net: incorrect use of init_completion fixup
[deliverable/linux.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4
LT
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
44540960 104#include <net/xfrm.h>
1da177e4
LT
105#include <linux/highmem.h>
106#include <linux/init.h>
1da177e4 107#include <linux/module.h>
1da177e4
LT
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
1da177e4 111#include <net/iw_handler.h>
1da177e4 112#include <asm/current.h>
5bdb9886 113#include <linux/audit.h>
db217334 114#include <linux/dmaengine.h>
f6a78bfc 115#include <linux/err.h>
c7fa9d18 116#include <linux/ctype.h>
723e98b7 117#include <linux/if_arp.h>
6de329e2 118#include <linux/if_vlan.h>
8f0f2223 119#include <linux/ip.h>
ad55dcaf 120#include <net/ip.h>
25cd9ba0 121#include <net/mpls.h>
8f0f2223
DM
122#include <linux/ipv6.h>
123#include <linux/in.h>
b6b2fed1
DM
124#include <linux/jhash.h>
125#include <linux/random.h>
9cbc1cb8 126#include <trace/events/napi.h>
cf66ba58 127#include <trace/events/net.h>
07dc22e7 128#include <trace/events/skb.h>
5acbbd42 129#include <linux/pci.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
1da177e4 138
342709ef
PE
139#include "net-sysfs.h"
140
d565b0a1
HX
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
5d38a079
HX
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
1da177e4 147static DEFINE_SPINLOCK(ptype_lock);
62532da9 148static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
62532da9 151static struct list_head offload_base __read_mostly;
1da177e4 152
ae78dbfa 153static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
ae78dbfa 157
1da177e4 158/*
7562f876 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
160 * semaphore.
161 *
c6d14c84 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
7562f876 165 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
1da177e4 177DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
178EXPORT_SYMBOL(dev_base_lock);
179
af12fa6e
ET
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
18afa4b0 186static seqcount_t devnet_rename_seq;
c91f6df2 187
4e985ada
TG
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
881d966b 193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 194{
95c96174
ED
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
08e9897d 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
198}
199
881d966b 200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 201{
7c28bd0b 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
203}
204
e36fa2f7 205static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
206{
207#ifdef CONFIG_RPS
e36fa2f7 208 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
209#endif
210}
211
e36fa2f7 212static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
213{
214#ifdef CONFIG_RPS
e36fa2f7 215 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
216#endif
217}
218
ce286d32 219/* Device list insertion */
53759be9 220static void list_netdevice(struct net_device *dev)
ce286d32 221{
c346dca1 222 struct net *net = dev_net(dev);
ce286d32
EB
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
c6d14c84 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
ce286d32 231 write_unlock_bh(&dev_base_lock);
4e985ada
TG
232
233 dev_base_seq_inc(net);
ce286d32
EB
234}
235
fb699dfd
ED
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
ce286d32
EB
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
c6d14c84 245 list_del_rcu(&dev->dev_list);
72c9528b 246 hlist_del_rcu(&dev->name_hlist);
fb699dfd 247 hlist_del_rcu(&dev->index_hlist);
ce286d32 248 write_unlock_bh(&dev_base_lock);
4e985ada
TG
249
250 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
251}
252
1da177e4
LT
253/*
254 * Our notifier list
255 */
256
f07d5b94 257static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
bea3348e 263
9958da05 264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 265EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 266
cf508b12 267#ifdef CONFIG_LOCKDEP
723e98b7 268/*
c773e847 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 288
36cbd3dc 289static const char *const netdev_lock_name[] =
723e98b7
JP
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
cf508b12
DM
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
723e98b7
JP
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
cf508b12
DM
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
723e98b7 339#else
cf508b12
DM
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
345{
346}
347#endif
1da177e4
LT
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
1da177e4
LT
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
c07b68e8
ED
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
374 return &ptype_all;
375 else
376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
377}
378
1da177e4
LT
379/**
380 * dev_add_pack - add packet handler
381 * @pt: packet type declaration
382 *
383 * Add a protocol handler to the networking stack. The passed &packet_type
384 * is linked into kernel lists and may not be freed until it has been
385 * removed from the kernel lists.
386 *
4ec93edb 387 * This call does not sleep therefore it can not
1da177e4
LT
388 * guarantee all CPU's that are in middle of receiving packets
389 * will see the new packet type (until the next received packet).
390 */
391
392void dev_add_pack(struct packet_type *pt)
393{
c07b68e8 394 struct list_head *head = ptype_head(pt);
1da177e4 395
c07b68e8
ED
396 spin_lock(&ptype_lock);
397 list_add_rcu(&pt->list, head);
398 spin_unlock(&ptype_lock);
1da177e4 399}
d1b19dff 400EXPORT_SYMBOL(dev_add_pack);
1da177e4 401
1da177e4
LT
402/**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
4ec93edb 409 * returns.
1da177e4
LT
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415void __dev_remove_pack(struct packet_type *pt)
416{
c07b68e8 417 struct list_head *head = ptype_head(pt);
1da177e4
LT
418 struct packet_type *pt1;
419
c07b68e8 420 spin_lock(&ptype_lock);
1da177e4
LT
421
422 list_for_each_entry(pt1, head, list) {
423 if (pt == pt1) {
424 list_del_rcu(&pt->list);
425 goto out;
426 }
427 }
428
7b6cd1ce 429 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 430out:
c07b68e8 431 spin_unlock(&ptype_lock);
1da177e4 432}
d1b19dff
ED
433EXPORT_SYMBOL(__dev_remove_pack);
434
1da177e4
LT
435/**
436 * dev_remove_pack - remove packet handler
437 * @pt: packet type declaration
438 *
439 * Remove a protocol handler that was previously added to the kernel
440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
441 * from the kernel lists and can be freed or reused once this function
442 * returns.
443 *
444 * This call sleeps to guarantee that no CPU is looking at the packet
445 * type after return.
446 */
447void dev_remove_pack(struct packet_type *pt)
448{
449 __dev_remove_pack(pt);
4ec93edb 450
1da177e4
LT
451 synchronize_net();
452}
d1b19dff 453EXPORT_SYMBOL(dev_remove_pack);
1da177e4 454
62532da9
VY
455
456/**
457 * dev_add_offload - register offload handlers
458 * @po: protocol offload declaration
459 *
460 * Add protocol offload handlers to the networking stack. The passed
461 * &proto_offload is linked into kernel lists and may not be freed until
462 * it has been removed from the kernel lists.
463 *
464 * This call does not sleep therefore it can not
465 * guarantee all CPU's that are in middle of receiving packets
466 * will see the new offload handlers (until the next received packet).
467 */
468void dev_add_offload(struct packet_offload *po)
469{
470 struct list_head *head = &offload_base;
471
472 spin_lock(&offload_lock);
473 list_add_rcu(&po->list, head);
474 spin_unlock(&offload_lock);
475}
476EXPORT_SYMBOL(dev_add_offload);
477
478/**
479 * __dev_remove_offload - remove offload handler
480 * @po: packet offload declaration
481 *
482 * Remove a protocol offload handler that was previously added to the
483 * kernel offload handlers by dev_add_offload(). The passed &offload_type
484 * is removed from the kernel lists and can be freed or reused once this
485 * function returns.
486 *
487 * The packet type might still be in use by receivers
488 * and must not be freed until after all the CPU's have gone
489 * through a quiescent state.
490 */
1d143d9f 491static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
492{
493 struct list_head *head = &offload_base;
494 struct packet_offload *po1;
495
c53aa505 496 spin_lock(&offload_lock);
62532da9
VY
497
498 list_for_each_entry(po1, head, list) {
499 if (po == po1) {
500 list_del_rcu(&po->list);
501 goto out;
502 }
503 }
504
505 pr_warn("dev_remove_offload: %p not found\n", po);
506out:
c53aa505 507 spin_unlock(&offload_lock);
62532da9 508}
62532da9
VY
509
510/**
511 * dev_remove_offload - remove packet offload handler
512 * @po: packet offload declaration
513 *
514 * Remove a packet offload handler that was previously added to the kernel
515 * offload handlers by dev_add_offload(). The passed &offload_type is
516 * removed from the kernel lists and can be freed or reused once this
517 * function returns.
518 *
519 * This call sleeps to guarantee that no CPU is looking at the packet
520 * type after return.
521 */
522void dev_remove_offload(struct packet_offload *po)
523{
524 __dev_remove_offload(po);
525
526 synchronize_net();
527}
528EXPORT_SYMBOL(dev_remove_offload);
529
1da177e4
LT
530/******************************************************************************
531
532 Device Boot-time Settings Routines
533
534*******************************************************************************/
535
536/* Boot time configuration table */
537static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
538
539/**
540 * netdev_boot_setup_add - add new setup entry
541 * @name: name of the device
542 * @map: configured settings for the device
543 *
544 * Adds new setup entry to the dev_boot_setup list. The function
545 * returns 0 on error and 1 on success. This is a generic routine to
546 * all netdevices.
547 */
548static int netdev_boot_setup_add(char *name, struct ifmap *map)
549{
550 struct netdev_boot_setup *s;
551 int i;
552
553 s = dev_boot_setup;
554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 557 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
558 memcpy(&s[i].map, map, sizeof(s[i].map));
559 break;
560 }
561 }
562
563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
564}
565
566/**
567 * netdev_boot_setup_check - check boot time settings
568 * @dev: the netdevice
569 *
570 * Check boot time settings for the device.
571 * The found settings are set for the device to be used
572 * later in the device probing.
573 * Returns 0 if no settings found, 1 if they are.
574 */
575int netdev_boot_setup_check(struct net_device *dev)
576{
577 struct netdev_boot_setup *s = dev_boot_setup;
578 int i;
579
580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 582 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
583 dev->irq = s[i].map.irq;
584 dev->base_addr = s[i].map.base_addr;
585 dev->mem_start = s[i].map.mem_start;
586 dev->mem_end = s[i].map.mem_end;
587 return 1;
588 }
589 }
590 return 0;
591}
d1b19dff 592EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
593
594
595/**
596 * netdev_boot_base - get address from boot time settings
597 * @prefix: prefix for network device
598 * @unit: id for network device
599 *
600 * Check boot time settings for the base address of device.
601 * The found settings are set for the device to be used
602 * later in the device probing.
603 * Returns 0 if no settings found.
604 */
605unsigned long netdev_boot_base(const char *prefix, int unit)
606{
607 const struct netdev_boot_setup *s = dev_boot_setup;
608 char name[IFNAMSIZ];
609 int i;
610
611 sprintf(name, "%s%d", prefix, unit);
612
613 /*
614 * If device already registered then return base of 1
615 * to indicate not to probe for this interface
616 */
881d966b 617 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
618 return 1;
619
620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621 if (!strcmp(name, s[i].name))
622 return s[i].map.base_addr;
623 return 0;
624}
625
626/*
627 * Saves at boot time configured settings for any netdevice.
628 */
629int __init netdev_boot_setup(char *str)
630{
631 int ints[5];
632 struct ifmap map;
633
634 str = get_options(str, ARRAY_SIZE(ints), ints);
635 if (!str || !*str)
636 return 0;
637
638 /* Save settings */
639 memset(&map, 0, sizeof(map));
640 if (ints[0] > 0)
641 map.irq = ints[1];
642 if (ints[0] > 1)
643 map.base_addr = ints[2];
644 if (ints[0] > 2)
645 map.mem_start = ints[3];
646 if (ints[0] > 3)
647 map.mem_end = ints[4];
648
649 /* Add new entry to the list */
650 return netdev_boot_setup_add(str, &map);
651}
652
653__setup("netdev=", netdev_boot_setup);
654
655/*******************************************************************************
656
657 Device Interface Subroutines
658
659*******************************************************************************/
660
661/**
662 * __dev_get_by_name - find a device by its name
c4ea43c5 663 * @net: the applicable net namespace
1da177e4
LT
664 * @name: name to find
665 *
666 * Find an interface by name. Must be called under RTNL semaphore
667 * or @dev_base_lock. If the name is found a pointer to the device
668 * is returned. If the name is not found then %NULL is returned. The
669 * reference counters are not incremented so the caller must be
670 * careful with locks.
