Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next...
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
e687ad60 138#include <linux/netfilter_ingress.h>
1da177e4 139
342709ef
PE
140#include "net-sysfs.h"
141
d565b0a1
HX
142/* Instead of increasing this, you should create a hash table. */
143#define MAX_GRO_SKBS 8
144
5d38a079
HX
145/* This should be increased if a protocol with a bigger head is added. */
146#define GRO_MAX_HEAD (MAX_HEADER + 128)
147
1da177e4 148static DEFINE_SPINLOCK(ptype_lock);
62532da9 149static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
150struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151struct list_head ptype_all __read_mostly; /* Taps */
62532da9 152static struct list_head offload_base __read_mostly;
1da177e4 153
ae78dbfa 154static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
155static int call_netdevice_notifiers_info(unsigned long val,
156 struct net_device *dev,
157 struct netdev_notifier_info *info);
ae78dbfa 158
1da177e4 159/*
7562f876 160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
161 * semaphore.
162 *
c6d14c84 163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
7562f876 166 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
1da177e4 178DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
179EXPORT_SYMBOL(dev_base_lock);
180
af12fa6e
ET
181/* protects napi_hash addition/deletion and napi_gen_id */
182static DEFINE_SPINLOCK(napi_hash_lock);
183
184static unsigned int napi_gen_id;
185static DEFINE_HASHTABLE(napi_hash, 8);
186
18afa4b0 187static seqcount_t devnet_rename_seq;
c91f6df2 188
4e985ada
TG
189static inline void dev_base_seq_inc(struct net *net)
190{
191 while (++net->dev_base_seq == 0);
192}
193
881d966b 194static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 195{
95c96174
ED
196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
08e9897d 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
199}
200
881d966b 201static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 202{
7c28bd0b 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
204}
205
e36fa2f7 206static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
207{
208#ifdef CONFIG_RPS
e36fa2f7 209 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
210#endif
211}
212
e36fa2f7 213static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
214{
215#ifdef CONFIG_RPS
e36fa2f7 216 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
217#endif
218}
219
ce286d32 220/* Device list insertion */
53759be9 221static void list_netdevice(struct net_device *dev)
ce286d32 222{
c346dca1 223 struct net *net = dev_net(dev);
ce286d32
EB
224
225 ASSERT_RTNL();
226
227 write_lock_bh(&dev_base_lock);
c6d14c84 228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
230 hlist_add_head_rcu(&dev->index_hlist,
231 dev_index_hash(net, dev->ifindex));
ce286d32 232 write_unlock_bh(&dev_base_lock);
4e985ada
TG
233
234 dev_base_seq_inc(net);
ce286d32
EB
235}
236
fb699dfd
ED
237/* Device list removal
238 * caller must respect a RCU grace period before freeing/reusing dev
239 */
ce286d32
EB
240static void unlist_netdevice(struct net_device *dev)
241{
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
c6d14c84 246 list_del_rcu(&dev->dev_list);
72c9528b 247 hlist_del_rcu(&dev->name_hlist);
fb699dfd 248 hlist_del_rcu(&dev->index_hlist);
ce286d32 249 write_unlock_bh(&dev_base_lock);
4e985ada
TG
250
251 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
252}
253
1da177e4
LT
254/*
255 * Our notifier list
256 */
257
f07d5b94 258static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
259
260/*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
bea3348e 264
9958da05 265DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 266EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 267
cf508b12 268#ifdef CONFIG_LOCKDEP
723e98b7 269/*
c773e847 270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
271 * according to dev->type
272 */
273static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 289
36cbd3dc 290static const char *const netdev_lock_name[] =
723e98b7
JP
291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
306
307static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 308static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
309
310static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311{
312 int i;
313
314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 if (netdev_lock_type[i] == dev_type)
316 return i;
317 /* the last key is used by default */
318 return ARRAY_SIZE(netdev_lock_type) - 1;
319}
320
cf508b12
DM
321static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
723e98b7
JP
323{
324 int i;
325
326 i = netdev_lock_pos(dev_type);
327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 netdev_lock_name[i]);
329}
cf508b12
DM
330
331static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332{
333 int i;
334
335 i = netdev_lock_pos(dev->type);
336 lockdep_set_class_and_name(&dev->addr_list_lock,
337 &netdev_addr_lock_key[i],
338 netdev_lock_name[i]);
339}
723e98b7 340#else
cf508b12
DM
341static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343{
344}
345static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
346{
347}
348#endif
1da177e4
LT
349
350/*******************************************************************************
351
352 Protocol management and registration routines
353
354*******************************************************************************/
355
1da177e4
LT
356/*
357 * Add a protocol ID to the list. Now that the input handler is
358 * smarter we can dispense with all the messy stuff that used to be
359 * here.
360 *
361 * BEWARE!!! Protocol handlers, mangling input packets,
362 * MUST BE last in hash buckets and checking protocol handlers
363 * MUST start from promiscuous ptype_all chain in net_bh.
364 * It is true now, do not change it.
365 * Explanation follows: if protocol handler, mangling packet, will
366 * be the first on list, it is not able to sense, that packet
367 * is cloned and should be copied-on-write, so that it will
368 * change it and subsequent readers will get broken packet.
369 * --ANK (980803)
370 */
371
c07b68e8
ED
372static inline struct list_head *ptype_head(const struct packet_type *pt)
373{
374 if (pt->type == htons(ETH_P_ALL))
7866a621 375 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 376 else
7866a621
SN
377 return pt->dev ? &pt->dev->ptype_specific :
378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
379}
380
1da177e4
LT
381/**
382 * dev_add_pack - add packet handler
383 * @pt: packet type declaration
384 *
385 * Add a protocol handler to the networking stack. The passed &packet_type
386 * is linked into kernel lists and may not be freed until it has been
387 * removed from the kernel lists.
388 *
4ec93edb 389 * This call does not sleep therefore it can not
1da177e4
LT
390 * guarantee all CPU's that are in middle of receiving packets
391 * will see the new packet type (until the next received packet).
392 */
393
394void dev_add_pack(struct packet_type *pt)
395{
c07b68e8 396 struct list_head *head = ptype_head(pt);
1da177e4 397
c07b68e8
ED
398 spin_lock(&ptype_lock);
399 list_add_rcu(&pt->list, head);
400 spin_unlock(&ptype_lock);
1da177e4 401}
d1b19dff 402EXPORT_SYMBOL(dev_add_pack);
1da177e4 403
1da177e4
LT
404/**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
4ec93edb 411 * returns.
1da177e4
LT
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417void __dev_remove_pack(struct packet_type *pt)
418{
c07b68e8 419 struct list_head *head = ptype_head(pt);
1da177e4
LT
420 struct packet_type *pt1;
421
c07b68e8 422 spin_lock(&ptype_lock);
1da177e4
LT
423
424 list_for_each_entry(pt1, head, list) {
425 if (pt == pt1) {
426 list_del_rcu(&pt->list);
427 goto out;
428 }
429 }
430
7b6cd1ce 431 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 432out:
c07b68e8 433 spin_unlock(&ptype_lock);
1da177e4 434}
d1b19dff
ED
435EXPORT_SYMBOL(__dev_remove_pack);
436
1da177e4
LT
437/**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449void dev_remove_pack(struct packet_type *pt)
450{
451 __dev_remove_pack(pt);
4ec93edb 452
1da177e4
LT
453 synchronize_net();
454}
d1b19dff 455EXPORT_SYMBOL(dev_remove_pack);
1da177e4 456
62532da9
VY
457
458/**
459 * dev_add_offload - register offload handlers
460 * @po: protocol offload declaration
461 *
462 * Add protocol offload handlers to the networking stack. The passed
463 * &proto_offload is linked into kernel lists and may not be freed until
464 * it has been removed from the kernel lists.
465 *
466 * This call does not sleep therefore it can not
467 * guarantee all CPU's that are in middle of receiving packets
468 * will see the new offload handlers (until the next received packet).
469 */
470void dev_add_offload(struct packet_offload *po)
471{
bdef7de4 472 struct packet_offload *elem;
62532da9
VY
473
474 spin_lock(&offload_lock);
bdef7de4
DM
475 list_for_each_entry(elem, &offload_base, list) {
476 if (po->priority < elem->priority)
477 break;
478 }
479 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
480 spin_unlock(&offload_lock);
481}
482EXPORT_SYMBOL(dev_add_offload);
483
484/**
485 * __dev_remove_offload - remove offload handler
486 * @po: packet offload declaration
487 *
488 * Remove a protocol offload handler that was previously added to the
489 * kernel offload handlers by dev_add_offload(). The passed &offload_type
490 * is removed from the kernel lists and can be freed or reused once this
491 * function returns.
492 *
493 * The packet type might still be in use by receivers
494 * and must not be freed until after all the CPU's have gone
495 * through a quiescent state.
496 */
1d143d9f 497static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
498{
499 struct list_head *head = &offload_base;
500 struct packet_offload *po1;
501
c53aa505 502 spin_lock(&offload_lock);
62532da9
VY
503
504 list_for_each_entry(po1, head, list) {
505 if (po == po1) {
506 list_del_rcu(&po->list);
507 goto out;
508 }
509 }
510
511 pr_warn("dev_remove_offload: %p not found\n", po);
512out:
c53aa505 513 spin_unlock(&offload_lock);
62532da9 514}
62532da9
VY
515
516/**
517 * dev_remove_offload - remove packet offload handler
518 * @po: packet offload declaration
519 *
520 * Remove a packet offload handler that was previously added to the kernel
521 * offload handlers by dev_add_offload(). The passed &offload_type is
522 * removed from the kernel lists and can be freed or reused once this
523 * function returns.
524 *
525 * This call sleeps to guarantee that no CPU is looking at the packet
526 * type after return.
527 */
528void dev_remove_offload(struct packet_offload *po)
529{
530 __dev_remove_offload(po);
531
532 synchronize_net();
533}
534EXPORT_SYMBOL(dev_remove_offload);
535
1da177e4
LT
536/******************************************************************************
537
538 Device Boot-time Settings Routines
539
540*******************************************************************************/
541
542/* Boot time configuration table */
543static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545/**
546 * netdev_boot_setup_add - add new setup entry
547 * @name: name of the device
548 * @map: configured settings for the device
549 *
550 * Adds new setup entry to the dev_boot_setup list. The function
551 * returns 0 on error and 1 on success. This is a generic routine to
552 * all netdevices.
553 */
554static int netdev_boot_setup_add(char *name, struct ifmap *map)
555{
556 struct netdev_boot_setup *s;
557 int i;
558
559 s = dev_boot_setup;
560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 563 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
564 memcpy(&s[i].map, map, sizeof(s[i].map));
565 break;
566 }
567 }
568
569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570}
571
572/**
573 * netdev_boot_setup_check - check boot time settings
574 * @dev: the netdevice
575 *
576 * Check boot time settings for the device.
577 * The found settings are set for the device to be used
578 * later in the device probing.
579 * Returns 0 if no settings found, 1 if they are.
580 */
581int netdev_boot_setup_check(struct net_device *dev)
582{
583 struct netdev_boot_setup *s = dev_boot_setup;
584 int i;
585
586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 588 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
589 dev->irq = s[i].map.irq;
590 dev->base_addr = s[i].map.base_addr;
591 dev->mem_start = s[i].map.mem_start;
592 dev->mem_end = s[i].map.mem_end;
593 return 1;
594 }
595 }
596 return 0;
597}
d1b19dff 598EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
599
600
601/**
602 * netdev_boot_base - get address from boot time settings
603 * @prefix: prefix for network device
604 * @unit: id for network device
605 *
606 * Check boot time settings for the base address of device.
607 * The found settings are set for the device to be used
608 * later in the device probing.
609 * Returns 0 if no settings found.
610 */
611unsigned long netdev_boot_base(const char *prefix, int unit)
612{
613 const struct netdev_boot_setup *s = dev_boot_setup;
614 char name[IFNAMSIZ];
615 int i;
616
617 sprintf(name, "%s%d", prefix, unit);
618
619 /*
620 * If device already registered then return base of 1
621 * to indicate not to probe for this interface
622 */
881d966b 623 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
624 return 1;
625
626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 if (!strcmp(name, s[i].name))
628 return s[i].map.base_addr;
629 return 0;
630}
631
632/*
633 * Saves at boot time configured settings for any netdevice.
634 */
635int __init netdev_boot_setup(char *str)
636{
637 int ints[5];
638 struct ifmap map;
639
640 str = get_options(str, ARRAY_SIZE(ints), ints);
641 if (!str || !*str)
642 return 0;
643
644 /* Save settings */
645 memset(&map, 0, sizeof(map));
646 if (ints[0] > 0)
647 map.irq = ints[1];
648 if (ints[0] > 1)
649 map.base_addr = ints[2];
650 if (ints[0] > 2)
651 map.mem_start = ints[3];
652 if (ints[0] > 3)
653 map.mem_end = ints[4];
654
655 /* Add new entry to the list */
656 return netdev_boot_setup_add(str, &map);
657}
658
659__setup("netdev=", netdev_boot_setup);
660
661/*******************************************************************************
662
663 Device Interface Subroutines
664
665*******************************************************************************/
666
a54acb3a
ND
667/**
668 * dev_get_iflink - get 'iflink' value of a interface
669 * @dev: targeted interface
670 *
671 * Indicates the ifindex the interface is linked to.
672 * Physical interfaces have the same 'ifindex' and 'iflink' values.
673 */
674
675int dev_get_iflink(const struct net_device *dev)
676{
677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 return dev->netdev_ops->ndo_get_iflink(dev);
679
7a66bbc9 680 return dev->ifindex;
a54acb3a
ND
681}
682EXPORT_SYMBOL(dev_get_iflink);
683
1da177e4
LT
684/**
685 * __dev_get_by_name - find a device by its name
c4ea43c5 686 * @net: the applicable net namespace
1da177e4
LT
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
881d966b 696struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 697{
0bd8d536
ED
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 700
b67bfe0d 701 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
0bd8d536 704
1da177e4
LT
705 return NULL;
706}
d1b19dff 707EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 708
72c9528b
ED
709/**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722{
72c9528b
ED
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
b67bfe0d 726 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731}
732EXPORT_SYMBOL(dev_get_by_name_rcu);
733
1da177e4
LT
734/**
735 * dev_get_by_name - find a device by its name
c4ea43c5 736 * @net: the applicable net namespace
1da177e4
LT
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
881d966b 746struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
747{
748 struct net_device *dev;
749
72c9528b
ED
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
752 if (dev)
753 dev_hold(dev);
72c9528b 754 rcu_read_unlock();
1da177e4
LT
755 return dev;
756}
d1b19dff 757EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
758
759/**
760 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 761 * @net: the applicable net namespace
1da177e4
LT
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
881d966b 771struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 772{
0bd8d536
ED
773 struct net_device *dev;
774 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 775
b67bfe0d 776 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
777 if (dev->ifindex == ifindex)
778 return dev;
0bd8d536 779
1da177e4
LT
780 return NULL;
781}
d1b19dff 782EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 783
fb699dfd
ED
784/**
785 * dev_get_by_index_rcu - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold RCU lock.
793 */
794
795struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796{
fb699dfd
ED
797 struct net_device *dev;
798 struct hlist_head *head = dev_index_hash(net, ifindex);
799
b67bfe0d 800 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
801 if (dev->ifindex == ifindex)
802 return dev;
803
804 return NULL;
805}
806EXPORT_SYMBOL(dev_get_by_index_rcu);
807
1da177e4
LT
808
809/**
810 * dev_get_by_index - find a device by its ifindex
c4ea43c5 811 * @net: the applicable net namespace
1da177e4
LT
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns NULL if the device
815 * is not found or a pointer to the device. The device returned has
816 * had a reference added and the pointer is safe until the user calls
817 * dev_put to indicate they have finished with it.
818 */
819
881d966b 820struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
821{
822 struct net_device *dev;
823
fb699dfd
ED
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
826 if (dev)
827 dev_hold(dev);
fb699dfd 828 rcu_read_unlock();
1da177e4
LT
829 return dev;
830}
d1b19dff 831EXPORT_SYMBOL(dev_get_by_index);
1da177e4 832
5dbe7c17
NS
833/**
834 * netdev_get_name - get a netdevice name, knowing its ifindex.
835 * @net: network namespace
836 * @name: a pointer to the buffer where the name will be stored.
837 * @ifindex: the ifindex of the interface to get the name from.
838 *
839 * The use of raw_seqcount_begin() and cond_resched() before
840 * retrying is required as we want to give the writers a chance
841 * to complete when CONFIG_PREEMPT is not set.
842 */
843int netdev_get_name(struct net *net, char *name, int ifindex)
844{
845 struct net_device *dev;
846 unsigned int seq;
847
848retry:
849 seq = raw_seqcount_begin(&devnet_rename_seq);
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 if (!dev) {
853 rcu_read_unlock();
854 return -ENODEV;
855 }
856
857 strcpy(name, dev->name);
858 rcu_read_unlock();
859 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 cond_resched();
861 goto retry;
862 }
863
864 return 0;
865}
866
1da177e4 867/**
941666c2 868 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 869 * @net: the applicable net namespace
1da177e4
LT
870 * @type: media type of device
871 * @ha: hardware address
872 *
873 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
874 * is not found or a pointer to the device.
875 * The caller must hold RCU or RTNL.
941666c2 876 * The returned device has not had its ref count increased
1da177e4
LT
877 * and the caller must therefore be careful about locking
878 *
1da177e4
LT
879 */
880
941666c2
ED
881struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 const char *ha)
1da177e4
LT
883{
884 struct net_device *dev;
885
941666c2 886 for_each_netdev_rcu(net, dev)
1da177e4
LT
887 if (dev->type == type &&
888 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
889 return dev;
890
891 return NULL;
1da177e4 892}
941666c2 893EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 894
881d966b 895struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
896{
897 struct net_device *dev;
898
4e9cac2b 899 ASSERT_RTNL();
881d966b 900 for_each_netdev(net, dev)
4e9cac2b 901 if (dev->type == type)
7562f876
PE
902 return dev;
903
904 return NULL;
4e9cac2b 905}
4e9cac2b
PM
906EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
881d966b 908struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 909{
99fe3c39 910 struct net_device *dev, *ret = NULL;
4e9cac2b 911
99fe3c39
ED
912 rcu_read_lock();
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type) {
915 dev_hold(dev);
916 ret = dev;
917 break;
918 }
919 rcu_read_unlock();
920 return ret;
1da177e4 921}
1da177e4
LT
922EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924/**
6c555490 925 * __dev_get_by_flags - find any device with given flags
c4ea43c5 926 * @net: the applicable net namespace
1da177e4
LT
927 * @if_flags: IFF_* values
928 * @mask: bitmask of bits in if_flags to check
929 *
930 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 931 * is not found or a pointer to the device. Must be called inside
6c555490 932 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
933 */
934
6c555490
WC
935struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 unsigned short mask)
1da177e4 937{
7562f876 938 struct net_device *dev, *ret;
1da177e4 939
6c555490
WC
940 ASSERT_RTNL();
941
7562f876 942 ret = NULL;
6c555490 943 for_each_netdev(net, dev) {
1da177e4 944 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 945 ret = dev;
1da177e4
LT
946 break;
947 }
948 }
7562f876 949 return ret;
1da177e4 950}
6c555490 951EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
952
953/**
954 * dev_valid_name - check if name is okay for network device
955 * @name: name string
956 *
957 * Network device names need to be valid file names to
c7fa9d18
DM
958 * to allow sysfs to work. We also disallow any kind of
959 * whitespace.
1da177e4 960 */
95f050bf 961bool dev_valid_name(const char *name)
1da177e4 962{
c7fa9d18 963 if (*name == '\0')
95f050bf 964 return false;
b6fe17d6 965 if (strlen(name) >= IFNAMSIZ)
95f050bf 966 return false;
c7fa9d18 967 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 968 return false;
c7fa9d18
DM
969
970 while (*name) {
a4176a93 971 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 972 return false;
c7fa9d18
DM
973 name++;
974 }
95f050bf 975 return true;
1da177e4 976}
d1b19dff 977EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
978
979/**
b267b179
EB
980 * __dev_alloc_name - allocate a name for a device
981 * @net: network namespace to allocate the device name in
1da177e4 982 * @name: name format string
b267b179 983 * @buf: scratch buffer and result name string
1da177e4
LT
984 *
985 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
986 * id. It scans list of devices to build up a free map, then chooses
987 * the first empty slot. The caller must hold the dev_base or rtnl lock
988 * while allocating the name and adding the device in order to avoid
989 * duplicates.
990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
992 */
993
b267b179 994static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
995{
996 int i = 0;
1da177e4
LT
997 const char *p;
998 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 999 unsigned long *inuse;
1da177e4
LT
1000 struct net_device *d;
1001
1002 p = strnchr(name, IFNAMSIZ-1, '%');
1003 if (p) {
1004 /*
1005 * Verify the string as this thing may have come from
1006 * the user. There must be either one "%d" and no other "%"
1007 * characters.
1008 */
1009 if (p[1] != 'd' || strchr(p + 2, '%'))
1010 return -EINVAL;
1011
1012 /* Use one page as a bit array of possible slots */
cfcabdcc 1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1014 if (!inuse)
1015 return -ENOMEM;
1016
881d966b 1017 for_each_netdev(net, d) {
1da177e4
LT
1018 if (!sscanf(d->name, name, &i))
1019 continue;
1020 if (i < 0 || i >= max_netdevices)
1021 continue;
1022
1023 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1024 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1025 if (!strncmp(buf, d->name, IFNAMSIZ))
1026 set_bit(i, inuse);
1027 }
1028
1029 i = find_first_zero_bit(inuse, max_netdevices);
1030 free_page((unsigned long) inuse);
1031 }
1032
d9031024
OP
1033 if (buf != name)
1034 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1035 if (!__dev_get_by_name(net, buf))
1da177e4 1036 return i;
1da177e4
LT
1037
1038 /* It is possible to run out of possible slots
1039 * when the name is long and there isn't enough space left
1040 * for the digits, or if all bits are used.
1041 */
1042 return -ENFILE;
1043}
1044
b267b179
EB
1045/**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059int dev_alloc_name(struct net_device *dev, const char *name)
1060{
1061 char buf[IFNAMSIZ];
1062 struct net *net;
1063 int ret;
1064
c346dca1
YH
1065 BUG_ON(!dev_net(dev));
1066 net = dev_net(dev);
b267b179
EB
1067 ret = __dev_alloc_name(net, name, buf);
1068 if (ret >= 0)
1069 strlcpy(dev->name, buf, IFNAMSIZ);
1070 return ret;
1071}
d1b19dff 1072EXPORT_SYMBOL(dev_alloc_name);
b267b179 1073
828de4f6
G
1074static int dev_alloc_name_ns(struct net *net,
1075 struct net_device *dev,
1076 const char *name)
d9031024 1077{
828de4f6
G
1078 char buf[IFNAMSIZ];
1079 int ret;
8ce6cebc 1080
828de4f6
G
1081 ret = __dev_alloc_name(net, name, buf);
1082 if (ret >= 0)
1083 strlcpy(dev->name, buf, IFNAMSIZ);
1084 return ret;
1085}
1086
1087static int dev_get_valid_name(struct net *net,
1088 struct net_device *dev,
1089 const char *name)
1090{
1091 BUG_ON(!net);
8ce6cebc 1092
d9031024
OP
1093 if (!dev_valid_name(name))
1094 return -EINVAL;
1095
1c5cae81 1096 if (strchr(name, '%'))
828de4f6 1097 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1098 else if (__dev_get_by_name(net, name))
1099 return -EEXIST;
8ce6cebc
DL
1100 else if (dev->name != name)
1101 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1102
1103 return 0;
1104}
1da177e4
LT
1105
1106/**
1107 * dev_change_name - change name of a device
1108 * @dev: device
1109 * @newname: name (or format string) must be at least IFNAMSIZ
1110 *
1111 * Change name of a device, can pass format strings "eth%d".
1112 * for wildcarding.
1113 */
cf04a4c7 1114int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1115{
238fa362 1116 unsigned char old_assign_type;
fcc5a03a 1117 char oldname[IFNAMSIZ];
1da177e4 1118 int err = 0;
fcc5a03a 1119 int ret;
881d966b 1120 struct net *net;
1da177e4
LT
1121
1122 ASSERT_RTNL();
c346dca1 1123 BUG_ON(!dev_net(dev));
1da177e4 1124
c346dca1 1125 net = dev_net(dev);
1da177e4
LT
1126 if (dev->flags & IFF_UP)
1127 return -EBUSY;
1128
30e6c9fa 1129 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1130
1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1132 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1133 return 0;
c91f6df2 1134 }
c8d90dca 1135
fcc5a03a
HX
1136 memcpy(oldname, dev->name, IFNAMSIZ);
1137
828de4f6 1138 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1139 if (err < 0) {
30e6c9fa 1140 write_seqcount_end(&devnet_rename_seq);
d9031024 1141 return err;
c91f6df2 1142 }
1da177e4 1143
6fe82a39
VF
1144 if (oldname[0] && !strchr(oldname, '%'))
1145 netdev_info(dev, "renamed from %s\n", oldname);
1146
238fa362
TG
1147 old_assign_type = dev->name_assign_type;
1148 dev->name_assign_type = NET_NAME_RENAMED;
1149
fcc5a03a 1150rollback:
a1b3f594
EB
1151 ret = device_rename(&dev->dev, dev->name);
1152 if (ret) {
1153 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1154 dev->name_assign_type = old_assign_type;
30e6c9fa 1155 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1156 return ret;
dcc99773 1157 }
7f988eab 1158
30e6c9fa 1159 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1160
5bb025fa
VF
1161 netdev_adjacent_rename_links(dev, oldname);
1162
7f988eab 1163 write_lock_bh(&dev_base_lock);
372b2312 1164 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1165 write_unlock_bh(&dev_base_lock);
1166
1167 synchronize_rcu();
1168
1169 write_lock_bh(&dev_base_lock);
1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1171 write_unlock_bh(&dev_base_lock);
1172
056925ab 1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1174 ret = notifier_to_errno(ret);
1175
1176 if (ret) {
91e9c07b
ED
1177 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178 if (err >= 0) {
fcc5a03a 1179 err = ret;
30e6c9fa 1180 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1181 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1182 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1183 dev->name_assign_type = old_assign_type;
1184 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1185 goto rollback;
91e9c07b 1186 } else {
7b6cd1ce 1187 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1188 dev->name, ret);
fcc5a03a
HX
1189 }
1190 }
1da177e4
LT
1191
1192 return err;
1193}
1194
0b815a1a
SH
1195/**
1196 * dev_set_alias - change ifalias of a device
1197 * @dev: device
1198 * @alias: name up to IFALIASZ
f0db275a 1199 * @len: limit of bytes to copy from info
0b815a1a
SH
1200 *
1201 * Set ifalias for a device,
1202 */
1203int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204{
7364e445
AK
1205 char *new_ifalias;
1206
0b815a1a
SH
1207 ASSERT_RTNL();
1208
1209 if (len >= IFALIASZ)
1210 return -EINVAL;
1211
96ca4a2c 1212 if (!len) {
388dfc2d
SK
1213 kfree(dev->ifalias);
1214 dev->ifalias = NULL;
96ca4a2c
OH
1215 return 0;
1216 }
1217
7364e445
AK
1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 if (!new_ifalias)
0b815a1a 1220 return -ENOMEM;
7364e445 1221 dev->ifalias = new_ifalias;
0b815a1a
SH
1222
1223 strlcpy(dev->ifalias, alias, len+1);
1224 return len;
1225}
1226
1227
d8a33ac4 1228/**
3041a069 1229 * netdev_features_change - device changes features
d8a33ac4
SH
1230 * @dev: device to cause notification
1231 *
1232 * Called to indicate a device has changed features.
1233 */
1234void netdev_features_change(struct net_device *dev)
1235{
056925ab 1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1237}
1238EXPORT_SYMBOL(netdev_features_change);
1239
1da177e4
LT
1240/**
1241 * netdev_state_change - device changes state
1242 * @dev: device to cause notification
1243 *
1244 * Called to indicate a device has changed state. This function calls
1245 * the notifier chains for netdev_chain and sends a NEWLINK message
1246 * to the routing socket.
1247 */
1248void netdev_state_change(struct net_device *dev)
1249{
1250 if (dev->flags & IFF_UP) {
54951194
LP
1251 struct netdev_notifier_change_info change_info;
1252
1253 change_info.flags_changed = 0;
1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 &change_info.info);
7f294054 1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1257 }
1258}
d1b19dff 1259EXPORT_SYMBOL(netdev_state_change);
1da177e4 1260
ee89bab1
AW
1261/**
1262 * netdev_notify_peers - notify network peers about existence of @dev
1263 * @dev: network device
1264 *
1265 * Generate traffic such that interested network peers are aware of
1266 * @dev, such as by generating a gratuitous ARP. This may be used when
1267 * a device wants to inform the rest of the network about some sort of
1268 * reconfiguration such as a failover event or virtual machine
1269 * migration.
