static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3174 int *classzone_idx)
1da177e4 3175{
1da177e4 3176 int i;
99504748 3177 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3178 unsigned long nr_soft_reclaimed;
3179 unsigned long nr_soft_scanned;
179e9639
AM
3180 struct scan_control sc = {
3181 .gfp_mask = GFP_KERNEL,
ee814fe2 3182 .order = order,
b8e83b94 3183 .priority = DEF_PRIORITY,
ee814fe2 3184 .may_writepage = !laptop_mode,
a6dc60f8 3185 .may_unmap = 1,
2e2e4259 3186 .may_swap = 1,
179e9639 3187 };
f8891e5e 3188 count_vm_event(PAGEOUTRUN);
1da177e4 3189
9e3b2f8c 3190 do {
2ab44f43 3191 unsigned long nr_attempted = 0;
b8e83b94 3192 bool raise_priority = true;
2ab44f43 3193 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3194
3195 sc.nr_reclaimed = 0;
1da177e4 3196
d6277db4
RW
3197 /*
3198 * Scan in the highmem->dma direction for the highest
3199 * zone which needs scanning
3200 */
3201 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3202 struct zone *zone = pgdat->node_zones + i;
1da177e4 3203
d6277db4
RW
3204 if (!populated_zone(zone))
3205 continue;
1da177e4 3206
6e543d57
LD
3207 if (sc.priority != DEF_PRIORITY &&
3208 !zone_reclaimable(zone))
d6277db4 3209 continue;
1da177e4 3210
556adecb
RR
3211 /*
3212 * Do some background aging of the anon list, to give
3213 * pages a chance to be referenced before reclaiming.
3214 */
9e3b2f8c 3215 age_active_anon(zone, &sc);
556adecb 3216
cc715d99
MG
3217 /*
3218 * If the number of buffer_heads in the machine
3219 * exceeds the maximum allowed level and this node
3220 * has a highmem zone, force kswapd to reclaim from
3221 * it to relieve lowmem pressure.
3222 */
3223 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3224 end_zone = i;
3225 break;
3226 }
3227
60cefed4 3228 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3229 end_zone = i;
e1dbeda6 3230 break;
439423f6 3231 } else {
d43006d5
MG
3232 /*
3233 * If balanced, clear the dirty and congested
3234 * flags
3235 */
57054651
JW
3236 clear_bit(ZONE_CONGESTED, &zone->flags);
3237 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3238 }
1da177e4 3239 }
dafcb73e 3240
b8e83b94 3241 if (i < 0)
e1dbeda6
AM
3242 goto out;
3243
1da177e4
LT
3244 for (i = 0; i <= end_zone; i++) {
3245 struct zone *zone = pgdat->node_zones + i;
3246
2ab44f43
MG
3247 if (!populated_zone(zone))
3248 continue;
3249
2ab44f43
MG
3250 /*
3251 * If any zone is currently balanced then kswapd will
3252 * not call compaction as it is expected that the
3253 * necessary pages are already available.
3254 */
3255 if (pgdat_needs_compaction &&
3256 zone_watermark_ok(zone, order,
3257 low_wmark_pages(zone),
3258 *classzone_idx, 0))
3259 pgdat_needs_compaction = false;
1da177e4
LT
3260 }
3261
b7ea3c41
MG
3262 /*
3263 * If we're getting trouble reclaiming, start doing writepage
3264 * even in laptop mode.
3265 */
3266 if (sc.priority < DEF_PRIORITY - 2)
3267 sc.may_writepage = 1;
3268
1da177e4
LT
3269 /*
3270 * Now scan the zone in the dma->highmem direction, stopping
3271 * at the last zone which needs scanning.
3272 *
3273 * We do this because the page allocator works in the opposite
3274 * direction. This prevents the page allocator from allocating
3275 * pages behind kswapd's direction of progress, which would
3276 * cause too much scanning of the lower zones.
3277 */
3278 for (i = 0; i <= end_zone; i++) {
3279 struct zone *zone = pgdat->node_zones + i;
3280
f3fe6512 3281 if (!populated_zone(zone))
1da177e4
LT
3282 continue;
3283
6e543d57
LD
3284 if (sc.priority != DEF_PRIORITY &&
3285 !zone_reclaimable(zone))
1da177e4
LT
3286 continue;
3287
1da177e4 3288 sc.nr_scanned = 0;
4e416953 3289
0608f43d
AM
3290 nr_soft_scanned = 0;
3291 /*
3292 * Call soft limit reclaim before calling shrink_zone.