671 */
672
881d966b 673struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 674{
0bd8d536
ED
675 struct net_device *dev;
676 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 677
b67bfe0d 678 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
679 if (!strncmp(dev->name, name, IFNAMSIZ))
680 return dev;
0bd8d536 681
1da177e4
LT
682 return NULL;
683}
d1b19dff 684EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 685
72c9528b
ED
686/**
687 * dev_get_by_name_rcu - find a device by its name
688 * @net: the applicable net namespace
689 * @name: name to find
690 *
691 * Find an interface by name.
692 * If the name is found a pointer to the device is returned.
693 * If the name is not found then %NULL is returned.
694 * The reference counters are not incremented so the caller must be
695 * careful with locks. The caller must hold RCU lock.
696 */
697
698struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
699{
72c9528b
ED
700 struct net_device *dev;
701 struct hlist_head *head = dev_name_hash(net, name);
702
b67bfe0d 703 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
704 if (!strncmp(dev->name, name, IFNAMSIZ))
705 return dev;
706
707 return NULL;
708}
709EXPORT_SYMBOL(dev_get_by_name_rcu);
710
1da177e4
LT
711/**
712 * dev_get_by_name - find a device by its name
c4ea43c5 713 * @net: the applicable net namespace
1da177e4
LT
714 * @name: name to find
715 *
716 * Find an interface by name. This can be called from any
717 * context and does its own locking. The returned handle has
718 * the usage count incremented and the caller must use dev_put() to
719 * release it when it is no longer needed. %NULL is returned if no
720 * matching device is found.
721 */
722
881d966b 723struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
724{
725 struct net_device *dev;
726
72c9528b
ED
727 rcu_read_lock();
728 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
729 if (dev)
730 dev_hold(dev);
72c9528b 731 rcu_read_unlock();
1da177e4
LT
732 return dev;
733}
d1b19dff 734EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
735
736/**
737 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 738 * @net: the applicable net namespace
1da177e4
LT
739 * @ifindex: index of device
740 *
741 * Search for an interface by index. Returns %NULL if the device
742 * is not found or a pointer to the device. The device has not
743 * had its reference counter increased so the caller must be careful
744 * about locking. The caller must hold either the RTNL semaphore
745 * or @dev_base_lock.
746 */
747
881d966b 748struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 749{
0bd8d536
ED
750 struct net_device *dev;
751 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 752
b67bfe0d 753 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
754 if (dev->ifindex == ifindex)
755 return dev;
0bd8d536 756
1da177e4
LT
757 return NULL;
758}
d1b19dff 759EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 760
fb699dfd
ED
761/**
762 * dev_get_by_index_rcu - find a device by its ifindex
763 * @net: the applicable net namespace
764 * @ifindex: index of device
765 *
766 * Search for an interface by index. Returns %NULL if the device
767 * is not found or a pointer to the device. The device has not
768 * had its reference counter increased so the caller must be careful
769 * about locking. The caller must hold RCU lock.
770 */
771
772struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
773{
fb699dfd
ED
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
776
b67bfe0d 777 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
778 if (dev->ifindex == ifindex)
779 return dev;
780
781 return NULL;
782}
783EXPORT_SYMBOL(dev_get_by_index_rcu);
784
1da177e4
LT
785
786/**
787 * dev_get_by_index - find a device by its ifindex
c4ea43c5 788 * @net: the applicable net namespace
1da177e4
LT
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns NULL if the device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
795 */
796
881d966b 797struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
798{
799 struct net_device *dev;
800
fb699dfd
ED
801 rcu_read_lock();
802 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
803 if (dev)
804 dev_hold(dev);
fb699dfd 805 rcu_read_unlock();
1da177e4
LT
806 return dev;
807}
d1b19dff 808EXPORT_SYMBOL(dev_get_by_index);
1da177e4 809
5dbe7c17
NS
810/**
811 * netdev_get_name - get a netdevice name, knowing its ifindex.
812 * @net: network namespace
813 * @name: a pointer to the buffer where the name will be stored.
814 * @ifindex: the ifindex of the interface to get the name from.
815 *
816 * The use of raw_seqcount_begin() and cond_resched() before
817 * retrying is required as we want to give the writers a chance
818 * to complete when CONFIG_PREEMPT is not set.
819 */
820int netdev_get_name(struct net *net, char *name, int ifindex)
821{
822 struct net_device *dev;
823 unsigned int seq;
824
825retry:
826 seq = raw_seqcount_begin(&devnet_rename_seq);
827 rcu_read_lock();
828 dev = dev_get_by_index_rcu(net, ifindex);
829 if (!dev) {
830 rcu_read_unlock();
831 return -ENODEV;
832 }
833
834 strcpy(name, dev->name);
835 rcu_read_unlock();
836 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837 cond_resched();
838 goto retry;
839 }
840
841 return 0;
842}
843
1da177e4 844/**
941666c2 845 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 846 * @net: the applicable net namespace
1da177e4
LT
847 * @type: media type of device
848 * @ha: hardware address
849 *
850 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
851 * is not found or a pointer to the device.
852 * The caller must hold RCU or RTNL.
941666c2 853 * The returned device has not had its ref count increased
1da177e4
LT
854 * and the caller must therefore be careful about locking
855 *
1da177e4
LT
856 */
857
941666c2
ED
858struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859 const char *ha)
1da177e4
LT
860{
861 struct net_device *dev;
862
941666c2 863 for_each_netdev_rcu(net, dev)
1da177e4
LT
864 if (dev->type == type &&
865 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
866 return dev;
867
868 return NULL;
1da177e4 869}
941666c2 870EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 871
881d966b 872struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
873{
874 struct net_device *dev;
875
4e9cac2b 876 ASSERT_RTNL();
881d966b 877 for_each_netdev(net, dev)
4e9cac2b 878 if (dev->type == type)
7562f876
PE
879 return dev;
880
881 return NULL;
4e9cac2b 882}
4e9cac2b
PM
883EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
881d966b 885struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 886{
99fe3c39 887 struct net_device *dev, *ret = NULL;
4e9cac2b 888
99fe3c39
ED
889 rcu_read_lock();
890 for_each_netdev_rcu(net, dev)
891 if (dev->type == type) {
892 dev_hold(dev);
893 ret = dev;
894 break;
895 }
896 rcu_read_unlock();
897 return ret;
1da177e4 898}
1da177e4
LT
899EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901/**
6c555490 902 * __dev_get_by_flags - find any device with given flags
c4ea43c5 903 * @net: the applicable net namespace
1da177e4
LT
904 * @if_flags: IFF_* values
905 * @mask: bitmask of bits in if_flags to check
906 *
907 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 908 * is not found or a pointer to the device. Must be called inside
6c555490 909 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
910 */
911
6c555490
WC
912struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913 unsigned short mask)
1da177e4 914{
7562f876 915 struct net_device *dev, *ret;
1da177e4 916
6c555490
WC
917 ASSERT_RTNL();
918
7562f876 919 ret = NULL;
6c555490 920 for_each_netdev(net, dev) {
1da177e4 921 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 922 ret = dev;
1da177e4
LT
923 break;
924 }
925 }
7562f876 926 return ret;
1da177e4 927}
6c555490 928EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
929
930/**
931 * dev_valid_name - check if name is okay for network device
932 * @name: name string
933 *
934 * Network device names need to be valid file names to
c7fa9d18
DM
935 * to allow sysfs to work. We also disallow any kind of
936 * whitespace.
1da177e4 937 */
95f050bf 938bool dev_valid_name(const char *name)
1da177e4 939{
c7fa9d18 940 if (*name == '\0')
95f050bf 941 return false;
b6fe17d6 942 if (strlen(name) >= IFNAMSIZ)
95f050bf 943 return false;
c7fa9d18 944 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 945 return false;
c7fa9d18
DM
946
947 while (*name) {
948 if (*name == '/' || isspace(*name))
95f050bf 949 return false;
c7fa9d18
DM
950 name++;
951 }
95f050bf 952 return true;
1da177e4 953}
d1b19dff 954EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
955
956/**
b267b179
EB
957 * __dev_alloc_name - allocate a name for a device
958 * @net: network namespace to allocate the device name in
1da177e4 959 * @name: name format string
b267b179 960 * @buf: scratch buffer and result name string
1da177e4
LT
961 *
962 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
963 * id. It scans list of devices to build up a free map, then chooses
964 * the first empty slot. The caller must hold the dev_base or rtnl lock
965 * while allocating the name and adding the device in order to avoid
966 * duplicates.
967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
969 */
970
b267b179 971static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
972{
973 int i = 0;
1da177e4
LT
974 const char *p;
975 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 976 unsigned long *inuse;
1da177e4
LT
977 struct net_device *d;
978
979 p = strnchr(name, IFNAMSIZ-1, '%');
980 if (p) {
981 /*
982 * Verify the string as this thing may have come from
983 * the user. There must be either one "%d" and no other "%"
984 * characters.
985 */
986 if (p[1] != 'd' || strchr(p + 2, '%'))
987 return -EINVAL;
988
989 /* Use one page as a bit array of possible slots */
cfcabdcc 990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
991 if (!inuse)
992 return -ENOMEM;
993
881d966b 994 for_each_netdev(net, d) {
1da177e4
LT
995 if (!sscanf(d->name, name, &i))
996 continue;
997 if (i < 0 || i >= max_netdevices)
998 continue;
999
1000 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1001 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1002 if (!strncmp(buf, d->name, IFNAMSIZ))
1003 set_bit(i, inuse);
1004 }
1005
1006 i = find_first_zero_bit(inuse, max_netdevices);
1007 free_page((unsigned long) inuse);
1008 }
1009
d9031024
OP
1010 if (buf != name)
1011 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1012 if (!__dev_get_by_name(net, buf))
1da177e4 1013 return i;
1da177e4
LT
1014
1015 /* It is possible to run out of possible slots
1016 * when the name is long and there isn't enough space left
1017 * for the digits, or if all bits are used.
1018 */
1019 return -ENFILE;
1020}
1021
b267b179
EB
1022/**
1023 * dev_alloc_name - allocate a name for a device
1024 * @dev: device
1025 * @name: name format string
1026 *
1027 * Passed a format string - eg "lt%d" it will try and find a suitable
1028 * id. It scans list of devices to build up a free map, then chooses
1029 * the first empty slot. The caller must hold the dev_base or rtnl lock
1030 * while allocating the name and adding the device in order to avoid
1031 * duplicates.
1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033 * Returns the number of the unit assigned or a negative errno code.
1034 */
1035
1036int dev_alloc_name(struct net_device *dev, const char *name)
1037{
1038 char buf[IFNAMSIZ];
1039 struct net *net;
1040 int ret;
1041
c346dca1
YH
1042 BUG_ON(!dev_net(dev));
1043 net = dev_net(dev);
b267b179
EB
1044 ret = __dev_alloc_name(net, name, buf);
1045 if (ret >= 0)
1046 strlcpy(dev->name, buf, IFNAMSIZ);
1047 return ret;
1048}
d1b19dff 1049EXPORT_SYMBOL(dev_alloc_name);
b267b179 1050
828de4f6
G
1051static int dev_alloc_name_ns(struct net *net,
1052 struct net_device *dev,
1053 const char *name)
d9031024 1054{
828de4f6
G
1055 char buf[IFNAMSIZ];
1056 int ret;
8ce6cebc 1057
828de4f6
G
1058 ret = __dev_alloc_name(net, name, buf);
1059 if (ret >= 0)
1060 strlcpy(dev->name, buf, IFNAMSIZ);
1061 return ret;
1062}
1063
1064static int dev_get_valid_name(struct net *net,
1065 struct net_device *dev,
1066 const char *name)
1067{
1068 BUG_ON(!net);
8ce6cebc 1069
d9031024
OP
1070 if (!dev_valid_name(name))
1071 return -EINVAL;
1072
1c5cae81 1073 if (strchr(name, '%'))
828de4f6 1074 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1075 else if (__dev_get_by_name(net, name))
1076 return -EEXIST;
8ce6cebc
DL
1077 else if (dev->name != name)
1078 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1079
1080 return 0;
1081}
1da177e4
LT
1082
1083/**
1084 * dev_change_name - change name of a device
1085 * @dev: device
1086 * @newname: name (or format string) must be at least IFNAMSIZ
1087 *
1088 * Change name of a device, can pass format strings "eth%d".