1270 */
1271void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1272{
ee89bab1
AW
1273 rtnl_lock();
1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 rtnl_unlock();
c1da4ac7 1276}
ee89bab1 1277EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1278
bd380811 1279static int __dev_open(struct net_device *dev)
1da177e4 1280{
d314774c 1281 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1282 int ret;
1da177e4 1283
e46b66bc
BH
1284 ASSERT_RTNL();
1285
1da177e4
LT
1286 if (!netif_device_present(dev))
1287 return -ENODEV;
1288
ca99ca14
NH
1289 /* Block netpoll from trying to do any rx path servicing.
1290 * If we don't do this there is a chance ndo_poll_controller
1291 * or ndo_poll may be running while we open the device
1292 */
66b5552f 1293 netpoll_poll_disable(dev);
ca99ca14 1294
3b8bcfd5
JB
1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 ret = notifier_to_errno(ret);
1297 if (ret)
1298 return ret;
1299
1da177e4 1300 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1301
d314774c
SH
1302 if (ops->ndo_validate_addr)
1303 ret = ops->ndo_validate_addr(dev);
bada339b 1304
d314774c
SH
1305 if (!ret && ops->ndo_open)
1306 ret = ops->ndo_open(dev);
1da177e4 1307
66b5552f 1308 netpoll_poll_enable(dev);
ca99ca14 1309
bada339b
JG
1310 if (ret)
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312 else {
1da177e4 1313 dev->flags |= IFF_UP;
4417da66 1314 dev_set_rx_mode(dev);
1da177e4 1315 dev_activate(dev);
7bf23575 1316 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1317 }
bada339b 1318
1da177e4
LT
1319 return ret;
1320}
1321
1322/**
bd380811
PM
1323 * dev_open - prepare an interface for use.
1324 * @dev: device to open
1da177e4 1325 *
bd380811
PM
1326 * Takes a device from down to up state. The device's private open
1327 * function is invoked and then the multicast lists are loaded. Finally
1328 * the device is moved into the up state and a %NETDEV_UP message is
1329 * sent to the netdev notifier chain.
1330 *
1331 * Calling this function on an active interface is a nop. On a failure
1332 * a negative errno code is returned.
1da177e4 1333 */
bd380811
PM
1334int dev_open(struct net_device *dev)
1335{
1336 int ret;
1337
bd380811
PM
1338 if (dev->flags & IFF_UP)
1339 return 0;
1340
bd380811
PM
1341 ret = __dev_open(dev);
1342 if (ret < 0)
1343 return ret;
1344
7f294054 1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1346 call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348 return ret;
1349}
1350EXPORT_SYMBOL(dev_open);
1351
44345724 1352static int __dev_close_many(struct list_head *head)
1da177e4 1353{
44345724 1354 struct net_device *dev;
e46b66bc 1355
bd380811 1356 ASSERT_RTNL();
9d5010db
DM
1357 might_sleep();
1358
5cde2829 1359 list_for_each_entry(dev, head, close_list) {
3f4df206 1360 /* Temporarily disable netpoll until the interface is down */
66b5552f 1361 netpoll_poll_disable(dev);
3f4df206 1362
44345724 1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1364
44345724 1365 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1366
44345724
OP
1367 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368 * can be even on different cpu. So just clear netif_running().
1369 *
1370 * dev->stop() will invoke napi_disable() on all of it's
1371 * napi_struct instances on this device.
1372 */
4e857c58 1373 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1374 }
1da177e4 1375
44345724 1376 dev_deactivate_many(head);
d8b2a4d2 1377
5cde2829 1378 list_for_each_entry(dev, head, close_list) {
44345724 1379 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1380
44345724
OP
1381 /*
1382 * Call the device specific close. This cannot fail.
1383 * Only if device is UP
1384 *
1385 * We allow it to be called even after a DETACH hot-plug
1386 * event.
1387 */
1388 if (ops->ndo_stop)
1389 ops->ndo_stop(dev);
1390
44345724 1391 dev->flags &= ~IFF_UP;
66b5552f 1392 netpoll_poll_enable(dev);
44345724
OP
1393 }
1394
1395 return 0;
1396}
1397
1398static int __dev_close(struct net_device *dev)
1399{
f87e6f47 1400 int retval;
44345724
OP
1401 LIST_HEAD(single);
1402
5cde2829 1403 list_add(&dev->close_list, &single);
f87e6f47
LT
1404 retval = __dev_close_many(&single);
1405 list_del(&single);
ca99ca14 1406
f87e6f47 1407 return retval;
44345724
OP
1408}
1409
99c4a26a 1410int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1411{
1412 struct net_device *dev, *tmp;
1da177e4 1413
5cde2829
EB
1414 /* Remove the devices that don't need to be closed */
1415 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1416 if (!(dev->flags & IFF_UP))
5cde2829 1417 list_del_init(&dev->close_list);
44345724
OP
1418
1419 __dev_close_many(head);
1da177e4 1420
5cde2829 1421 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1423 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1424 if (unlink)
1425 list_del_init(&dev->close_list);
44345724 1426 }
bd380811
PM
1427
1428 return 0;
1429}
99c4a26a 1430EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1431
1432/**
1433 * dev_close - shutdown an interface.
1434 * @dev: device to shutdown
1435 *
1436 * This function moves an active device into down state. A
1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439 * chain.
1440 */
1441int dev_close(struct net_device *dev)
1442{
e14a5993
ED
1443 if (dev->flags & IFF_UP) {
1444 LIST_HEAD(single);
1da177e4 1445
5cde2829 1446 list_add(&dev->close_list, &single);
99c4a26a 1447 dev_close_many(&single, true);
e14a5993
ED
1448 list_del(&single);
1449 }
da6e378b 1450 return 0;
1da177e4 1451}
d1b19dff 1452EXPORT_SYMBOL(dev_close);
1da177e4
LT
1453
1454
0187bdfb
BH
1455/**
1456 * dev_disable_lro - disable Large Receive Offload on a device
1457 * @dev: device
1458 *
1459 * Disable Large Receive Offload (LRO) on a net device. Must be
1460 * called under RTNL. This is needed if received packets may be
1461 * forwarded to another interface.
1462 */
1463void dev_disable_lro(struct net_device *dev)
1464{
fbe168ba
MK
1465 struct net_device *lower_dev;
1466 struct list_head *iter;
529d0489 1467
bc5787c6
MM
1468 dev->wanted_features &= ~NETIF_F_LRO;
1469 netdev_update_features(dev);
27660515 1470
22d5969f
MM
1471 if (unlikely(dev->features & NETIF_F_LRO))
1472 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1473
1474 netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 dev_disable_lro(lower_dev);
0187bdfb
BH
1476}
1477EXPORT_SYMBOL(dev_disable_lro);
1478
351638e7
JP
1479static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 struct net_device *dev)
1481{
1482 struct netdev_notifier_info info;
1483
1484 netdev_notifier_info_init(&info, dev);
1485 return nb->notifier_call(nb, val, &info);
1486}
0187bdfb 1487
881d966b
EB
1488static int dev_boot_phase = 1;
1489
1da177e4
LT
1490/**
1491 * register_netdevice_notifier - register a network notifier block
1492 * @nb: notifier
1493 *
1494 * Register a notifier to be called when network device events occur.
1495 * The notifier passed is linked into the kernel structures and must
1496 * not be reused until it has been unregistered. A negative errno code
1497 * is returned on a failure.
1498 *
1499 * When registered all registration and up events are replayed
4ec93edb 1500 * to the new notifier to allow device to have a race free
1da177e4
LT
1501 * view of the network device list.
1502 */
1503
1504int register_netdevice_notifier(struct notifier_block *nb)
1505{
1506 struct net_device *dev;
fcc5a03a 1507 struct net_device *last;
881d966b 1508 struct net *net;
1da177e4
LT
1509 int err;
1510
1511 rtnl_lock();
f07d5b94 1512 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1513 if (err)
1514 goto unlock;
881d966b
EB
1515 if (dev_boot_phase)
1516 goto unlock;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
351638e7 1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1520 err = notifier_to_errno(err);
1521 if (err)
1522 goto rollback;
1523
1524 if (!(dev->flags & IFF_UP))
1525 continue;
1da177e4 1526
351638e7 1527 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1528 }
1da177e4 1529 }
fcc5a03a
HX
1530
1531unlock:
1da177e4
LT
1532 rtnl_unlock();
1533 return err;
fcc5a03a
HX
1534
1535rollback:
1536 last = dev;
881d966b
EB
1537 for_each_net(net) {
1538 for_each_netdev(net, dev) {
1539 if (dev == last)
8f891489 1540 goto outroll;
fcc5a03a 1541
881d966b 1542 if (dev->flags & IFF_UP) {
351638e7
JP
1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 dev);
1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1546 }
351638e7 1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1548 }
fcc5a03a 1549 }
c67625a1 1550
8f891489 1551outroll:
c67625a1 1552 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1553 goto unlock;
1da177e4 1554}
d1b19dff 1555EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1556
1557/**
1558 * unregister_netdevice_notifier - unregister a network notifier block
1559 * @nb: notifier
1560 *
1561 * Unregister a notifier previously registered by
1562 * register_netdevice_notifier(). The notifier is unlinked into the
1563 * kernel structures and may then be reused. A negative errno code
1564 * is returned on a failure.
7d3d43da
EB
1565 *
1566 * After unregistering unregister and down device events are synthesized
1567 * for all devices on the device list to the removed notifier to remove
1568 * the need for special case cleanup code.
1da177e4
LT
1569 */
1570
1571int unregister_netdevice_notifier(struct notifier_block *nb)
1572{
7d3d43da
EB
1573 struct net_device *dev;
1574 struct net *net;
9f514950
HX
1575 int err;
1576
1577 rtnl_lock();
f07d5b94 1578 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1579 if (err)
1580 goto unlock;
1581
1582 for_each_net(net) {
1583 for_each_netdev(net, dev) {
1584 if (dev->flags & IFF_UP) {
351638e7
JP
1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 dev);
1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1588 }
351638e7 1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1590 }
1591 }
1592unlock:
9f514950
HX
1593 rtnl_unlock();
1594 return err;
1da177e4 1595}
d1b19dff 1596EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1597
351638e7
JP
1598/**
1599 * call_netdevice_notifiers_info - call all network notifier blocks
1600 * @val: value passed unmodified to notifier function
1601 * @dev: net_device pointer passed unmodified to notifier function
1602 * @info: notifier information data
1603 *
1604 * Call all network notifier blocks. Parameters and return value
1605 * are as for raw_notifier_call_chain().
1606 */
1607
1d143d9f 1608static int call_netdevice_notifiers_info(unsigned long val,
1609 struct net_device *dev,
1610 struct netdev_notifier_info *info)
351638e7
JP
1611{
1612 ASSERT_RTNL();
1613 netdev_notifier_info_init(info, dev);
1614 return raw_notifier_call_chain(&netdev_chain, val, info);
1615}
351638e7 1616
1da177e4
LT
1617/**
1618 * call_netdevice_notifiers - call all network notifier blocks
1619 * @val: value passed unmodified to notifier function
c4ea43c5 1620 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1621 *
1622 * Call all network notifier blocks. Parameters and return value
f07d5b94 1623 * are as for raw_notifier_call_chain().
1da177e4
LT
1624 */
1625
ad7379d4 1626int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1627{
351638e7
JP
1628 struct netdev_notifier_info info;
1629
1630 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1631}
edf947f1 1632EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1633
1cf51900 1634#ifdef CONFIG_NET_INGRESS
4577139b
DB
1635static struct static_key ingress_needed __read_mostly;
1636
1637void net_inc_ingress_queue(void)
1638{
1639 static_key_slow_inc(&ingress_needed);
1640}
1641EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643void net_dec_ingress_queue(void)
1644{
1645 static_key_slow_dec(&ingress_needed);
1646}
1647EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648#endif
1649
c5905afb 1650static struct static_key netstamp_needed __read_mostly;
b90e5794 1651#ifdef HAVE_JUMP_LABEL
c5905afb 1652/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1653 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1654 * static_key_slow_dec() calls.
b90e5794
ED
1655 */
1656static atomic_t netstamp_needed_deferred;
1657#endif
1da177e4
LT
1658
1659void net_enable_timestamp(void)
1660{
b90e5794
ED
1661#ifdef HAVE_JUMP_LABEL
1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664 if (deferred) {
1665 while (--deferred)
c5905afb 1666 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1667 return;
1668 }
1669#endif
c5905afb 1670 static_key_slow_inc(&netstamp_needed);
1da177e4 1671}
d1b19dff 1672EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1673
1674void net_disable_timestamp(void)
1675{
b90e5794
ED
1676#ifdef HAVE_JUMP_LABEL
1677 if (in_interrupt()) {
1678 atomic_inc(&netstamp_needed_deferred);
1679 return;
1680 }
1681#endif
c5905afb 1682 static_key_slow_dec(&netstamp_needed);
1da177e4 1683}
d1b19dff 1684EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1685
3b098e2d 1686static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1687{
588f0330 1688 skb->tstamp.tv64 = 0;
c5905afb 1689 if (static_key_false(&netstamp_needed))
a61bbcf2 1690 __net_timestamp(skb);
1da177e4
LT
1691}
1692
588f0330 1693#define net_timestamp_check(COND, SKB) \
c5905afb 1694 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1695 if ((COND) && !(SKB)->tstamp.tv64) \
1696 __net_timestamp(SKB); \
1697 } \
3b098e2d 1698
1ee481fb 1699bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1700{
1701 unsigned int len;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return false;
1705
1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 if (skb->len <= len)
1708 return true;
1709
1710 /* if TSO is enabled, we don't care about the length as the packet
1711 * could be forwarded without being segmented before
1712 */
1713 if (skb_is_gso(skb))
1714 return true;
1715
1716 return false;
1717}
1ee481fb 1718EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1719
a0265d28
HX
1720int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721{
bbbf2df0
WB
1722 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 unlikely(!is_skb_forwardable(dev, skb))) {
a0265d28
HX
1724 atomic_long_inc(&dev->rx_dropped);
1725 kfree_skb(skb);
1726 return NET_RX_DROP;
1727 }
1728
1729 skb_scrub_packet(skb, true);
08b4b8ea 1730 skb->priority = 0;
a0265d28 1731 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1733
1734 return 0;
1735}
1736EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
44540960
AB
1738/**
1739 * dev_forward_skb - loopback an skb to another netif
1740 *
1741 * @dev: destination network device
1742 * @skb: buffer to forward
1743 *
1744 * return values:
1745 * NET_RX_SUCCESS (no congestion)
6ec82562 1746 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1747 *
1748 * dev_forward_skb can be used for injecting an skb from the
1749 * start_xmit function of one device into the receive queue
1750 * of another device.
1751 *
1752 * The receiving device may be in another namespace, so
1753 * we have to clear all information in the skb that could
1754 * impact namespace isolation.
1755 */
1756int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757{
a0265d28 1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1759}
1760EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
71d9dec2
CG
1762static inline int deliver_skb(struct sk_buff *skb,
1763 struct packet_type *pt_prev,
1764 struct net_device *orig_dev)
1765{
1080e512
MT
1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 return -ENOMEM;
71d9dec2
CG
1768 atomic_inc(&skb->users);
1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770}
1771
7866a621
SN
1772static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 struct packet_type **pt,
fbcb2170
JP
1774 struct net_device *orig_dev,
1775 __be16 type,
7866a621
SN
1776 struct list_head *ptype_list)
1777{
1778 struct packet_type *ptype, *pt_prev = *pt;
1779
1780 list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 if (ptype->type != type)
1782 continue;
1783 if (pt_prev)
fbcb2170 1784 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1785 pt_prev = ptype;
1786 }
1787 *pt = pt_prev;
1788}
1789
c0de08d0
EL
1790static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791{
a3d744e9 1792 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1793 return false;
1794
1795 if (ptype->id_match)
1796 return ptype->id_match(ptype, skb->sk);
1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 return true;
1799
1800 return false;
1801}
1802
1da177e4
LT
1803/*
1804 * Support routine. Sends outgoing frames to any network
1805 * taps currently in use.
1806 */
1807
f6a78bfc 1808static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1809{
1810 struct packet_type *ptype;
71d9dec2
CG
1811 struct sk_buff *skb2 = NULL;
1812 struct packet_type *pt_prev = NULL;
7866a621 1813 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1814
1da177e4 1815 rcu_read_lock();
7866a621
SN
1816again:
1817 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1818 /* Never send packets back to the socket
1819 * they originated from - MvS (miquels@drinkel.ow.org)
1820 */
7866a621
SN
1821 if (skb_loop_sk(ptype, skb))
1822 continue;
71d9dec2 1823
7866a621
SN
1824 if (pt_prev) {
1825 deliver_skb(skb2, pt_prev, skb->dev);
1826 pt_prev = ptype;
1827 continue;
1828 }
1da177e4 1829
7866a621
SN
1830 /* need to clone skb, done only once */
1831 skb2 = skb_clone(skb, GFP_ATOMIC);
1832 if (!skb2)
1833 goto out_unlock;
70978182 1834
7866a621 1835 net_timestamp_set(skb2);
1da177e4 1836
7866a621
SN
1837 /* skb->nh should be correctly
1838 * set by sender, so that the second statement is
1839 * just protection against buggy protocols.
1840 */
1841 skb_reset_mac_header(skb2);
1842
1843 if (skb_network_header(skb2) < skb2->data ||
1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 ntohs(skb2->protocol),
1847 dev->name);
1848 skb_reset_network_header(skb2);
1da177e4 1849 }
7866a621
SN
1850
1851 skb2->transport_header = skb2->network_header;
1852 skb2->pkt_type = PACKET_OUTGOING;
1853 pt_prev = ptype;
1854 }
1855
1856 if (ptype_list == &ptype_all) {
1857 ptype_list = &dev->ptype_all;
1858 goto again;
1da177e4 1859 }
7866a621 1860out_unlock:
71d9dec2
CG
1861 if (pt_prev)
1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1863 rcu_read_unlock();
1864}
1865
2c53040f
BH
1866/**
1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1868 * @dev: Network device
1869 * @txq: number of queues available
1870 *
1871 * If real_num_tx_queues is changed the tc mappings may no longer be
1872 * valid. To resolve this verify the tc mapping remains valid and if
1873 * not NULL the mapping. With no priorities mapping to this
1874 * offset/count pair it will no longer be used. In the worst case TC0
1875 * is invalid nothing can be done so disable priority mappings. If is
1876 * expected that drivers will fix this mapping if they can before
1877 * calling netif_set_real_num_tx_queues.
1878 */
bb134d22 1879static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1880{
1881 int i;
1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884 /* If TC0 is invalidated disable TC mapping */
1885 if (tc->offset + tc->count > txq) {
7b6cd1ce 1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1887 dev->num_tc = 0;
1888 return;
1889 }
1890
1891 /* Invalidated prio to tc mappings set to TC0 */
1892 for (i = 1; i < TC_BITMASK + 1; i++) {
1893 int q = netdev_get_prio_tc_map(dev, i);
1894
1895 tc = &dev->tc_to_txq[q];
1896 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 i, q);
4f57c087
JF
1899 netdev_set_prio_tc_map(dev, i, 0);
1900 }
1901 }
1902}
1903
537c00de
AD
1904#ifdef CONFIG_XPS
1905static DEFINE_MUTEX(xps_map_mutex);
1906#define xmap_dereference(P) \
1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
10cdc3f3
AD
1909static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 int cpu, u16 index)
537c00de 1911{
10cdc3f3
AD
1912 struct xps_map *map = NULL;
1913 int pos;
537c00de 1914
10cdc3f3
AD
1915 if (dev_maps)
1916 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1917
10cdc3f3
AD
1918 for (pos = 0; map && pos < map->len; pos++) {
1919 if (map->queues[pos] == index) {
537c00de
AD
1920 if (map->len > 1) {
1921 map->queues[pos] = map->queues[--map->len];
1922 } else {
10cdc3f3 1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1924 kfree_rcu(map, rcu);
1925 map = NULL;
1926 }
10cdc3f3 1927 break;
537c00de 1928 }
537c00de
AD
1929 }
1930
10cdc3f3
AD
1931 return map;
1932}
1933
024e9679 1934static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1935{
1936 struct xps_dev_maps *dev_maps;
024e9679 1937 int cpu, i;
10cdc3f3
AD
1938 bool active = false;
1939
1940 mutex_lock(&xps_map_mutex);
1941 dev_maps = xmap_dereference(dev->xps_maps);
1942
1943 if (!dev_maps)
1944 goto out_no_maps;
1945
1946 for_each_possible_cpu(cpu) {
024e9679
AD
1947 for (i = index; i < dev->num_tx_queues; i++) {
1948 if (!remove_xps_queue(dev_maps, cpu, i))
1949 break;
1950 }
1951 if (i == dev->num_tx_queues)
10cdc3f3
AD
1952 active = true;
1953 }
1954
1955 if (!active) {
537c00de
AD
1956 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 kfree_rcu(dev_maps, rcu);
1958 }
1959
024e9679
AD
1960 for (i = index; i < dev->num_tx_queues; i++)
1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 NUMA_NO_NODE);
1963
537c00de
AD
1964out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966}
1967
01c5f864
AD
1968static struct xps_map *expand_xps_map(struct xps_map *map,
1969 int cpu, u16 index)
1970{
1971 struct xps_map *new_map;
1972 int alloc_len = XPS_MIN_MAP_ALLOC;
1973 int i, pos;
1974
1975 for (pos = 0; map && pos < map->len; pos++) {
1976 if (map->queues[pos] != index)
1977 continue;
1978 return map;
1979 }
1980
1981 /* Need to add queue to this CPU's existing map */
1982 if (map) {
1983 if (pos < map->alloc_len)
1984 return map;
1985
1986 alloc_len = map->alloc_len * 2;
1987 }
1988
1989 /* Need to allocate new map to store queue on this CPU's map */
1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 cpu_to_node(cpu));
1992 if (!new_map)
1993 return NULL;
1994
1995 for (i = 0; i < pos; i++)
1996 new_map->queues[i] = map->queues[i];
1997 new_map->alloc_len = alloc_len;
1998 new_map->len = pos;
1999
2000 return new_map;
2001}
2002
3573540c
MT
2003int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 u16 index)
537c00de 2005{
01c5f864 2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2007 struct xps_map *map, *new_map;
537c00de 2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2009 int cpu, numa_node_id = -2;
2010 bool active = false;
537c00de
AD
2011
2012 mutex_lock(&xps_map_mutex);
2013
2014 dev_maps = xmap_dereference(dev->xps_maps);
2015
01c5f864
AD
2016 /* allocate memory for queue storage */
2017 for_each_online_cpu(cpu) {
2018 if (!cpumask_test_cpu(cpu, mask))
2019 continue;
2020
2021 if (!new_dev_maps)
2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2023 if (!new_dev_maps) {
2024 mutex_unlock(&xps_map_mutex);
01c5f864 2025 return -ENOMEM;
2bb60cb9 2026 }
01c5f864
AD
2027
2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 NULL;
2030
2031 map = expand_xps_map(map, cpu, index);
2032 if (!map)
2033 goto error;
2034
2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 }
2037
2038 if (!new_dev_maps)
2039 goto out_no_new_maps;
2040
537c00de 2041 for_each_possible_cpu(cpu) {
01c5f864
AD
2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 /* add queue to CPU maps */
2044 int pos = 0;
2045
2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 while ((pos < map->len) && (map->queues[pos] != index))
2048 pos++;
2049
2050 if (pos == map->len)
2051 map->queues[map->len++] = index;
537c00de 2052#ifdef CONFIG_NUMA
537c00de
AD
2053 if (numa_node_id == -2)
2054 numa_node_id = cpu_to_node(cpu);
2055 else if (numa_node_id != cpu_to_node(cpu))
2056 numa_node_id = -1;
537c00de 2057#endif
01c5f864
AD
2058 } else if (dev_maps) {
2059 /* fill in the new device map from the old device map */
2060 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2062 }
01c5f864 2063
537c00de
AD
2064 }
2065
01c5f864
AD
2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
537c00de 2068 /* Cleanup old maps */
01c5f864
AD
2069 if (dev_maps) {
2070 for_each_possible_cpu(cpu) {
2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 if (map && map != new_map)
2074 kfree_rcu(map, rcu);
2075 }
537c00de 2076
01c5f864 2077 kfree_rcu(dev_maps, rcu);
537c00de
AD
2078 }
2079
01c5f864
AD
2080 dev_maps = new_dev_maps;
2081 active = true;
537c00de 2082
01c5f864
AD
2083out_no_new_maps:
2084 /* update Tx queue numa node */
537c00de
AD
2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 (numa_node_id >= 0) ? numa_node_id :
2087 NUMA_NO_NODE);
2088
01c5f864
AD
2089 if (!dev_maps)
2090 goto out_no_maps;
2091
2092 /* removes queue from unused CPUs */
2093 for_each_possible_cpu(cpu) {
2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 continue;
2096
2097 if (remove_xps_queue(dev_maps, cpu, index))
2098 active = true;
2099 }
2100
2101 /* free map if not active */
2102 if (!active) {
2103 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107out_no_maps:
537c00de
AD
2108 mutex_unlock(&xps_map_mutex);
2109
2110 return 0;
2111error:
01c5f864
AD
2112 /* remove any maps that we added */
2113 for_each_possible_cpu(cpu) {
2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 NULL;
2117 if (new_map && new_map != map)
2118 kfree(new_map);
2119 }
2120
537c00de
AD
2121 mutex_unlock(&xps_map_mutex);
2122
537c00de
AD
2123 kfree(new_dev_maps);
2124 return -ENOMEM;
2125}
2126EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128#endif
f0796d5c
JF
2129/*
2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132 */
e6484930 2133int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2134{
1d24eb48
TH
2135 int rc;
2136
e6484930
TH
2137 if (txq < 1 || txq > dev->num_tx_queues)
2138 return -EINVAL;
f0796d5c 2139
5c56580b
BH
2140 if (dev->reg_state == NETREG_REGISTERED ||
2141 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2142 ASSERT_RTNL();
2143
1d24eb48
TH
2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 txq);
bf264145
TH
2146 if (rc)
2147 return rc;
2148
4f57c087
JF
2149 if (dev->num_tc)
2150 netif_setup_tc(dev, txq);
2151
024e9679 2152 if (txq < dev->real_num_tx_queues) {
e6484930 2153 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2154#ifdef CONFIG_XPS
2155 netif_reset_xps_queues_gt(dev, txq);
2156#endif
2157 }
f0796d5c 2158 }
e6484930
TH
2159
2160 dev->real_num_tx_queues = txq;
2161 return 0;
f0796d5c
JF
2162}
2163EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2164
a953be53 2165#ifdef CONFIG_SYSFS
62fe0b40
BH
2166/**
2167 * netif_set_real_num_rx_queues - set actual number of RX queues used
2168 * @dev: Network device
2169 * @rxq: Actual number of RX queues
2170 *
2171 * This must be called either with the rtnl_lock held or before
2172 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2173 * negative error code. If called before registration, it always
2174 * succeeds.
62fe0b40
BH
2175 */
2176int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177{
2178 int rc;
2179
bd25fa7b
TH
2180 if (rxq < 1 || rxq > dev->num_rx_queues)
2181 return -EINVAL;
2182
62fe0b40
BH
2183 if (dev->reg_state == NETREG_REGISTERED) {
2184 ASSERT_RTNL();
2185
62fe0b40
BH
2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 rxq);
2188 if (rc)
2189 return rc;
62fe0b40
BH
2190 }
2191
2192 dev->real_num_rx_queues = rxq;
2193 return 0;
2194}
2195EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196#endif
2197
2c53040f
BH
2198/**
2199 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2200 *
2201 * This routine should set an upper limit on the number of RSS queues
2202 * used by default by multiqueue devices.
2203 */
a55b138b 2204int netif_get_num_default_rss_queues(void)
16917b87
YM
2205{
2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207}
2208EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
def82a1d 2210static inline void __netif_reschedule(struct Qdisc *q)
56079431 2211{
def82a1d
JP
2212 struct softnet_data *sd;
2213 unsigned long flags;
56079431 2214
def82a1d 2215 local_irq_save(flags);
903ceff7 2216 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2217 q->next_sched = NULL;
2218 *sd->output_queue_tailp = q;
2219 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2220 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 local_irq_restore(flags);
2222}
2223
2224void __netif_schedule(struct Qdisc *q)
2225{
2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 __netif_reschedule(q);
56079431
DV
2228}
2229EXPORT_SYMBOL(__netif_schedule);
2230
e6247027
ED
2231struct dev_kfree_skb_cb {
2232 enum skb_free_reason reason;
2233};
2234
2235static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2236{
e6247027
ED
2237 return (struct dev_kfree_skb_cb *)skb->cb;
2238}
2239
46e5da40
JF
2240void netif_schedule_queue(struct netdev_queue *txq)
2241{
2242 rcu_read_lock();
2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246 __netif_schedule(q);
2247 }
2248 rcu_read_unlock();
2249}
2250EXPORT_SYMBOL(netif_schedule_queue);
2251
2252/**
2253 * netif_wake_subqueue - allow sending packets on subqueue
2254 * @dev: network device
2255 * @queue_index: sub queue index
2256 *
2257 * Resume individual transmit queue of a device with multiple transmit queues.