3293 */
3294 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3295 order, sc.gfp_mask,
3296 &nr_soft_scanned);
3297 sc.nr_reclaimed += nr_soft_reclaimed;
3298
32a4330d 3299 /*
7c954f6d
MG
3300 * There should be no need to raise the scanning
3301 * priority if enough pages are already being scanned
3302 * that that high watermark would be met at 100%
3303 * efficiency.
fe2c2a10 3304 */
6b4f7799
JW
3305 if (kswapd_shrink_zone(zone, end_zone,
3306 &sc, &nr_attempted))
7c954f6d 3307 raise_priority = false;
1da177e4 3308 }
5515061d
MG
3309
3310 /*
3311 * If the low watermark is met there is no need for processes
3312 * to be throttled on pfmemalloc_wait as they should not be
3313 * able to safely make forward progress. Wake them
3314 */
3315 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3316 pfmemalloc_watermark_ok(pgdat))
cfc51155 3317 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3318
1da177e4 3319 /*
b8e83b94
MG
3320 * Fragmentation may mean that the system cannot be rebalanced
3321 * for high-order allocations in all zones. If twice the
3322 * allocation size has been reclaimed and the zones are still
3323 * not balanced then recheck the watermarks at order-0 to
3324 * prevent kswapd reclaiming excessively. Assume that a
3325 * process requested a high-order can direct reclaim/compact.
1da177e4 3326 */
b8e83b94
MG
3327 if (order && sc.nr_reclaimed >= 2UL << order)
3328 order = sc.order = 0;
8357376d 3329
b8e83b94
MG
3330 /* Check if kswapd should be suspending */
3331 if (try_to_freeze() || kthread_should_stop())
3332 break;
8357376d 3333
2ab44f43
MG
3334 /*
3335 * Compact if necessary and kswapd is reclaiming at least the
3336 * high watermark number of pages as requsted
3337 */
3338 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3339 compact_pgdat(pgdat, order);
3340
73ce02e9 3341 /*
b8e83b94
MG
3342 * Raise priority if scanning rate is too low or there was no
3343 * progress in reclaiming pages
73ce02e9 3344 */
b8e83b94
MG
3345 if (raise_priority || !sc.nr_reclaimed)
3346 sc.priority--;
9aa41348 3347 } while (sc.priority >= 1 &&
b8e83b94 3348 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3349
b8e83b94 3350out:
0abdee2b 3351 /*
5515061d 3352 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3353 * makes a decision on the order we were last reclaiming at. However,
3354 * if another caller entered the allocator slow path while kswapd
3355 * was awake, order will remain at the higher level
3356 */
dc83edd9 3357 *classzone_idx = end_zone;
0abdee2b 3358 return order;
1da177e4
LT
3359}
3360
dc83edd9 3361static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3362{
3363 long remaining = 0;
3364 DEFINE_WAIT(wait);
3365
3366 if (freezing(current) || kthread_should_stop())
3367 return;
3368
3369 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3370
3371 /* Try to sleep for a short interval */
5515061d 3372 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3373 remaining = schedule_timeout(HZ/10);
3374 finish_wait(&pgdat->kswapd_wait, &wait);
3375 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3376 }
3377
3378 /*
3379 * After a short sleep, check if it was a premature sleep. If not, then
3380 * go fully to sleep until explicitly woken up.
3381 */
5515061d 3382 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3383 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3384
3385 /*
3386 * vmstat counters are not perfectly accurate and the estimated
3387 * value for counters such as NR_FREE_PAGES can deviate from the
3388 * true value by nr_online_cpus * threshold. To avoid the zone
3389 * watermarks being breached while under pressure, we reduce the
3390 * per-cpu vmstat threshold while kswapd is awake and restore
3391 * them before going back to sleep.
3392 */
3393 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3394
62997027
MG
3395 /*
3396 * Compaction records what page blocks it recently failed to
3397 * isolate pages from and skips them in the future scanning.
3398 * When kswapd is going to sleep, it is reasonable to assume
3399 * that pages and compaction may succeed so reset the cache.