1089 * for wildcarding.
1090 */
cf04a4c7 1091int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1092{
238fa362 1093 unsigned char old_assign_type;
fcc5a03a 1094 char oldname[IFNAMSIZ];
1da177e4 1095 int err = 0;
fcc5a03a 1096 int ret;
881d966b 1097 struct net *net;
1da177e4
LT
1098
1099 ASSERT_RTNL();
c346dca1 1100 BUG_ON(!dev_net(dev));
1da177e4 1101
c346dca1 1102 net = dev_net(dev);
1da177e4
LT
1103 if (dev->flags & IFF_UP)
1104 return -EBUSY;
1105
30e6c9fa 1106 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1107
1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1109 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1110 return 0;
c91f6df2 1111 }
c8d90dca 1112
fcc5a03a
HX
1113 memcpy(oldname, dev->name, IFNAMSIZ);
1114
828de4f6 1115 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1116 if (err < 0) {
30e6c9fa 1117 write_seqcount_end(&devnet_rename_seq);
d9031024 1118 return err;
c91f6df2 1119 }
1da177e4 1120
6fe82a39
VF
1121 if (oldname[0] && !strchr(oldname, '%'))
1122 netdev_info(dev, "renamed from %s\n", oldname);
1123
238fa362
TG
1124 old_assign_type = dev->name_assign_type;
1125 dev->name_assign_type = NET_NAME_RENAMED;
1126
fcc5a03a 1127rollback:
a1b3f594
EB
1128 ret = device_rename(&dev->dev, dev->name);
1129 if (ret) {
1130 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1131 dev->name_assign_type = old_assign_type;
30e6c9fa 1132 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1133 return ret;
dcc99773 1134 }
7f988eab 1135
30e6c9fa 1136 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1137
5bb025fa
VF
1138 netdev_adjacent_rename_links(dev, oldname);
1139
7f988eab 1140 write_lock_bh(&dev_base_lock);
372b2312 1141 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1142 write_unlock_bh(&dev_base_lock);
1143
1144 synchronize_rcu();
1145
1146 write_lock_bh(&dev_base_lock);
1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1148 write_unlock_bh(&dev_base_lock);
1149
056925ab 1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1151 ret = notifier_to_errno(ret);
1152
1153 if (ret) {
91e9c07b
ED
1154 /* err >= 0 after dev_alloc_name() or stores the first errno */
1155 if (err >= 0) {
fcc5a03a 1156 err = ret;
30e6c9fa 1157 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1158 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1159 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1160 dev->name_assign_type = old_assign_type;
1161 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1162 goto rollback;
91e9c07b 1163 } else {
7b6cd1ce 1164 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1165 dev->name, ret);
fcc5a03a
HX
1166 }
1167 }
1da177e4
LT
1168
1169 return err;
1170}
1171
0b815a1a
SH
1172/**
1173 * dev_set_alias - change ifalias of a device
1174 * @dev: device
1175 * @alias: name up to IFALIASZ
f0db275a 1176 * @len: limit of bytes to copy from info
0b815a1a
SH
1177 *
1178 * Set ifalias for a device,
1179 */
1180int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1181{
7364e445
AK
1182 char *new_ifalias;
1183
0b815a1a
SH
1184 ASSERT_RTNL();
1185
1186 if (len >= IFALIASZ)
1187 return -EINVAL;
1188
96ca4a2c 1189 if (!len) {
388dfc2d
SK
1190 kfree(dev->ifalias);
1191 dev->ifalias = NULL;
96ca4a2c
OH
1192 return 0;
1193 }
1194
7364e445
AK
1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1196 if (!new_ifalias)
0b815a1a 1197 return -ENOMEM;
7364e445 1198 dev->ifalias = new_ifalias;
0b815a1a
SH
1199
1200 strlcpy(dev->ifalias, alias, len+1);
1201 return len;
1202}
1203
1204
d8a33ac4 1205/**
3041a069 1206 * netdev_features_change - device changes features
d8a33ac4
SH
1207 * @dev: device to cause notification
1208 *
1209 * Called to indicate a device has changed features.
1210 */
1211void netdev_features_change(struct net_device *dev)
1212{
056925ab 1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1214}
1215EXPORT_SYMBOL(netdev_features_change);
1216
1da177e4
LT
1217/**
1218 * netdev_state_change - device changes state
1219 * @dev: device to cause notification
1220 *
1221 * Called to indicate a device has changed state. This function calls
1222 * the notifier chains for netdev_chain and sends a NEWLINK message
1223 * to the routing socket.
1224 */
1225void netdev_state_change(struct net_device *dev)
1226{
1227 if (dev->flags & IFF_UP) {
54951194
LP
1228 struct netdev_notifier_change_info change_info;
1229
1230 change_info.flags_changed = 0;
1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1232 &change_info.info);
7f294054 1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1234 }
1235}
d1b19dff 1236EXPORT_SYMBOL(netdev_state_change);
1da177e4 1237
ee89bab1
AW
1238/**
1239 * netdev_notify_peers - notify network peers about existence of @dev
1240 * @dev: network device
1241 *
1242 * Generate traffic such that interested network peers are aware of
1243 * @dev, such as by generating a gratuitous ARP. This may be used when
1244 * a device wants to inform the rest of the network about some sort of
1245 * reconfiguration such as a failover event or virtual machine
1246 * migration.
1247 */
1248void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1249{
ee89bab1
AW
1250 rtnl_lock();
1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1252 rtnl_unlock();
c1da4ac7 1253}
ee89bab1 1254EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1255
bd380811 1256static int __dev_open(struct net_device *dev)
1da177e4 1257{
d314774c 1258 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1259 int ret;
1da177e4 1260
e46b66bc
BH
1261 ASSERT_RTNL();
1262
1da177e4
LT
1263 if (!netif_device_present(dev))
1264 return -ENODEV;
1265
ca99ca14
NH
1266 /* Block netpoll from trying to do any rx path servicing.
1267 * If we don't do this there is a chance ndo_poll_controller
1268 * or ndo_poll may be running while we open the device
1269 */
66b5552f 1270 netpoll_poll_disable(dev);
ca99ca14 1271
3b8bcfd5
JB
1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 ret = notifier_to_errno(ret);
1274 if (ret)
1275 return ret;
1276
1da177e4 1277 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1278
d314774c
SH
1279 if (ops->ndo_validate_addr)
1280 ret = ops->ndo_validate_addr(dev);
bada339b 1281
d314774c
SH
1282 if (!ret && ops->ndo_open)
1283 ret = ops->ndo_open(dev);
1da177e4 1284
66b5552f 1285 netpoll_poll_enable(dev);
ca99ca14 1286
bada339b
JG
1287 if (ret)
1288 clear_bit(__LINK_STATE_START, &dev->state);
1289 else {
1da177e4 1290 dev->flags |= IFF_UP;
4417da66 1291 dev_set_rx_mode(dev);
1da177e4 1292 dev_activate(dev);
7bf23575 1293 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1294 }
bada339b 1295
1da177e4
LT
1296 return ret;
1297}
1298
1299/**
bd380811
PM
1300 * dev_open - prepare an interface for use.
1301 * @dev: device to open
1da177e4 1302 *
bd380811
PM
1303 * Takes a device from down to up state. The device's private open
1304 * function is invoked and then the multicast lists are loaded. Finally
1305 * the device is moved into the up state and a %NETDEV_UP message is
1306 * sent to the netdev notifier chain.
1307 *
1308 * Calling this function on an active interface is a nop. On a failure
1309 * a negative errno code is returned.
1da177e4 1310 */
bd380811
PM
1311int dev_open(struct net_device *dev)
1312{
1313 int ret;
1314
bd380811
PM
1315 if (dev->flags & IFF_UP)
1316 return 0;
1317
bd380811
PM
1318 ret = __dev_open(dev);
1319 if (ret < 0)
1320 return ret;
1321
7f294054 1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1323 call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325 return ret;
1326}
1327EXPORT_SYMBOL(dev_open);
1328
44345724 1329static int __dev_close_many(struct list_head *head)
1da177e4 1330{
44345724 1331 struct net_device *dev;
e46b66bc 1332
bd380811 1333 ASSERT_RTNL();
9d5010db
DM
1334 might_sleep();
1335
5cde2829 1336 list_for_each_entry(dev, head, close_list) {
3f4df206 1337 /* Temporarily disable netpoll until the interface is down */
66b5552f 1338 netpoll_poll_disable(dev);
3f4df206 1339
44345724 1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1341
44345724 1342 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1343
44345724
OP
1344 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345 * can be even on different cpu. So just clear netif_running().
1346 *
1347 * dev->stop() will invoke napi_disable() on all of it's
1348 * napi_struct instances on this device.
1349 */
4e857c58 1350 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1351 }
1da177e4 1352
44345724 1353 dev_deactivate_many(head);
d8b2a4d2 1354
5cde2829 1355 list_for_each_entry(dev, head, close_list) {
44345724 1356 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1357
44345724
OP
1358 /*
1359 * Call the device specific close. This cannot fail.
1360 * Only if device is UP
1361 *
1362 * We allow it to be called even after a DETACH hot-plug
1363 * event.
1364 */
1365 if (ops->ndo_stop)
1366 ops->ndo_stop(dev);
1367
44345724 1368 dev->flags &= ~IFF_UP;
66b5552f 1369 netpoll_poll_enable(dev);
44345724
OP
1370 }
1371
1372 return 0;
1373}
1374
1375static int __dev_close(struct net_device *dev)
1376{
f87e6f47 1377 int retval;
44345724
OP
1378 LIST_HEAD(single);
1379
5cde2829 1380 list_add(&dev->close_list, &single);
f87e6f47
LT
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
ca99ca14 1383
f87e6f47 1384 return retval;
44345724
OP
1385}
1386
3fbd8758 1387static int dev_close_many(struct list_head *head)
44345724
OP
1388{
1389 struct net_device *dev, *tmp;
1da177e4 1390
5cde2829
EB
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1393 if (!(dev->flags & IFF_UP))
5cde2829 1394 list_del_init(&dev->close_list);
44345724
OP
1395
1396 __dev_close_many(head);
1da177e4 1397
5cde2829 1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
5cde2829 1401 list_del_init(&dev->close_list);
44345724 1402 }
bd380811
PM
1403
1404 return 0;
1405}
1406
1407/**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416int dev_close(struct net_device *dev)
1417{
e14a5993
ED
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1da177e4 1420
5cde2829 1421 list_add(&dev->close_list, &single);
e14a5993
ED
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
da6e378b 1425 return 0;
1da177e4 1426}
d1b19dff 1427EXPORT_SYMBOL(dev_close);
1da177e4
LT
1428
1429
0187bdfb
BH
1430/**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438void dev_disable_lro(struct net_device *dev)
1439{
fbe168ba
MK
1440 struct net_device *lower_dev;
1441 struct list_head *iter;
529d0489 1442
bc5787c6
MM
1443 dev->wanted_features &= ~NETIF_F_LRO;
1444 netdev_update_features(dev);
27660515 1445
22d5969f
MM
1446 if (unlikely(dev->features & NETIF_F_LRO))
1447 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1448
1449 netdev_for_each_lower_dev(dev, lower_dev, iter)
1450 dev_disable_lro(lower_dev);
0187bdfb
BH
1451}
1452EXPORT_SYMBOL(dev_disable_lro);
1453
351638e7
JP
1454static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1455 struct net_device *dev)
1456{
1457 struct netdev_notifier_info info;
1458
1459 netdev_notifier_info_init(&info, dev);
1460 return nb->notifier_call(nb, val, &info);
1461}
0187bdfb 1462
881d966b
EB
1463static int dev_boot_phase = 1;
1464
1da177e4
LT
1465/**
1466 * register_netdevice_notifier - register a network notifier block
1467 * @nb: notifier
1468 *
1469 * Register a notifier to be called when network device events occur.