2258 */
2259void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260{
2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 struct Qdisc *q;
2265
2266 rcu_read_lock();
2267 q = rcu_dereference(txq->qdisc);
2268 __netif_schedule(q);
2269 rcu_read_unlock();
2270 }
2271}
2272EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275{
2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 struct Qdisc *q;
2278
2279 rcu_read_lock();
2280 q = rcu_dereference(dev_queue->qdisc);
2281 __netif_schedule(q);
2282 rcu_read_unlock();
2283 }
2284}
2285EXPORT_SYMBOL(netif_tx_wake_queue);
2286
e6247027 2287void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2288{
e6247027 2289 unsigned long flags;
56079431 2290
e6247027
ED
2291 if (likely(atomic_read(&skb->users) == 1)) {
2292 smp_rmb();
2293 atomic_set(&skb->users, 0);
2294 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 return;
bea3348e 2296 }
e6247027
ED
2297 get_kfree_skb_cb(skb)->reason = reason;
2298 local_irq_save(flags);
2299 skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 __this_cpu_write(softnet_data.completion_queue, skb);
2301 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 local_irq_restore(flags);
56079431 2303}
e6247027 2304EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2305
e6247027 2306void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2307{
2308 if (in_irq() || irqs_disabled())
e6247027 2309 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2310 else
2311 dev_kfree_skb(skb);
2312}
e6247027 2313EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2314
2315
bea3348e
SH
2316/**
2317 * netif_device_detach - mark device as removed
2318 * @dev: network device
2319 *
2320 * Mark device as removed from system and therefore no longer available.
2321 */
56079431
DV
2322void netif_device_detach(struct net_device *dev)
2323{
2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 netif_running(dev)) {
d543103a 2326 netif_tx_stop_all_queues(dev);
56079431
DV
2327 }
2328}
2329EXPORT_SYMBOL(netif_device_detach);
2330
bea3348e
SH
2331/**
2332 * netif_device_attach - mark device as attached
2333 * @dev: network device
2334 *
2335 * Mark device as attached from system and restart if needed.
2336 */
56079431
DV
2337void netif_device_attach(struct net_device *dev)
2338{
2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 netif_running(dev)) {
d543103a 2341 netif_tx_wake_all_queues(dev);
4ec93edb 2342 __netdev_watchdog_up(dev);
56079431
DV
2343 }
2344}
2345EXPORT_SYMBOL(netif_device_attach);
2346
5605c762
JP
2347/*
2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349 * to be used as a distribution range.
2350 */
2351u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 unsigned int num_tx_queues)
2353{
2354 u32 hash;
2355 u16 qoffset = 0;
2356 u16 qcount = num_tx_queues;
2357
2358 if (skb_rx_queue_recorded(skb)) {
2359 hash = skb_get_rx_queue(skb);
2360 while (unlikely(hash >= num_tx_queues))
2361 hash -= num_tx_queues;
2362 return hash;
2363 }
2364
2365 if (dev->num_tc) {
2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 qoffset = dev->tc_to_txq[tc].offset;
2368 qcount = dev->tc_to_txq[tc].count;
2369 }
2370
2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372}
2373EXPORT_SYMBOL(__skb_tx_hash);
2374
36c92474
BH
2375static void skb_warn_bad_offload(const struct sk_buff *skb)
2376{
65e9d2fa 2377 static const netdev_features_t null_features = 0;
36c92474
BH
2378 struct net_device *dev = skb->dev;
2379 const char *driver = "";
2380
c846ad9b
BG
2381 if (!net_ratelimit())
2382 return;
2383
36c92474
BH
2384 if (dev && dev->dev.parent)
2385 driver = dev_driver_string(dev->dev.parent);
2386
2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2389 driver, dev ? &dev->features : &null_features,
2390 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 skb_shinfo(skb)->gso_type, skb->ip_summed);
2393}
2394
1da177e4
LT
2395/*
2396 * Invalidate hardware checksum when packet is to be mangled, and
2397 * complete checksum manually on outgoing path.
2398 */
84fa7933 2399int skb_checksum_help(struct sk_buff *skb)
1da177e4 2400{
d3bc23e7 2401 __wsum csum;
663ead3b 2402 int ret = 0, offset;
1da177e4 2403
84fa7933 2404 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2405 goto out_set_summed;
2406
2407 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2408 skb_warn_bad_offload(skb);
2409 return -EINVAL;
1da177e4
LT
2410 }
2411
cef401de
ED
2412 /* Before computing a checksum, we should make sure no frag could
2413 * be modified by an external entity : checksum could be wrong.
2414 */
2415 if (skb_has_shared_frag(skb)) {
2416 ret = __skb_linearize(skb);
2417 if (ret)
2418 goto out;
2419 }
2420
55508d60 2421 offset = skb_checksum_start_offset(skb);
a030847e
HX
2422 BUG_ON(offset >= skb_headlen(skb));
2423 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425 offset += skb->csum_offset;
2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428 if (skb_cloned(skb) &&
2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 if (ret)
2432 goto out;
2433 }
2434
a030847e 2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2436out_set_summed:
1da177e4 2437 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2438out:
1da177e4
LT
2439 return ret;
2440}
d1b19dff 2441EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2442
53d6471c 2443__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2444{
252e3346 2445 __be16 type = skb->protocol;
f6a78bfc 2446
19acc327
PS
2447 /* Tunnel gso handlers can set protocol to ethernet. */
2448 if (type == htons(ETH_P_TEB)) {
2449 struct ethhdr *eth;
2450
2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 return 0;
2453
2454 eth = (struct ethhdr *)skb_mac_header(skb);
2455 type = eth->h_proto;
2456 }
2457
d4bcef3f 2458 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2459}
2460
2461/**
2462 * skb_mac_gso_segment - mac layer segmentation handler.
2463 * @skb: buffer to segment
2464 * @features: features for the output path (see dev->features)
2465 */
2466struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 netdev_features_t features)
2468{
2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 struct packet_offload *ptype;
53d6471c
VY
2471 int vlan_depth = skb->mac_len;
2472 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2473
2474 if (unlikely(!type))
2475 return ERR_PTR(-EINVAL);
2476
53d6471c 2477 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2478
2479 rcu_read_lock();
22061d80 2480 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2481 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2482 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2483 break;
2484 }
2485 }
2486 rcu_read_unlock();
2487
98e399f8 2488 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2489
f6a78bfc
HX
2490 return segs;
2491}
05e8ef4a
PS
2492EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495/* openvswitch calls this on rx path, so we need a different check.
2496 */
2497static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498{
2499 if (tx_path)
2500 return skb->ip_summed != CHECKSUM_PARTIAL;
2501 else
2502 return skb->ip_summed == CHECKSUM_NONE;
2503}
2504
2505/**
2506 * __skb_gso_segment - Perform segmentation on skb.
2507 * @skb: buffer to segment
2508 * @features: features for the output path (see dev->features)
2509 * @tx_path: whether it is called in TX path
2510 *
2511 * This function segments the given skb and returns a list of segments.
2512 *
2513 * It may return NULL if the skb requires no segmentation. This is
2514 * only possible when GSO is used for verifying header integrity.
2515 */
2516struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 netdev_features_t features, bool tx_path)
2518{
2519 if (unlikely(skb_needs_check(skb, tx_path))) {
2520 int err;
2521
2522 skb_warn_bad_offload(skb);
2523
a40e0a66 2524 err = skb_cow_head(skb, 0);
2525 if (err < 0)
05e8ef4a
PS
2526 return ERR_PTR(err);
2527 }
2528
68c33163 2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2530 SKB_GSO_CB(skb)->encap_level = 0;
2531
05e8ef4a
PS
2532 skb_reset_mac_header(skb);
2533 skb_reset_mac_len(skb);
2534
2535 return skb_mac_gso_segment(skb, features);
2536}
12b0004d 2537EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2538
fb286bb2
HX
2539/* Take action when hardware reception checksum errors are detected. */
2540#ifdef CONFIG_BUG
2541void netdev_rx_csum_fault(struct net_device *dev)
2542{
2543 if (net_ratelimit()) {
7b6cd1ce 2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2545 dump_stack();
2546 }
2547}
2548EXPORT_SYMBOL(netdev_rx_csum_fault);
2549#endif
2550
1da177e4
LT
2551/* Actually, we should eliminate this check as soon as we know, that:
2552 * 1. IOMMU is present and allows to map all the memory.
2553 * 2. No high memory really exists on this machine.
2554 */
2555
c1e756bf 2556static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2557{
3d3a8533 2558#ifdef CONFIG_HIGHMEM
1da177e4 2559 int i;
5acbbd42 2560 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2564 return 1;
ea2ab693 2565 }
5acbbd42 2566 }
1da177e4 2567
5acbbd42
FT
2568 if (PCI_DMA_BUS_IS_PHYS) {
2569 struct device *pdev = dev->dev.parent;
1da177e4 2570
9092c658
ED
2571 if (!pdev)
2572 return 0;
5acbbd42 2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 return 1;
2578 }
2579 }
3d3a8533 2580#endif
1da177e4
LT
2581 return 0;
2582}
1da177e4 2583
3b392ddb
SH
2584/* If MPLS offload request, verify we are testing hardware MPLS features
2585 * instead of standard features for the netdev.
2586 */
d0edc7bf 2587#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2588static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 netdev_features_t features,
2590 __be16 type)
2591{
25cd9ba0 2592 if (eth_p_mpls(type))
3b392ddb
SH
2593 features &= skb->dev->mpls_features;
2594
2595 return features;
2596}
2597#else
2598static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 netdev_features_t features,
2600 __be16 type)
2601{
2602 return features;
2603}
2604#endif
2605
c8f44aff 2606static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2607 netdev_features_t features)
f01a5236 2608{
53d6471c 2609 int tmp;
3b392ddb
SH
2610 __be16 type;
2611
2612 type = skb_network_protocol(skb, &tmp);
2613 features = net_mpls_features(skb, features, type);
53d6471c 2614
c0d680e5 2615 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2616 !can_checksum_protocol(features, type)) {
f01a5236 2617 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2618 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2619 features &= ~NETIF_F_SG;
2620 }
2621
2622 return features;
2623}
2624
e38f3025
TM
2625netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 struct net_device *dev,
2627 netdev_features_t features)
2628{
2629 return features;
2630}
2631EXPORT_SYMBOL(passthru_features_check);
2632
8cb65d00
TM
2633static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 struct net_device *dev,
2635 netdev_features_t features)
2636{
2637 return vlan_features_check(skb, features);
2638}
2639
c1e756bf 2640netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2641{
5f35227e 2642 struct net_device *dev = skb->dev;
fcbeb976
ED
2643 netdev_features_t features = dev->features;
2644 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6 2645
fcbeb976 2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2647 features &= ~NETIF_F_GSO_MASK;
2648
5f35227e
JG
2649 /* If encapsulation offload request, verify we are testing
2650 * hardware encapsulation features instead of standard
2651 * features for the netdev
2652 */
2653 if (skb->encapsulation)
2654 features &= dev->hw_enc_features;
2655
f5a7fb88
TM
2656 if (skb_vlan_tagged(skb))
2657 features = netdev_intersect_features(features,
2658 dev->vlan_features |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2661
5f35227e
JG
2662 if (dev->netdev_ops->ndo_features_check)
2663 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 features);
8cb65d00
TM
2665 else
2666 features &= dflt_features_check(skb, dev, features);
5f35227e 2667
c1e756bf 2668 return harmonize_features(skb, features);
58e998c6 2669}
c1e756bf 2670EXPORT_SYMBOL(netif_skb_features);
58e998c6 2671
2ea25513 2672static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2673 struct netdev_queue *txq, bool more)
f6a78bfc 2674{
2ea25513
DM
2675 unsigned int len;
2676 int rc;
00829823 2677
7866a621 2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2679 dev_queue_xmit_nit(skb, dev);
fc741216 2680
2ea25513
DM
2681 len = skb->len;
2682 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2683 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2684 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2685
2ea25513
DM
2686 return rc;
2687}
7b9c6090 2688
8dcda22a
DM
2689struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2691{
2692 struct sk_buff *skb = first;
2693 int rc = NETDEV_TX_OK;
7b9c6090 2694
7f2e870f
DM
2695 while (skb) {
2696 struct sk_buff *next = skb->next;
fc70fb64 2697
7f2e870f 2698 skb->next = NULL;
95f6b3dd 2699 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2700 if (unlikely(!dev_xmit_complete(rc))) {
2701 skb->next = next;
2702 goto out;
2703 }
6afff0ca 2704
7f2e870f
DM
2705 skb = next;
2706 if (netif_xmit_stopped(txq) && skb) {
2707 rc = NETDEV_TX_BUSY;
2708 break;
9ccb8975 2709 }
7f2e870f 2710 }
9ccb8975 2711
7f2e870f
DM
2712out:
2713 *ret = rc;
2714 return skb;
2715}
b40863c6 2716
1ff0dc94
ED
2717static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 netdev_features_t features)
f6a78bfc 2719{
df8a39de 2720 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2721 !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2723 return skb;
2724}
f6a78bfc 2725
55a93b3e 2726static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2727{
2728 netdev_features_t features;
f6a78bfc 2729
eae3f88e
DM
2730 if (skb->next)
2731 return skb;
068a2de5 2732
eae3f88e
DM
2733 features = netif_skb_features(skb);
2734 skb = validate_xmit_vlan(skb, features);
2735 if (unlikely(!skb))
2736 goto out_null;
7b9c6090 2737
8b86a61d 2738 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2739 struct sk_buff *segs;
2740
2741 segs = skb_gso_segment(skb, features);
cecda693 2742 if (IS_ERR(segs)) {
af6dabc9 2743 goto out_kfree_skb;
cecda693
JW
2744 } else if (segs) {
2745 consume_skb(skb);
2746 skb = segs;
f6a78bfc 2747 }
eae3f88e
DM
2748 } else {
2749 if (skb_needs_linearize(skb, features) &&
2750 __skb_linearize(skb))
2751 goto out_kfree_skb;
4ec93edb 2752
eae3f88e
DM
2753 /* If packet is not checksummed and device does not
2754 * support checksumming for this protocol, complete
2755 * checksumming here.
2756 */
2757 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 if (skb->encapsulation)
2759 skb_set_inner_transport_header(skb,
2760 skb_checksum_start_offset(skb));
2761 else
2762 skb_set_transport_header(skb,
2763 skb_checksum_start_offset(skb));
2764 if (!(features & NETIF_F_ALL_CSUM) &&
2765 skb_checksum_help(skb))
2766 goto out_kfree_skb;
7b9c6090 2767 }
0c772159 2768 }
7b9c6090 2769
eae3f88e 2770 return skb;
fc70fb64 2771
f6a78bfc
HX
2772out_kfree_skb:
2773 kfree_skb(skb);
eae3f88e
DM
2774out_null:
2775 return NULL;
2776}
6afff0ca 2777
55a93b3e
ED
2778struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779{
2780 struct sk_buff *next, *head = NULL, *tail;
2781
bec3cfdc 2782 for (; skb != NULL; skb = next) {
55a93b3e
ED
2783 next = skb->next;
2784 skb->next = NULL;
bec3cfdc
ED
2785
2786 /* in case skb wont be segmented, point to itself */
2787 skb->prev = skb;
2788
55a93b3e 2789 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2790 if (!skb)
2791 continue;
55a93b3e 2792
bec3cfdc
ED
2793 if (!head)
2794 head = skb;
2795 else
2796 tail->next = skb;
2797 /* If skb was segmented, skb->prev points to
2798 * the last segment. If not, it still contains skb.
2799 */
2800 tail = skb->prev;
55a93b3e
ED
2801 }
2802 return head;
f6a78bfc
HX
2803}
2804
1def9238
ED
2805static void qdisc_pkt_len_init(struct sk_buff *skb)
2806{
2807 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809 qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811 /* To get more precise estimation of bytes sent on wire,
2812 * we add to pkt_len the headers size of all segments
2813 */
2814 if (shinfo->gso_size) {
757b8b1d 2815 unsigned int hdr_len;
15e5a030 2816 u16 gso_segs = shinfo->gso_segs;
1def9238 2817
757b8b1d
ED
2818 /* mac layer + network layer */
2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821 /* + transport layer */
1def9238
ED
2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 hdr_len += tcp_hdrlen(skb);
2824 else
2825 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2826
2827 if (shinfo->gso_type & SKB_GSO_DODGY)
2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 shinfo->gso_size);
2830
2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2832 }
2833}
2834
bbd8a0d3
KK
2835static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 struct net_device *dev,
2837 struct netdev_queue *txq)
2838{
2839 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2840 bool contended;
bbd8a0d3
KK
2841 int rc;
2842
1def9238 2843 qdisc_pkt_len_init(skb);
a2da570d 2844 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2845 /*
2846 * Heuristic to force contended enqueues to serialize on a
2847 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 * often and dequeue packets faster.
79640a4c 2850 */
a2da570d 2851 contended = qdisc_is_running(q);
79640a4c
ED
2852 if (unlikely(contended))
2853 spin_lock(&q->busylock);
2854
bbd8a0d3
KK
2855 spin_lock(root_lock);
2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 kfree_skb(skb);
2858 rc = NET_XMIT_DROP;
2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2860 qdisc_run_begin(q)) {
bbd8a0d3
KK
2861 /*
2862 * This is a work-conserving queue; there are no old skbs
2863 * waiting to be sent out; and the qdisc is not running -
2864 * xmit the skb directly.
2865 */
bfe0d029 2866
bfe0d029
ED
2867 qdisc_bstats_update(q, skb);
2868
55a93b3e 2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2870 if (unlikely(contended)) {
2871 spin_unlock(&q->busylock);
2872 contended = false;
2873 }
bbd8a0d3 2874 __qdisc_run(q);
79640a4c 2875 } else
bc135b23 2876 qdisc_run_end(q);
bbd8a0d3
KK
2877
2878 rc = NET_XMIT_SUCCESS;
2879 } else {
a2da570d 2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2881 if (qdisc_run_begin(q)) {
2882 if (unlikely(contended)) {
2883 spin_unlock(&q->busylock);
2884 contended = false;
2885 }
2886 __qdisc_run(q);
2887 }
bbd8a0d3
KK
2888 }
2889 spin_unlock(root_lock);
79640a4c
ED
2890 if (unlikely(contended))
2891 spin_unlock(&q->busylock);
bbd8a0d3
KK
2892 return rc;
2893}
2894
86f8515f 2895#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2896static void skb_update_prio(struct sk_buff *skb)
2897{
6977a79d 2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2899
91c68ce2
ED
2900 if (!skb->priority && skb->sk && map) {
2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903 if (prioidx < map->priomap_len)
2904 skb->priority = map->priomap[prioidx];
2905 }
5bc1421e
NH
2906}
2907#else
2908#define skb_update_prio(skb)
2909#endif
2910
f60e5990 2911DEFINE_PER_CPU(int, xmit_recursion);
2912EXPORT_SYMBOL(xmit_recursion);
2913
11a766ce 2914#define RECURSION_LIMIT 10
745e20f1 2915
95603e22
MM
2916/**
2917 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
2918 * @net: network namespace this loopback is happening in
2919 * @sk: sk needed to be a netfilter okfn
95603e22
MM
2920 * @skb: buffer to transmit
2921 */
0c4b51f0 2922int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
2923{
2924 skb_reset_mac_header(skb);
2925 __skb_pull(skb, skb_network_offset(skb));
2926 skb->pkt_type = PACKET_LOOPBACK;
2927 skb->ip_summed = CHECKSUM_UNNECESSARY;
2928 WARN_ON(!skb_dst(skb));
2929 skb_dst_force(skb);
2930 netif_rx_ni(skb);
2931 return 0;
2932}
2933EXPORT_SYMBOL(dev_loopback_xmit);
2934
638b2a69
JP
2935static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2936{
2937#ifdef CONFIG_XPS
2938 struct xps_dev_maps *dev_maps;
2939 struct xps_map *map;
2940 int queue_index = -1;
2941
2942 rcu_read_lock();
2943 dev_maps = rcu_dereference(dev->xps_maps);
2944 if (dev_maps) {
2945 map = rcu_dereference(
2946 dev_maps->cpu_map[skb->sender_cpu - 1]);
2947 if (map) {
2948 if (map->len == 1)
2949 queue_index = map->queues[0];
2950 else
2951 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2952 map->len)];
2953 if (unlikely(queue_index >= dev->real_num_tx_queues))
2954 queue_index = -1;
2955 }
2956 }
2957 rcu_read_unlock();
2958
2959 return queue_index;
2960#else
2961 return -1;
2962#endif
2963}
2964
2965static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2966{
2967 struct sock *sk = skb->sk;
2968 int queue_index = sk_tx_queue_get(sk);
2969
2970 if (queue_index < 0 || skb->ooo_okay ||
2971 queue_index >= dev->real_num_tx_queues) {
2972 int new_index = get_xps_queue(dev, skb);
2973 if (new_index < 0)
2974 new_index = skb_tx_hash(dev, skb);
2975
2976 if (queue_index != new_index && sk &&
004a5d01 2977 sk_fullsock(sk) &&
638b2a69
JP
2978 rcu_access_pointer(sk->sk_dst_cache))
2979 sk_tx_queue_set(sk, new_index);
2980
2981 queue_index = new_index;
2982 }
2983
2984 return queue_index;
2985}
2986
2987struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2988 struct sk_buff *skb,
2989 void *accel_priv)
2990{
2991 int queue_index = 0;
2992
2993#ifdef CONFIG_XPS
2994 if (skb->sender_cpu == 0)
2995 skb->sender_cpu = raw_smp_processor_id() + 1;
2996#endif
2997
2998 if (dev->real_num_tx_queues != 1) {
2999 const struct net_device_ops *ops = dev->netdev_ops;
3000 if (ops->ndo_select_queue)
3001 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3002 __netdev_pick_tx);
3003 else
3004 queue_index = __netdev_pick_tx(dev, skb);
3005
3006 if (!accel_priv)
3007 queue_index = netdev_cap_txqueue(dev, queue_index);
3008 }
3009
3010 skb_set_queue_mapping(skb, queue_index);
3011 return netdev_get_tx_queue(dev, queue_index);
3012}
3013
d29f749e 3014/**
9d08dd3d 3015 * __dev_queue_xmit - transmit a buffer
d29f749e 3016 * @skb: buffer to transmit
9d08dd3d 3017 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3018 *
3019 * Queue a buffer for transmission to a network device. The caller must
3020 * have set the device and priority and built the buffer before calling
3021 * this function. The function can be called from an interrupt.
3022 *
3023 * A negative errno code is returned on a failure. A success does not
3024 * guarantee the frame will be transmitted as it may be dropped due
3025 * to congestion or traffic shaping.
3026 *
3027 * -----------------------------------------------------------------------------------
3028 * I notice this method can also return errors from the queue disciplines,
3029 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3030 * be positive.
3031 *
3032 * Regardless of the return value, the skb is consumed, so it is currently
3033 * difficult to retry a send to this method. (You can bump the ref count
3034 * before sending to hold a reference for retry if you are careful.)
3035 *
3036 * When calling this method, interrupts MUST be enabled. This is because
3037 * the BH enable code must have IRQs enabled so that it will not deadlock.
3038 * --BLG
3039 */
0a59f3a9 3040static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3041{
3042 struct net_device *dev = skb->dev;
dc2b4847 3043 struct netdev_queue *txq;
1da177e4
LT
3044 struct Qdisc *q;
3045 int rc = -ENOMEM;
3046
6d1ccff6
ED
3047 skb_reset_mac_header(skb);
3048
e7fd2885
WB
3049 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3050 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3051
4ec93edb
YH
3052 /* Disable soft irqs for various locks below. Also
3053 * stops preemption for RCU.
1da177e4 3054 */
4ec93edb 3055 rcu_read_lock_bh();
1da177e4 3056
5bc1421e
NH
3057 skb_update_prio(skb);
3058
02875878
ED
3059 /* If device/qdisc don't need skb->dst, release it right now while
3060 * its hot in this cpu cache.
3061 */
3062 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3063 skb_dst_drop(skb);
3064 else
3065 skb_dst_force(skb);
3066
0c4f691f
SF
3067#ifdef CONFIG_NET_SWITCHDEV
3068 /* Don't forward if offload device already forwarded */
3069 if (skb->offload_fwd_mark &&
3070 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3071 consume_skb(skb);
3072 rc = NET_XMIT_SUCCESS;
3073 goto out;
3074 }
3075#endif
3076
f663dd9a 3077 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3078 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3079
1da177e4 3080#ifdef CONFIG_NET_CLS_ACT
d1b19dff 3081 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 3082#endif
cf66ba58 3083 trace_net_dev_queue(skb);
1da177e4 3084 if (q->enqueue) {
bbd8a0d3 3085 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3086 goto out;
1da177e4
LT
3087 }
3088
3089 /* The device has no queue. Common case for software devices:
3090 loopback, all the sorts of tunnels...
3091
932ff279
HX
3092 Really, it is unlikely that netif_tx_lock protection is necessary
3093 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3094 counters.)
3095 However, it is possible, that they rely on protection
3096 made by us here.
3097
3098 Check this and shot the lock. It is not prone from deadlocks.
3099 Either shot noqueue qdisc, it is even simpler 8)
3100 */
3101 if (dev->flags & IFF_UP) {
3102 int cpu = smp_processor_id(); /* ok because BHs are off */
3103
c773e847 3104 if (txq->xmit_lock_owner != cpu) {
1da177e4 3105
745e20f1
ED
3106 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3107 goto recursion_alert;
3108
1f59533f
JDB
3109 skb = validate_xmit_skb(skb, dev);
3110 if (!skb)
3111 goto drop;
3112
c773e847 3113 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3114
73466498 3115 if (!netif_xmit_stopped(txq)) {
745e20f1 3116 __this_cpu_inc(xmit_recursion);
ce93718f 3117 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3118 __this_cpu_dec(xmit_recursion);
572a9d7b 3119 if (dev_xmit_complete(rc)) {
c773e847 3120 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3121 goto out;
3122 }
3123 }
c773e847 3124 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3125 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3126 dev->name);
1da177e4
LT
3127 } else {
3128 /* Recursion is detected! It is possible,
745e20f1
ED
3129 * unfortunately
3130 */
3131recursion_alert:
e87cc472
JP
3132 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3133 dev->name);
1da177e4
LT
3134 }
3135 }
3136
3137 rc = -ENETDOWN;
1f59533f 3138drop:
d4828d85 3139 rcu_read_unlock_bh();
1da177e4 3140
015f0688 3141 atomic_long_inc(&dev->tx_dropped);
1f59533f 3142 kfree_skb_list(skb);
1da177e4
LT
3143 return rc;
3144out:
d4828d85 3145 rcu_read_unlock_bh();
1da177e4
LT
3146 return rc;
3147}
f663dd9a 3148
2b4aa3ce 3149int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3150{
3151 return __dev_queue_xmit(skb, NULL);
3152}
2b4aa3ce 3153EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3154
f663dd9a
JW
3155int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3156{
3157 return __dev_queue_xmit(skb, accel_priv);
3158}
3159EXPORT_SYMBOL(dev_queue_xmit_accel);
3160
1da177e4
LT
3161
3162/*=======================================================================
3163 Receiver routines
3164 =======================================================================*/
3165
6b2bedc3 3166int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3167EXPORT_SYMBOL(netdev_max_backlog);
3168
3b098e2d 3169int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3170int netdev_budget __read_mostly = 300;
3171int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3172
eecfd7c4
ED
3173/* Called with irq disabled */
3174static inline void ____napi_schedule(struct softnet_data *sd,
3175 struct napi_struct *napi)
3176{
3177 list_add_tail(&napi->poll_list, &sd->poll_list);
3178 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3179}
3180
bfb564e7
KK
3181#ifdef CONFIG_RPS
3182
3183/* One global table that all flow-based protocols share. */
6e3f7faf 3184struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3185EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3186u32 rps_cpu_mask __read_mostly;
3187EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3188
c5905afb 3189struct static_key rps_needed __read_mostly;
adc9300e 3190
c445477d
BH
3191static struct rps_dev_flow *
3192set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3193 struct rps_dev_flow *rflow, u16 next_cpu)
3194{
a31196b0 3195 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3196#ifdef CONFIG_RFS_ACCEL
3197 struct netdev_rx_queue *rxqueue;
3198 struct rps_dev_flow_table *flow_table;
3199 struct rps_dev_flow *old_rflow;
3200 u32 flow_id;
3201 u16 rxq_index;
3202 int rc;
3203
3204 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3205 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3206 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3207 goto out;
3208 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3209 if (rxq_index == skb_get_rx_queue(skb))
3210 goto out;
3211
3212 rxqueue = dev->_rx + rxq_index;
3213 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3214 if (!flow_table)
3215 goto out;
61b905da 3216 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3217 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3218 rxq_index, flow_id);
3219 if (rc < 0)
3220 goto out;
3221 old_rflow = rflow;
3222 rflow = &flow_table->flows[flow_id];
c445477d
BH
3223 rflow->filter = rc;
3224 if (old_rflow->filter == rflow->filter)
3225 old_rflow->filter = RPS_NO_FILTER;
3226 out:
3227#endif
3228 rflow->last_qtail =
09994d1b 3229 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3230 }
3231
09994d1b 3232 rflow->cpu = next_cpu;
c445477d
BH
3233 return rflow;
3234}
3235
bfb564e7
KK
3236/*
3237 * get_rps_cpu is called from netif_receive_skb and returns the target
3238 * CPU from the RPS map of the receiving queue for a given skb.