3400 */
3401 reset_isolation_suitable(pgdat);
3402
1c7e7f6c
AK
3403 if (!kthread_should_stop())
3404 schedule();
3405
f0bc0a60
KM
3406 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3407 } else {
3408 if (remaining)
3409 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3410 else
3411 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3412 }
3413 finish_wait(&pgdat->kswapd_wait, &wait);
3414}
3415
1da177e4
LT
3416/*
3417 * The background pageout daemon, started as a kernel thread
4f98a2fe 3418 * from the init process.
1da177e4
LT
3419 *
3420 * This basically trickles out pages so that we have _some_
3421 * free memory available even if there is no other activity
3422 * that frees anything up. This is needed for things like routing
3423 * etc, where we otherwise might have all activity going on in
3424 * asynchronous contexts that cannot page things out.
3425 *
3426 * If there are applications that are active memory-allocators
3427 * (most normal use), this basically shouldn't matter.
3428 */
3429static int kswapd(void *p)
3430{
215ddd66 3431 unsigned long order, new_order;
d2ebd0f6 3432 unsigned balanced_order;
215ddd66 3433 int classzone_idx, new_classzone_idx;
d2ebd0f6 3434 int balanced_classzone_idx;
1da177e4
LT
3435 pg_data_t *pgdat = (pg_data_t*)p;
3436 struct task_struct *tsk = current;
f0bc0a60 3437
1da177e4
LT
3438 struct reclaim_state reclaim_state = {
3439 .reclaimed_slab = 0,
3440 };
a70f7302 3441 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3442
cf40bd16
NP
3443 lockdep_set_current_reclaim_state(GFP_KERNEL);
3444
174596a0 3445 if (!cpumask_empty(cpumask))
c5f59f08 3446 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3447 current->reclaim_state = &reclaim_state;
3448
3449 /*
3450 * Tell the memory management that we're a "memory allocator",
3451 * and that if we need more memory we should get access to it
3452 * regardless (see "__alloc_pages()"). "kswapd" should
3453 * never get caught in the normal page freeing logic.
3454 *
3455 * (Kswapd normally doesn't need memory anyway, but sometimes
3456 * you need a small amount of memory in order to be able to
3457 * page out something else, and this flag essentially protects
3458 * us from recursively trying to free more memory as we're
3459 * trying to free the first piece of memory in the first place).
3460 */
930d9152 3461 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3462 set_freezable();
1da177e4 3463
215ddd66 3464 order = new_order = 0;
d2ebd0f6 3465 balanced_order = 0;
215ddd66 3466 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3467 balanced_classzone_idx = classzone_idx;
1da177e4 3468 for ( ; ; ) {
6f6313d4 3469 bool ret;
3e1d1d28 3470
215ddd66
MG
3471 /*
3472 * If the last balance_pgdat was unsuccessful it's unlikely a
3473 * new request of a similar or harder type will succeed soon
3474 * so consider going to sleep on the basis we reclaimed at
3475 */
d2ebd0f6
AS
3476 if (balanced_classzone_idx >= new_classzone_idx &&
3477 balanced_order == new_order) {
215ddd66
MG
3478 new_order = pgdat->kswapd_max_order;
3479 new_classzone_idx = pgdat->classzone_idx;
3480 pgdat->kswapd_max_order = 0;
3481 pgdat->classzone_idx = pgdat->nr_zones - 1;
3482 }
3483
99504748 3484 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3485 /*
3486 * Don't sleep if someone wants a larger 'order'
99504748 3487 * allocation or has tigher zone constraints
1da177e4
LT
3488 */
3489 order = new_order;
99504748 3490 classzone_idx = new_classzone_idx;
1da177e4 3491 } else {
d2ebd0f6
AS
3492 kswapd_try_to_sleep(pgdat, balanced_order,
3493 balanced_classzone_idx);
1da177e4 3494 order = pgdat->kswapd_max_order;
99504748 3495 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3496 new_order = order;
3497 new_classzone_idx = classzone_idx;
4d40502e 3498 pgdat->kswapd_max_order = 0;
215ddd66 3499 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3500 }
1da177e4 3501
8fe23e05
DR
3502 ret = try_to_freeze();
3503 if (kthread_should_stop())
3504 break;
3505
3506 /*
3507 * We can speed up thawing tasks if we don't call balance_pgdat
3508 * after returning from the refrigerator
3509 */
33906bc5
MG
3510 if (!ret) {
3511 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3512 balanced_classzone_idx = classzone_idx;
3513 balanced_order = balance_pgdat(pgdat, order,
3514 &balanced_classzone_idx);
33906bc5 3515 }
1da177e4 3516 }
b0a8cc58 3517
71abdc15 3518 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3519 current->reclaim_state = NULL;
71abdc15
JW
3520 lockdep_clear_current_reclaim_state();
3521
1da177e4
LT
3522 return 0;
3523}
3524
3525/*
3526 * A zone is low on free memory, so wake its kswapd task to service it.