1470 * The notifier passed is linked into the kernel structures and must
1471 * not be reused until it has been unregistered. A negative errno code
1472 * is returned on a failure.
1473 *
1474 * When registered all registration and up events are replayed
4ec93edb 1475 * to the new notifier to allow device to have a race free
1da177e4
LT
1476 * view of the network device list.
1477 */
1478
1479int register_netdevice_notifier(struct notifier_block *nb)
1480{
1481 struct net_device *dev;
fcc5a03a 1482 struct net_device *last;
881d966b 1483 struct net *net;
1da177e4
LT
1484 int err;
1485
1486 rtnl_lock();
f07d5b94 1487 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1488 if (err)
1489 goto unlock;
881d966b
EB
1490 if (dev_boot_phase)
1491 goto unlock;
1492 for_each_net(net) {
1493 for_each_netdev(net, dev) {
351638e7 1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1495 err = notifier_to_errno(err);
1496 if (err)
1497 goto rollback;
1498
1499 if (!(dev->flags & IFF_UP))
1500 continue;
1da177e4 1501
351638e7 1502 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1503 }
1da177e4 1504 }
fcc5a03a
HX
1505
1506unlock:
1da177e4
LT
1507 rtnl_unlock();
1508 return err;
fcc5a03a
HX
1509
1510rollback:
1511 last = dev;
881d966b
EB
1512 for_each_net(net) {
1513 for_each_netdev(net, dev) {
1514 if (dev == last)
8f891489 1515 goto outroll;
fcc5a03a 1516
881d966b 1517 if (dev->flags & IFF_UP) {
351638e7
JP
1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1519 dev);
1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1521 }
351638e7 1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1523 }
fcc5a03a 1524 }
c67625a1 1525
8f891489 1526outroll:
c67625a1 1527 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1528 goto unlock;
1da177e4 1529}
d1b19dff 1530EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1531
1532/**
1533 * unregister_netdevice_notifier - unregister a network notifier block
1534 * @nb: notifier
1535 *
1536 * Unregister a notifier previously registered by
1537 * register_netdevice_notifier(). The notifier is unlinked into the
1538 * kernel structures and may then be reused. A negative errno code
1539 * is returned on a failure.
7d3d43da
EB
1540 *
1541 * After unregistering unregister and down device events are synthesized
1542 * for all devices on the device list to the removed notifier to remove
1543 * the need for special case cleanup code.
1da177e4
LT
1544 */
1545
1546int unregister_netdevice_notifier(struct notifier_block *nb)
1547{
7d3d43da
EB
1548 struct net_device *dev;
1549 struct net *net;
9f514950
HX
1550 int err;
1551
1552 rtnl_lock();
f07d5b94 1553 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1554 if (err)
1555 goto unlock;
1556
1557 for_each_net(net) {
1558 for_each_netdev(net, dev) {
1559 if (dev->flags & IFF_UP) {
351638e7
JP
1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1561 dev);
1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1563 }
351638e7 1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1565 }
1566 }
1567unlock:
9f514950
HX
1568 rtnl_unlock();
1569 return err;
1da177e4 1570}
d1b19dff 1571EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1572
351638e7
JP
1573/**
1574 * call_netdevice_notifiers_info - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1577 * @info: notifier information data
1578 *
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1581 */
1582
1d143d9f 1583static int call_netdevice_notifiers_info(unsigned long val,
1584 struct net_device *dev,
1585 struct netdev_notifier_info *info)
351638e7
JP
1586{
1587 ASSERT_RTNL();
1588 netdev_notifier_info_init(info, dev);
1589 return raw_notifier_call_chain(&netdev_chain, val, info);
1590}
351638e7 1591
1da177e4
LT
1592/**
1593 * call_netdevice_notifiers - call all network notifier blocks
1594 * @val: value passed unmodified to notifier function
c4ea43c5 1595 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1596 *
1597 * Call all network notifier blocks. Parameters and return value
f07d5b94 1598 * are as for raw_notifier_call_chain().
1da177e4
LT
1599 */
1600
ad7379d4 1601int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1602{
351638e7
JP
1603 struct netdev_notifier_info info;
1604
1605 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1606}
edf947f1 1607EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1608
c5905afb 1609static struct static_key netstamp_needed __read_mostly;
b90e5794 1610#ifdef HAVE_JUMP_LABEL
c5905afb 1611/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1612 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1613 * static_key_slow_dec() calls.
b90e5794
ED
1614 */
1615static atomic_t netstamp_needed_deferred;
1616#endif
1da177e4
LT
1617
1618void net_enable_timestamp(void)
1619{
b90e5794
ED
1620#ifdef HAVE_JUMP_LABEL
1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1622
1623 if (deferred) {
1624 while (--deferred)
c5905afb 1625 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1626 return;
1627 }
1628#endif
c5905afb 1629 static_key_slow_inc(&netstamp_needed);
1da177e4 1630}
d1b19dff 1631EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1632
1633void net_disable_timestamp(void)
1634{
b90e5794
ED
1635#ifdef HAVE_JUMP_LABEL
1636 if (in_interrupt()) {
1637 atomic_inc(&netstamp_needed_deferred);
1638 return;
1639 }
1640#endif
c5905afb 1641 static_key_slow_dec(&netstamp_needed);
1da177e4 1642}
d1b19dff 1643EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1644
3b098e2d 1645static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1646{
588f0330 1647 skb->tstamp.tv64 = 0;
c5905afb 1648 if (static_key_false(&netstamp_needed))
a61bbcf2 1649 __net_timestamp(skb);
1da177e4
LT
1650}
1651
588f0330 1652#define net_timestamp_check(COND, SKB) \
c5905afb 1653 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1654 if ((COND) && !(SKB)->tstamp.tv64) \
1655 __net_timestamp(SKB); \
1656 } \
3b098e2d 1657
1ee481fb 1658bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
79b569f0
DL
1659{
1660 unsigned int len;
1661
1662 if (!(dev->flags & IFF_UP))
1663 return false;
1664
1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666 if (skb->len <= len)
1667 return true;
1668
1669 /* if TSO is enabled, we don't care about the length as the packet
1670 * could be forwarded without being segmented before
1671 */
1672 if (skb_is_gso(skb))
1673 return true;
1674
1675 return false;
1676}
1ee481fb 1677EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1678
a0265d28
HX
1679int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680{
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694
1695 skb_scrub_packet(skb, true);
1696 skb->protocol = eth_type_trans(skb, dev);
2c26d34b 1697 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
a0265d28
HX
1698
1699 return 0;
1700}
1701EXPORT_SYMBOL_GPL(__dev_forward_skb);
1702
44540960
AB
1703/**
1704 * dev_forward_skb - loopback an skb to another netif
1705 *
1706 * @dev: destination network device
1707 * @skb: buffer to forward
1708 *
1709 * return values:
1710 * NET_RX_SUCCESS (no congestion)
6ec82562 1711 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1712 *
1713 * dev_forward_skb can be used for injecting an skb from the
1714 * start_xmit function of one device into the receive queue
1715 * of another device.
1716 *
1717 * The receiving device may be in another namespace, so
1718 * we have to clear all information in the skb that could
1719 * impact namespace isolation.
1720 */
1721int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1722{
a0265d28 1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1724}
1725EXPORT_SYMBOL_GPL(dev_forward_skb);
1726
71d9dec2
CG
1727static inline int deliver_skb(struct sk_buff *skb,
1728 struct packet_type *pt_prev,
1729 struct net_device *orig_dev)
1730{
1080e512
MT
1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1732 return -ENOMEM;
71d9dec2
CG
1733 atomic_inc(&skb->users);
1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1735}
1736
c0de08d0
EL
1737static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1738{
a3d744e9 1739 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1740 return false;
1741
1742 if (ptype->id_match)
1743 return ptype->id_match(ptype, skb->sk);
1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1745 return true;
1746
1747 return false;
1748}
1749
1da177e4
LT
1750/*
1751 * Support routine. Sends outgoing frames to any network
1752 * taps currently in use.
1753 */
1754
f6a78bfc 1755static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1756{
1757 struct packet_type *ptype;
71d9dec2
CG
1758 struct sk_buff *skb2 = NULL;
1759 struct packet_type *pt_prev = NULL;
a61bbcf2 1760
1da177e4
LT
1761 rcu_read_lock();
1762 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763 /* Never send packets back to the socket
1764 * they originated from - MvS (miquels@drinkel.ow.org)
1765 */
1766 if ((ptype->dev == dev || !ptype->dev) &&
c0de08d0 1767 (!skb_loop_sk(ptype, skb))) {
71d9dec2
CG
1768 if (pt_prev) {
1769 deliver_skb(skb2, pt_prev, skb->dev);
1770 pt_prev = ptype;
1771 continue;
1772 }
1773
1774 skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1775 if (!skb2)
1776 break;
1777
70978182
ED
1778 net_timestamp_set(skb2);
1779
1da177e4
LT
1780 /* skb->nh should be correctly
1781 set by sender, so that the second statement is
1782 just protection against buggy protocols.
1783 */
459a98ed 1784 skb_reset_mac_header(skb2);
1da177e4 1785
d56f90a7 1786 if (skb_network_header(skb2) < skb2->data ||
ced14f68 1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
e87cc472
JP
1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789 ntohs(skb2->protocol),
1790 dev->name);
c1d2bbe1 1791 skb_reset_network_header(skb2);
1da177e4
LT
1792 }
1793
b0e380b1 1794 skb2->transport_header = skb2->network_header;
1da177e4 1795 skb2->pkt_type = PACKET_OUTGOING;
71d9dec2 1796 pt_prev = ptype;
1da177e4
LT
1797 }
1798 }
71d9dec2
CG
1799 if (pt_prev)
1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1801 rcu_read_unlock();
1802}
1803
2c53040f
BH
1804/**
1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1806 * @dev: Network device
1807 * @txq: number of queues available
1808 *
1809 * If real_num_tx_queues is changed the tc mappings may no longer be
1810 * valid. To resolve this verify the tc mapping remains valid and if
1811 * not NULL the mapping. With no priorities mapping to this
1812 * offset/count pair it will no longer be used. In the worst case TC0
1813 * is invalid nothing can be done so disable priority mappings. If is
1814 * expected that drivers will fix this mapping if they can before
1815 * calling netif_set_real_num_tx_queues.