3239 * rcu_read_lock must be held on entry.
3240 */
3241static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3242 struct rps_dev_flow **rflowp)
3243{
567e4b79
ED
3244 const struct rps_sock_flow_table *sock_flow_table;
3245 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3246 struct rps_dev_flow_table *flow_table;
567e4b79 3247 struct rps_map *map;
bfb564e7 3248 int cpu = -1;
567e4b79 3249 u32 tcpu;
61b905da 3250 u32 hash;
bfb564e7
KK
3251
3252 if (skb_rx_queue_recorded(skb)) {
3253 u16 index = skb_get_rx_queue(skb);
567e4b79 3254
62fe0b40
BH
3255 if (unlikely(index >= dev->real_num_rx_queues)) {
3256 WARN_ONCE(dev->real_num_rx_queues > 1,
3257 "%s received packet on queue %u, but number "
3258 "of RX queues is %u\n",
3259 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3260 goto done;
3261 }
567e4b79
ED
3262 rxqueue += index;
3263 }
bfb564e7 3264
567e4b79
ED
3265 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3266
3267 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3268 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3269 if (!flow_table && !map)
bfb564e7
KK
3270 goto done;
3271
2d47b459 3272 skb_reset_network_header(skb);
61b905da
TH
3273 hash = skb_get_hash(skb);
3274 if (!hash)
bfb564e7
KK
3275 goto done;
3276
fec5e652
TH
3277 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3278 if (flow_table && sock_flow_table) {
fec5e652 3279 struct rps_dev_flow *rflow;
567e4b79
ED
3280 u32 next_cpu;
3281 u32 ident;
3282
3283 /* First check into global flow table if there is a match */
3284 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3285 if ((ident ^ hash) & ~rps_cpu_mask)
3286 goto try_rps;
fec5e652 3287
567e4b79
ED
3288 next_cpu = ident & rps_cpu_mask;
3289
3290 /* OK, now we know there is a match,
3291 * we can look at the local (per receive queue) flow table
3292 */
61b905da 3293 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3294 tcpu = rflow->cpu;
3295
fec5e652
TH
3296 /*
3297 * If the desired CPU (where last recvmsg was done) is
3298 * different from current CPU (one in the rx-queue flow
3299 * table entry), switch if one of the following holds:
a31196b0 3300 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3301 * - Current CPU is offline.
3302 * - The current CPU's queue tail has advanced beyond the
3303 * last packet that was enqueued using this table entry.
3304 * This guarantees that all previous packets for the flow
3305 * have been dequeued, thus preserving in order delivery.
3306 */
3307 if (unlikely(tcpu != next_cpu) &&
a31196b0 3308 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3309 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3310 rflow->last_qtail)) >= 0)) {
3311 tcpu = next_cpu;
c445477d 3312 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3313 }
c445477d 3314
a31196b0 3315 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3316 *rflowp = rflow;
3317 cpu = tcpu;
3318 goto done;
3319 }
3320 }
3321
567e4b79
ED
3322try_rps:
3323
0a9627f2 3324 if (map) {
8fc54f68 3325 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3326 if (cpu_online(tcpu)) {
3327 cpu = tcpu;
3328 goto done;
3329 }
3330 }
3331
3332done:
0a9627f2
TH
3333 return cpu;
3334}
3335
c445477d
BH
3336#ifdef CONFIG_RFS_ACCEL
3337
3338/**
3339 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3340 * @dev: Device on which the filter was set
3341 * @rxq_index: RX queue index
3342 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3343 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3344 *
3345 * Drivers that implement ndo_rx_flow_steer() should periodically call
3346 * this function for each installed filter and remove the filters for
3347 * which it returns %true.
3348 */
3349bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3350 u32 flow_id, u16 filter_id)
3351{
3352 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3353 struct rps_dev_flow_table *flow_table;
3354 struct rps_dev_flow *rflow;
3355 bool expire = true;
a31196b0 3356 unsigned int cpu;
c445477d
BH
3357
3358 rcu_read_lock();
3359 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3360 if (flow_table && flow_id <= flow_table->mask) {
3361 rflow = &flow_table->flows[flow_id];
3362 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3363 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3364 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3365 rflow->last_qtail) <
3366 (int)(10 * flow_table->mask)))
3367 expire = false;
3368 }
3369 rcu_read_unlock();
3370 return expire;
3371}
3372EXPORT_SYMBOL(rps_may_expire_flow);
3373
3374#endif /* CONFIG_RFS_ACCEL */
3375
0a9627f2 3376/* Called from hardirq (IPI) context */
e36fa2f7 3377static void rps_trigger_softirq(void *data)
0a9627f2 3378{
e36fa2f7
ED
3379 struct softnet_data *sd = data;
3380
eecfd7c4 3381 ____napi_schedule(sd, &sd->backlog);
dee42870 3382 sd->received_rps++;
0a9627f2 3383}
e36fa2f7 3384
fec5e652 3385#endif /* CONFIG_RPS */
0a9627f2 3386
e36fa2f7
ED
3387/*
3388 * Check if this softnet_data structure is another cpu one
3389 * If yes, queue it to our IPI list and return 1
3390 * If no, return 0
3391 */
3392static int rps_ipi_queued(struct softnet_data *sd)
3393{
3394#ifdef CONFIG_RPS
903ceff7 3395 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3396
3397 if (sd != mysd) {
3398 sd->rps_ipi_next = mysd->rps_ipi_list;
3399 mysd->rps_ipi_list = sd;
3400
3401 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3402 return 1;
3403 }
3404#endif /* CONFIG_RPS */
3405 return 0;
3406}
3407
99bbc707
WB
3408#ifdef CONFIG_NET_FLOW_LIMIT
3409int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3410#endif
3411
3412static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3413{
3414#ifdef CONFIG_NET_FLOW_LIMIT
3415 struct sd_flow_limit *fl;
3416 struct softnet_data *sd;
3417 unsigned int old_flow, new_flow;
3418
3419 if (qlen < (netdev_max_backlog >> 1))
3420 return false;
3421
903ceff7 3422 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3423
3424 rcu_read_lock();
3425 fl = rcu_dereference(sd->flow_limit);
3426 if (fl) {
3958afa1 3427 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3428 old_flow = fl->history[fl->history_head];
3429 fl->history[fl->history_head] = new_flow;
3430
3431 fl->history_head++;
3432 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3433
3434 if (likely(fl->buckets[old_flow]))
3435 fl->buckets[old_flow]--;
3436
3437 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3438 fl->count++;
3439 rcu_read_unlock();
3440 return true;
3441 }
3442 }
3443 rcu_read_unlock();
3444#endif
3445 return false;
3446}
3447
0a9627f2
TH
3448/*
3449 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3450 * queue (may be a remote CPU queue).
3451 */
fec5e652
TH
3452static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3453 unsigned int *qtail)
0a9627f2 3454{
e36fa2f7 3455 struct softnet_data *sd;
0a9627f2 3456 unsigned long flags;
99bbc707 3457 unsigned int qlen;
0a9627f2 3458
e36fa2f7 3459 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3460
3461 local_irq_save(flags);
0a9627f2 3462
e36fa2f7 3463 rps_lock(sd);
e9e4dd32
JA
3464 if (!netif_running(skb->dev))
3465 goto drop;
99bbc707
WB
3466 qlen = skb_queue_len(&sd->input_pkt_queue);
3467 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3468 if (qlen) {
0a9627f2 3469enqueue:
e36fa2f7 3470 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3471 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3472 rps_unlock(sd);
152102c7 3473 local_irq_restore(flags);
0a9627f2
TH
3474 return NET_RX_SUCCESS;
3475 }
3476
ebda37c2
ED
3477 /* Schedule NAPI for backlog device
3478 * We can use non atomic operation since we own the queue lock
3479 */
3480 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3481 if (!rps_ipi_queued(sd))
eecfd7c4 3482 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3483 }
3484 goto enqueue;
3485 }
3486
e9e4dd32 3487drop:
dee42870 3488 sd->dropped++;
e36fa2f7 3489 rps_unlock(sd);
0a9627f2 3490
0a9627f2
TH
3491 local_irq_restore(flags);
3492
caf586e5 3493 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3494 kfree_skb(skb);
3495 return NET_RX_DROP;
3496}
1da177e4 3497
ae78dbfa 3498static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3499{
b0e28f1e 3500 int ret;
1da177e4 3501
588f0330 3502 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3503
cf66ba58 3504 trace_netif_rx(skb);
df334545 3505#ifdef CONFIG_RPS
c5905afb 3506 if (static_key_false(&rps_needed)) {
fec5e652 3507 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3508 int cpu;
3509
cece1945 3510 preempt_disable();
b0e28f1e 3511 rcu_read_lock();
fec5e652
TH
3512
3513 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3514 if (cpu < 0)
3515 cpu = smp_processor_id();
fec5e652
TH
3516
3517 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3518
b0e28f1e 3519 rcu_read_unlock();
cece1945 3520 preempt_enable();
adc9300e
ED
3521 } else
3522#endif
fec5e652
TH
3523 {
3524 unsigned int qtail;
3525 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3526 put_cpu();
3527 }
b0e28f1e 3528 return ret;
1da177e4 3529}
ae78dbfa
BH
3530
3531/**
3532 * netif_rx - post buffer to the network code
3533 * @skb: buffer to post
3534 *
3535 * This function receives a packet from a device driver and queues it for
3536 * the upper (protocol) levels to process. It always succeeds. The buffer
3537 * may be dropped during processing for congestion control or by the
3538 * protocol layers.
3539 *
3540 * return values:
3541 * NET_RX_SUCCESS (no congestion)
3542 * NET_RX_DROP (packet was dropped)
3543 *
3544 */
3545
3546int netif_rx(struct sk_buff *skb)
3547{
3548 trace_netif_rx_entry(skb);
3549
3550 return netif_rx_internal(skb);
3551}
d1b19dff 3552EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3553
3554int netif_rx_ni(struct sk_buff *skb)
3555{
3556 int err;
3557
ae78dbfa
BH
3558 trace_netif_rx_ni_entry(skb);
3559
1da177e4 3560 preempt_disable();
ae78dbfa 3561 err = netif_rx_internal(skb);
1da177e4
LT
3562 if (local_softirq_pending())
3563 do_softirq();
3564 preempt_enable();
3565
3566 return err;
3567}
1da177e4
LT
3568EXPORT_SYMBOL(netif_rx_ni);
3569
1da177e4
LT
3570static void net_tx_action(struct softirq_action *h)
3571{
903ceff7 3572 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3573
3574 if (sd->completion_queue) {
3575 struct sk_buff *clist;
3576
3577 local_irq_disable();
3578 clist = sd->completion_queue;
3579 sd->completion_queue = NULL;
3580 local_irq_enable();
3581
3582 while (clist) {
3583 struct sk_buff *skb = clist;
3584 clist = clist->next;
3585
547b792c 3586 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3587 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3588 trace_consume_skb(skb);
3589 else
3590 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3591 __kfree_skb(skb);
3592 }
3593 }
3594
3595 if (sd->output_queue) {
37437bb2 3596 struct Qdisc *head;
1da177e4
LT
3597
3598 local_irq_disable();
3599 head = sd->output_queue;
3600 sd->output_queue = NULL;
a9cbd588 3601 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3602 local_irq_enable();
3603
3604 while (head) {
37437bb2
DM
3605 struct Qdisc *q = head;
3606 spinlock_t *root_lock;
3607
1da177e4
LT
3608 head = head->next_sched;
3609
5fb66229 3610 root_lock = qdisc_lock(q);
37437bb2 3611 if (spin_trylock(root_lock)) {
4e857c58 3612 smp_mb__before_atomic();
def82a1d
JP
3613 clear_bit(__QDISC_STATE_SCHED,
3614 &q->state);
37437bb2
DM
3615 qdisc_run(q);
3616 spin_unlock(root_lock);
1da177e4 3617 } else {
195648bb 3618 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3619 &q->state)) {
195648bb 3620 __netif_reschedule(q);
e8a83e10 3621 } else {
4e857c58 3622 smp_mb__before_atomic();
e8a83e10
JP
3623 clear_bit(__QDISC_STATE_SCHED,
3624 &q->state);
3625 }
1da177e4
LT
3626 }
3627 }
3628 }
3629}
3630
ab95bfe0
JP
3631#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3632 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3633/* This hook is defined here for ATM LANE */
3634int (*br_fdb_test_addr_hook)(struct net_device *dev,
3635 unsigned char *addr) __read_mostly;
4fb019a0 3636EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3637#endif
1da177e4 3638
f697c3e8
HX
3639static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3640 struct packet_type **pt_prev,
3641 int *ret, struct net_device *orig_dev)
3642{
e7582bab 3643#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3644 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3645 struct tcf_result cl_res;
24824a09 3646
c9e99fd0
DB
3647 /* If there's at least one ingress present somewhere (so
3648 * we get here via enabled static key), remaining devices
3649 * that are not configured with an ingress qdisc will bail
d2788d34 3650 * out here.
c9e99fd0 3651 */
d2788d34 3652 if (!cl)
4577139b 3653 return skb;
f697c3e8
HX
3654 if (*pt_prev) {
3655 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3656 *pt_prev = NULL;
1da177e4
LT
3657 }
3658
3365495c 3659 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3660 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3661 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3662
3b3ae880 3663 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3664 case TC_ACT_OK:
3665 case TC_ACT_RECLASSIFY:
3666 skb->tc_index = TC_H_MIN(cl_res.classid);
3667 break;
3668 case TC_ACT_SHOT:
24ea591d 3669 qdisc_qstats_cpu_drop(cl->q);
d2788d34
DB
3670 case TC_ACT_STOLEN:
3671 case TC_ACT_QUEUED:
3672 kfree_skb(skb);
3673 return NULL;
27b29f63
AS
3674 case TC_ACT_REDIRECT:
3675 /* skb_mac_header check was done by cls/act_bpf, so
3676 * we can safely push the L2 header back before
3677 * redirecting to another netdev
3678 */
3679 __skb_push(skb, skb->mac_len);
3680 skb_do_redirect(skb);
3681 return NULL;
d2788d34
DB
3682 default:
3683 break;
f697c3e8 3684 }
e7582bab 3685#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3686 return skb;
3687}
1da177e4 3688
ab95bfe0
JP
3689/**
3690 * netdev_rx_handler_register - register receive handler
3691 * @dev: device to register a handler for
3692 * @rx_handler: receive handler to register
93e2c32b 3693 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3694 *
e227867f 3695 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3696 * called from __netif_receive_skb. A negative errno code is returned
3697 * on a failure.
3698 *
3699 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3700 *
3701 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3702 */
3703int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3704 rx_handler_func_t *rx_handler,
3705 void *rx_handler_data)
ab95bfe0
JP
3706{
3707 ASSERT_RTNL();
3708
3709 if (dev->rx_handler)
3710 return -EBUSY;
3711
00cfec37 3712 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3713 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3714 rcu_assign_pointer(dev->rx_handler, rx_handler);
3715
3716 return 0;
3717}
3718EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3719
3720/**
3721 * netdev_rx_handler_unregister - unregister receive handler
3722 * @dev: device to unregister a handler from
3723 *
166ec369 3724 * Unregister a receive handler from a device.
ab95bfe0
JP
3725 *
3726 * The caller must hold the rtnl_mutex.
3727 */
3728void netdev_rx_handler_unregister(struct net_device *dev)
3729{
3730
3731 ASSERT_RTNL();
a9b3cd7f 3732 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3733 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3734 * section has a guarantee to see a non NULL rx_handler_data
3735 * as well.
3736 */
3737 synchronize_net();
a9b3cd7f 3738 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3739}
3740EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3741
b4b9e355
MG
3742/*
3743 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3744 * the special handling of PFMEMALLOC skbs.
3745 */
3746static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3747{
3748 switch (skb->protocol) {
2b8837ae
JP
3749 case htons(ETH_P_ARP):
3750 case htons(ETH_P_IP):
3751 case htons(ETH_P_IPV6):
3752 case htons(ETH_P_8021Q):
3753 case htons(ETH_P_8021AD):
b4b9e355
MG
3754 return true;
3755 default:
3756 return false;
3757 }
3758}
3759
e687ad60
PN
3760static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3761 int *ret, struct net_device *orig_dev)
3762{
e7582bab 3763#ifdef CONFIG_NETFILTER_INGRESS
e687ad60
PN
3764 if (nf_hook_ingress_active(skb)) {
3765 if (*pt_prev) {
3766 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3767 *pt_prev = NULL;
3768 }
3769
3770 return nf_hook_ingress(skb);
3771 }
e7582bab 3772#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
3773 return 0;
3774}
e687ad60 3775
9754e293 3776static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3777{
3778 struct packet_type *ptype, *pt_prev;
ab95bfe0 3779 rx_handler_func_t *rx_handler;
f2ccd8fa 3780 struct net_device *orig_dev;
8a4eb573 3781 bool deliver_exact = false;
1da177e4 3782 int ret = NET_RX_DROP;
252e3346 3783 __be16 type;
1da177e4 3784
588f0330 3785 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3786
cf66ba58 3787 trace_netif_receive_skb(skb);
9b22ea56 3788
cc9bd5ce 3789 orig_dev = skb->dev;
8f903c70 3790
c1d2bbe1 3791 skb_reset_network_header(skb);
fda55eca
ED
3792 if (!skb_transport_header_was_set(skb))
3793 skb_reset_transport_header(skb);
0b5c9db1 3794 skb_reset_mac_len(skb);
1da177e4
LT
3795
3796 pt_prev = NULL;
3797
63d8ea7f 3798another_round:
b6858177 3799 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3800
3801 __this_cpu_inc(softnet_data.processed);
3802
8ad227ff
PM
3803 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3804 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3805 skb = skb_vlan_untag(skb);
bcc6d479 3806 if (unlikely(!skb))
2c17d27c 3807 goto out;
bcc6d479
JP
3808 }
3809
1da177e4
LT
3810#ifdef CONFIG_NET_CLS_ACT
3811 if (skb->tc_verd & TC_NCLS) {
3812 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3813 goto ncls;
3814 }
3815#endif
3816
9754e293 3817 if (pfmemalloc)
b4b9e355
MG
3818 goto skip_taps;
3819
1da177e4 3820 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
3821 if (pt_prev)
3822 ret = deliver_skb(skb, pt_prev, orig_dev);
3823 pt_prev = ptype;
3824 }
3825
3826 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3827 if (pt_prev)
3828 ret = deliver_skb(skb, pt_prev, orig_dev);
3829 pt_prev = ptype;
1da177e4
LT
3830 }
3831
b4b9e355 3832skip_taps:
1cf51900 3833#ifdef CONFIG_NET_INGRESS
4577139b
DB
3834 if (static_key_false(&ingress_needed)) {
3835 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3836 if (!skb)
2c17d27c 3837 goto out;
e687ad60
PN
3838
3839 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 3840 goto out;
4577139b 3841 }
1cf51900
PN
3842#endif
3843#ifdef CONFIG_NET_CLS_ACT
4577139b 3844 skb->tc_verd = 0;
1da177e4
LT
3845ncls:
3846#endif
9754e293 3847 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3848 goto drop;
3849
df8a39de 3850 if (skb_vlan_tag_present(skb)) {
2425717b
JF
3851 if (pt_prev) {
3852 ret = deliver_skb(skb, pt_prev, orig_dev);
3853 pt_prev = NULL;
3854 }
48cc32d3 3855 if (vlan_do_receive(&skb))
2425717b
JF
3856 goto another_round;
3857 else if (unlikely(!skb))
2c17d27c 3858 goto out;
2425717b
JF
3859 }
3860
48cc32d3 3861 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3862 if (rx_handler) {
3863 if (pt_prev) {
3864 ret = deliver_skb(skb, pt_prev, orig_dev);
3865 pt_prev = NULL;
3866 }
8a4eb573
JP
3867 switch (rx_handler(&skb)) {
3868 case RX_HANDLER_CONSUMED:
3bc1b1ad 3869 ret = NET_RX_SUCCESS;
2c17d27c 3870 goto out;
8a4eb573 3871 case RX_HANDLER_ANOTHER:
63d8ea7f 3872 goto another_round;
8a4eb573
JP
3873 case RX_HANDLER_EXACT:
3874 deliver_exact = true;
3875 case RX_HANDLER_PASS:
3876 break;
3877 default:
3878 BUG();
3879 }
ab95bfe0 3880 }
1da177e4 3881
df8a39de
JP
3882 if (unlikely(skb_vlan_tag_present(skb))) {
3883 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
3884 skb->pkt_type = PACKET_OTHERHOST;
3885 /* Note: we might in the future use prio bits
3886 * and set skb->priority like in vlan_do_receive()
3887 * For the time being, just ignore Priority Code Point
3888 */
3889 skb->vlan_tci = 0;
3890 }
48cc32d3 3891
7866a621
SN
3892 type = skb->protocol;
3893
63d8ea7f 3894 /* deliver only exact match when indicated */
7866a621
SN
3895 if (likely(!deliver_exact)) {
3896 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3897 &ptype_base[ntohs(type) &
3898 PTYPE_HASH_MASK]);
3899 }
1f3c8804 3900
7866a621
SN
3901 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3902 &orig_dev->ptype_specific);
3903
3904 if (unlikely(skb->dev != orig_dev)) {
3905 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3906 &skb->dev->ptype_specific);
1da177e4
LT
3907 }
3908
3909 if (pt_prev) {
1080e512 3910 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3911 goto drop;
1080e512
MT
3912 else
3913 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3914 } else {
b4b9e355 3915drop:
caf586e5 3916 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3917 kfree_skb(skb);
3918 /* Jamal, now you will not able to escape explaining
3919 * me how you were going to use this. :-)
3920 */
3921 ret = NET_RX_DROP;
3922 }
3923
2c17d27c 3924out:
9754e293
DM
3925 return ret;
3926}
3927
3928static int __netif_receive_skb(struct sk_buff *skb)
3929{
3930 int ret;
3931
3932 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3933 unsigned long pflags = current->flags;
3934
3935 /*
3936 * PFMEMALLOC skbs are special, they should
3937 * - be delivered to SOCK_MEMALLOC sockets only
3938 * - stay away from userspace
3939 * - have bounded memory usage
3940 *
3941 * Use PF_MEMALLOC as this saves us from propagating the allocation
3942 * context down to all allocation sites.
3943 */
3944 current->flags |= PF_MEMALLOC;
3945 ret = __netif_receive_skb_core(skb, true);
3946 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3947 } else
3948 ret = __netif_receive_skb_core(skb, false);
3949
1da177e4
LT
3950 return ret;
3951}
0a9627f2 3952
ae78dbfa 3953static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3954{
2c17d27c
JA
3955 int ret;
3956
588f0330 3957 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3958
c1f19b51
RC
3959 if (skb_defer_rx_timestamp(skb))
3960 return NET_RX_SUCCESS;
3961
2c17d27c
JA
3962 rcu_read_lock();
3963
df334545 3964#ifdef CONFIG_RPS
c5905afb 3965 if (static_key_false(&rps_needed)) {
3b098e2d 3966 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 3967 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3968
3b098e2d
ED
3969 if (cpu >= 0) {
3970 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3971 rcu_read_unlock();
adc9300e 3972 return ret;
3b098e2d 3973 }
fec5e652 3974 }
1e94d72f 3975#endif
2c17d27c
JA
3976 ret = __netif_receive_skb(skb);
3977 rcu_read_unlock();
3978 return ret;
0a9627f2 3979}
ae78dbfa
BH
3980
3981/**
3982 * netif_receive_skb - process receive buffer from network
3983 * @skb: buffer to process
3984 *
3985 * netif_receive_skb() is the main receive data processing function.
3986 * It always succeeds. The buffer may be dropped during processing
3987 * for congestion control or by the protocol layers.
3988 *
3989 * This function may only be called from softirq context and interrupts
3990 * should be enabled.
3991 *
3992 * Return values (usually ignored):
3993 * NET_RX_SUCCESS: no congestion
3994 * NET_RX_DROP: packet was dropped
3995 */
04eb4489 3996int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
3997{
3998 trace_netif_receive_skb_entry(skb);
3999
4000 return netif_receive_skb_internal(skb);
4001}
04eb4489 4002EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4003
88751275
ED
4004/* Network device is going away, flush any packets still pending
4005 * Called with irqs disabled.
4006 */
152102c7 4007static void flush_backlog(void *arg)
6e583ce5 4008{
152102c7 4009 struct net_device *dev = arg;
903ceff7 4010 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
4011 struct sk_buff *skb, *tmp;
4012
e36fa2f7 4013 rps_lock(sd);
6e7676c1 4014 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 4015 if (skb->dev == dev) {
e36fa2f7 4016 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4017 kfree_skb(skb);
76cc8b13 4018 input_queue_head_incr(sd);
6e583ce5 4019 }
6e7676c1 4020 }
e36fa2f7 4021 rps_unlock(sd);
6e7676c1
CG
4022
4023 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4024 if (skb->dev == dev) {
4025 __skb_unlink(skb, &sd->process_queue);
4026 kfree_skb(skb);
76cc8b13 4027 input_queue_head_incr(sd);
6e7676c1
CG
4028 }
4029 }
6e583ce5
SH
4030}
4031
d565b0a1
HX
4032static int napi_gro_complete(struct sk_buff *skb)
4033{
22061d80 4034 struct packet_offload *ptype;
d565b0a1 4035 __be16 type = skb->protocol;
22061d80 4036 struct list_head *head = &offload_base;
d565b0a1
HX
4037 int err = -ENOENT;
4038
c3c7c254
ED
4039 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4040
fc59f9a3
HX
4041 if (NAPI_GRO_CB(skb)->count == 1) {
4042 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4043 goto out;
fc59f9a3 4044 }
d565b0a1
HX
4045
4046 rcu_read_lock();
4047 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4048 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4049 continue;
4050
299603e8 4051 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4052 break;
4053 }
4054 rcu_read_unlock();
4055
4056 if (err) {
4057 WARN_ON(&ptype->list == head);
4058 kfree_skb(skb);
4059 return NET_RX_SUCCESS;
4060 }
4061
4062out:
ae78dbfa 4063 return netif_receive_skb_internal(skb);
d565b0a1
HX
4064}
4065
2e71a6f8
ED
4066/* napi->gro_list contains packets ordered by age.
4067 * youngest packets at the head of it.
4068 * Complete skbs in reverse order to reduce latencies.