3527 */
99504748 3528void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3529{
3530 pg_data_t *pgdat;
3531
f3fe6512 3532 if (!populated_zone(zone))
1da177e4
LT
3533 return;
3534
344736f2 3535 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3536 return;
88f5acf8 3537 pgdat = zone->zone_pgdat;
99504748 3538 if (pgdat->kswapd_max_order < order) {
1da177e4 3539 pgdat->kswapd_max_order = order;
99504748
MG
3540 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3541 }
8d0986e2 3542 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3543 return;
892f795d 3544 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3545 return;
3546
3547 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3548 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3549}
3550
c6f37f12 3551#ifdef CONFIG_HIBERNATION
1da177e4 3552/*
7b51755c 3553 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3554 * freed pages.
3555 *
3556 * Rather than trying to age LRUs the aim is to preserve the overall
3557 * LRU order by reclaiming preferentially
3558 * inactive > active > active referenced > active mapped
1da177e4 3559 */
7b51755c 3560unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3561{
d6277db4 3562 struct reclaim_state reclaim_state;
d6277db4 3563 struct scan_control sc = {
ee814fe2 3564 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3565 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3566 .priority = DEF_PRIORITY,
d6277db4 3567 .may_writepage = 1,
ee814fe2
JW
3568 .may_unmap = 1,
3569 .may_swap = 1,
7b51755c 3570 .hibernation_mode = 1,
1da177e4 3571 };
a09ed5e0 3572 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3573 struct task_struct *p = current;
3574 unsigned long nr_reclaimed;
1da177e4 3575
7b51755c
KM
3576 p->flags |= PF_MEMALLOC;
3577 lockdep_set_current_reclaim_state(sc.gfp_mask);
3578 reclaim_state.reclaimed_slab = 0;
3579 p->reclaim_state = &reclaim_state;
d6277db4 3580
3115cd91 3581 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3582
7b51755c
KM
3583 p->reclaim_state = NULL;
3584 lockdep_clear_current_reclaim_state();
3585 p->flags &= ~PF_MEMALLOC;
d6277db4 3586
7b51755c 3587 return nr_reclaimed;
1da177e4 3588}
c6f37f12 3589#endif /* CONFIG_HIBERNATION */
1da177e4 3590
1da177e4
LT
3591/* It's optimal to keep kswapds on the same CPUs as their memory, but
3592 not required for correctness. So if the last cpu in a node goes
3593 away, we get changed to run anywhere: as the first one comes back,
3594 restore their cpu bindings. */
fcb35a9b
GKH
3595static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3596 void *hcpu)
1da177e4 3597{
58c0a4a7 3598 int nid;
1da177e4 3599
8bb78442 3600 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3601 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3602 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3603 const struct cpumask *mask;
3604
3605 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3606
3e597945 3607 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3608 /* One of our CPUs online: restore mask */
c5f59f08 3609 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3610 }
3611 }
3612 return NOTIFY_OK;
3613}
1da177e4 3614
3218ae14
YG
3615/*
3616 * This kswapd start function will be called by init and node-hot-add.
3617 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3618 */
3619int kswapd_run(int nid)
3620{
3621 pg_data_t *pgdat = NODE_DATA(nid);
3622 int ret = 0;
3623
3624 if (pgdat->kswapd)
3625 return 0;
3626
3627 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3628 if (IS_ERR(pgdat->kswapd)) {
3629 /* failure at boot is fatal */
3630 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3631 pr_err("Failed to start kswapd on node %d\n", nid);
3632 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3633 pgdat->kswapd = NULL;
3218ae14
YG
3634 }
3635 return ret;
3636}
3637
8fe23e05 3638/*
d8adde17 3639 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3640 * hold mem_hotplug_begin/end().