1816 */
bb134d22 1817static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1818{
1819 int i;
1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1821
1822 /* If TC0 is invalidated disable TC mapping */
1823 if (tc->offset + tc->count > txq) {
7b6cd1ce 1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1825 dev->num_tc = 0;
1826 return;
1827 }
1828
1829 /* Invalidated prio to tc mappings set to TC0 */
1830 for (i = 1; i < TC_BITMASK + 1; i++) {
1831 int q = netdev_get_prio_tc_map(dev, i);
1832
1833 tc = &dev->tc_to_txq[q];
1834 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1836 i, q);
4f57c087
JF
1837 netdev_set_prio_tc_map(dev, i, 0);
1838 }
1839 }
1840}
1841
537c00de
AD
1842#ifdef CONFIG_XPS
1843static DEFINE_MUTEX(xps_map_mutex);
1844#define xmap_dereference(P) \
1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1846
10cdc3f3
AD
1847static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1848 int cpu, u16 index)
537c00de 1849{
10cdc3f3
AD
1850 struct xps_map *map = NULL;
1851 int pos;
537c00de 1852
10cdc3f3
AD
1853 if (dev_maps)
1854 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1855
10cdc3f3
AD
1856 for (pos = 0; map && pos < map->len; pos++) {
1857 if (map->queues[pos] == index) {
537c00de
AD
1858 if (map->len > 1) {
1859 map->queues[pos] = map->queues[--map->len];
1860 } else {
10cdc3f3 1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1862 kfree_rcu(map, rcu);
1863 map = NULL;
1864 }
10cdc3f3 1865 break;
537c00de 1866 }
537c00de
AD
1867 }
1868
10cdc3f3
AD
1869 return map;
1870}
1871
024e9679 1872static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1873{
1874 struct xps_dev_maps *dev_maps;
024e9679 1875 int cpu, i;
10cdc3f3
AD
1876 bool active = false;
1877
1878 mutex_lock(&xps_map_mutex);
1879 dev_maps = xmap_dereference(dev->xps_maps);
1880
1881 if (!dev_maps)
1882 goto out_no_maps;
1883
1884 for_each_possible_cpu(cpu) {
024e9679
AD
1885 for (i = index; i < dev->num_tx_queues; i++) {
1886 if (!remove_xps_queue(dev_maps, cpu, i))
1887 break;
1888 }
1889 if (i == dev->num_tx_queues)
10cdc3f3
AD
1890 active = true;
1891 }
1892
1893 if (!active) {
537c00de
AD
1894 RCU_INIT_POINTER(dev->xps_maps, NULL);
1895 kfree_rcu(dev_maps, rcu);
1896 }
1897
024e9679
AD
1898 for (i = index; i < dev->num_tx_queues; i++)
1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1900 NUMA_NO_NODE);
1901
537c00de
AD
1902out_no_maps:
1903 mutex_unlock(&xps_map_mutex);
1904}
1905
01c5f864
AD
1906static struct xps_map *expand_xps_map(struct xps_map *map,
1907 int cpu, u16 index)
1908{
1909 struct xps_map *new_map;
1910 int alloc_len = XPS_MIN_MAP_ALLOC;
1911 int i, pos;
1912
1913 for (pos = 0; map && pos < map->len; pos++) {
1914 if (map->queues[pos] != index)
1915 continue;
1916 return map;
1917 }
1918
1919 /* Need to add queue to this CPU's existing map */
1920 if (map) {
1921 if (pos < map->alloc_len)
1922 return map;
1923
1924 alloc_len = map->alloc_len * 2;
1925 }
1926
1927 /* Need to allocate new map to store queue on this CPU's map */
1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1929 cpu_to_node(cpu));
1930 if (!new_map)
1931 return NULL;
1932
1933 for (i = 0; i < pos; i++)
1934 new_map->queues[i] = map->queues[i];
1935 new_map->alloc_len = alloc_len;
1936 new_map->len = pos;
1937
1938 return new_map;
1939}
1940
3573540c
MT
1941int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1942 u16 index)
537c00de 1943{
01c5f864 1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 1945 struct xps_map *map, *new_map;
537c00de 1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
1947 int cpu, numa_node_id = -2;
1948 bool active = false;
537c00de
AD
1949
1950 mutex_lock(&xps_map_mutex);
1951
1952 dev_maps = xmap_dereference(dev->xps_maps);
1953
01c5f864
AD
1954 /* allocate memory for queue storage */
1955 for_each_online_cpu(cpu) {
1956 if (!cpumask_test_cpu(cpu, mask))
1957 continue;
1958
1959 if (!new_dev_maps)
1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
1961 if (!new_dev_maps) {
1962 mutex_unlock(&xps_map_mutex);
01c5f864 1963 return -ENOMEM;
2bb60cb9 1964 }
01c5f864
AD
1965
1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1967 NULL;
1968
1969 map = expand_xps_map(map, cpu, index);
1970 if (!map)
1971 goto error;
1972
1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974 }
1975
1976 if (!new_dev_maps)
1977 goto out_no_new_maps;
1978
537c00de 1979 for_each_possible_cpu(cpu) {
01c5f864
AD
1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981 /* add queue to CPU maps */
1982 int pos = 0;
1983
1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985 while ((pos < map->len) && (map->queues[pos] != index))
1986 pos++;
1987
1988 if (pos == map->len)
1989 map->queues[map->len++] = index;
537c00de 1990#ifdef CONFIG_NUMA
537c00de
AD
1991 if (numa_node_id == -2)
1992 numa_node_id = cpu_to_node(cpu);
1993 else if (numa_node_id != cpu_to_node(cpu))
1994 numa_node_id = -1;
537c00de 1995#endif
01c5f864
AD
1996 } else if (dev_maps) {
1997 /* fill in the new device map from the old device map */
1998 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2000 }
01c5f864 2001
537c00de
AD
2002 }
2003
01c5f864
AD
2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2005
537c00de 2006 /* Cleanup old maps */
01c5f864
AD
2007 if (dev_maps) {
2008 for_each_possible_cpu(cpu) {
2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011 if (map && map != new_map)
2012 kfree_rcu(map, rcu);
2013 }
537c00de 2014
01c5f864 2015 kfree_rcu(dev_maps, rcu);
537c00de
AD
2016 }
2017
01c5f864
AD
2018 dev_maps = new_dev_maps;
2019 active = true;
537c00de 2020
01c5f864
AD
2021out_no_new_maps:
2022 /* update Tx queue numa node */
537c00de
AD
2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024 (numa_node_id >= 0) ? numa_node_id :
2025 NUMA_NO_NODE);
2026
01c5f864
AD
2027 if (!dev_maps)
2028 goto out_no_maps;
2029
2030 /* removes queue from unused CPUs */
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2033 continue;
2034
2035 if (remove_xps_queue(dev_maps, cpu, index))
2036 active = true;
2037 }
2038
2039 /* free map if not active */
2040 if (!active) {
2041 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
2045out_no_maps:
537c00de
AD
2046 mutex_unlock(&xps_map_mutex);
2047
2048 return 0;
2049error:
01c5f864
AD
2050 /* remove any maps that we added */
2051 for_each_possible_cpu(cpu) {
2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2054 NULL;
2055 if (new_map && new_map != map)
2056 kfree(new_map);
2057 }
2058
537c00de
AD
2059 mutex_unlock(&xps_map_mutex);
2060
537c00de
AD
2061 kfree(new_dev_maps);
2062 return -ENOMEM;
2063}
2064EXPORT_SYMBOL(netif_set_xps_queue);
2065
2066#endif
f0796d5c
JF
2067/*
2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2070 */
e6484930 2071int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2072{
1d24eb48
TH
2073 int rc;
2074
e6484930
TH
2075 if (txq < 1 || txq > dev->num_tx_queues)
2076 return -EINVAL;
f0796d5c 2077
5c56580b
BH
2078 if (dev->reg_state == NETREG_REGISTERED ||
2079 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2080 ASSERT_RTNL();
2081
1d24eb48
TH
2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2083 txq);
bf264145
TH
2084 if (rc)
2085 return rc;
2086
4f57c087
JF
2087 if (dev->num_tc)
2088 netif_setup_tc(dev, txq);
2089
024e9679 2090 if (txq < dev->real_num_tx_queues) {
e6484930 2091 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2092#ifdef CONFIG_XPS
2093 netif_reset_xps_queues_gt(dev, txq);
2094#endif
2095 }
f0796d5c 2096 }
e6484930
TH
2097
2098 dev->real_num_tx_queues = txq;
2099 return 0;
f0796d5c
JF
2100}
2101EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2102
a953be53 2103#ifdef CONFIG_SYSFS
62fe0b40
BH
2104/**
2105 * netif_set_real_num_rx_queues - set actual number of RX queues used
2106 * @dev: Network device
2107 * @rxq: Actual number of RX queues
2108 *
2109 * This must be called either with the rtnl_lock held or before
2110 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2111 * negative error code. If called before registration, it always
2112 * succeeds.
62fe0b40
BH
2113 */
2114int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2115{
2116 int rc;
2117
bd25fa7b
TH
2118 if (rxq < 1 || rxq > dev->num_rx_queues)
2119 return -EINVAL;
2120
62fe0b40
BH
2121 if (dev->reg_state == NETREG_REGISTERED) {
2122 ASSERT_RTNL();
2123
62fe0b40
BH
2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2125 rxq);
2126 if (rc)
2127 return rc;
62fe0b40
BH
2128 }
2129
2130 dev->real_num_rx_queues = rxq;
2131 return 0;
2132}
2133EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2134#endif
2135
2c53040f
BH
2136/**
2137 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2138 *
2139 * This routine should set an upper limit on the number of RSS queues
2140 * used by default by multiqueue devices.
2141 */
a55b138b 2142int netif_get_num_default_rss_queues(void)
16917b87
YM
2143{
2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2145}
2146EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2147
def82a1d 2148static inline void __netif_reschedule(struct Qdisc *q)
56079431 2149{
def82a1d
JP
2150 struct softnet_data *sd;
2151 unsigned long flags;
56079431 2152
def82a1d 2153 local_irq_save(flags);
903ceff7 2154 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2155 q->next_sched = NULL;
2156 *sd->output_queue_tailp = q;
2157 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2160}
2161
2162void __netif_schedule(struct Qdisc *q)
2163{
2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165 __netif_reschedule(q);
56079431
DV
2166}
2167EXPORT_SYMBOL(__netif_schedule);
2168
e6247027
ED
2169struct dev_kfree_skb_cb {
2170 enum skb_free_reason reason;
2171};
2172
2173static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2174{
e6247027
ED
2175 return (struct dev_kfree_skb_cb *)skb->cb;
2176}
2177
46e5da40
JF
2178void netif_schedule_queue(struct netdev_queue *txq)
2179{
2180 rcu_read_lock();
2181 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2182 struct Qdisc *q = rcu_dereference(txq->qdisc);
2183
2184 __netif_schedule(q);
2185 }
2186 rcu_read_unlock();
2187}
2188EXPORT_SYMBOL(netif_schedule_queue);
2189
2190/**
2191 * netif_wake_subqueue - allow sending packets on subqueue
2192 * @dev: network device
2193 * @queue_index: sub queue index
2194 *
2195 * Resume individual transmit queue of a device with multiple transmit queues.
2196 */
2197void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2198{
2199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2200
2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2202 struct Qdisc *q;
2203
2204 rcu_read_lock();
2205 q = rcu_dereference(txq->qdisc);
2206 __netif_schedule(q);
2207 rcu_read_unlock();
2208 }
2209}
2210EXPORT_SYMBOL(netif_wake_subqueue);
2211
2212void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2213{
2214 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2215 struct Qdisc *q;
2216
2217 rcu_read_lock();
2218 q = rcu_dereference(dev_queue->qdisc);
2219 __netif_schedule(q);
2220 rcu_read_unlock();
2221 }
2222}
2223EXPORT_SYMBOL(netif_tx_wake_queue);
2224
e6247027 2225void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2226{
e6247027 2227 unsigned long flags;
56079431 2228
e6247027
ED
2229 if (likely(atomic_read(&skb->users) == 1)) {
2230 smp_rmb();
2231 atomic_set(&skb->users, 0);
2232 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2233 return;
bea3348e 2234 }
e6247027
ED
2235 get_kfree_skb_cb(skb)->reason = reason;
2236 local_irq_save(flags);
2237 skb->next = __this_cpu_read(softnet_data.completion_queue);
2238 __this_cpu_write(softnet_data.completion_queue, skb);
2239 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2240 local_irq_restore(flags);
56079431 2241}
e6247027 2242EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2243
e6247027 2244void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2245{
2246 if (in_irq() || irqs_disabled())
e6247027 2247 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2248 else
2249 dev_kfree_skb(skb);
2250}
e6247027 2251EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2252
2253
bea3348e
SH
2254/**
2255 * netif_device_detach - mark device as removed
2256 * @dev: network device
2257 *
2258 * Mark device as removed from system and therefore no longer available.