4069 */
4070void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4071{
2e71a6f8 4072 struct sk_buff *skb, *prev = NULL;
d565b0a1 4073
2e71a6f8
ED
4074 /* scan list and build reverse chain */
4075 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4076 skb->prev = prev;
4077 prev = skb;
4078 }
4079
4080 for (skb = prev; skb; skb = prev) {
d565b0a1 4081 skb->next = NULL;
2e71a6f8
ED
4082
4083 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4084 return;
4085
4086 prev = skb->prev;
d565b0a1 4087 napi_gro_complete(skb);
2e71a6f8 4088 napi->gro_count--;
d565b0a1
HX
4089 }
4090
4091 napi->gro_list = NULL;
4092}
86cac58b 4093EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4094
89c5fa33
ED
4095static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4096{
4097 struct sk_buff *p;
4098 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4099 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4100
4101 for (p = napi->gro_list; p; p = p->next) {
4102 unsigned long diffs;
4103
0b4cec8c
TH
4104 NAPI_GRO_CB(p)->flush = 0;
4105
4106 if (hash != skb_get_hash_raw(p)) {
4107 NAPI_GRO_CB(p)->same_flow = 0;
4108 continue;
4109 }
4110
89c5fa33
ED
4111 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4112 diffs |= p->vlan_tci ^ skb->vlan_tci;
4113 if (maclen == ETH_HLEN)
4114 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4115 skb_mac_header(skb));
89c5fa33
ED
4116 else if (!diffs)
4117 diffs = memcmp(skb_mac_header(p),
a50e233c 4118 skb_mac_header(skb),
89c5fa33
ED
4119 maclen);
4120 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4121 }
4122}
4123
299603e8
JC
4124static void skb_gro_reset_offset(struct sk_buff *skb)
4125{
4126 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4127 const skb_frag_t *frag0 = &pinfo->frags[0];
4128
4129 NAPI_GRO_CB(skb)->data_offset = 0;
4130 NAPI_GRO_CB(skb)->frag0 = NULL;
4131 NAPI_GRO_CB(skb)->frag0_len = 0;
4132
4133 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4134 pinfo->nr_frags &&
4135 !PageHighMem(skb_frag_page(frag0))) {
4136 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4137 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4138 }
4139}
4140
a50e233c
ED
4141static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4142{
4143 struct skb_shared_info *pinfo = skb_shinfo(skb);
4144
4145 BUG_ON(skb->end - skb->tail < grow);
4146
4147 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4148
4149 skb->data_len -= grow;
4150 skb->tail += grow;
4151
4152 pinfo->frags[0].page_offset += grow;
4153 skb_frag_size_sub(&pinfo->frags[0], grow);
4154
4155 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4156 skb_frag_unref(skb, 0);
4157 memmove(pinfo->frags, pinfo->frags + 1,
4158 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4159 }
4160}
4161
bb728820 4162static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4163{
4164 struct sk_buff **pp = NULL;
22061d80 4165 struct packet_offload *ptype;
d565b0a1 4166 __be16 type = skb->protocol;
22061d80 4167 struct list_head *head = &offload_base;
0da2afd5 4168 int same_flow;
5b252f0c 4169 enum gro_result ret;
a50e233c 4170 int grow;
d565b0a1 4171
9c62a68d 4172 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4173 goto normal;
4174
5a212329 4175 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4176 goto normal;
4177
89c5fa33
ED
4178 gro_list_prepare(napi, skb);
4179
d565b0a1
HX
4180 rcu_read_lock();
4181 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4182 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4183 continue;
4184
86911732 4185 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4186 skb_reset_mac_len(skb);
d565b0a1
HX
4187 NAPI_GRO_CB(skb)->same_flow = 0;
4188 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4189 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4190 NAPI_GRO_CB(skb)->udp_mark = 0;
15e2396d 4191 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4192
662880f4
TH
4193 /* Setup for GRO checksum validation */
4194 switch (skb->ip_summed) {
4195 case CHECKSUM_COMPLETE:
4196 NAPI_GRO_CB(skb)->csum = skb->csum;
4197 NAPI_GRO_CB(skb)->csum_valid = 1;
4198 NAPI_GRO_CB(skb)->csum_cnt = 0;
4199 break;
4200 case CHECKSUM_UNNECESSARY:
4201 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4202 NAPI_GRO_CB(skb)->csum_valid = 0;
4203 break;
4204 default:
4205 NAPI_GRO_CB(skb)->csum_cnt = 0;
4206 NAPI_GRO_CB(skb)->csum_valid = 0;
4207 }
d565b0a1 4208
f191a1d1 4209 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4210 break;
4211 }
4212 rcu_read_unlock();
4213
4214 if (&ptype->list == head)
4215 goto normal;
4216
0da2afd5 4217 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4218 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4219
d565b0a1
HX
4220 if (pp) {
4221 struct sk_buff *nskb = *pp;
4222
4223 *pp = nskb->next;
4224 nskb->next = NULL;
4225 napi_gro_complete(nskb);
4ae5544f 4226 napi->gro_count--;
d565b0a1
HX
4227 }
4228
0da2afd5 4229 if (same_flow)
d565b0a1
HX
4230 goto ok;
4231
600adc18 4232 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4233 goto normal;
d565b0a1 4234
600adc18
ED
4235 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4236 struct sk_buff *nskb = napi->gro_list;
4237
4238 /* locate the end of the list to select the 'oldest' flow */
4239 while (nskb->next) {
4240 pp = &nskb->next;
4241 nskb = *pp;
4242 }
4243 *pp = NULL;
4244 nskb->next = NULL;
4245 napi_gro_complete(nskb);
4246 } else {
4247 napi->gro_count++;
4248 }
d565b0a1 4249 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4250 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4251 NAPI_GRO_CB(skb)->last = skb;
86911732 4252 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4253 skb->next = napi->gro_list;
4254 napi->gro_list = skb;
5d0d9be8 4255 ret = GRO_HELD;
d565b0a1 4256
ad0f9904 4257pull:
a50e233c
ED
4258 grow = skb_gro_offset(skb) - skb_headlen(skb);
4259 if (grow > 0)
4260 gro_pull_from_frag0(skb, grow);
d565b0a1 4261ok:
5d0d9be8 4262 return ret;
d565b0a1
HX
4263
4264normal:
ad0f9904
HX
4265 ret = GRO_NORMAL;
4266 goto pull;
5d38a079 4267}
96e93eab 4268
bf5a755f
JC
4269struct packet_offload *gro_find_receive_by_type(__be16 type)
4270{
4271 struct list_head *offload_head = &offload_base;
4272 struct packet_offload *ptype;
4273
4274 list_for_each_entry_rcu(ptype, offload_head, list) {
4275 if (ptype->type != type || !ptype->callbacks.gro_receive)
4276 continue;
4277 return ptype;
4278 }
4279 return NULL;
4280}
e27a2f83 4281EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4282
4283struct packet_offload *gro_find_complete_by_type(__be16 type)
4284{
4285 struct list_head *offload_head = &offload_base;
4286 struct packet_offload *ptype;
4287
4288 list_for_each_entry_rcu(ptype, offload_head, list) {
4289 if (ptype->type != type || !ptype->callbacks.gro_complete)
4290 continue;
4291 return ptype;
4292 }
4293 return NULL;
4294}
e27a2f83 4295EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4296
bb728820 4297static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4298{
5d0d9be8
HX
4299 switch (ret) {
4300 case GRO_NORMAL:
ae78dbfa 4301 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4302 ret = GRO_DROP;
4303 break;
5d38a079 4304
5d0d9be8 4305 case GRO_DROP:
5d38a079
HX
4306 kfree_skb(skb);
4307 break;
5b252f0c 4308
daa86548 4309 case GRO_MERGED_FREE:
d7e8883c
ED
4310 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4311 kmem_cache_free(skbuff_head_cache, skb);
4312 else
4313 __kfree_skb(skb);
daa86548
ED
4314 break;
4315
5b252f0c
BH
4316 case GRO_HELD:
4317 case GRO_MERGED:
4318 break;
5d38a079
HX
4319 }
4320
c7c4b3b6 4321 return ret;
5d0d9be8 4322}
5d0d9be8 4323
c7c4b3b6 4324gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4325{
ae78dbfa 4326 trace_napi_gro_receive_entry(skb);
86911732 4327
a50e233c
ED
4328 skb_gro_reset_offset(skb);
4329
89c5fa33 4330 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4331}
4332EXPORT_SYMBOL(napi_gro_receive);
4333
d0c2b0d2 4334static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4335{
93a35f59
ED
4336 if (unlikely(skb->pfmemalloc)) {
4337 consume_skb(skb);
4338 return;
4339 }
96e93eab 4340 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4341 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4342 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4343 skb->vlan_tci = 0;
66c46d74 4344 skb->dev = napi->dev;
6d152e23 4345 skb->skb_iif = 0;
c3caf119
JC
4346 skb->encapsulation = 0;
4347 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4348 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4349
4350 napi->skb = skb;
4351}
96e93eab 4352
76620aaf 4353struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4354{
5d38a079 4355 struct sk_buff *skb = napi->skb;
5d38a079
HX
4356
4357 if (!skb) {
fd11a83d 4358 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4359 napi->skb = skb;
80595d59 4360 }
96e93eab
HX
4361 return skb;
4362}
76620aaf 4363EXPORT_SYMBOL(napi_get_frags);
96e93eab 4364
a50e233c
ED
4365static gro_result_t napi_frags_finish(struct napi_struct *napi,
4366 struct sk_buff *skb,
4367 gro_result_t ret)
96e93eab 4368{
5d0d9be8
HX
4369 switch (ret) {
4370 case GRO_NORMAL:
a50e233c
ED
4371 case GRO_HELD:
4372 __skb_push(skb, ETH_HLEN);
4373 skb->protocol = eth_type_trans(skb, skb->dev);
4374 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4375 ret = GRO_DROP;
86911732 4376 break;
5d38a079 4377
5d0d9be8 4378 case GRO_DROP:
5d0d9be8
HX
4379 case GRO_MERGED_FREE:
4380 napi_reuse_skb(napi, skb);
4381 break;
5b252f0c
BH
4382
4383 case GRO_MERGED:
4384 break;
5d0d9be8 4385 }
5d38a079 4386
c7c4b3b6 4387 return ret;
5d38a079 4388}
5d0d9be8 4389
a50e233c
ED
4390/* Upper GRO stack assumes network header starts at gro_offset=0
4391 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4392 * We copy ethernet header into skb->data to have a common layout.
4393 */
4adb9c4a 4394static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4395{
4396 struct sk_buff *skb = napi->skb;
a50e233c
ED
4397 const struct ethhdr *eth;
4398 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4399
4400 napi->skb = NULL;
4401
a50e233c
ED
4402 skb_reset_mac_header(skb);
4403 skb_gro_reset_offset(skb);
4404
4405 eth = skb_gro_header_fast(skb, 0);
4406 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4407 eth = skb_gro_header_slow(skb, hlen, 0);
4408 if (unlikely(!eth)) {
4409 napi_reuse_skb(napi, skb);
4410 return NULL;
4411 }
4412 } else {
4413 gro_pull_from_frag0(skb, hlen);
4414 NAPI_GRO_CB(skb)->frag0 += hlen;
4415 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4416 }
a50e233c
ED
4417 __skb_pull(skb, hlen);
4418
4419 /*
4420 * This works because the only protocols we care about don't require
4421 * special handling.
4422 * We'll fix it up properly in napi_frags_finish()
4423 */
4424 skb->protocol = eth->h_proto;
76620aaf 4425
76620aaf
HX
4426 return skb;
4427}
76620aaf 4428
c7c4b3b6 4429gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4430{
76620aaf 4431 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4432
4433 if (!skb)
c7c4b3b6 4434 return GRO_DROP;
5d0d9be8 4435
ae78dbfa
BH
4436 trace_napi_gro_frags_entry(skb);
4437
89c5fa33 4438 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4439}
5d38a079
HX
4440EXPORT_SYMBOL(napi_gro_frags);
4441
573e8fca
TH
4442/* Compute the checksum from gro_offset and return the folded value
4443 * after adding in any pseudo checksum.
4444 */
4445__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4446{
4447 __wsum wsum;
4448 __sum16 sum;
4449
4450 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4451
4452 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4453 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4454 if (likely(!sum)) {
4455 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4456 !skb->csum_complete_sw)
4457 netdev_rx_csum_fault(skb->dev);
4458 }
4459
4460 NAPI_GRO_CB(skb)->csum = wsum;
4461 NAPI_GRO_CB(skb)->csum_valid = 1;
4462
4463 return sum;
4464}
4465EXPORT_SYMBOL(__skb_gro_checksum_complete);
4466
e326bed2 4467/*
855abcf0 4468 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4469 * Note: called with local irq disabled, but exits with local irq enabled.
4470 */
4471static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4472{
4473#ifdef CONFIG_RPS
4474 struct softnet_data *remsd = sd->rps_ipi_list;
4475
4476 if (remsd) {
4477 sd->rps_ipi_list = NULL;
4478
4479 local_irq_enable();
4480
4481 /* Send pending IPI's to kick RPS processing on remote cpus. */
4482 while (remsd) {
4483 struct softnet_data *next = remsd->rps_ipi_next;
4484
4485 if (cpu_online(remsd->cpu))
c46fff2a 4486 smp_call_function_single_async(remsd->cpu,
fce8ad15 4487 &remsd->csd);
e326bed2
ED
4488 remsd = next;
4489 }
4490 } else
4491#endif
4492 local_irq_enable();
4493}
4494
d75b1ade
ED
4495static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4496{
4497#ifdef CONFIG_RPS
4498 return sd->rps_ipi_list != NULL;
4499#else
4500 return false;
4501#endif
4502}
4503
bea3348e 4504static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4505{
4506 int work = 0;
eecfd7c4 4507 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4508
e326bed2
ED
4509 /* Check if we have pending ipi, its better to send them now,
4510 * not waiting net_rx_action() end.
4511 */
d75b1ade 4512 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4513 local_irq_disable();
4514 net_rps_action_and_irq_enable(sd);
4515 }
d75b1ade 4516
bea3348e 4517 napi->weight = weight_p;
6e7676c1 4518 local_irq_disable();
11ef7a89 4519 while (1) {
1da177e4 4520 struct sk_buff *skb;
6e7676c1
CG
4521
4522 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4523 rcu_read_lock();
6e7676c1
CG
4524 local_irq_enable();
4525 __netif_receive_skb(skb);
2c17d27c 4526 rcu_read_unlock();
6e7676c1 4527 local_irq_disable();
76cc8b13
TH
4528 input_queue_head_incr(sd);
4529 if (++work >= quota) {
4530 local_irq_enable();
4531 return work;
4532 }
6e7676c1 4533 }
1da177e4 4534
e36fa2f7 4535 rps_lock(sd);
11ef7a89 4536 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4537 /*
4538 * Inline a custom version of __napi_complete().
4539 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4540 * and NAPI_STATE_SCHED is the only possible flag set
4541 * on backlog.
4542 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4543 * and we dont need an smp_mb() memory barrier.
4544 */
eecfd7c4 4545 napi->state = 0;
11ef7a89 4546 rps_unlock(sd);
eecfd7c4 4547
11ef7a89 4548 break;
bea3348e 4549 }
11ef7a89
TH
4550
4551 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4552 &sd->process_queue);
e36fa2f7 4553 rps_unlock(sd);
6e7676c1
CG
4554 }
4555 local_irq_enable();
1da177e4 4556
bea3348e
SH
4557 return work;
4558}
1da177e4 4559
bea3348e
SH
4560/**
4561 * __napi_schedule - schedule for receive
c4ea43c5 4562 * @n: entry to schedule
bea3348e 4563 *
bc9ad166
ED
4564 * The entry's receive function will be scheduled to run.
4565 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4566 */
b5606c2d 4567void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4568{
4569 unsigned long flags;
1da177e4 4570
bea3348e 4571 local_irq_save(flags);
903ceff7 4572 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4573 local_irq_restore(flags);
1da177e4 4574}
bea3348e
SH
4575EXPORT_SYMBOL(__napi_schedule);
4576
bc9ad166
ED
4577/**
4578 * __napi_schedule_irqoff - schedule for receive
4579 * @n: entry to schedule
4580 *
4581 * Variant of __napi_schedule() assuming hard irqs are masked
4582 */
4583void __napi_schedule_irqoff(struct napi_struct *n)
4584{
4585 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4586}
4587EXPORT_SYMBOL(__napi_schedule_irqoff);
4588
d565b0a1
HX
4589void __napi_complete(struct napi_struct *n)
4590{
4591 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4592
d75b1ade 4593 list_del_init(&n->poll_list);
4e857c58 4594 smp_mb__before_atomic();
d565b0a1
HX
4595 clear_bit(NAPI_STATE_SCHED, &n->state);
4596}
4597EXPORT_SYMBOL(__napi_complete);
4598
3b47d303 4599void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4600{
4601 unsigned long flags;
4602
4603 /*
4604 * don't let napi dequeue from the cpu poll list
4605 * just in case its running on a different cpu
4606 */
4607 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4608 return;
4609
3b47d303
ED
4610 if (n->gro_list) {
4611 unsigned long timeout = 0;
d75b1ade 4612
3b47d303
ED
4613 if (work_done)
4614 timeout = n->dev->gro_flush_timeout;
4615
4616 if (timeout)
4617 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4618 HRTIMER_MODE_REL_PINNED);
4619 else
4620 napi_gro_flush(n, false);
4621 }
d75b1ade
ED
4622 if (likely(list_empty(&n->poll_list))) {
4623 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4624 } else {
4625 /* If n->poll_list is not empty, we need to mask irqs */
4626 local_irq_save(flags);
4627 __napi_complete(n);
4628 local_irq_restore(flags);
4629 }
d565b0a1 4630}
3b47d303 4631EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4632
af12fa6e
ET
4633/* must be called under rcu_read_lock(), as we dont take a reference */
4634struct napi_struct *napi_by_id(unsigned int napi_id)
4635{
4636 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4637 struct napi_struct *napi;
4638
4639 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4640 if (napi->napi_id == napi_id)
4641 return napi;
4642
4643 return NULL;
4644}
4645EXPORT_SYMBOL_GPL(napi_by_id);
4646
4647void napi_hash_add(struct napi_struct *napi)
4648{
4649 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4650
4651 spin_lock(&napi_hash_lock);
4652
4653 /* 0 is not a valid id, we also skip an id that is taken
4654 * we expect both events to be extremely rare
4655 */
4656 napi->napi_id = 0;
4657 while (!napi->napi_id) {
4658 napi->napi_id = ++napi_gen_id;
4659 if (napi_by_id(napi->napi_id))
4660 napi->napi_id = 0;
4661 }
4662
4663 hlist_add_head_rcu(&napi->napi_hash_node,
4664 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4665
4666 spin_unlock(&napi_hash_lock);
4667 }
4668}
4669EXPORT_SYMBOL_GPL(napi_hash_add);
4670
4671/* Warning : caller is responsible to make sure rcu grace period
4672 * is respected before freeing memory containing @napi
4673 */
4674void napi_hash_del(struct napi_struct *napi)
4675{
4676 spin_lock(&napi_hash_lock);
4677
4678 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4679 hlist_del_rcu(&napi->napi_hash_node);
4680
4681 spin_unlock(&napi_hash_lock);
4682}
4683EXPORT_SYMBOL_GPL(napi_hash_del);
4684
3b47d303
ED
4685static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4686{
4687 struct napi_struct *napi;
4688
4689 napi = container_of(timer, struct napi_struct, timer);
4690 if (napi->gro_list)
4691 napi_schedule(napi);
4692
4693 return HRTIMER_NORESTART;
4694}
4695
d565b0a1
HX
4696void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4697 int (*poll)(struct napi_struct *, int), int weight)
4698{
4699 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4700 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4701 napi->timer.function = napi_watchdog;
4ae5544f 4702 napi->gro_count = 0;
d565b0a1 4703 napi->gro_list = NULL;
5d38a079 4704 napi->skb = NULL;
d565b0a1 4705 napi->poll = poll;
82dc3c63
ED
4706 if (weight > NAPI_POLL_WEIGHT)
4707 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4708 weight, dev->name);
d565b0a1
HX
4709 napi->weight = weight;
4710 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4711 napi->dev = dev;
5d38a079 4712#ifdef CONFIG_NETPOLL
d565b0a1
HX
4713 spin_lock_init(&napi->poll_lock);
4714 napi->poll_owner = -1;
4715#endif
4716 set_bit(NAPI_STATE_SCHED, &napi->state);
4717}
4718EXPORT_SYMBOL(netif_napi_add);
4719
3b47d303
ED
4720void napi_disable(struct napi_struct *n)
4721{
4722 might_sleep();
4723 set_bit(NAPI_STATE_DISABLE, &n->state);
4724
4725 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4726 msleep(1);
2d8bff12
NH
4727 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4728 msleep(1);
3b47d303
ED
4729
4730 hrtimer_cancel(&n->timer);
4731
4732 clear_bit(NAPI_STATE_DISABLE, &n->state);
4733}
4734EXPORT_SYMBOL(napi_disable);
4735
d565b0a1
HX
4736void netif_napi_del(struct napi_struct *napi)
4737{
d7b06636 4738 list_del_init(&napi->dev_list);
76620aaf 4739 napi_free_frags(napi);
d565b0a1 4740
289dccbe 4741 kfree_skb_list(napi->gro_list);
d565b0a1 4742 napi->gro_list = NULL;
4ae5544f 4743 napi->gro_count = 0;
d565b0a1
HX
4744}
4745EXPORT_SYMBOL(netif_napi_del);
4746
726ce70e
HX
4747static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4748{
4749 void *have;
4750 int work, weight;
4751
4752 list_del_init(&n->poll_list);
4753
4754 have = netpoll_poll_lock(n);
4755
4756 weight = n->weight;
4757
4758 /* This NAPI_STATE_SCHED test is for avoiding a race
4759 * with netpoll's poll_napi(). Only the entity which
4760 * obtains the lock and sees NAPI_STATE_SCHED set will
4761 * actually make the ->poll() call. Therefore we avoid
4762 * accidentally calling ->poll() when NAPI is not scheduled.
4763 */
4764 work = 0;
4765 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4766 work = n->poll(n, weight);
4767 trace_napi_poll(n);
4768 }
4769
4770 WARN_ON_ONCE(work > weight);
4771
4772 if (likely(work < weight))
4773 goto out_unlock;
4774
4775 /* Drivers must not modify the NAPI state if they
4776 * consume the entire weight. In such cases this code
4777 * still "owns" the NAPI instance and therefore can
4778 * move the instance around on the list at-will.
4779 */
4780 if (unlikely(napi_disable_pending(n))) {
4781 napi_complete(n);
4782 goto out_unlock;
4783 }
4784
4785 if (n->gro_list) {
4786 /* flush too old packets
4787 * If HZ < 1000, flush all packets.
4788 */
4789 napi_gro_flush(n, HZ >= 1000);
4790 }
4791
001ce546
HX
4792 /* Some drivers may have called napi_schedule
4793 * prior to exhausting their budget.
4794 */
4795 if (unlikely(!list_empty(&n->poll_list))) {
4796 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4797 n->dev ? n->dev->name : "backlog");
4798 goto out_unlock;
4799 }
4800
726ce70e
HX
4801 list_add_tail(&n->poll_list, repoll);
4802
4803out_unlock:
4804 netpoll_poll_unlock(have);
4805
4806 return work;
4807}
4808
1da177e4
LT
4809static void net_rx_action(struct softirq_action *h)
4810{
903ceff7 4811 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4812 unsigned long time_limit = jiffies + 2;
51b0bded 4813 int budget = netdev_budget;
d75b1ade
ED
4814 LIST_HEAD(list);
4815 LIST_HEAD(repoll);
53fb95d3 4816
1da177e4 4817 local_irq_disable();
d75b1ade
ED
4818 list_splice_init(&sd->poll_list, &list);
4819 local_irq_enable();
1da177e4 4820
ceb8d5bf 4821 for (;;) {
bea3348e 4822 struct napi_struct *n;
1da177e4 4823
ceb8d5bf
HX
4824 if (list_empty(&list)) {
4825 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4826 return;
4827 break;
4828 }
4829
6bd373eb
HX
4830 n = list_first_entry(&list, struct napi_struct, poll_list);
4831 budget -= napi_poll(n, &repoll);
4832
d75b1ade 4833 /* If softirq window is exhausted then punt.
24f8b238
SH
4834 * Allow this to run for 2 jiffies since which will allow
4835 * an average latency of 1.5/HZ.
bea3348e 4836 */
ceb8d5bf
HX
4837 if (unlikely(budget <= 0 ||
4838 time_after_eq(jiffies, time_limit))) {
4839 sd->time_squeeze++;
4840 break;
4841 }
1da177e4 4842 }
d75b1ade 4843
d75b1ade
ED
4844 local_irq_disable();
4845
4846 list_splice_tail_init(&sd->poll_list, &list);
4847 list_splice_tail(&repoll, &list);
4848 list_splice(&list, &sd->poll_list);
4849 if (!list_empty(&sd->poll_list))
4850 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4851
e326bed2 4852 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4853}
4854
aa9d8560 4855struct netdev_adjacent {
9ff162a8 4856 struct net_device *dev;
5d261913
VF
4857
4858 /* upper master flag, there can only be one master device per list */
9ff162a8 4859 bool master;
5d261913 4860
5d261913
VF
4861 /* counter for the number of times this device was added to us */
4862 u16 ref_nr;
4863
402dae96
VF
4864 /* private field for the users */
4865 void *private;
4866
9ff162a8
JP
4867 struct list_head list;
4868 struct rcu_head rcu;
9ff162a8
JP
4869};
4870
6ea29da1 4871static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 4872 struct list_head *adj_list)
9ff162a8 4873{
5d261913 4874 struct netdev_adjacent *adj;
5d261913 4875
2f268f12 4876 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4877 if (adj->dev == adj_dev)
4878 return adj;
9ff162a8
JP
4879 }
4880 return NULL;
4881}
4882
4883/**
4884 * netdev_has_upper_dev - Check if device is linked to an upper device
4885 * @dev: device
4886 * @upper_dev: upper device to check
4887 *
4888 * Find out if a device is linked to specified upper device and return true
4889 * in case it is. Note that this checks only immediate upper device,
4890 * not through a complete stack of devices. The caller must hold the RTNL lock.
4891 */
4892bool netdev_has_upper_dev(struct net_device *dev,
4893 struct net_device *upper_dev)
4894{
4895 ASSERT_RTNL();
4896
6ea29da1 4897 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4898}
4899EXPORT_SYMBOL(netdev_has_upper_dev);
4900
4901/**
4902 * netdev_has_any_upper_dev - Check if device is linked to some device
4903 * @dev: device
4904 *
4905 * Find out if a device is linked to an upper device and return true in case
4906 * it is. The caller must hold the RTNL lock.
4907 */
1d143d9f 4908static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4909{
4910 ASSERT_RTNL();
4911
2f268f12 4912 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4913}
9ff162a8
JP
4914
4915/**
4916 * netdev_master_upper_dev_get - Get master upper device
4917 * @dev: device
4918 *
4919 * Find a master upper device and return pointer to it or NULL in case
4920 * it's not there. The caller must hold the RTNL lock.
4921 */
4922struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4923{
aa9d8560 4924 struct netdev_adjacent *upper;
9ff162a8
JP
4925
4926 ASSERT_RTNL();
4927
2f268f12 4928 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4929 return NULL;
4930
2f268f12 4931 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4932 struct netdev_adjacent, list);
9ff162a8
JP
4933 if (likely(upper->master))
4934 return upper->dev;
4935 return NULL;
4936}
4937EXPORT_SYMBOL(netdev_master_upper_dev_get);
4938
b6ccba4c
VF
4939void *netdev_adjacent_get_private(struct list_head *adj_list)
4940{
4941 struct netdev_adjacent *adj;
4942
4943 adj = list_entry(adj_list, struct netdev_adjacent, list);
4944
4945 return adj->private;
4946}
4947EXPORT_SYMBOL(netdev_adjacent_get_private);
4948
44a40855
VY
4949/**
4950 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4951 * @dev: device
4952 * @iter: list_head ** of the current position
4953 *
4954 * Gets the next device from the dev's upper list, starting from iter
4955 * position. The caller must hold RCU read lock.
4956 */
4957struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4958 struct list_head **iter)
4959{
4960 struct netdev_adjacent *upper;
4961
4962 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4963
4964 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4965
4966 if (&upper->list == &dev->adj_list.upper)
4967 return NULL;
4968
4969 *iter = &upper->list;
4970
4971 return upper->dev;
4972}
4973EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4974
31088a11
VF
4975/**
4976 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4977 * @dev: device
4978 * @iter: list_head ** of the current position
4979 *
4980 * Gets the next device from the dev's upper list, starting from iter
4981 * position. The caller must hold RCU read lock.
4982 */
2f268f12
VF
4983struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4984 struct list_head **iter)
48311f46
VF
4985{
4986 struct netdev_adjacent *upper;
4987
85328240 4988 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4989
4990 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4991
2f268f12 4992 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4993 return NULL;
4994
4995 *iter = &upper->list;
4996
4997 return upper->dev;
4998}
2f268f12 4999EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5000
31088a11
VF
5001/**
5002 * netdev_lower_get_next_private - Get the next ->private from the
5003 * lower neighbour list
5004 * @dev: device
5005 * @iter: list_head ** of the current position
5006 *
5007 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5008 * list, starting from iter position. The caller must hold either hold the
5009 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5010 * list will remain unchanged.