8fe23e05
DR
3641 */
3642void kswapd_stop(int nid)
3643{
3644 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3645
d8adde17 3646 if (kswapd) {
8fe23e05 3647 kthread_stop(kswapd);
d8adde17
JL
3648 NODE_DATA(nid)->kswapd = NULL;
3649 }
8fe23e05
DR
3650}
3651
1da177e4
LT
3652static int __init kswapd_init(void)
3653{
3218ae14 3654 int nid;
69e05944 3655
1da177e4 3656 swap_setup();
48fb2e24 3657 for_each_node_state(nid, N_MEMORY)
3218ae14 3658 kswapd_run(nid);
1da177e4
LT
3659 hotcpu_notifier(cpu_callback, 0);
3660 return 0;
3661}
3662
3663module_init(kswapd_init)
9eeff239
CL
3664
3665#ifdef CONFIG_NUMA
3666/*
3667 * Zone reclaim mode
3668 *
3669 * If non-zero call zone_reclaim when the number of free pages falls below
3670 * the watermarks.
9eeff239
CL
3671 */
3672int zone_reclaim_mode __read_mostly;
3673
1b2ffb78 3674#define RECLAIM_OFF 0
7d03431c 3675#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3676#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3677#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3678
a92f7126
CL
3679/*
3680 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3681 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3682 * a zone.
3683 */
3684#define ZONE_RECLAIM_PRIORITY 4
3685
9614634f
CL
3686/*
3687 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3688 * occur.
3689 */
3690int sysctl_min_unmapped_ratio = 1;
3691
0ff38490
CL
3692/*
3693 * If the number of slab pages in a zone grows beyond this percentage then
3694 * slab reclaim needs to occur.
3695 */
3696int sysctl_min_slab_ratio = 5;
3697
90afa5de
MG
3698static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3699{
3700 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3701 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3702 zone_page_state(zone, NR_ACTIVE_FILE);
3703
3704 /*
3705 * It's possible for there to be more file mapped pages than
3706 * accounted for by the pages on the file LRU lists because
3707 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3708 */
3709 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3710}
3711
3712/* Work out how many page cache pages we can reclaim in this reclaim_mode */
d031a157 3713static unsigned long zone_pagecache_reclaimable(struct zone *zone)
90afa5de 3714{
d031a157
AM
3715 unsigned long nr_pagecache_reclaimable;
3716 unsigned long delta = 0;
90afa5de
MG
3717
3718 /*
95bbc0c7 3719 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3720 * potentially reclaimable. Otherwise, we have to worry about
3721 * pages like swapcache and zone_unmapped_file_pages() provides
3722 * a better estimate
3723 */
95bbc0c7 3724 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3725 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3726 else
3727 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3728
3729 /* If we can't clean pages, remove dirty pages from consideration */
3730 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3731 delta += zone_page_state(zone, NR_FILE_DIRTY);
3732
3733 /* Watch for any possible underflows due to delta */
3734 if (unlikely(delta > nr_pagecache_reclaimable))
3735 delta = nr_pagecache_reclaimable;
3736
3737 return nr_pagecache_reclaimable - delta;
3738}
3739
9eeff239
CL
3740/*
3741 * Try to free up some pages from this zone through reclaim.
3742 */
179e9639 3743static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3744{
7fb2d46d 3745 /* Minimum pages needed in order to stay on node */
69e05944 3746 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3747 struct task_struct *p = current;
3748 struct reclaim_state reclaim_state;
179e9639 3749 struct scan_control sc = {
62b726c1 3750 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3751 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3752 .order = order,
9e3b2f8c 3753 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3754 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3755 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3756 .may_swap = 1,
179e9639 3757 };
9eeff239 3758
9eeff239 3759 cond_resched();
d4f7796e 3760 /*
95bbc0c7 3761 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3762 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3763 * and RECLAIM_UNMAP.
d4f7796e
CL
3764 */
3765 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3766 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3767 reclaim_state.reclaimed_slab = 0;
3768 p->reclaim_state = &reclaim_state;
c84db23c 3769
90afa5de 3770 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3771 /*
3772 * Free memory by calling shrink zone with increasing
3773 * priorities until we have enough memory freed.