2259 */
56079431
DV
2260void netif_device_detach(struct net_device *dev)
2261{
2262 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2263 netif_running(dev)) {
d543103a 2264 netif_tx_stop_all_queues(dev);
56079431
DV
2265 }
2266}
2267EXPORT_SYMBOL(netif_device_detach);
2268
bea3348e
SH
2269/**
2270 * netif_device_attach - mark device as attached
2271 * @dev: network device
2272 *
2273 * Mark device as attached from system and restart if needed.
2274 */
56079431
DV
2275void netif_device_attach(struct net_device *dev)
2276{
2277 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2278 netif_running(dev)) {
d543103a 2279 netif_tx_wake_all_queues(dev);
4ec93edb 2280 __netdev_watchdog_up(dev);
56079431
DV
2281 }
2282}
2283EXPORT_SYMBOL(netif_device_attach);
2284
36c92474
BH
2285static void skb_warn_bad_offload(const struct sk_buff *skb)
2286{
65e9d2fa 2287 static const netdev_features_t null_features = 0;
36c92474
BH
2288 struct net_device *dev = skb->dev;
2289 const char *driver = "";
2290
c846ad9b
BG
2291 if (!net_ratelimit())
2292 return;
2293
36c92474
BH
2294 if (dev && dev->dev.parent)
2295 driver = dev_driver_string(dev->dev.parent);
2296
2297 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2298 "gso_type=%d ip_summed=%d\n",
65e9d2fa
MM
2299 driver, dev ? &dev->features : &null_features,
2300 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2301 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2302 skb_shinfo(skb)->gso_type, skb->ip_summed);
2303}
2304
1da177e4
LT
2305/*
2306 * Invalidate hardware checksum when packet is to be mangled, and
2307 * complete checksum manually on outgoing path.
2308 */
84fa7933 2309int skb_checksum_help(struct sk_buff *skb)
1da177e4 2310{
d3bc23e7 2311 __wsum csum;
663ead3b 2312 int ret = 0, offset;
1da177e4 2313
84fa7933 2314 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2315 goto out_set_summed;
2316
2317 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2318 skb_warn_bad_offload(skb);
2319 return -EINVAL;
1da177e4
LT
2320 }
2321
cef401de
ED
2322 /* Before computing a checksum, we should make sure no frag could
2323 * be modified by an external entity : checksum could be wrong.
2324 */
2325 if (skb_has_shared_frag(skb)) {
2326 ret = __skb_linearize(skb);
2327 if (ret)
2328 goto out;
2329 }
2330
55508d60 2331 offset = skb_checksum_start_offset(skb);
a030847e
HX
2332 BUG_ON(offset >= skb_headlen(skb));
2333 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2334
2335 offset += skb->csum_offset;
2336 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2337
2338 if (skb_cloned(skb) &&
2339 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2340 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2341 if (ret)
2342 goto out;
2343 }
2344
a030847e 2345 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 2346out_set_summed:
1da177e4 2347 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2348out:
1da177e4
LT
2349 return ret;
2350}
d1b19dff 2351EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2352
53d6471c 2353__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2354{
4b9b1cdf 2355 unsigned int vlan_depth = skb->mac_len;
252e3346 2356 __be16 type = skb->protocol;
f6a78bfc 2357
19acc327
PS
2358 /* Tunnel gso handlers can set protocol to ethernet. */
2359 if (type == htons(ETH_P_TEB)) {
2360 struct ethhdr *eth;
2361
2362 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2363 return 0;
2364
2365 eth = (struct ethhdr *)skb_mac_header(skb);
2366 type = eth->h_proto;
2367 }
2368
4b9b1cdf
NA
2369 /* if skb->protocol is 802.1Q/AD then the header should already be
2370 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2371 * ETH_HLEN otherwise
2372 */
2373 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2374 if (vlan_depth) {
80019d31 2375 if (WARN_ON(vlan_depth < VLAN_HLEN))
4b9b1cdf
NA
2376 return 0;
2377 vlan_depth -= VLAN_HLEN;
2378 } else {
2379 vlan_depth = ETH_HLEN;
2380 }
2381 do {
2382 struct vlan_hdr *vh;
2383
2384 if (unlikely(!pskb_may_pull(skb,
2385 vlan_depth + VLAN_HLEN)))
2386 return 0;
2387
2388 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2389 type = vh->h_vlan_encapsulated_proto;
2390 vlan_depth += VLAN_HLEN;
2391 } while (type == htons(ETH_P_8021Q) ||
2392 type == htons(ETH_P_8021AD));
7b9c6090
JG
2393 }
2394
53d6471c
VY
2395 *depth = vlan_depth;
2396
ec5f0615
PS
2397 return type;
2398}
2399
2400/**
2401 * skb_mac_gso_segment - mac layer segmentation handler.
2402 * @skb: buffer to segment
2403 * @features: features for the output path (see dev->features)
2404 */
2405struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2406 netdev_features_t features)
2407{
2408 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2409 struct packet_offload *ptype;
53d6471c
VY
2410 int vlan_depth = skb->mac_len;
2411 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2412
2413 if (unlikely(!type))
2414 return ERR_PTR(-EINVAL);
2415
53d6471c 2416 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2417
2418 rcu_read_lock();
22061d80 2419 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2420 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2421 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2422 break;
2423 }
2424 }
2425 rcu_read_unlock();
2426
98e399f8 2427 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2428
f6a78bfc
HX
2429 return segs;
2430}
05e8ef4a
PS
2431EXPORT_SYMBOL(skb_mac_gso_segment);
2432
2433
2434/* openvswitch calls this on rx path, so we need a different check.
2435 */
2436static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2437{
2438 if (tx_path)
2439 return skb->ip_summed != CHECKSUM_PARTIAL;
2440 else
2441 return skb->ip_summed == CHECKSUM_NONE;
2442}
2443
2444/**
2445 * __skb_gso_segment - Perform segmentation on skb.
2446 * @skb: buffer to segment
2447 * @features: features for the output path (see dev->features)
2448 * @tx_path: whether it is called in TX path
2449 *
2450 * This function segments the given skb and returns a list of segments.
2451 *
2452 * It may return NULL if the skb requires no segmentation. This is
2453 * only possible when GSO is used for verifying header integrity.
2454 */
2455struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2456 netdev_features_t features, bool tx_path)
2457{
2458 if (unlikely(skb_needs_check(skb, tx_path))) {
2459 int err;
2460
2461 skb_warn_bad_offload(skb);
2462
a40e0a66 2463 err = skb_cow_head(skb, 0);
2464 if (err < 0)
05e8ef4a
PS
2465 return ERR_PTR(err);
2466 }
2467
68c33163 2468 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2469 SKB_GSO_CB(skb)->encap_level = 0;
2470
05e8ef4a
PS
2471 skb_reset_mac_header(skb);
2472 skb_reset_mac_len(skb);
2473
2474 return skb_mac_gso_segment(skb, features);
2475}
12b0004d 2476EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2477
fb286bb2
HX
2478/* Take action when hardware reception checksum errors are detected. */
2479#ifdef CONFIG_BUG
2480void netdev_rx_csum_fault(struct net_device *dev)
2481{
2482 if (net_ratelimit()) {
7b6cd1ce 2483 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2484 dump_stack();
2485 }
2486}
2487EXPORT_SYMBOL(netdev_rx_csum_fault);
2488#endif
2489
1da177e4
LT
2490/* Actually, we should eliminate this check as soon as we know, that:
2491 * 1. IOMMU is present and allows to map all the memory.
2492 * 2. No high memory really exists on this machine.
2493 */
2494
c1e756bf 2495static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2496{
3d3a8533 2497#ifdef CONFIG_HIGHMEM
1da177e4 2498 int i;
5acbbd42 2499 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2500 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2501 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2502 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2503 return 1;
ea2ab693 2504 }
5acbbd42 2505 }
1da177e4 2506
5acbbd42
FT
2507 if (PCI_DMA_BUS_IS_PHYS) {
2508 struct device *pdev = dev->dev.parent;
1da177e4 2509
9092c658
ED
2510 if (!pdev)
2511 return 0;
5acbbd42 2512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2514 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2515 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2516 return 1;
2517 }
2518 }
3d3a8533 2519#endif
1da177e4
LT
2520 return 0;
2521}
1da177e4 2522
3b392ddb
SH
2523/* If MPLS offload request, verify we are testing hardware MPLS features
2524 * instead of standard features for the netdev.
2525 */
d0edc7bf 2526#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2527static netdev_features_t net_mpls_features(struct sk_buff *skb,
2528 netdev_features_t features,
2529 __be16 type)
2530{
25cd9ba0 2531 if (eth_p_mpls(type))
3b392ddb
SH
2532 features &= skb->dev->mpls_features;
2533
2534 return features;
2535}
2536#else
2537static netdev_features_t net_mpls_features(struct sk_buff *skb,
2538 netdev_features_t features,
2539 __be16 type)
2540{
2541 return features;
2542}
2543#endif
2544
c8f44aff 2545static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2546 netdev_features_t features)
f01a5236 2547{
53d6471c 2548 int tmp;
3b392ddb
SH
2549 __be16 type;
2550
2551 type = skb_network_protocol(skb, &tmp);
2552 features = net_mpls_features(skb, features, type);
53d6471c 2553
c0d680e5 2554 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2555 !can_checksum_protocol(features, type)) {
f01a5236 2556 features &= ~NETIF_F_ALL_CSUM;
c1e756bf 2557 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2558 features &= ~NETIF_F_SG;
2559 }
2560
2561 return features;
2562}
2563
c1e756bf 2564netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2565{
fcbeb976
ED
2566 const struct net_device *dev = skb->dev;
2567 netdev_features_t features = dev->features;
2568 u16 gso_segs = skb_shinfo(skb)->gso_segs;
58e998c6
JG
2569 __be16 protocol = skb->protocol;
2570
fcbeb976 2571 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
30b678d8
BH
2572 features &= ~NETIF_F_GSO_MASK;
2573
796f2da8
TM
2574 if (!vlan_tx_tag_present(skb)) {
2575 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2576 protocol == htons(ETH_P_8021AD))) {
2577 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2578 protocol = veh->h_vlan_encapsulated_proto;
2579 } else {
2580 return harmonize_features(skb, features);
2581 }
f01a5236 2582 }
58e998c6 2583
db115037 2584 features = netdev_intersect_features(features,
fcbeb976 2585 dev->vlan_features |
db115037
MK
2586 NETIF_F_HW_VLAN_CTAG_TX |
2587 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2588
cdbaa0bb 2589 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
db115037
MK
2590 features = netdev_intersect_features(features,
2591 NETIF_F_SG |
2592 NETIF_F_HIGHDMA |
2593 NETIF_F_FRAGLIST |
2594 NETIF_F_GEN_CSUM |
2595 NETIF_F_HW_VLAN_CTAG_TX |
2596 NETIF_F_HW_VLAN_STAG_TX);
cdbaa0bb 2597
c1e756bf 2598 return harmonize_features(skb, features);
58e998c6 2599}
c1e756bf 2600EXPORT_SYMBOL(netif_skb_features);
58e998c6 2601
2ea25513 2602static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2603 struct netdev_queue *txq, bool more)
f6a78bfc 2604{
2ea25513
DM
2605 unsigned int len;
2606 int rc;
00829823 2607
2ea25513
DM
2608 if (!list_empty(&ptype_all))
2609 dev_queue_xmit_nit(skb, dev);
fc741216 2610
2ea25513
DM
2611 len = skb->len;
2612 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2613 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2614 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2615
2ea25513
DM
2616 return rc;
2617}
7b9c6090 2618
8dcda22a
DM
2619struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2620 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2621{
2622 struct sk_buff *skb = first;
2623 int rc = NETDEV_TX_OK;
7b9c6090 2624
7f2e870f
DM
2625 while (skb) {
2626 struct sk_buff *next = skb->next;
fc70fb64 2627
7f2e870f 2628 skb->next = NULL;
95f6b3dd 2629 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2630 if (unlikely(!dev_xmit_complete(rc))) {
2631 skb->next = next;
2632 goto out;
2633 }
6afff0ca 2634
7f2e870f
DM
2635 skb = next;
2636 if (netif_xmit_stopped(txq) && skb) {
2637 rc = NETDEV_TX_BUSY;
2638 break;
9ccb8975 2639 }
7f2e870f 2640 }
9ccb8975 2641
7f2e870f
DM
2642out:
2643 *ret = rc;
2644 return skb;
2645}
b40863c6 2646
1ff0dc94
ED
2647static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2648 netdev_features_t features)
f6a78bfc 2649{
eae3f88e 2650 if (vlan_tx_tag_present(skb) &&
5968250c
JP
2651 !vlan_hw_offload_capable(features, skb->vlan_proto))
2652 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2653 return skb;
2654}
f6a78bfc 2655
55a93b3e 2656static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2657{
2658 netdev_features_t features;
f6a78bfc 2659
eae3f88e
DM
2660 if (skb->next)
2661 return skb;
068a2de5 2662
eae3f88e
DM
2663 features = netif_skb_features(skb);
2664 skb = validate_xmit_vlan(skb, features);
2665 if (unlikely(!skb))
2666 goto out_null;
7b9c6090 2667
eae3f88e
DM
2668 /* If encapsulation offload request, verify we are testing
2669 * hardware encapsulation features instead of standard
2670 * features for the netdev
2671 */
2672 if (skb->encapsulation)
2673 features &= dev->hw_enc_features;
2674
04ffcb25 2675 if (netif_needs_gso(dev, skb, features)) {
ce93718f
DM
2676 struct sk_buff *segs;
2677
2678 segs = skb_gso_segment(skb, features);
cecda693 2679 if (IS_ERR(segs)) {
af6dabc9 2680 goto out_kfree_skb;
cecda693
JW
2681 } else if (segs) {
2682 consume_skb(skb);
2683 skb = segs;
f6a78bfc 2684 }
eae3f88e
DM
2685 } else {
2686 if (skb_needs_linearize(skb, features) &&
2687 __skb_linearize(skb))
2688 goto out_kfree_skb;
4ec93edb 2689
eae3f88e
DM
2690 /* If packet is not checksummed and device does not
2691 * support checksumming for this protocol, complete
2692 * checksumming here.