31088a11
VF
5011 */
5012void *netdev_lower_get_next_private(struct net_device *dev,
5013 struct list_head **iter)
5014{
5015 struct netdev_adjacent *lower;
5016
5017 lower = list_entry(*iter, struct netdev_adjacent, list);
5018
5019 if (&lower->list == &dev->adj_list.lower)
5020 return NULL;
5021
6859e7df 5022 *iter = lower->list.next;
31088a11
VF
5023
5024 return lower->private;
5025}
5026EXPORT_SYMBOL(netdev_lower_get_next_private);
5027
5028/**
5029 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5030 * lower neighbour list, RCU
5031 * variant
5032 * @dev: device
5033 * @iter: list_head ** of the current position
5034 *
5035 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5036 * list, starting from iter position. The caller must hold RCU read lock.
5037 */
5038void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5039 struct list_head **iter)
5040{
5041 struct netdev_adjacent *lower;
5042
5043 WARN_ON_ONCE(!rcu_read_lock_held());
5044
5045 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5046
5047 if (&lower->list == &dev->adj_list.lower)
5048 return NULL;
5049
6859e7df 5050 *iter = &lower->list;
31088a11
VF
5051
5052 return lower->private;
5053}
5054EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5055
4085ebe8
VY
5056/**
5057 * netdev_lower_get_next - Get the next device from the lower neighbour
5058 * list
5059 * @dev: device
5060 * @iter: list_head ** of the current position
5061 *
5062 * Gets the next netdev_adjacent from the dev's lower neighbour
5063 * list, starting from iter position. The caller must hold RTNL lock or
5064 * its own locking that guarantees that the neighbour lower
b469139e 5065 * list will remain unchanged.
4085ebe8
VY
5066 */
5067void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5068{
5069 struct netdev_adjacent *lower;
5070
5071 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5072
5073 if (&lower->list == &dev->adj_list.lower)
5074 return NULL;
5075
5076 *iter = &lower->list;
5077
5078 return lower->dev;
5079}
5080EXPORT_SYMBOL(netdev_lower_get_next);
5081
e001bfad 5082/**
5083 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5084 * lower neighbour list, RCU
5085 * variant
5086 * @dev: device
5087 *
5088 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5089 * list. The caller must hold RCU read lock.
5090 */
5091void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5092{
5093 struct netdev_adjacent *lower;
5094
5095 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5096 struct netdev_adjacent, list);
5097 if (lower)
5098 return lower->private;
5099 return NULL;
5100}
5101EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5102
9ff162a8
JP
5103/**
5104 * netdev_master_upper_dev_get_rcu - Get master upper device
5105 * @dev: device
5106 *
5107 * Find a master upper device and return pointer to it or NULL in case
5108 * it's not there. The caller must hold the RCU read lock.
5109 */
5110struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5111{
aa9d8560 5112 struct netdev_adjacent *upper;
9ff162a8 5113
2f268f12 5114 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5115 struct netdev_adjacent, list);
9ff162a8
JP
5116 if (upper && likely(upper->master))
5117 return upper->dev;
5118 return NULL;
5119}
5120EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5121
0a59f3a9 5122static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5123 struct net_device *adj_dev,
5124 struct list_head *dev_list)
5125{
5126 char linkname[IFNAMSIZ+7];
5127 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5128 "upper_%s" : "lower_%s", adj_dev->name);
5129 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5130 linkname);
5131}
0a59f3a9 5132static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5133 char *name,
5134 struct list_head *dev_list)
5135{
5136 char linkname[IFNAMSIZ+7];
5137 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5138 "upper_%s" : "lower_%s", name);
5139 sysfs_remove_link(&(dev->dev.kobj), linkname);
5140}
5141
7ce64c79
AF
5142static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5143 struct net_device *adj_dev,
5144 struct list_head *dev_list)
5145{
5146 return (dev_list == &dev->adj_list.upper ||
5147 dev_list == &dev->adj_list.lower) &&
5148 net_eq(dev_net(dev), dev_net(adj_dev));
5149}
3ee32707 5150
5d261913
VF
5151static int __netdev_adjacent_dev_insert(struct net_device *dev,
5152 struct net_device *adj_dev,
7863c054 5153 struct list_head *dev_list,
402dae96 5154 void *private, bool master)
5d261913
VF
5155{
5156 struct netdev_adjacent *adj;
842d67a7 5157 int ret;
5d261913 5158
6ea29da1 5159 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5160
5161 if (adj) {
5d261913
VF
5162 adj->ref_nr++;
5163 return 0;
5164 }
5165
5166 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5167 if (!adj)
5168 return -ENOMEM;
5169
5170 adj->dev = adj_dev;
5171 adj->master = master;
5d261913 5172 adj->ref_nr = 1;
402dae96 5173 adj->private = private;
5d261913 5174 dev_hold(adj_dev);
2f268f12
VF
5175
5176 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5177 adj_dev->name, dev->name, adj_dev->name);
5d261913 5178
7ce64c79 5179 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5180 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5181 if (ret)
5182 goto free_adj;
5183 }
5184
7863c054 5185 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5186 if (master) {
5187 ret = sysfs_create_link(&(dev->dev.kobj),
5188 &(adj_dev->dev.kobj), "master");
5189 if (ret)
5831d66e 5190 goto remove_symlinks;
842d67a7 5191
7863c054 5192 list_add_rcu(&adj->list, dev_list);
842d67a7 5193 } else {
7863c054 5194 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5195 }
5d261913
VF
5196
5197 return 0;
842d67a7 5198
5831d66e 5199remove_symlinks:
7ce64c79 5200 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5201 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5202free_adj:
5203 kfree(adj);
974daef7 5204 dev_put(adj_dev);
842d67a7
VF
5205
5206 return ret;
5d261913
VF
5207}
5208
1d143d9f 5209static void __netdev_adjacent_dev_remove(struct net_device *dev,
5210 struct net_device *adj_dev,
5211 struct list_head *dev_list)
5d261913
VF
5212{
5213 struct netdev_adjacent *adj;
5214
6ea29da1 5215 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5216
2f268f12
VF
5217 if (!adj) {
5218 pr_err("tried to remove device %s from %s\n",
5219 dev->name, adj_dev->name);
5d261913 5220 BUG();
2f268f12 5221 }
5d261913
VF
5222
5223 if (adj->ref_nr > 1) {
2f268f12
VF
5224 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5225 adj->ref_nr-1);
5d261913
VF
5226 adj->ref_nr--;
5227 return;
5228 }
5229
842d67a7
VF
5230 if (adj->master)
5231 sysfs_remove_link(&(dev->dev.kobj), "master");
5232
7ce64c79 5233 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5234 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5235
5d261913 5236 list_del_rcu(&adj->list);
2f268f12
VF
5237 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5238 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5239 dev_put(adj_dev);
5240 kfree_rcu(adj, rcu);
5241}
5242
1d143d9f 5243static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5244 struct net_device *upper_dev,
5245 struct list_head *up_list,
5246 struct list_head *down_list,
5247 void *private, bool master)
5d261913
VF
5248{
5249 int ret;
5250
402dae96
VF
5251 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5252 master);
5d261913
VF
5253 if (ret)
5254 return ret;
5255
402dae96
VF
5256 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5257 false);
5d261913 5258 if (ret) {
2f268f12 5259 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5260 return ret;
5261 }
5262
5263 return 0;
5264}
5265
1d143d9f 5266static int __netdev_adjacent_dev_link(struct net_device *dev,
5267 struct net_device *upper_dev)
5d261913 5268{
2f268f12
VF
5269 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5270 &dev->all_adj_list.upper,
5271 &upper_dev->all_adj_list.lower,
402dae96 5272 NULL, false);
5d261913
VF
5273}
5274
1d143d9f 5275static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5276 struct net_device *upper_dev,
5277 struct list_head *up_list,
5278 struct list_head *down_list)
5d261913 5279{
2f268f12
VF
5280 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5281 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5282}
5283
1d143d9f 5284static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5285 struct net_device *upper_dev)
5d261913 5286{
2f268f12
VF
5287 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5288 &dev->all_adj_list.upper,
5289 &upper_dev->all_adj_list.lower);
5290}
5291
1d143d9f 5292static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5293 struct net_device *upper_dev,
5294 void *private, bool master)
2f268f12
VF
5295{
5296 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5297
5298 if (ret)
5299 return ret;
5300
5301 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5302 &dev->adj_list.upper,
5303 &upper_dev->adj_list.lower,
402dae96 5304 private, master);
2f268f12
VF
5305 if (ret) {
5306 __netdev_adjacent_dev_unlink(dev, upper_dev);
5307 return ret;
5308 }
5309
5310 return 0;
5d261913
VF
5311}
5312
1d143d9f 5313static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5314 struct net_device *upper_dev)
2f268f12
VF
5315{
5316 __netdev_adjacent_dev_unlink(dev, upper_dev);
5317 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5318 &dev->adj_list.upper,
5319 &upper_dev->adj_list.lower);
5320}
5d261913 5321
9ff162a8 5322static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5323 struct net_device *upper_dev, bool master,
5324 void *private)
9ff162a8 5325{
0e4ead9d 5326 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5327 struct netdev_adjacent *i, *j, *to_i, *to_j;
5328 int ret = 0;
9ff162a8
JP
5329
5330 ASSERT_RTNL();
5331
5332 if (dev == upper_dev)
5333 return -EBUSY;
5334
5335 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5336 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5337 return -EBUSY;
5338
6ea29da1 5339 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5340 return -EEXIST;
5341
5342 if (master && netdev_master_upper_dev_get(dev))
5343 return -EBUSY;
5344
0e4ead9d
JP
5345 changeupper_info.upper_dev = upper_dev;
5346 changeupper_info.master = master;
5347 changeupper_info.linking = true;
5348
402dae96
VF
5349 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5350 master);
5d261913
VF
5351 if (ret)
5352 return ret;
9ff162a8 5353
5d261913 5354 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5355 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5356 * versa, and don't forget the devices itself. All of these
5357 * links are non-neighbours.
5358 */
2f268f12
VF
5359 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5360 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5361 pr_debug("Interlinking %s with %s, non-neighbour\n",
5362 i->dev->name, j->dev->name);
5d261913
VF
5363 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5364 if (ret)
5365 goto rollback_mesh;
5366 }
5367 }
5368
5369 /* add dev to every upper_dev's upper device */
2f268f12
VF
5370 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5371 pr_debug("linking %s's upper device %s with %s\n",
5372 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5373 ret = __netdev_adjacent_dev_link(dev, i->dev);
5374 if (ret)
5375 goto rollback_upper_mesh;
5376 }
5377
5378 /* add upper_dev to every dev's lower device */
2f268f12
VF
5379 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5380 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5381 i->dev->name, upper_dev->name);
5d261913
VF
5382 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5383 if (ret)
5384 goto rollback_lower_mesh;
5385 }
9ff162a8 5386
0e4ead9d
JP
5387 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5388 &changeupper_info.info);
9ff162a8 5389 return 0;
5d261913
VF
5390
5391rollback_lower_mesh:
5392 to_i = i;
2f268f12 5393 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5394 if (i == to_i)
5395 break;
5396 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5397 }
5398
5399 i = NULL;
5400
5401rollback_upper_mesh:
5402 to_i = i;
2f268f12 5403 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5404 if (i == to_i)
5405 break;
5406 __netdev_adjacent_dev_unlink(dev, i->dev);
5407 }
5408
5409 i = j = NULL;
5410
5411rollback_mesh:
5412 to_i = i;
5413 to_j = j;
2f268f12
VF
5414 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5415 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5416 if (i == to_i && j == to_j)
5417 break;
5418 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5419 }
5420 if (i == to_i)
5421 break;
5422 }
5423
2f268f12 5424 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5425
5426 return ret;
9ff162a8
JP
5427}
5428
5429/**
5430 * netdev_upper_dev_link - Add a link to the upper device
5431 * @dev: device
5432 * @upper_dev: new upper device
5433 *
5434 * Adds a link to device which is upper to this one. The caller must hold
5435 * the RTNL lock. On a failure a negative errno code is returned.
5436 * On success the reference counts are adjusted and the function
5437 * returns zero.
5438 */
5439int netdev_upper_dev_link(struct net_device *dev,
5440 struct net_device *upper_dev)
5441{
402dae96 5442 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5443}
5444EXPORT_SYMBOL(netdev_upper_dev_link);
5445
5446/**
5447 * netdev_master_upper_dev_link - Add a master link to the upper device
5448 * @dev: device
5449 * @upper_dev: new upper device
5450 *
5451 * Adds a link to device which is upper to this one. In this case, only
5452 * one master upper device can be linked, although other non-master devices
5453 * might be linked as well. The caller must hold the RTNL lock.
5454 * On a failure a negative errno code is returned. On success the reference
5455 * counts are adjusted and the function returns zero.
5456 */
5457int netdev_master_upper_dev_link(struct net_device *dev,
5458 struct net_device *upper_dev)
5459{
402dae96 5460 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5461}
5462EXPORT_SYMBOL(netdev_master_upper_dev_link);
5463
402dae96
VF
5464int netdev_master_upper_dev_link_private(struct net_device *dev,
5465 struct net_device *upper_dev,
5466 void *private)
5467{
5468 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5469}
5470EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5471
9ff162a8
JP
5472/**
5473 * netdev_upper_dev_unlink - Removes a link to upper device
5474 * @dev: device
5475 * @upper_dev: new upper device
5476 *
5477 * Removes a link to device which is upper to this one. The caller must hold
5478 * the RTNL lock.
5479 */
5480void netdev_upper_dev_unlink(struct net_device *dev,
5481 struct net_device *upper_dev)
5482{
0e4ead9d 5483 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5484 struct netdev_adjacent *i, *j;
9ff162a8
JP
5485 ASSERT_RTNL();
5486
0e4ead9d
JP
5487 changeupper_info.upper_dev = upper_dev;
5488 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5489 changeupper_info.linking = false;
5490
2f268f12 5491 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5492
5493 /* Here is the tricky part. We must remove all dev's lower
5494 * devices from all upper_dev's upper devices and vice
5495 * versa, to maintain the graph relationship.
5496 */
2f268f12
VF
5497 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5498 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5499 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5500
5501 /* remove also the devices itself from lower/upper device
5502 * list
5503 */
2f268f12 5504 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5505 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5506
2f268f12 5507 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5508 __netdev_adjacent_dev_unlink(dev, i->dev);
5509
0e4ead9d
JP
5510 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5511 &changeupper_info.info);
9ff162a8
JP
5512}
5513EXPORT_SYMBOL(netdev_upper_dev_unlink);
5514
61bd3857
MS
5515/**
5516 * netdev_bonding_info_change - Dispatch event about slave change
5517 * @dev: device
4a26e453 5518 * @bonding_info: info to dispatch
61bd3857
MS
5519 *
5520 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5521 * The caller must hold the RTNL lock.
5522 */
5523void netdev_bonding_info_change(struct net_device *dev,
5524 struct netdev_bonding_info *bonding_info)
5525{
5526 struct netdev_notifier_bonding_info info;
5527
5528 memcpy(&info.bonding_info, bonding_info,
5529 sizeof(struct netdev_bonding_info));
5530 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5531 &info.info);
5532}
5533EXPORT_SYMBOL(netdev_bonding_info_change);
5534
2ce1ee17 5535static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5536{
5537 struct netdev_adjacent *iter;
5538
5539 struct net *net = dev_net(dev);
5540
5541 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5542 if (!net_eq(net,dev_net(iter->dev)))
5543 continue;
5544 netdev_adjacent_sysfs_add(iter->dev, dev,
5545 &iter->dev->adj_list.lower);
5546 netdev_adjacent_sysfs_add(dev, iter->dev,
5547 &dev->adj_list.upper);
5548 }
5549
5550 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5551 if (!net_eq(net,dev_net(iter->dev)))
5552 continue;
5553 netdev_adjacent_sysfs_add(iter->dev, dev,
5554 &iter->dev->adj_list.upper);
5555 netdev_adjacent_sysfs_add(dev, iter->dev,
5556 &dev->adj_list.lower);
5557 }
5558}
5559
2ce1ee17 5560static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
5561{
5562 struct netdev_adjacent *iter;
5563
5564 struct net *net = dev_net(dev);
5565
5566 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5567 if (!net_eq(net,dev_net(iter->dev)))
5568 continue;
5569 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5570 &iter->dev->adj_list.lower);
5571 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5572 &dev->adj_list.upper);
5573 }
5574
5575 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5576 if (!net_eq(net,dev_net(iter->dev)))
5577 continue;
5578 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5579 &iter->dev->adj_list.upper);
5580 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5581 &dev->adj_list.lower);
5582 }
5583}
5584
5bb025fa 5585void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5586{
5bb025fa 5587 struct netdev_adjacent *iter;
402dae96 5588
4c75431a
AF
5589 struct net *net = dev_net(dev);
5590
5bb025fa 5591 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5592 if (!net_eq(net,dev_net(iter->dev)))
5593 continue;
5bb025fa
VF
5594 netdev_adjacent_sysfs_del(iter->dev, oldname,
5595 &iter->dev->adj_list.lower);
5596 netdev_adjacent_sysfs_add(iter->dev, dev,
5597 &iter->dev->adj_list.lower);
5598 }
402dae96 5599
5bb025fa 5600 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5601 if (!net_eq(net,dev_net(iter->dev)))
5602 continue;
5bb025fa
VF
5603 netdev_adjacent_sysfs_del(iter->dev, oldname,
5604 &iter->dev->adj_list.upper);
5605 netdev_adjacent_sysfs_add(iter->dev, dev,
5606 &iter->dev->adj_list.upper);
5607 }
402dae96 5608}
402dae96
VF
5609
5610void *netdev_lower_dev_get_private(struct net_device *dev,
5611 struct net_device *lower_dev)
5612{
5613 struct netdev_adjacent *lower;
5614
5615 if (!lower_dev)
5616 return NULL;
6ea29da1 5617 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
5618 if (!lower)
5619 return NULL;
5620
5621 return lower->private;
5622}
5623EXPORT_SYMBOL(netdev_lower_dev_get_private);
5624
4085ebe8
VY
5625
5626int dev_get_nest_level(struct net_device *dev,
5627 bool (*type_check)(struct net_device *dev))
5628{
5629 struct net_device *lower = NULL;
5630 struct list_head *iter;
5631 int max_nest = -1;
5632 int nest;
5633
5634 ASSERT_RTNL();
5635
5636 netdev_for_each_lower_dev(dev, lower, iter) {
5637 nest = dev_get_nest_level(lower, type_check);
5638 if (max_nest < nest)
5639 max_nest = nest;
5640 }
5641
5642 if (type_check(dev))
5643 max_nest++;
5644
5645 return max_nest;
5646}
5647EXPORT_SYMBOL(dev_get_nest_level);
5648
b6c40d68
PM
5649static void dev_change_rx_flags(struct net_device *dev, int flags)
5650{
d314774c
SH
5651 const struct net_device_ops *ops = dev->netdev_ops;
5652
d2615bf4 5653 if (ops->ndo_change_rx_flags)
d314774c 5654 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5655}
5656
991fb3f7 5657static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5658{
b536db93 5659 unsigned int old_flags = dev->flags;
d04a48b0
EB
5660 kuid_t uid;
5661 kgid_t gid;
1da177e4 5662
24023451
PM
5663 ASSERT_RTNL();
5664
dad9b335
WC
5665 dev->flags |= IFF_PROMISC;
5666 dev->promiscuity += inc;
5667 if (dev->promiscuity == 0) {
5668 /*
5669 * Avoid overflow.
5670 * If inc causes overflow, untouch promisc and return error.
5671 */
5672 if (inc < 0)
5673 dev->flags &= ~IFF_PROMISC;
5674 else {
5675 dev->promiscuity -= inc;
7b6cd1ce
JP
5676 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5677 dev->name);
dad9b335
WC
5678 return -EOVERFLOW;
5679 }
5680 }
52609c0b 5681 if (dev->flags != old_flags) {
7b6cd1ce
JP
5682 pr_info("device %s %s promiscuous mode\n",
5683 dev->name,
5684 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5685 if (audit_enabled) {
5686 current_uid_gid(&uid, &gid);
7759db82
KHK
5687 audit_log(current->audit_context, GFP_ATOMIC,
5688 AUDIT_ANOM_PROMISCUOUS,
5689 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5690 dev->name, (dev->flags & IFF_PROMISC),
5691 (old_flags & IFF_PROMISC),
e1760bd5 5692 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5693 from_kuid(&init_user_ns, uid),
5694 from_kgid(&init_user_ns, gid),
7759db82 5695 audit_get_sessionid(current));
8192b0c4 5696 }
24023451 5697
b6c40d68 5698 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5699 }
991fb3f7
ND
5700 if (notify)
5701 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5702 return 0;
1da177e4
LT
5703}
5704
4417da66
PM
5705/**
5706 * dev_set_promiscuity - update promiscuity count on a device
5707 * @dev: device
5708 * @inc: modifier
5709 *
5710 * Add or remove promiscuity from a device. While the count in the device
5711 * remains above zero the interface remains promiscuous. Once it hits zero
5712 * the device reverts back to normal filtering operation. A negative inc
5713 * value is used to drop promiscuity on the device.
dad9b335 5714 * Return 0 if successful or a negative errno code on error.
4417da66 5715 */
dad9b335 5716int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5717{
b536db93 5718 unsigned int old_flags = dev->flags;
dad9b335 5719 int err;
4417da66 5720
991fb3f7 5721 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5722 if (err < 0)
dad9b335 5723 return err;
4417da66
PM
5724 if (dev->flags != old_flags)
5725 dev_set_rx_mode(dev);
dad9b335 5726 return err;
4417da66 5727}
d1b19dff 5728EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5729
991fb3f7 5730static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5731{
991fb3f7 5732 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5733
24023451
PM
5734 ASSERT_RTNL();
5735
1da177e4 5736 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5737 dev->allmulti += inc;
5738 if (dev->allmulti == 0) {
5739 /*
5740 * Avoid overflow.
5741 * If inc causes overflow, untouch allmulti and return error.
5742 */
5743 if (inc < 0)
5744 dev->flags &= ~IFF_ALLMULTI;
5745 else {
5746 dev->allmulti -= inc;
7b6cd1ce
JP
5747 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5748 dev->name);
dad9b335
WC
5749 return -EOVERFLOW;
5750 }
5751 }
24023451 5752 if (dev->flags ^ old_flags) {
b6c40d68 5753 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5754 dev_set_rx_mode(dev);
991fb3f7
ND
5755 if (notify)
5756 __dev_notify_flags(dev, old_flags,
5757 dev->gflags ^ old_gflags);
24023451 5758 }
dad9b335 5759 return 0;
4417da66 5760}
991fb3f7
ND
5761
5762/**
5763 * dev_set_allmulti - update allmulti count on a device
5764 * @dev: device
5765 * @inc: modifier
5766 *
5767 * Add or remove reception of all multicast frames to a device. While the
5768 * count in the device remains above zero the interface remains listening
5769 * to all interfaces. Once it hits zero the device reverts back to normal
5770 * filtering operation. A negative @inc value is used to drop the counter
5771 * when releasing a resource needing all multicasts.
5772 * Return 0 if successful or a negative errno code on error.
5773 */
5774
5775int dev_set_allmulti(struct net_device *dev, int inc)
5776{
5777 return __dev_set_allmulti(dev, inc, true);
5778}
d1b19dff 5779EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5780
5781/*
5782 * Upload unicast and multicast address lists to device and
5783 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5784 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5785 * are present.
5786 */
5787void __dev_set_rx_mode(struct net_device *dev)
5788{
d314774c
SH
5789 const struct net_device_ops *ops = dev->netdev_ops;
5790
4417da66
PM
5791 /* dev_open will call this function so the list will stay sane. */
5792 if (!(dev->flags&IFF_UP))
5793 return;
5794
5795 if (!netif_device_present(dev))
40b77c94 5796 return;
4417da66 5797
01789349 5798 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5799 /* Unicast addresses changes may only happen under the rtnl,
5800 * therefore calling __dev_set_promiscuity here is safe.
5801 */
32e7bfc4 5802 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5803 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5804 dev->uc_promisc = true;
32e7bfc4 5805 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5806 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5807 dev->uc_promisc = false;
4417da66 5808 }
4417da66 5809 }
01789349
JP
5810
5811 if (ops->ndo_set_rx_mode)
5812 ops->ndo_set_rx_mode(dev);
4417da66
PM
5813}
5814
5815void dev_set_rx_mode(struct net_device *dev)
5816{
b9e40857 5817 netif_addr_lock_bh(dev);
4417da66 5818 __dev_set_rx_mode(dev);
b9e40857 5819 netif_addr_unlock_bh(dev);
1da177e4
LT
5820}
5821
f0db275a
SH
5822/**
5823 * dev_get_flags - get flags reported to userspace
5824 * @dev: device
5825 *
5826 * Get the combination of flag bits exported through APIs to userspace.
5827 */
95c96174 5828unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5829{
95c96174 5830 unsigned int flags;
1da177e4
LT
5831
5832 flags = (dev->flags & ~(IFF_PROMISC |
5833 IFF_ALLMULTI |
b00055aa
SR
5834 IFF_RUNNING |
5835 IFF_LOWER_UP |
5836 IFF_DORMANT)) |
1da177e4
LT
5837 (dev->gflags & (IFF_PROMISC |
5838 IFF_ALLMULTI));
5839
b00055aa
SR
5840 if (netif_running(dev)) {
5841 if (netif_oper_up(dev))
5842 flags |= IFF_RUNNING;
5843 if (netif_carrier_ok(dev))
5844 flags |= IFF_LOWER_UP;
5845 if (netif_dormant(dev))
5846 flags |= IFF_DORMANT;
5847 }
1da177e4
LT
5848
5849 return flags;
5850}
d1b19dff 5851EXPORT_SYMBOL(dev_get_flags);
1da177e4 5852
bd380811 5853int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5854{
b536db93 5855 unsigned int old_flags = dev->flags;
bd380811 5856 int ret;
1da177e4 5857
24023451
PM
5858 ASSERT_RTNL();
5859
1da177e4
LT
5860 /*
5861 * Set the flags on our device.
5862 */
5863
5864 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5865 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5866 IFF_AUTOMEDIA)) |
5867 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5868 IFF_ALLMULTI));
5869
5870 /*
5871 * Load in the correct multicast list now the flags have changed.
5872 */
5873
b6c40d68
PM
5874 if ((old_flags ^ flags) & IFF_MULTICAST)
5875 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5876
4417da66 5877 dev_set_rx_mode(dev);
1da177e4
LT
5878
5879 /*
5880 * Have we downed the interface. We handle IFF_UP ourselves
5881 * according to user attempts to set it, rather than blindly
5882 * setting it.
5883 */
5884
5885 ret = 0;
d215d10f 5886 if ((old_flags ^ flags) & IFF_UP)
bd380811 5887 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5888
1da177e4 5889 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5890 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5891 unsigned int old_flags = dev->flags;
d1b19dff 5892
1da177e4 5893 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5894
5895 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5896 if (dev->flags != old_flags)
5897 dev_set_rx_mode(dev);
1da177e4
LT
5898 }
5899
5900 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5901 is important. Some (broken) drivers set IFF_PROMISC, when
5902 IFF_ALLMULTI is requested not asking us and not reporting.
5903 */
5904 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5905 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5906
1da177e4 5907 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5908 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5909 }
5910
bd380811
PM
5911 return ret;
5912}
5913
a528c219
ND
5914void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5915 unsigned int gchanges)
bd380811
PM
5916{
5917 unsigned int changes = dev->flags ^ old_flags;
5918
a528c219 5919 if (gchanges)
7f294054 5920 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5921
bd380811
PM
5922 if (changes & IFF_UP) {
5923 if (dev->flags & IFF_UP)
5924 call_netdevice_notifiers(NETDEV_UP, dev);
5925 else
5926 call_netdevice_notifiers(NETDEV_DOWN, dev);
5927 }
5928
5929 if (dev->flags & IFF_UP &&
be9efd36
JP
5930 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5931 struct netdev_notifier_change_info change_info;
5932
5933 change_info.flags_changed = changes;
5934 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5935 &change_info.info);
5936 }
bd380811
PM
5937}
5938
5939/**
5940 * dev_change_flags - change device settings
5941 * @dev: device
5942 * @flags: device state flags
5943 *
5944 * Change settings on device based state flags. The flags are
5945 * in the userspace exported format.
5946 */
b536db93 5947int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5948{
b536db93 5949 int ret;
991fb3f7 5950 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5951
5952 ret = __dev_change_flags(dev, flags);
5953 if (ret < 0)
5954 return ret;
5955
991fb3f7 5956 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5957 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5958 return ret;
5959}
d1b19dff 5960EXPORT_SYMBOL(dev_change_flags);
1da177e4 5961
2315dc91
VF
5962static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5963{
5964 const struct net_device_ops *ops = dev->netdev_ops;
5965
5966 if (ops->ndo_change_mtu)
5967 return ops->ndo_change_mtu(dev, new_mtu);
5968
5969 dev->mtu = new_mtu;
5970 return 0;
5971}
5972
f0db275a
SH
5973/**
5974 * dev_set_mtu - Change maximum transfer unit
5975 * @dev: device
5976 * @new_mtu: new transfer unit
5977 *
5978 * Change the maximum transfer size of the network device.