3774 */
0ff38490 3775 do {
6b4f7799 3776 shrink_zone(zone, &sc, true);
9e3b2f8c 3777 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3778 }
c84db23c 3779
9eeff239 3780 p->reclaim_state = NULL;
d4f7796e 3781 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3782 lockdep_clear_current_reclaim_state();
a79311c1 3783 return sc.nr_reclaimed >= nr_pages;
9eeff239 3784}
179e9639
AM
3785
3786int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3787{
179e9639 3788 int node_id;
d773ed6b 3789 int ret;
179e9639
AM
3790
3791 /*
0ff38490
CL
3792 * Zone reclaim reclaims unmapped file backed pages and
3793 * slab pages if we are over the defined limits.
34aa1330 3794 *
9614634f
CL
3795 * A small portion of unmapped file backed pages is needed for
3796 * file I/O otherwise pages read by file I/O will be immediately
3797 * thrown out if the zone is overallocated. So we do not reclaim
3798 * if less than a specified percentage of the zone is used by
3799 * unmapped file backed pages.
179e9639 3800 */
90afa5de
MG
3801 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3802 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3803 return ZONE_RECLAIM_FULL;
179e9639 3804
6e543d57 3805 if (!zone_reclaimable(zone))
fa5e084e 3806 return ZONE_RECLAIM_FULL;
d773ed6b 3807
179e9639 3808 /*
d773ed6b 3809 * Do not scan if the allocation should not be delayed.
179e9639 3810 */
d0164adc 3811 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
fa5e084e 3812 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3813
3814 /*
3815 * Only run zone reclaim on the local zone or on zones that do not
3816 * have associated processors. This will favor the local processor
3817 * over remote processors and spread off node memory allocations
3818 * as wide as possible.
3819 */
89fa3024 3820 node_id = zone_to_nid(zone);
37c0708d 3821 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3822 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3823
57054651 3824 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3825 return ZONE_RECLAIM_NOSCAN;
3826
d773ed6b 3827 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3828 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3829
24cf7251
MG
3830 if (!ret)
3831 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3832
d773ed6b 3833 return ret;
179e9639 3834}
9eeff239 3835#endif
894bc310 3836
894bc310
LS
3837/*
3838 * page_evictable - test whether a page is evictable
3839 * @page: the page to test
894bc310
LS
3840 *
3841 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3842 * lists vs unevictable list.
894bc310
LS
3843 *
3844 * Reasons page might not be evictable:
ba9ddf49 3845 * (1) page's mapping marked unevictable
b291f000 3846 * (2) page is part of an mlocked VMA
ba9ddf49 3847 *
894bc310 3848 */
39b5f29a 3849int page_evictable(struct page *page)
894bc310 3850{
39b5f29a 3851 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3852}
89e004ea 3853
85046579 3854#ifdef CONFIG_SHMEM
89e004ea 3855/**
24513264
HD
3856 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3857 * @pages: array of pages to check
3858 * @nr_pages: number of pages to check
89e004ea 3859 *
24513264 3860 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3861 *
3862 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3863 */
24513264 3864void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3865{
925b7673 3866 struct lruvec *lruvec;
24513264
HD
3867 struct zone *zone = NULL;
3868 int pgscanned = 0;
3869 int pgrescued = 0;
3870 int i;
89e004ea 3871
24513264
HD
3872 for (i = 0; i < nr_pages; i++) {
3873 struct page *page = pages[i];
3874 struct zone *pagezone;
89e004ea 3875
24513264
HD
3876 pgscanned++;
3877 pagezone = page_zone(page);
3878 if (pagezone != zone) {
3879 if (zone)
3880 spin_unlock_irq(&zone->lru_lock);
3881 zone = pagezone;
3882 spin_lock_irq(&zone->lru_lock);
3883 }
fa9add64 3884 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3885
24513264
HD
3886 if (!PageLRU(page) || !PageUnevictable(page))
3887 continue;
89e004ea 3888
39b5f29a 3889 if (page_evictable(page)) {
24513264
HD
3890 enum lru_list lru = page_lru_base_type(page);
3891
309381fe 3892 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3893 ClearPageUnevictable(page);
fa9add64
HD
3894 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3895 add_page_to_lru_list(page, lruvec, lru);
24513264 3896 pgrescued++;
89e004ea 3897 }
24513264 3898 }
89e004ea 3899
24513264
HD
3900 if (zone) {
3901 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3902 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3903 spin_unlock_irq(&zone->lru_lock);
89e004ea 3904 }
89e004ea 3905}
85046579 3906#endif /* CONFIG_SHMEM */
This page took 1.206527 seconds and 5 git commands to generate.