2693 */
2694 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2695 if (skb->encapsulation)
2696 skb_set_inner_transport_header(skb,
2697 skb_checksum_start_offset(skb));
2698 else
2699 skb_set_transport_header(skb,
2700 skb_checksum_start_offset(skb));
2701 if (!(features & NETIF_F_ALL_CSUM) &&
2702 skb_checksum_help(skb))
2703 goto out_kfree_skb;
7b9c6090 2704 }
0c772159 2705 }
7b9c6090 2706
eae3f88e 2707 return skb;
fc70fb64 2708
f6a78bfc
HX
2709out_kfree_skb:
2710 kfree_skb(skb);
eae3f88e
DM
2711out_null:
2712 return NULL;
2713}
6afff0ca 2714
55a93b3e
ED
2715struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2716{
2717 struct sk_buff *next, *head = NULL, *tail;
2718
bec3cfdc 2719 for (; skb != NULL; skb = next) {
55a93b3e
ED
2720 next = skb->next;
2721 skb->next = NULL;
bec3cfdc
ED
2722
2723 /* in case skb wont be segmented, point to itself */
2724 skb->prev = skb;
2725
55a93b3e 2726 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
2727 if (!skb)
2728 continue;
55a93b3e 2729
bec3cfdc
ED
2730 if (!head)
2731 head = skb;
2732 else
2733 tail->next = skb;
2734 /* If skb was segmented, skb->prev points to
2735 * the last segment. If not, it still contains skb.
2736 */
2737 tail = skb->prev;
55a93b3e
ED
2738 }
2739 return head;
f6a78bfc
HX
2740}
2741
1def9238
ED
2742static void qdisc_pkt_len_init(struct sk_buff *skb)
2743{
2744 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2745
2746 qdisc_skb_cb(skb)->pkt_len = skb->len;
2747
2748 /* To get more precise estimation of bytes sent on wire,
2749 * we add to pkt_len the headers size of all segments
2750 */
2751 if (shinfo->gso_size) {
757b8b1d 2752 unsigned int hdr_len;
15e5a030 2753 u16 gso_segs = shinfo->gso_segs;
1def9238 2754
757b8b1d
ED
2755 /* mac layer + network layer */
2756 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2757
2758 /* + transport layer */
1def9238
ED
2759 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2760 hdr_len += tcp_hdrlen(skb);
2761 else
2762 hdr_len += sizeof(struct udphdr);
15e5a030
JW
2763
2764 if (shinfo->gso_type & SKB_GSO_DODGY)
2765 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2766 shinfo->gso_size);
2767
2768 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
2769 }
2770}
2771
bbd8a0d3
KK
2772static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2773 struct net_device *dev,
2774 struct netdev_queue *txq)
2775{
2776 spinlock_t *root_lock = qdisc_lock(q);
a2da570d 2777 bool contended;
bbd8a0d3
KK
2778 int rc;
2779
1def9238 2780 qdisc_pkt_len_init(skb);
a2da570d 2781 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
2782 /*
2783 * Heuristic to force contended enqueues to serialize on a
2784 * separate lock before trying to get qdisc main lock.
9bf2b8c2
YX
2785 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2786 * often and dequeue packets faster.
79640a4c 2787 */
a2da570d 2788 contended = qdisc_is_running(q);
79640a4c
ED
2789 if (unlikely(contended))
2790 spin_lock(&q->busylock);
2791
bbd8a0d3
KK
2792 spin_lock(root_lock);
2793 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2794 kfree_skb(skb);
2795 rc = NET_XMIT_DROP;
2796 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 2797 qdisc_run_begin(q)) {
bbd8a0d3
KK
2798 /*
2799 * This is a work-conserving queue; there are no old skbs
2800 * waiting to be sent out; and the qdisc is not running -
2801 * xmit the skb directly.
2802 */
bfe0d029 2803
bfe0d029
ED
2804 qdisc_bstats_update(q, skb);
2805
55a93b3e 2806 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
2807 if (unlikely(contended)) {
2808 spin_unlock(&q->busylock);
2809 contended = false;
2810 }
bbd8a0d3 2811 __qdisc_run(q);
79640a4c 2812 } else
bc135b23 2813 qdisc_run_end(q);
bbd8a0d3
KK
2814
2815 rc = NET_XMIT_SUCCESS;
2816 } else {
a2da570d 2817 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
79640a4c
ED
2818 if (qdisc_run_begin(q)) {
2819 if (unlikely(contended)) {
2820 spin_unlock(&q->busylock);
2821 contended = false;
2822 }
2823 __qdisc_run(q);
2824 }
bbd8a0d3
KK
2825 }
2826 spin_unlock(root_lock);
79640a4c
ED
2827 if (unlikely(contended))
2828 spin_unlock(&q->busylock);
bbd8a0d3
KK
2829 return rc;
2830}
2831
86f8515f 2832#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
2833static void skb_update_prio(struct sk_buff *skb)
2834{
6977a79d 2835 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 2836
91c68ce2
ED
2837 if (!skb->priority && skb->sk && map) {
2838 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2839
2840 if (prioidx < map->priomap_len)
2841 skb->priority = map->priomap[prioidx];
2842 }
5bc1421e
NH
2843}
2844#else
2845#define skb_update_prio(skb)
2846#endif
2847
745e20f1 2848static DEFINE_PER_CPU(int, xmit_recursion);
11a766ce 2849#define RECURSION_LIMIT 10
745e20f1 2850
95603e22
MM
2851/**
2852 * dev_loopback_xmit - loop back @skb
2853 * @skb: buffer to transmit
2854 */
2855int dev_loopback_xmit(struct sk_buff *skb)
2856{
2857 skb_reset_mac_header(skb);
2858 __skb_pull(skb, skb_network_offset(skb));
2859 skb->pkt_type = PACKET_LOOPBACK;
2860 skb->ip_summed = CHECKSUM_UNNECESSARY;
2861 WARN_ON(!skb_dst(skb));
2862 skb_dst_force(skb);
2863 netif_rx_ni(skb);
2864 return 0;
2865}
2866EXPORT_SYMBOL(dev_loopback_xmit);
2867
d29f749e 2868/**
9d08dd3d 2869 * __dev_queue_xmit - transmit a buffer
d29f749e 2870 * @skb: buffer to transmit
9d08dd3d 2871 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
2872 *
2873 * Queue a buffer for transmission to a network device. The caller must
2874 * have set the device and priority and built the buffer before calling
2875 * this function. The function can be called from an interrupt.
2876 *
2877 * A negative errno code is returned on a failure. A success does not
2878 * guarantee the frame will be transmitted as it may be dropped due
2879 * to congestion or traffic shaping.
2880 *
2881 * -----------------------------------------------------------------------------------
2882 * I notice this method can also return errors from the queue disciplines,
2883 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2884 * be positive.
2885 *
2886 * Regardless of the return value, the skb is consumed, so it is currently
2887 * difficult to retry a send to this method. (You can bump the ref count
2888 * before sending to hold a reference for retry if you are careful.)
2889 *
2890 * When calling this method, interrupts MUST be enabled. This is because
2891 * the BH enable code must have IRQs enabled so that it will not deadlock.
2892 * --BLG
2893 */
0a59f3a9 2894static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
2895{
2896 struct net_device *dev = skb->dev;
dc2b4847 2897 struct netdev_queue *txq;
1da177e4
LT
2898 struct Qdisc *q;
2899 int rc = -ENOMEM;
2900
6d1ccff6
ED
2901 skb_reset_mac_header(skb);
2902
e7fd2885
WB
2903 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2904 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2905
4ec93edb
YH
2906 /* Disable soft irqs for various locks below. Also
2907 * stops preemption for RCU.
1da177e4 2908 */
4ec93edb 2909 rcu_read_lock_bh();
1da177e4 2910
5bc1421e
NH
2911 skb_update_prio(skb);
2912
02875878
ED
2913 /* If device/qdisc don't need skb->dst, release it right now while
2914 * its hot in this cpu cache.
2915 */
2916 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2917 skb_dst_drop(skb);
2918 else
2919 skb_dst_force(skb);
2920
f663dd9a 2921 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 2922 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2923
1da177e4 2924#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2925 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4 2926#endif
cf66ba58 2927 trace_net_dev_queue(skb);
1da177e4 2928 if (q->enqueue) {
bbd8a0d3 2929 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2930 goto out;
1da177e4
LT
2931 }
2932
2933 /* The device has no queue. Common case for software devices:
2934 loopback, all the sorts of tunnels...
2935
932ff279
HX
2936 Really, it is unlikely that netif_tx_lock protection is necessary
2937 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2938 counters.)
2939 However, it is possible, that they rely on protection
2940 made by us here.