5979 */
1da177e4
LT
5980int dev_set_mtu(struct net_device *dev, int new_mtu)
5981{
2315dc91 5982 int err, orig_mtu;
1da177e4
LT
5983
5984 if (new_mtu == dev->mtu)
5985 return 0;
5986
5987 /* MTU must be positive. */
5988 if (new_mtu < 0)
5989 return -EINVAL;
5990
5991 if (!netif_device_present(dev))
5992 return -ENODEV;
5993
1d486bfb
VF
5994 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5995 err = notifier_to_errno(err);
5996 if (err)
5997 return err;
d314774c 5998
2315dc91
VF
5999 orig_mtu = dev->mtu;
6000 err = __dev_set_mtu(dev, new_mtu);
d314774c 6001
2315dc91
VF
6002 if (!err) {
6003 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6004 err = notifier_to_errno(err);
6005 if (err) {
6006 /* setting mtu back and notifying everyone again,
6007 * so that they have a chance to revert changes.
6008 */
6009 __dev_set_mtu(dev, orig_mtu);
6010 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6011 }
6012 }
1da177e4
LT
6013 return err;
6014}
d1b19dff 6015EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6016
cbda10fa
VD
6017/**
6018 * dev_set_group - Change group this device belongs to
6019 * @dev: device
6020 * @new_group: group this device should belong to
6021 */
6022void dev_set_group(struct net_device *dev, int new_group)
6023{
6024 dev->group = new_group;
6025}
6026EXPORT_SYMBOL(dev_set_group);
6027
f0db275a
SH
6028/**
6029 * dev_set_mac_address - Change Media Access Control Address
6030 * @dev: device
6031 * @sa: new address
6032 *
6033 * Change the hardware (MAC) address of the device
6034 */
1da177e4
LT
6035int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6036{
d314774c 6037 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6038 int err;
6039
d314774c 6040 if (!ops->ndo_set_mac_address)
1da177e4
LT
6041 return -EOPNOTSUPP;
6042 if (sa->sa_family != dev->type)
6043 return -EINVAL;
6044 if (!netif_device_present(dev))
6045 return -ENODEV;
d314774c 6046 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6047 if (err)
6048 return err;
fbdeca2d 6049 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6050 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6051 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6052 return 0;
1da177e4 6053}
d1b19dff 6054EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6055
4bf84c35
JP
6056/**
6057 * dev_change_carrier - Change device carrier
6058 * @dev: device
691b3b7e 6059 * @new_carrier: new value
4bf84c35
JP
6060 *
6061 * Change device carrier
6062 */
6063int dev_change_carrier(struct net_device *dev, bool new_carrier)
6064{
6065 const struct net_device_ops *ops = dev->netdev_ops;
6066
6067 if (!ops->ndo_change_carrier)
6068 return -EOPNOTSUPP;
6069 if (!netif_device_present(dev))
6070 return -ENODEV;
6071 return ops->ndo_change_carrier(dev, new_carrier);
6072}
6073EXPORT_SYMBOL(dev_change_carrier);
6074
66b52b0d
JP
6075/**
6076 * dev_get_phys_port_id - Get device physical port ID
6077 * @dev: device
6078 * @ppid: port ID
6079 *
6080 * Get device physical port ID
6081 */
6082int dev_get_phys_port_id(struct net_device *dev,
02637fce 6083 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6084{
6085 const struct net_device_ops *ops = dev->netdev_ops;
6086
6087 if (!ops->ndo_get_phys_port_id)
6088 return -EOPNOTSUPP;
6089 return ops->ndo_get_phys_port_id(dev, ppid);
6090}
6091EXPORT_SYMBOL(dev_get_phys_port_id);
6092
db24a904
DA
6093/**
6094 * dev_get_phys_port_name - Get device physical port name
6095 * @dev: device
6096 * @name: port name
6097 *
6098 * Get device physical port name
6099 */
6100int dev_get_phys_port_name(struct net_device *dev,
6101 char *name, size_t len)
6102{
6103 const struct net_device_ops *ops = dev->netdev_ops;
6104
6105 if (!ops->ndo_get_phys_port_name)
6106 return -EOPNOTSUPP;
6107 return ops->ndo_get_phys_port_name(dev, name, len);
6108}
6109EXPORT_SYMBOL(dev_get_phys_port_name);
6110
d746d707
AK
6111/**
6112 * dev_change_proto_down - update protocol port state information
6113 * @dev: device
6114 * @proto_down: new value
6115 *
6116 * This info can be used by switch drivers to set the phys state of the
6117 * port.
6118 */
6119int dev_change_proto_down(struct net_device *dev, bool proto_down)
6120{
6121 const struct net_device_ops *ops = dev->netdev_ops;
6122
6123 if (!ops->ndo_change_proto_down)
6124 return -EOPNOTSUPP;
6125 if (!netif_device_present(dev))
6126 return -ENODEV;
6127 return ops->ndo_change_proto_down(dev, proto_down);
6128}
6129EXPORT_SYMBOL(dev_change_proto_down);
6130
1da177e4
LT
6131/**
6132 * dev_new_index - allocate an ifindex
c4ea43c5 6133 * @net: the applicable net namespace
1da177e4
LT
6134 *
6135 * Returns a suitable unique value for a new device interface
6136 * number. The caller must hold the rtnl semaphore or the
6137 * dev_base_lock to be sure it remains unique.
6138 */
881d966b 6139static int dev_new_index(struct net *net)
1da177e4 6140{
aa79e66e 6141 int ifindex = net->ifindex;
1da177e4
LT
6142 for (;;) {
6143 if (++ifindex <= 0)
6144 ifindex = 1;
881d966b 6145 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6146 return net->ifindex = ifindex;
1da177e4
LT
6147 }
6148}
6149
1da177e4 6150/* Delayed registration/unregisteration */
3b5b34fd 6151static LIST_HEAD(net_todo_list);
200b916f 6152DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6153
6f05f629 6154static void net_set_todo(struct net_device *dev)
1da177e4 6155{
1da177e4 6156 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6157 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6158}
6159
9b5e383c 6160static void rollback_registered_many(struct list_head *head)
93ee31f1 6161{
e93737b0 6162 struct net_device *dev, *tmp;
5cde2829 6163 LIST_HEAD(close_head);
9b5e383c 6164
93ee31f1
DL
6165 BUG_ON(dev_boot_phase);
6166 ASSERT_RTNL();
6167
e93737b0 6168 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6169 /* Some devices call without registering
e93737b0
KK
6170 * for initialization unwind. Remove those
6171 * devices and proceed with the remaining.
9b5e383c
ED
6172 */
6173 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6174 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6175 dev->name, dev);
93ee31f1 6176
9b5e383c 6177 WARN_ON(1);
e93737b0
KK
6178 list_del(&dev->unreg_list);
6179 continue;
9b5e383c 6180 }
449f4544 6181 dev->dismantle = true;
9b5e383c 6182 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6183 }
93ee31f1 6184
44345724 6185 /* If device is running, close it first. */
5cde2829
EB
6186 list_for_each_entry(dev, head, unreg_list)
6187 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6188 dev_close_many(&close_head, true);
93ee31f1 6189
44345724 6190 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6191 /* And unlink it from device chain. */
6192 unlist_netdevice(dev);
93ee31f1 6193
9b5e383c 6194 dev->reg_state = NETREG_UNREGISTERING;
e9e4dd32 6195 on_each_cpu(flush_backlog, dev, 1);
9b5e383c 6196 }
93ee31f1
DL
6197
6198 synchronize_net();
6199
9b5e383c 6200 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6201 struct sk_buff *skb = NULL;
6202
9b5e383c
ED
6203 /* Shutdown queueing discipline. */
6204 dev_shutdown(dev);
93ee31f1
DL
6205
6206
9b5e383c
ED
6207 /* Notify protocols, that we are about to destroy
6208 this device. They should clean all the things.
6209 */
6210 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6211
395eea6c
MB
6212 if (!dev->rtnl_link_ops ||
6213 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6214 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6215 GFP_KERNEL);
6216
9b5e383c
ED
6217 /*
6218 * Flush the unicast and multicast chains
6219 */
a748ee24 6220 dev_uc_flush(dev);
22bedad3 6221 dev_mc_flush(dev);
93ee31f1 6222
9b5e383c
ED
6223 if (dev->netdev_ops->ndo_uninit)
6224 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6225
395eea6c
MB
6226 if (skb)
6227 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6228
9ff162a8
JP
6229 /* Notifier chain MUST detach us all upper devices. */
6230 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6231
9b5e383c
ED
6232 /* Remove entries from kobject tree */
6233 netdev_unregister_kobject(dev);
024e9679
AD
6234#ifdef CONFIG_XPS
6235 /* Remove XPS queueing entries */
6236 netif_reset_xps_queues_gt(dev, 0);
6237#endif
9b5e383c 6238 }
93ee31f1 6239
850a545b 6240 synchronize_net();
395264d5 6241
a5ee1551 6242 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6243 dev_put(dev);
6244}
6245
6246static void rollback_registered(struct net_device *dev)
6247{
6248 LIST_HEAD(single);
6249
6250 list_add(&dev->unreg_list, &single);
6251 rollback_registered_many(&single);
ceaaec98 6252 list_del(&single);
93ee31f1
DL
6253}
6254
c8f44aff
MM
6255static netdev_features_t netdev_fix_features(struct net_device *dev,
6256 netdev_features_t features)
b63365a2 6257{
57422dc5
MM
6258 /* Fix illegal checksum combinations */
6259 if ((features & NETIF_F_HW_CSUM) &&
6260 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6261 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6262 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6263 }
6264
b63365a2 6265 /* TSO requires that SG is present as well. */
ea2d3688 6266 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6267 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6268 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6269 }
6270
ec5f0615
PS
6271 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6272 !(features & NETIF_F_IP_CSUM)) {
6273 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6274 features &= ~NETIF_F_TSO;
6275 features &= ~NETIF_F_TSO_ECN;
6276 }
6277
6278 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6279 !(features & NETIF_F_IPV6_CSUM)) {
6280 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6281 features &= ~NETIF_F_TSO6;
6282 }
6283
31d8b9e0
BH
6284 /* TSO ECN requires that TSO is present as well. */
6285 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6286 features &= ~NETIF_F_TSO_ECN;
6287
212b573f
MM
6288 /* Software GSO depends on SG. */
6289 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6290 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6291 features &= ~NETIF_F_GSO;
6292 }
6293
acd1130e 6294 /* UFO needs SG and checksumming */
b63365a2 6295 if (features & NETIF_F_UFO) {
79032644
MM
6296 /* maybe split UFO into V4 and V6? */
6297 if (!((features & NETIF_F_GEN_CSUM) ||
6298 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6299 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6300 netdev_dbg(dev,
acd1130e 6301 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6302 features &= ~NETIF_F_UFO;
6303 }
6304
6305 if (!(features & NETIF_F_SG)) {
6f404e44 6306 netdev_dbg(dev,
acd1130e 6307 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6308 features &= ~NETIF_F_UFO;
6309 }
6310 }
6311
d0290214
JP
6312#ifdef CONFIG_NET_RX_BUSY_POLL
6313 if (dev->netdev_ops->ndo_busy_poll)
6314 features |= NETIF_F_BUSY_POLL;
6315 else
6316#endif
6317 features &= ~NETIF_F_BUSY_POLL;
6318
b63365a2
HX
6319 return features;
6320}
b63365a2 6321
6cb6a27c 6322int __netdev_update_features(struct net_device *dev)
5455c699 6323{
c8f44aff 6324 netdev_features_t features;
5455c699
MM
6325 int err = 0;
6326
87267485
MM
6327 ASSERT_RTNL();
6328
5455c699
MM
6329 features = netdev_get_wanted_features(dev);
6330
6331 if (dev->netdev_ops->ndo_fix_features)
6332 features = dev->netdev_ops->ndo_fix_features(dev, features);
6333
6334 /* driver might be less strict about feature dependencies */
6335 features = netdev_fix_features(dev, features);
6336
6337 if (dev->features == features)
6cb6a27c 6338 return 0;
5455c699 6339
c8f44aff
MM
6340 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6341 &dev->features, &features);
5455c699
MM
6342
6343 if (dev->netdev_ops->ndo_set_features)
6344 err = dev->netdev_ops->ndo_set_features(dev, features);
6345
6cb6a27c 6346 if (unlikely(err < 0)) {
5455c699 6347 netdev_err(dev,
c8f44aff
MM
6348 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6349 err, &features, &dev->features);
6cb6a27c
MM
6350 return -1;
6351 }
6352
6353 if (!err)
6354 dev->features = features;
6355
6356 return 1;
6357}
6358
afe12cc8
MM
6359/**
6360 * netdev_update_features - recalculate device features
6361 * @dev: the device to check
6362 *
6363 * Recalculate dev->features set and send notifications if it
6364 * has changed. Should be called after driver or hardware dependent
6365 * conditions might have changed that influence the features.
6366 */
6cb6a27c
MM
6367void netdev_update_features(struct net_device *dev)
6368{
6369 if (__netdev_update_features(dev))
6370 netdev_features_change(dev);
5455c699
MM
6371}
6372EXPORT_SYMBOL(netdev_update_features);
6373
afe12cc8
MM
6374/**
6375 * netdev_change_features - recalculate device features
6376 * @dev: the device to check
6377 *
6378 * Recalculate dev->features set and send notifications even
6379 * if they have not changed. Should be called instead of
6380 * netdev_update_features() if also dev->vlan_features might
6381 * have changed to allow the changes to be propagated to stacked
6382 * VLAN devices.
6383 */
6384void netdev_change_features(struct net_device *dev)
6385{
6386 __netdev_update_features(dev);
6387 netdev_features_change(dev);
6388}
6389EXPORT_SYMBOL(netdev_change_features);
6390
fc4a7489
PM
6391/**
6392 * netif_stacked_transfer_operstate - transfer operstate
6393 * @rootdev: the root or lower level device to transfer state from
6394 * @dev: the device to transfer operstate to
6395 *
6396 * Transfer operational state from root to device. This is normally
6397 * called when a stacking relationship exists between the root
6398 * device and the device(a leaf device).
6399 */
6400void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6401 struct net_device *dev)
6402{
6403 if (rootdev->operstate == IF_OPER_DORMANT)
6404 netif_dormant_on(dev);
6405 else
6406 netif_dormant_off(dev);
6407
6408 if (netif_carrier_ok(rootdev)) {
6409 if (!netif_carrier_ok(dev))
6410 netif_carrier_on(dev);
6411 } else {
6412 if (netif_carrier_ok(dev))
6413 netif_carrier_off(dev);
6414 }
6415}
6416EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6417
a953be53 6418#ifdef CONFIG_SYSFS
1b4bf461
ED
6419static int netif_alloc_rx_queues(struct net_device *dev)
6420{
1b4bf461 6421 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6422 struct netdev_rx_queue *rx;
10595902 6423 size_t sz = count * sizeof(*rx);
1b4bf461 6424
bd25fa7b 6425 BUG_ON(count < 1);
1b4bf461 6426
10595902
PG
6427 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6428 if (!rx) {
6429 rx = vzalloc(sz);
6430 if (!rx)
6431 return -ENOMEM;
6432 }
bd25fa7b
TH
6433 dev->_rx = rx;
6434
bd25fa7b 6435 for (i = 0; i < count; i++)
fe822240 6436 rx[i].dev = dev;
1b4bf461
ED
6437 return 0;
6438}
bf264145 6439#endif
1b4bf461 6440
aa942104
CG
6441static void netdev_init_one_queue(struct net_device *dev,
6442 struct netdev_queue *queue, void *_unused)
6443{
6444 /* Initialize queue lock */
6445 spin_lock_init(&queue->_xmit_lock);
6446 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6447 queue->xmit_lock_owner = -1;
b236da69 6448 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6449 queue->dev = dev;
114cf580
TH
6450#ifdef CONFIG_BQL
6451 dql_init(&queue->dql, HZ);
6452#endif
aa942104
CG
6453}
6454
60877a32
ED
6455static void netif_free_tx_queues(struct net_device *dev)
6456{
4cb28970 6457 kvfree(dev->_tx);
60877a32
ED
6458}
6459
e6484930
TH
6460static int netif_alloc_netdev_queues(struct net_device *dev)
6461{
6462 unsigned int count = dev->num_tx_queues;
6463 struct netdev_queue *tx;
60877a32 6464 size_t sz = count * sizeof(*tx);
e6484930 6465
d339727c
ED
6466 if (count < 1 || count > 0xffff)
6467 return -EINVAL;
62b5942a 6468
60877a32
ED
6469 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6470 if (!tx) {
6471 tx = vzalloc(sz);
6472 if (!tx)
6473 return -ENOMEM;
6474 }
e6484930 6475 dev->_tx = tx;
1d24eb48 6476
e6484930
TH
6477 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6478 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6479
6480 return 0;
e6484930
TH
6481}
6482
a2029240
DV
6483void netif_tx_stop_all_queues(struct net_device *dev)
6484{
6485 unsigned int i;
6486
6487 for (i = 0; i < dev->num_tx_queues; i++) {
6488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6489 netif_tx_stop_queue(txq);
6490 }
6491}
6492EXPORT_SYMBOL(netif_tx_stop_all_queues);
6493
1da177e4
LT
6494/**
6495 * register_netdevice - register a network device
6496 * @dev: device to register
6497 *
6498 * Take a completed network device structure and add it to the kernel
6499 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6500 * chain. 0 is returned on success. A negative errno code is returned
6501 * on a failure to set up the device, or if the name is a duplicate.
6502 *
6503 * Callers must hold the rtnl semaphore. You may want
6504 * register_netdev() instead of this.
6505 *
6506 * BUGS:
6507 * The locking appears insufficient to guarantee two parallel registers
6508 * will not get the same name.
6509 */
6510
6511int register_netdevice(struct net_device *dev)
6512{
1da177e4 6513 int ret;
d314774c 6514 struct net *net = dev_net(dev);
1da177e4
LT
6515
6516 BUG_ON(dev_boot_phase);
6517 ASSERT_RTNL();
6518
b17a7c17
SH
6519 might_sleep();
6520
1da177e4
LT
6521 /* When net_device's are persistent, this will be fatal. */
6522 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6523 BUG_ON(!net);
1da177e4 6524
f1f28aa3 6525 spin_lock_init(&dev->addr_list_lock);
cf508b12 6526 netdev_set_addr_lockdep_class(dev);
1da177e4 6527
828de4f6 6528 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6529 if (ret < 0)
6530 goto out;
6531
1da177e4 6532 /* Init, if this function is available */
d314774c
SH
6533 if (dev->netdev_ops->ndo_init) {
6534 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6535 if (ret) {
6536 if (ret > 0)
6537 ret = -EIO;
90833aa4 6538 goto out;
1da177e4
LT
6539 }
6540 }
4ec93edb 6541
f646968f
PM
6542 if (((dev->hw_features | dev->features) &
6543 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6544 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6545 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6546 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6547 ret = -EINVAL;
6548 goto err_uninit;
6549 }
6550
9c7dafbf
PE
6551 ret = -EBUSY;
6552 if (!dev->ifindex)
6553 dev->ifindex = dev_new_index(net);
6554 else if (__dev_get_by_index(net, dev->ifindex))
6555 goto err_uninit;
6556
5455c699
MM
6557 /* Transfer changeable features to wanted_features and enable
6558 * software offloads (GSO and GRO).
6559 */
6560 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6561 dev->features |= NETIF_F_SOFT_FEATURES;
6562 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6563
34324dc2
MM
6564 if (!(dev->flags & IFF_LOOPBACK)) {
6565 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6566 }
6567
1180e7d6 6568 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6569 */
1180e7d6 6570 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6571
ee579677
PS
6572 /* Make NETIF_F_SG inheritable to tunnel devices.
6573 */
6574 dev->hw_enc_features |= NETIF_F_SG;
6575
0d89d203
SH
6576 /* Make NETIF_F_SG inheritable to MPLS.
6577 */
6578 dev->mpls_features |= NETIF_F_SG;
6579
7ffbe3fd
JB
6580 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6581 ret = notifier_to_errno(ret);
6582 if (ret)
6583 goto err_uninit;
6584
8b41d188 6585 ret = netdev_register_kobject(dev);
b17a7c17 6586 if (ret)
7ce1b0ed 6587 goto err_uninit;
b17a7c17
SH
6588 dev->reg_state = NETREG_REGISTERED;
6589
6cb6a27c 6590 __netdev_update_features(dev);
8e9b59b2 6591
1da177e4
LT
6592 /*
6593 * Default initial state at registry is that the
6594 * device is present.
6595 */
6596
6597 set_bit(__LINK_STATE_PRESENT, &dev->state);
6598
8f4cccbb
BH
6599 linkwatch_init_dev(dev);
6600
1da177e4 6601 dev_init_scheduler(dev);
1da177e4 6602 dev_hold(dev);
ce286d32 6603 list_netdevice(dev);
7bf23575 6604 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6605
948b337e
JP
6606 /* If the device has permanent device address, driver should
6607 * set dev_addr and also addr_assign_type should be set to
6608 * NET_ADDR_PERM (default value).
6609 */
6610 if (dev->addr_assign_type == NET_ADDR_PERM)
6611 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6612
1da177e4 6613 /* Notify protocols, that a new device appeared. */
056925ab 6614 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6615 ret = notifier_to_errno(ret);
93ee31f1
DL
6616 if (ret) {
6617 rollback_registered(dev);
6618 dev->reg_state = NETREG_UNREGISTERED;
6619 }
d90a909e
EB
6620 /*
6621 * Prevent userspace races by waiting until the network
6622 * device is fully setup before sending notifications.
6623 */
a2835763
PM
6624 if (!dev->rtnl_link_ops ||
6625 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6626 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6627
6628out:
6629 return ret;
7ce1b0ed
HX
6630
6631err_uninit:
d314774c
SH
6632 if (dev->netdev_ops->ndo_uninit)
6633 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6634 goto out;
1da177e4 6635}
d1b19dff 6636EXPORT_SYMBOL(register_netdevice);
1da177e4 6637
937f1ba5
BH
6638/**
6639 * init_dummy_netdev - init a dummy network device for NAPI
6640 * @dev: device to init
6641 *
6642 * This takes a network device structure and initialize the minimum
6643 * amount of fields so it can be used to schedule NAPI polls without
6644 * registering a full blown interface. This is to be used by drivers
6645 * that need to tie several hardware interfaces to a single NAPI
6646 * poll scheduler due to HW limitations.
6647 */
6648int init_dummy_netdev(struct net_device *dev)
6649{
6650 /* Clear everything. Note we don't initialize spinlocks
6651 * are they aren't supposed to be taken by any of the
6652 * NAPI code and this dummy netdev is supposed to be
6653 * only ever used for NAPI polls
6654 */
6655 memset(dev, 0, sizeof(struct net_device));
6656
6657 /* make sure we BUG if trying to hit standard
6658 * register/unregister code path
6659 */
6660 dev->reg_state = NETREG_DUMMY;
6661
937f1ba5
BH
6662 /* NAPI wants this */
6663 INIT_LIST_HEAD(&dev->napi_list);
6664
6665 /* a dummy interface is started by default */
6666 set_bit(__LINK_STATE_PRESENT, &dev->state);
6667 set_bit(__LINK_STATE_START, &dev->state);
6668
29b4433d
ED
6669 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6670 * because users of this 'device' dont need to change
6671 * its refcount.
6672 */
6673
937f1ba5
BH
6674 return 0;
6675}
6676EXPORT_SYMBOL_GPL(init_dummy_netdev);
6677
6678
1da177e4
LT
6679/**
6680 * register_netdev - register a network device
6681 * @dev: device to register
6682 *
6683 * Take a completed network device structure and add it to the kernel
6684 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6685 * chain. 0 is returned on success. A negative errno code is returned
6686 * on a failure to set up the device, or if the name is a duplicate.
6687 *
38b4da38 6688 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6689 * and expands the device name if you passed a format string to
6690 * alloc_netdev.
6691 */
6692int register_netdev(struct net_device *dev)
6693{
6694 int err;
6695
6696 rtnl_lock();
1da177e4 6697 err = register_netdevice(dev);
1da177e4
LT
6698 rtnl_unlock();
6699 return err;
6700}
6701EXPORT_SYMBOL(register_netdev);
6702
29b4433d
ED
6703int netdev_refcnt_read(const struct net_device *dev)
6704{
6705 int i, refcnt = 0;
6706
6707 for_each_possible_cpu(i)
6708 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6709 return refcnt;
6710}
6711EXPORT_SYMBOL(netdev_refcnt_read);
6712
2c53040f 6713/**
1da177e4 6714 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6715 * @dev: target net_device
1da177e4
LT
6716 *
6717 * This is called when unregistering network devices.
6718 *
6719 * Any protocol or device that holds a reference should register
6720 * for netdevice notification, and cleanup and put back the
6721 * reference if they receive an UNREGISTER event.
6722 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6723 * call dev_put.
1da177e4
LT
6724 */
6725static void netdev_wait_allrefs(struct net_device *dev)
6726{
6727 unsigned long rebroadcast_time, warning_time;
29b4433d 6728 int refcnt;
1da177e4 6729
e014debe
ED
6730 linkwatch_forget_dev(dev);
6731
1da177e4 6732 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6733 refcnt = netdev_refcnt_read(dev);
6734
6735 while (refcnt != 0) {
1da177e4 6736 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6737 rtnl_lock();
1da177e4
LT
6738
6739 /* Rebroadcast unregister notification */
056925ab 6740 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6741
748e2d93 6742 __rtnl_unlock();
0115e8e3 6743 rcu_barrier();
748e2d93
ED
6744 rtnl_lock();
6745
0115e8e3 6746 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6747 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6748 &dev->state)) {
6749 /* We must not have linkwatch events
6750 * pending on unregister. If this
6751 * happens, we simply run the queue
6752 * unscheduled, resulting in a noop
6753 * for this device.
6754 */
6755 linkwatch_run_queue();
6756 }
6757
6756ae4b 6758 __rtnl_unlock();
1da177e4
LT
6759
6760 rebroadcast_time = jiffies;
6761 }
6762
6763 msleep(250);
6764
29b4433d
ED
6765 refcnt = netdev_refcnt_read(dev);
6766
1da177e4 6767 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6768 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6769 dev->name, refcnt);
1da177e4
LT
6770 warning_time = jiffies;
6771 }
6772 }
6773}
6774
6775/* The sequence is:
6776 *
6777 * rtnl_lock();
6778 * ...
6779 * register_netdevice(x1);
6780 * register_netdevice(x2);
6781 * ...
6782 * unregister_netdevice(y1);
6783 * unregister_netdevice(y2);
6784 * ...
6785 * rtnl_unlock();
6786 * free_netdev(y1);
6787 * free_netdev(y2);
6788 *
58ec3b4d 6789 * We are invoked by rtnl_unlock().
1da177e4 6790 * This allows us to deal with problems:
b17a7c17 6791 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6792 * without deadlocking with linkwatch via keventd.
6793 * 2) Since we run with the RTNL semaphore not held, we can sleep
6794 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6795 *
6796 * We must not return until all unregister events added during
6797 * the interval the lock was held have been completed.
1da177e4 6798 */
1da177e4
LT
6799void netdev_run_todo(void)
6800{
626ab0e6 6801 struct list_head list;
1da177e4 6802
1da177e4 6803 /* Snapshot list, allow later requests */
626ab0e6 6804 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6805
6806 __rtnl_unlock();
626ab0e6 6807
0115e8e3
ED
6808
6809 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6810 if (!list_empty(&list))
6811 rcu_barrier();
6812
1da177e4
LT
6813 while (!list_empty(&list)) {
6814 struct net_device *dev
e5e26d75 6815 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6816 list_del(&dev->todo_list);
6817
748e2d93 6818 rtnl_lock();
0115e8e3 6819 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6820 __rtnl_unlock();
0115e8e3 6821
b17a7c17 6822 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6823 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6824 dev->name, dev->reg_state);
6825 dump_stack();
6826 continue;
6827 }
1da177e4 6828
b17a7c17 6829 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6830
b17a7c17 6831 netdev_wait_allrefs(dev);
1da177e4 6832
b17a7c17 6833 /* paranoia */
29b4433d 6834 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
6835 BUG_ON(!list_empty(&dev->ptype_all));
6836 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
6837 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6838 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6839 WARN_ON(dev->dn_ptr);
1da177e4 6840
b17a7c17
SH
6841 if (dev->destructor)
6842 dev->destructor(dev);
9093bbb2 6843
50624c93
EB
6844 /* Report a network device has been unregistered */
6845 rtnl_lock();
6846 dev_net(dev)->dev_unreg_count--;
6847 __rtnl_unlock();
6848 wake_up(&netdev_unregistering_wq);
6849
9093bbb2
SH
6850 /* Free network device */
6851 kobject_put(&dev->dev.kobj);
1da177e4 6852 }
1da177e4
LT
6853}
6854
3cfde79c
BH
6855/* Convert net_device_stats to rtnl_link_stats64. They have the same
6856 * fields in the same order, with only the type differing.
6857 */
77a1abf5
ED
6858void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6859 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6860{
6861#if BITS_PER_LONG == 64
77a1abf5
ED
6862 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6863 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6864#else
6865 size_t i, n = sizeof(*stats64) / sizeof(u64);
6866 const unsigned long *src = (const unsigned long *)netdev_stats;
6867 u64 *dst = (u64 *)stats64;
6868
6869 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6870 sizeof(*stats64) / sizeof(u64));
6871 for (i = 0; i < n; i++)
6872 dst[i] = src[i];
6873#endif
6874}
77a1abf5 6875EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6876
eeda3fd6
SH
6877/**
6878 * dev_get_stats - get network device statistics
6879 * @dev: device to get statistics from
28172739 6880 * @storage: place to store stats
eeda3fd6 6881 *
d7753516
BH
6882 * Get network statistics from device. Return @storage.
6883 * The device driver may provide its own method by setting
6884 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6885 * otherwise the internal statistics structure is used.
eeda3fd6 6886 */
d7753516
BH
6887struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6888 struct rtnl_link_stats64 *storage)
7004bf25 6889{
eeda3fd6
SH
6890 const struct net_device_ops *ops = dev->netdev_ops;
6891
28172739
ED
6892 if (ops->ndo_get_stats64) {
6893 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6894 ops->ndo_get_stats64(dev, storage);
6895 } else if (ops->ndo_get_stats) {
3cfde79c 6896 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6897 } else {
6898 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6899 }
caf586e5 6900 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6901 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6902 return storage;
c45d286e 6903}
eeda3fd6 6904EXPORT_SYMBOL(dev_get_stats);
c45d286e 6905
24824a09 6906struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6907{
24824a09 6908 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6909
24824a09
ED
6910#ifdef CONFIG_NET_CLS_ACT
6911 if (queue)
6912 return queue;
6913 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6914 if (!queue)
6915 return NULL;
6916 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 6917 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
6918 queue->qdisc_sleeping = &noop_qdisc;
6919 rcu_assign_pointer(dev->ingress_queue, queue);
6920#endif
6921 return queue;
bb949fbd
DM
6922}
6923
2c60db03
ED
6924static const struct ethtool_ops default_ethtool_ops;
6925
d07d7507
SG
6926void netdev_set_default_ethtool_ops(struct net_device *dev,
6927 const struct ethtool_ops *ops)
6928{
6929 if (dev->ethtool_ops == &default_ethtool_ops)
6930 dev->ethtool_ops = ops;
6931}
6932EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6933
74d332c1
ED
6934void netdev_freemem(struct net_device *dev)
6935{
6936 char *addr = (char *)dev - dev->padded;
6937
4cb28970 6938 kvfree(addr);
74d332c1
ED
6939}
6940
1da177e4 6941/**
36909ea4 6942 * alloc_netdev_mqs - allocate network device
c835a677
TG
6943 * @sizeof_priv: size of private data to allocate space for
6944 * @name: device name format string
6945 * @name_assign_type: origin of device name
6946 * @setup: callback to initialize device
6947 * @txqs: the number of TX subqueues to allocate
6948 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6949 *
6950 * Allocates a struct net_device with private data area for driver use
90e51adf 6951 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6952 * for each queue on the device.
1da177e4 6953 */
36909ea4 6954struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6955 unsigned char name_assign_type,
36909ea4
TH
6956 void (*setup)(struct net_device *),
6957 unsigned int txqs, unsigned int rxqs)
1da177e4 6958{
1da177e4 6959 struct net_device *dev;
7943986c 6960 size_t alloc_size;
1ce8e7b5 6961 struct net_device *p;
1da177e4 6962
b6fe17d6
SH
6963 BUG_ON(strlen(name) >= sizeof(dev->name));
6964
36909ea4 6965 if (txqs < 1) {
7b6cd1ce 6966 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6967 return NULL;
6968 }
6969
a953be53 6970#ifdef CONFIG_SYSFS
36909ea4 6971 if (rxqs < 1) {
7b6cd1ce 6972 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6973 return NULL;
6974 }
6975#endif
6976
fd2ea0a7 6977 alloc_size = sizeof(struct net_device);
d1643d24
AD
6978 if (sizeof_priv) {
6979 /* ensure 32-byte alignment of private area */
1ce8e7b5 6980 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6981 alloc_size += sizeof_priv;
6982 }
6983 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6984 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6985
74d332c1
ED
6986 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6987 if (!p)
6988 p = vzalloc(alloc_size);
62b5942a 6989 if (!p)
1da177e4 6990 return NULL;
1da177e4 6991
1ce8e7b5 6992 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6993 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6994
29b4433d
ED
6995 dev->pcpu_refcnt = alloc_percpu(int);
6996 if (!dev->pcpu_refcnt)
74d332c1 6997 goto free_dev;
ab9c73cc 6998
ab9c73cc 6999 if (dev_addr_init(dev))
29b4433d 7000 goto free_pcpu;
ab9c73cc 7001
22bedad3 7002 dev_mc_init(dev);
a748ee24 7003 dev_uc_init(dev);
ccffad25 7004
c346dca1 7005 dev_net_set(dev, &init_net);
1da177e4 7006
8d3bdbd5 7007 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7008 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 7009 dev->gso_min_segs = 0;
8d3bdbd5 7010
8d3bdbd5
DM
7011 INIT_LIST_HEAD(&dev->napi_list);
7012 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7013 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7014 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7015 INIT_LIST_HEAD(&dev->adj_list.upper);
7016 INIT_LIST_HEAD(&dev->adj_list.lower);
7017 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7018 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7019 INIT_LIST_HEAD(&dev->ptype_all);
7020 INIT_LIST_HEAD(&dev->ptype_specific);
02875878 7021 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7022 setup(dev);
7023
906470c1 7024 if (!dev->tx_queue_len)
f84bb1ea 7025 dev->priv_flags |= IFF_NO_QUEUE;
906470c1 7026
36909ea4
TH
7027 dev->num_tx_queues = txqs;
7028 dev->real_num_tx_queues = txqs;
ed9af2e8 7029 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7030 goto free_all;
e8a0464c 7031
a953be53 7032#ifdef CONFIG_SYSFS
36909ea4
TH
7033 dev->num_rx_queues = rxqs;
7034 dev->real_num_rx_queues = rxqs;
fe822240 7035 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7036 goto free_all;
df334545 7037#endif
0a9627f2 7038
1da177e4 7039 strcpy(dev->name, name);
c835a677 7040 dev->name_assign_type = name_assign_type;
cbda10fa 7041 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7042 if (!dev->ethtool_ops)
7043 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7044
7045 nf_hook_ingress_init(dev);
7046
1da177e4 7047 return dev;
ab9c73cc 7048
8d3bdbd5
DM
7049free_all:
7050 free_netdev(dev);
7051 return NULL;
7052
29b4433d
ED
7053free_pcpu:
7054 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7055free_dev:
7056 netdev_freemem(dev);
ab9c73cc 7057 return NULL;
1da177e4 7058}
36909ea4 7059EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7060
7061/**
7062 * free_netdev - free network device
7063 * @dev: device
7064 *
4ec93edb
YH
7065 * This function does the last stage of destroying an allocated device
7066 * interface. The reference to the device object is released.
1da177e4
LT
7067 * If this is the last reference then it will be freed.
7068 */
7069void free_netdev(struct net_device *dev)
7070{
d565b0a1
HX
7071 struct napi_struct *p, *n;
7072
60877a32 7073 netif_free_tx_queues(dev);
a953be53 7074#ifdef CONFIG_SYSFS
10595902 7075 kvfree(dev->_rx);
fe822240 7076#endif
e8a0464c 7077
33d480ce 7078 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7079
f001fde5
JP
7080 /* Flush device addresses */
7081 dev_addr_flush(dev);
7082
d565b0a1
HX
7083 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7084 netif_napi_del(p);
7085
29b4433d
ED
7086 free_percpu(dev->pcpu_refcnt);
7087 dev->pcpu_refcnt = NULL;
7088
3041a069 7089 /* Compatibility with error handling in drivers */
1da177e4 7090 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7091 netdev_freemem(dev);
1da177e4
LT
7092 return;
7093 }
7094
7095 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7096 dev->reg_state = NETREG_RELEASED;
7097
43cb76d9
GKH
7098 /* will free via device release */
7099 put_device(&dev->dev);
1da177e4 7100}
d1b19dff 7101EXPORT_SYMBOL(free_netdev);
4ec93edb 7102
f0db275a
SH
7103/**
7104 * synchronize_net - Synchronize with packet receive processing
7105 *
7106 * Wait for packets currently being received to be done.
7107 * Does not block later packets from starting.
7108 */
4ec93edb 7109void synchronize_net(void)
1da177e4
LT
7110{
7111 might_sleep();
be3fc413
ED
7112 if (rtnl_is_locked())
7113 synchronize_rcu_expedited();
7114 else
7115 synchronize_rcu();
1da177e4 7116}
d1b19dff 7117EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7118
7119/**
44a0873d 7120 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7121 * @dev: device
44a0873d 7122 * @head: list
6ebfbc06 7123 *
1da177e4 7124 * This function shuts down a device interface and removes it
d59b54b1 7125 * from the kernel tables.
44a0873d 7126 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7127 *
7128 * Callers must hold the rtnl semaphore. You may want
7129 * unregister_netdev() instead of this.
7130 */
7131
44a0873d 7132void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7133{
a6620712
HX
7134 ASSERT_RTNL();
7135
44a0873d 7136 if (head) {
9fdce099 7137 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7138 } else {
7139 rollback_registered(dev);
7140 /* Finish processing unregister after unlock */
7141 net_set_todo(dev);
7142 }
1da177e4 7143}
44a0873d 7144EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7145
9b5e383c
ED
7146/**
7147 * unregister_netdevice_many - unregister many devices
7148 * @head: list of devices
87757a91
ED
7149 *
7150 * Note: As most callers use a stack allocated list_head,
7151 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7152 */
7153void unregister_netdevice_many(struct list_head *head)
7154{
7155 struct net_device *dev;
7156
7157 if (!list_empty(head)) {
7158 rollback_registered_many(head);
7159 list_for_each_entry(dev, head, unreg_list)
7160 net_set_todo(dev);
87757a91 7161 list_del(head);
9b5e383c
ED
7162 }
7163}
63c8099d 7164EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7165
1da177e4
LT
7166/**
7167 * unregister_netdev - remove device from the kernel
7168 * @dev: device
7169 *
7170 * This function shuts down a device interface and removes it
d59b54b1 7171 * from the kernel tables.
1da177e4
LT
7172 *
7173 * This is just a wrapper for unregister_netdevice that takes
7174 * the rtnl semaphore. In general you want to use this and not
7175 * unregister_netdevice.
7176 */
7177void unregister_netdev(struct net_device *dev)
7178{
7179 rtnl_lock();
7180 unregister_netdevice(dev);
7181 rtnl_unlock();
7182}
1da177e4
LT
7183EXPORT_SYMBOL(unregister_netdev);
7184
ce286d32
EB
7185/**
7186 * dev_change_net_namespace - move device to different nethost namespace
7187 * @dev: device
7188 * @net: network namespace
7189 * @pat: If not NULL name pattern to try if the current device name
7190 * is already taken in the destination network namespace.
7191 *
7192 * This function shuts down a device interface and moves it
7193 * to a new network namespace. On success 0 is returned, on
7194 * a failure a netagive errno code is returned.
7195 *
7196 * Callers must hold the rtnl semaphore.
7197 */
7198
7199int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7200{
ce286d32
EB
7201 int err;
7202
7203 ASSERT_RTNL();
7204
7205 /* Don't allow namespace local devices to be moved. */
7206 err = -EINVAL;
7207 if (dev->features & NETIF_F_NETNS_LOCAL)
7208 goto out;
7209
7210 /* Ensure the device has been registrered */
ce286d32
EB
7211 if (dev->reg_state != NETREG_REGISTERED)
7212 goto out;
7213
7214 /* Get out if there is nothing todo */
7215 err = 0;
878628fb 7216 if (net_eq(dev_net(dev), net))
ce286d32
EB
7217 goto out;
7218
7219 /* Pick the destination device name, and ensure
7220 * we can use it in the destination network namespace.
7221 */
7222 err = -EEXIST;
d9031024 7223 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7224 /* We get here if we can't use the current device name */
7225 if (!pat)
7226 goto out;
828de4f6 7227 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7228 goto out;
7229 }
7230
7231 /*
7232 * And now a mini version of register_netdevice unregister_netdevice.
7233 */
7234
7235 /* If device is running close it first. */
9b772652 7236 dev_close(dev);
ce286d32
EB
7237
7238 /* And unlink it from device chain */
7239 err = -ENODEV;
7240 unlist_netdevice(dev);
7241
7242 synchronize_net();
7243
7244 /* Shutdown queueing discipline. */
7245 dev_shutdown(dev);
7246
7247 /* Notify protocols, that we are about to destroy
7248 this device. They should clean all the things.
3b27e105
DL
7249
7250 Note that dev->reg_state stays at NETREG_REGISTERED.
7251 This is wanted because this way 8021q and macvlan know
7252 the device is just moving and can keep their slaves up.
ce286d32
EB
7253 */
7254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7255 rcu_barrier();
7256 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7257 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7258
7259 /*
7260 * Flush the unicast and multicast chains
7261 */
a748ee24 7262 dev_uc_flush(dev);
22bedad3 7263 dev_mc_flush(dev);
ce286d32 7264
4e66ae2e
SH
7265 /* Send a netdev-removed uevent to the old namespace */
7266 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7267 netdev_adjacent_del_links(dev);
4e66ae2e 7268
ce286d32 7269 /* Actually switch the network namespace */
c346dca1 7270 dev_net_set(dev, net);
ce286d32 7271
ce286d32 7272 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7273 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7274 dev->ifindex = dev_new_index(net);
ce286d32 7275
4e66ae2e
SH
7276 /* Send a netdev-add uevent to the new namespace */
7277 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7278 netdev_adjacent_add_links(dev);
4e66ae2e 7279
8b41d188 7280 /* Fixup kobjects */
a1b3f594 7281 err = device_rename(&dev->dev, dev->name);
8b41d188 7282 WARN_ON(err);
ce286d32
EB
7283
7284 /* Add the device back in the hashes */
7285 list_netdevice(dev);
7286
7287 /* Notify protocols, that a new device appeared. */
7288 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7289
d90a909e
EB
7290 /*
7291 * Prevent userspace races by waiting until the network
7292 * device is fully setup before sending notifications.
7293 */
7f294054 7294 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7295
ce286d32
EB
7296 synchronize_net();
7297 err = 0;
7298out:
7299 return err;
7300}
463d0183 7301EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7302
1da177e4
LT
7303static int dev_cpu_callback(struct notifier_block *nfb,
7304 unsigned long action,
7305 void *ocpu)
7306{
7307 struct sk_buff **list_skb;
1da177e4
LT
7308 struct sk_buff *skb;
7309 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7310 struct softnet_data *sd, *oldsd;
7311
8bb78442 7312 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7313 return NOTIFY_OK;
7314
7315 local_irq_disable();
7316 cpu = smp_processor_id();
7317 sd = &per_cpu(softnet_data, cpu);
7318 oldsd = &per_cpu(softnet_data, oldcpu);
7319
7320 /* Find end of our completion_queue. */
7321 list_skb = &sd->completion_queue;
7322 while (*list_skb)
7323 list_skb = &(*list_skb)->next;
7324 /* Append completion queue from offline CPU. */
7325 *list_skb = oldsd->completion_queue;
7326 oldsd->completion_queue = NULL;
7327
1da177e4 7328 /* Append output queue from offline CPU. */
a9cbd588
CG
7329 if (oldsd->output_queue) {
7330 *sd->output_queue_tailp = oldsd->output_queue;
7331 sd->output_queue_tailp = oldsd->output_queue_tailp;
7332 oldsd->output_queue = NULL;
7333 oldsd->output_queue_tailp = &oldsd->output_queue;
7334 }
ac64da0b
ED
7335 /* Append NAPI poll list from offline CPU, with one exception :
7336 * process_backlog() must be called by cpu owning percpu backlog.
7337 * We properly handle process_queue & input_pkt_queue later.
7338 */
7339 while (!list_empty(&oldsd->poll_list)) {
7340 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7341 struct napi_struct,
7342 poll_list);
7343
7344 list_del_init(&napi->poll_list);
7345 if (napi->poll == process_backlog)
7346 napi->state = 0;
7347 else
7348 ____napi_schedule(sd, napi);
264524d5 7349 }
1da177e4
LT
7350
7351 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7352 local_irq_enable();
7353
7354 /* Process offline CPU's input_pkt_queue */
76cc8b13 7355 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 7356 netif_rx_ni(skb);
76cc8b13 7357 input_queue_head_incr(oldsd);
fec5e652 7358 }
ac64da0b 7359 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 7360 netif_rx_ni(skb);
76cc8b13
TH
7361 input_queue_head_incr(oldsd);
7362 }
1da177e4
LT
7363
7364 return NOTIFY_OK;
7365}
1da177e4
LT
7366
7367
7f353bf2 7368/**
b63365a2
HX
7369 * netdev_increment_features - increment feature set by one
7370 * @all: current feature set
7371 * @one: new feature set
7372 * @mask: mask feature set
7f353bf2
HX
7373 *
7374 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7375 * @one to the master device with current feature set @all. Will not
7376 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7377 */
c8f44aff
MM
7378netdev_features_t netdev_increment_features(netdev_features_t all,
7379 netdev_features_t one, netdev_features_t mask)
b63365a2 7380{
1742f183
MM
7381 if (mask & NETIF_F_GEN_CSUM)
7382 mask |= NETIF_F_ALL_CSUM;
7383 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7384
1742f183
MM
7385 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7386 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7387
1742f183
MM
7388 /* If one device supports hw checksumming, set for all. */
7389 if (all & NETIF_F_GEN_CSUM)
7390 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7391
7392 return all;
7393}
b63365a2 7394EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7395
430f03cd 7396static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7397{
7398 int i;
7399 struct hlist_head *hash;
7400
7401 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7402 if (hash != NULL)
7403 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7404 INIT_HLIST_HEAD(&hash[i]);
7405
7406 return hash;
7407}
7408
881d966b 7409/* Initialize per network namespace state */
4665079c 7410static int __net_init netdev_init(struct net *net)
881d966b 7411{
734b6541
RM
7412 if (net != &init_net)
7413 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7414
30d97d35
PE
7415 net->dev_name_head = netdev_create_hash();
7416 if (net->dev_name_head == NULL)
7417 goto err_name;
881d966b 7418
30d97d35
PE
7419 net->dev_index_head = netdev_create_hash();
7420 if (net->dev_index_head == NULL)
7421 goto err_idx;
881d966b
EB
7422
7423 return 0;
30d97d35
PE
7424
7425err_idx:
7426 kfree(net->dev_name_head);
7427err_name:
7428 return -ENOMEM;
881d966b
EB
7429}
7430
f0db275a
SH
7431/**
7432 * netdev_drivername - network driver for the device
7433 * @dev: network device
f0db275a
SH
7434 *
7435 * Determine network driver for device.
7436 */
3019de12 7437const char *netdev_drivername(const struct net_device *dev)
6579e57b 7438{
cf04a4c7
SH
7439 const struct device_driver *driver;
7440 const struct device *parent;
3019de12 7441 const char *empty = "";
6579e57b
AV
7442
7443 parent = dev->dev.parent;
6579e57b 7444 if (!parent)
3019de12 7445 return empty;
6579e57b
AV
7446
7447 driver = parent->driver;
7448 if (driver && driver->name)
3019de12
DM
7449 return driver->name;
7450 return empty;
6579e57b
AV
7451}
7452
6ea754eb
JP
7453static void __netdev_printk(const char *level, const struct net_device *dev,
7454 struct va_format *vaf)
256df2f3 7455{
b004ff49 7456 if (dev && dev->dev.parent) {
6ea754eb
JP
7457 dev_printk_emit(level[1] - '0',
7458 dev->dev.parent,
7459 "%s %s %s%s: %pV",
7460 dev_driver_string(dev->dev.parent),
7461 dev_name(dev->dev.parent),
7462 netdev_name(dev), netdev_reg_state(dev),
7463 vaf);
b004ff49 7464 } else if (dev) {
6ea754eb
JP
7465 printk("%s%s%s: %pV",
7466 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7467 } else {
6ea754eb 7468 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7469 }
256df2f3
JP
7470}
7471
6ea754eb
JP
7472void netdev_printk(const char *level, const struct net_device *dev,
7473 const char *format, ...)
256df2f3
JP
7474{
7475 struct va_format vaf;
7476 va_list args;
256df2f3
JP
7477
7478 va_start(args, format);
7479
7480 vaf.fmt = format;
7481 vaf.va = &args;
7482
6ea754eb 7483 __netdev_printk(level, dev, &vaf);
b004ff49 7484
256df2f3 7485 va_end(args);
256df2f3
JP
7486}
7487EXPORT_SYMBOL(netdev_printk);
7488
7489#define define_netdev_printk_level(func, level) \
6ea754eb 7490void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7491{ \
256df2f3
JP
7492 struct va_format vaf; \
7493 va_list args; \
7494 \
7495 va_start(args, fmt); \
7496 \
7497 vaf.fmt = fmt; \
7498 vaf.va = &args; \
7499 \
6ea754eb 7500 __netdev_printk(level, dev, &vaf); \
b004ff49 7501 \
256df2f3 7502 va_end(args); \
256df2f3
JP
7503} \
7504EXPORT_SYMBOL(func);
7505
7506define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7507define_netdev_printk_level(netdev_alert, KERN_ALERT);
7508define_netdev_printk_level(netdev_crit, KERN_CRIT);
7509define_netdev_printk_level(netdev_err, KERN_ERR);
7510define_netdev_printk_level(netdev_warn, KERN_WARNING);
7511define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7512define_netdev_printk_level(netdev_info, KERN_INFO);
7513
4665079c 7514static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7515{
7516 kfree(net->dev_name_head);
7517 kfree(net->dev_index_head);
7518}
7519
022cbae6 7520static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7521 .init = netdev_init,
7522 .exit = netdev_exit,
7523};
7524
4665079c 7525static void __net_exit default_device_exit(struct net *net)
ce286d32 7526{
e008b5fc 7527 struct net_device *dev, *aux;
ce286d32 7528 /*
e008b5fc 7529 * Push all migratable network devices back to the
ce286d32
EB
7530 * initial network namespace
7531 */
7532 rtnl_lock();
e008b5fc 7533 for_each_netdev_safe(net, dev, aux) {
ce286d32 7534 int err;
aca51397 7535 char fb_name[IFNAMSIZ];
ce286d32
EB
7536
7537 /* Ignore unmoveable devices (i.e. loopback) */
7538 if (dev->features & NETIF_F_NETNS_LOCAL)
7539 continue;
7540
e008b5fc
EB
7541 /* Leave virtual devices for the generic cleanup */
7542 if (dev->rtnl_link_ops)
7543 continue;
d0c082ce 7544
25985edc 7545 /* Push remaining network devices to init_net */
aca51397
PE
7546 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7547 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7548 if (err) {
7b6cd1ce
JP
7549 pr_emerg("%s: failed to move %s to init_net: %d\n",
7550 __func__, dev->name, err);
aca51397 7551 BUG();
ce286d32
EB
7552 }
7553 }
7554 rtnl_unlock();
7555}
7556
50624c93
EB
7557static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7558{
7559 /* Return with the rtnl_lock held when there are no network
7560 * devices unregistering in any network namespace in net_list.
7561 */
7562 struct net *net;
7563 bool unregistering;
ff960a73 7564 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7565
ff960a73 7566 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7567 for (;;) {
50624c93
EB
7568 unregistering = false;
7569 rtnl_lock();
7570 list_for_each_entry(net, net_list, exit_list) {
7571 if (net->dev_unreg_count > 0) {
7572 unregistering = true;
7573 break;
7574 }
7575 }
7576 if (!unregistering)
7577 break;
7578 __rtnl_unlock();
ff960a73
PZ
7579
7580 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7581 }
ff960a73 7582 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7583}
7584
04dc7f6b
EB
7585static void __net_exit default_device_exit_batch(struct list_head *net_list)
7586{
7587 /* At exit all network devices most be removed from a network
b595076a 7588 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7589 * Do this across as many network namespaces as possible to
7590 * improve batching efficiency.
7591 */
7592 struct net_device *dev;
7593 struct net *net;
7594 LIST_HEAD(dev_kill_list);
7595
50624c93
EB
7596 /* To prevent network device cleanup code from dereferencing
7597 * loopback devices or network devices that have been freed
7598 * wait here for all pending unregistrations to complete,
7599 * before unregistring the loopback device and allowing the
7600 * network namespace be freed.
7601 *
7602 * The netdev todo list containing all network devices
7603 * unregistrations that happen in default_device_exit_batch
7604 * will run in the rtnl_unlock() at the end of
7605 * default_device_exit_batch.
7606 */
7607 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7608 list_for_each_entry(net, net_list, exit_list) {
7609 for_each_netdev_reverse(net, dev) {
b0ab2fab 7610 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7611 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7612 else
7613 unregister_netdevice_queue(dev, &dev_kill_list);
7614 }
7615 }
7616 unregister_netdevice_many(&dev_kill_list);
7617 rtnl_unlock();
7618}
7619
022cbae6 7620static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7621 .exit = default_device_exit,
04dc7f6b 7622 .exit_batch = default_device_exit_batch,
ce286d32
EB
7623};
7624
1da177e4
LT
7625/*
7626 * Initialize the DEV module. At boot time this walks the device list and
7627 * unhooks any devices that fail to initialise (normally hardware not
7628 * present) and leaves us with a valid list of present and active devices.
7629 *
7630 */
7631
7632/*
7633 * This is called single threaded during boot, so no need
7634 * to take the rtnl semaphore.
7635 */
7636static int __init net_dev_init(void)
7637{
7638 int i, rc = -ENOMEM;
7639
7640 BUG_ON(!dev_boot_phase);
7641
1da177e4
LT
7642 if (dev_proc_init())
7643 goto out;
7644
8b41d188 7645 if (netdev_kobject_init())
1da177e4
LT
7646 goto out;
7647
7648 INIT_LIST_HEAD(&ptype_all);
82d8a867 7649 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7650 INIT_LIST_HEAD(&ptype_base[i]);
7651
62532da9
VY
7652 INIT_LIST_HEAD(&offload_base);
7653
881d966b
EB
7654 if (register_pernet_subsys(&netdev_net_ops))
7655 goto out;
1da177e4
LT
7656
7657 /*
7658 * Initialise the packet receive queues.
7659 */
7660
6f912042 7661 for_each_possible_cpu(i) {
e36fa2f7 7662 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7663
e36fa2f7 7664 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7665 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7666 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7667 sd->output_queue_tailp = &sd->output_queue;
df334545 7668#ifdef CONFIG_RPS
e36fa2f7
ED
7669 sd->csd.func = rps_trigger_softirq;
7670 sd->csd.info = sd;
e36fa2f7 7671 sd->cpu = i;
1e94d72f 7672#endif
0a9627f2 7673
e36fa2f7
ED
7674 sd->backlog.poll = process_backlog;
7675 sd->backlog.weight = weight_p;
1da177e4
LT
7676 }
7677
1da177e4
LT
7678 dev_boot_phase = 0;
7679
505d4f73
EB
7680 /* The loopback device is special if any other network devices
7681 * is present in a network namespace the loopback device must
7682 * be present. Since we now dynamically allocate and free the
7683 * loopback device ensure this invariant is maintained by
7684 * keeping the loopback device as the first device on the
7685 * list of network devices. Ensuring the loopback devices
7686 * is the first device that appears and the last network device
7687 * that disappears.
7688 */
7689 if (register_pernet_device(&loopback_net_ops))
7690 goto out;
7691
7692 if (register_pernet_device(&default_device_ops))
7693 goto out;
7694
962cf36c
CM
7695 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7696 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7697
7698 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 7699 dst_subsys_init();
1da177e4
LT
7700 rc = 0;
7701out:
7702 return rc;
7703}
7704
7705subsys_initcall(net_dev_init);
This page took 1.970241 seconds and 5 git commands to generate.