2941
2942 Check this and shot the lock. It is not prone from deadlocks.
2943 Either shot noqueue qdisc, it is even simpler 8)
2944 */
2945 if (dev->flags & IFF_UP) {
2946 int cpu = smp_processor_id(); /* ok because BHs are off */
2947
c773e847 2948 if (txq->xmit_lock_owner != cpu) {
1da177e4 2949
745e20f1
ED
2950 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2951 goto recursion_alert;
2952
1f59533f
JDB
2953 skb = validate_xmit_skb(skb, dev);
2954 if (!skb)
2955 goto drop;
2956
c773e847 2957 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2958
73466498 2959 if (!netif_xmit_stopped(txq)) {
745e20f1 2960 __this_cpu_inc(xmit_recursion);
ce93718f 2961 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 2962 __this_cpu_dec(xmit_recursion);
572a9d7b 2963 if (dev_xmit_complete(rc)) {
c773e847 2964 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2965 goto out;
2966 }
2967 }
c773e847 2968 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
2969 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2970 dev->name);
1da177e4
LT
2971 } else {
2972 /* Recursion is detected! It is possible,
745e20f1
ED
2973 * unfortunately
2974 */
2975recursion_alert:
e87cc472
JP
2976 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2977 dev->name);
1da177e4
LT
2978 }
2979 }
2980
2981 rc = -ENETDOWN;
1f59533f 2982drop:
d4828d85 2983 rcu_read_unlock_bh();
1da177e4 2984
015f0688 2985 atomic_long_inc(&dev->tx_dropped);
1f59533f 2986 kfree_skb_list(skb);
1da177e4
LT
2987 return rc;
2988out:
d4828d85 2989 rcu_read_unlock_bh();
1da177e4
LT
2990 return rc;
2991}
f663dd9a
JW
2992
2993int dev_queue_xmit(struct sk_buff *skb)
2994{
2995 return __dev_queue_xmit(skb, NULL);
2996}
d1b19dff 2997EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 2998
f663dd9a
JW
2999int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3000{
3001 return __dev_queue_xmit(skb, accel_priv);
3002}
3003EXPORT_SYMBOL(dev_queue_xmit_accel);
3004
1da177e4
LT
3005
3006/*=======================================================================
3007 Receiver routines
3008 =======================================================================*/
3009
6b2bedc3 3010int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3011EXPORT_SYMBOL(netdev_max_backlog);
3012
3b098e2d 3013int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3014int netdev_budget __read_mostly = 300;
3015int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3016
eecfd7c4
ED
3017/* Called with irq disabled */
3018static inline void ____napi_schedule(struct softnet_data *sd,
3019 struct napi_struct *napi)
3020{
3021 list_add_tail(&napi->poll_list, &sd->poll_list);
3022 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3023}
3024
bfb564e7
KK
3025#ifdef CONFIG_RPS
3026
3027/* One global table that all flow-based protocols share. */
6e3f7faf 3028struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7
KK
3029EXPORT_SYMBOL(rps_sock_flow_table);
3030
c5905afb 3031struct static_key rps_needed __read_mostly;
adc9300e 3032
c445477d
BH
3033static struct rps_dev_flow *
3034set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3035 struct rps_dev_flow *rflow, u16 next_cpu)
3036{
09994d1b 3037 if (next_cpu != RPS_NO_CPU) {
c445477d
BH
3038#ifdef CONFIG_RFS_ACCEL
3039 struct netdev_rx_queue *rxqueue;
3040 struct rps_dev_flow_table *flow_table;
3041 struct rps_dev_flow *old_rflow;
3042 u32 flow_id;
3043 u16 rxq_index;
3044 int rc;
3045
3046 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3047 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3048 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3049 goto out;
3050 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3051 if (rxq_index == skb_get_rx_queue(skb))
3052 goto out;
3053
3054 rxqueue = dev->_rx + rxq_index;
3055 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3056 if (!flow_table)
3057 goto out;
61b905da 3058 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3059 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3060 rxq_index, flow_id);
3061 if (rc < 0)
3062 goto out;
3063 old_rflow = rflow;
3064 rflow = &flow_table->flows[flow_id];
c445477d
BH
3065 rflow->filter = rc;
3066 if (old_rflow->filter == rflow->filter)
3067 old_rflow->filter = RPS_NO_FILTER;
3068 out:
3069#endif
3070 rflow->last_qtail =
09994d1b 3071 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3072 }
3073
09994d1b 3074 rflow->cpu = next_cpu;
c445477d
BH
3075 return rflow;
3076}
3077
bfb564e7
KK
3078/*
3079 * get_rps_cpu is called from netif_receive_skb and returns the target
3080 * CPU from the RPS map of the receiving queue for a given skb.
3081 * rcu_read_lock must be held on entry.
3082 */
3083static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3084 struct rps_dev_flow **rflowp)
3085{
3086 struct netdev_rx_queue *rxqueue;
6e3f7faf 3087 struct rps_map *map;
bfb564e7
KK
3088 struct rps_dev_flow_table *flow_table;
3089 struct rps_sock_flow_table *sock_flow_table;
3090 int cpu = -1;
3091 u16 tcpu;
61b905da 3092 u32 hash;
bfb564e7
KK
3093
3094 if (skb_rx_queue_recorded(skb)) {
3095 u16 index = skb_get_rx_queue(skb);
62fe0b40
BH
3096 if (unlikely(index >= dev->real_num_rx_queues)) {
3097 WARN_ONCE(dev->real_num_rx_queues > 1,
3098 "%s received packet on queue %u, but number "
3099 "of RX queues is %u\n",
3100 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3101 goto done;
3102 }
3103 rxqueue = dev->_rx + index;
3104 } else
3105 rxqueue = dev->_rx;
3106
6e3f7faf
ED
3107 map = rcu_dereference(rxqueue->rps_map);
3108 if (map) {
85875236 3109 if (map->len == 1 &&
33d480ce 3110 !rcu_access_pointer(rxqueue->rps_flow_table)) {
6febfca9
CG
3111 tcpu = map->cpus[0];
3112 if (cpu_online(tcpu))
3113 cpu = tcpu;
3114 goto done;
3115 }
33d480ce 3116 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
bfb564e7 3117 goto done;
6febfca9 3118 }
bfb564e7 3119
2d47b459 3120 skb_reset_network_header(skb);
61b905da
TH
3121 hash = skb_get_hash(skb);
3122 if (!hash)
bfb564e7
KK
3123 goto done;
3124
fec5e652
TH
3125 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3126 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3127 if (flow_table && sock_flow_table) {
3128 u16 next_cpu;
3129 struct rps_dev_flow *rflow;
3130
61b905da 3131 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3132 tcpu = rflow->cpu;
3133
61b905da 3134 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
fec5e652
TH
3135
3136 /*
3137 * If the desired CPU (where last recvmsg was done) is
3138 * different from current CPU (one in the rx-queue flow
3139 * table entry), switch if one of the following holds:
3140 * - Current CPU is unset (equal to RPS_NO_CPU).
3141 * - Current CPU is offline.
3142 * - The current CPU's queue tail has advanced beyond the
3143 * last packet that was enqueued using this table entry.
3144 * This guarantees that all previous packets for the flow
3145 * have been dequeued, thus preserving in order delivery.
3146 */
3147 if (unlikely(tcpu != next_cpu) &&
3148 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3149 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3150 rflow->last_qtail)) >= 0)) {
3151 tcpu = next_cpu;
c445477d 3152 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3153 }
c445477d 3154
fec5e652
TH
3155 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3156 *rflowp = rflow;
3157 cpu = tcpu;
3158 goto done;
3159 }
3160 }
3161
0a9627f2 3162 if (map) {
8fc54f68 3163 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3164 if (cpu_online(tcpu)) {
3165 cpu = tcpu;
3166 goto done;
3167 }
3168 }
3169
3170done:
0a9627f2
TH
3171 return cpu;
3172}
3173
c445477d
BH
3174#ifdef CONFIG_RFS_ACCEL
3175
3176/**
3177 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3178 * @dev: Device on which the filter was set
3179 * @rxq_index: RX queue index
3180 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3181 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3182 *
3183 * Drivers that implement ndo_rx_flow_steer() should periodically call
3184 * this function for each installed filter and remove the filters for
3185 * which it returns %true.
3186 */
3187bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3188 u32 flow_id, u16 filter_id)
3189{
3190 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3191 struct rps_dev_flow_table *flow_table;
3192 struct rps_dev_flow *rflow;
3193 bool expire = true;
3194 int cpu;
3195
3196 rcu_read_lock();
3197 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3198 if (flow_table && flow_id <= flow_table->mask) {
3199 rflow = &flow_table->flows[flow_id];
3200 cpu = ACCESS_ONCE(rflow->cpu);
3201 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3202 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3203 rflow->last_qtail) <
3204 (int)(10 * flow_table->mask)))
3205 expire = false;
3206 }
3207 rcu_read_unlock();
3208 return expire;
3209}
3210EXPORT_SYMBOL(rps_may_expire_flow);
3211
3212#endif /* CONFIG_RFS_ACCEL */
3213
0a9627f2 3214/* Called from hardirq (IPI) context */
e36fa2f7 3215static void rps_trigger_softirq(void *data)
0a9627f2 3216{
e36fa2f7
ED
3217 struct softnet_data *sd = data;
3218
eecfd7c4 3219 ____napi_schedule(sd, &sd->backlog);
dee42870 3220 sd->received_rps++;
0a9627f2 3221}
e36fa2f7 3222
fec5e652 3223#endif /* CONFIG_RPS */
0a9627f2 3224
e36fa2f7
ED
3225/*
3226 * Check if this softnet_data structure is another cpu one
3227 * If yes, queue it to our IPI list and return 1
3228 * If no, return 0
3229 */
3230static int rps_ipi_queued(struct softnet_data *sd)
3231{
3232#ifdef CONFIG_RPS
903ceff7 3233 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3234
3235 if (sd != mysd) {
3236 sd->rps_ipi_next = mysd->rps_ipi_list;
3237 mysd->rps_ipi_list = sd;
3238
3239 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3240 return 1;
3241 }
3242#endif /* CONFIG_RPS */
3243 return 0;
3244}
3245
99bbc707
WB
3246#ifdef CONFIG_NET_FLOW_LIMIT
3247int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3248#endif
3249
3250static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3251{
3252#ifdef CONFIG_NET_FLOW_LIMIT
3253 struct sd_flow_limit *fl;
3254 struct softnet_data *sd;
3255 unsigned int old_flow, new_flow;
3256
3257 if (qlen < (netdev_max_backlog >> 1))
3258 return false;
3259
903ceff7 3260 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3261
3262 rcu_read_lock();
3263 fl = rcu_dereference(sd->flow_limit);
3264 if (fl) {
3958afa1 3265 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3266 old_flow = fl->history[fl->history_head];
3267 fl->history[fl->history_head] = new_flow;
3268
3269 fl->history_head++;
3270 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3271
3272 if (likely(fl->buckets[old_flow]))
3273 fl->buckets[old_flow]--;
3274
3275 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3276 fl->count++;
3277 rcu_read_unlock();
3278 return true;
3279 }
3280 }
3281 rcu_read_unlock();
3282#endif
3283 return false;
3284}
3285
0a9627f2
TH
3286/*
3287 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3288 * queue (may be a remote CPU queue).
3289 */
fec5e652
TH
3290static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3291 unsigned int *qtail)
0a9627f2 3292{
e36fa2f7 3293 struct softnet_data *sd;
0a9627f2 3294 unsigned long flags;
99bbc707 3295 unsigned int qlen;
0a9627f2 3296
e36fa2f7 3297 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3298
3299 local_irq_save(flags);
0a9627f2 3300
e36fa2f7 3301 rps_lock(sd);
99bbc707
WB
3302 qlen = skb_queue_len(&sd->input_pkt_queue);
3303 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3304 if (qlen) {
0a9627f2 3305enqueue:
e36fa2f7 3306 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3307 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3308 rps_unlock(sd);
152102c7 3309 local_irq_restore(flags);
0a9627f2
TH
3310 return NET_RX_SUCCESS;
3311 }
3312
ebda37c2
ED
3313 /* Schedule NAPI for backlog device
3314 * We can use non atomic operation since we own the queue lock
3315 */
3316 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3317 if (!rps_ipi_queued(sd))
eecfd7c4 3318 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3319 }
3320 goto enqueue;
3321 }
3322
dee42870 3323 sd->dropped++;
e36fa2f7 3324 rps_unlock(sd);
0a9627f2 3325
0a9627f2
TH
3326 local_irq_restore(flags);
3327
caf586e5 3328 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3329 kfree_skb(skb);
3330 return NET_RX_DROP;
3331}
1da177e4 3332
ae78dbfa 3333static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3334{
b0e28f1e 3335 int ret;
1da177e4 3336
588f0330 3337 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3338
cf66ba58 3339 trace_netif_rx(skb);
df334545 3340#ifdef CONFIG_RPS
c5905afb 3341 if (static_key_false(&rps_needed)) {
fec5e652 3342 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3343 int cpu;
3344
cece1945 3345 preempt_disable();
b0e28f1e 3346 rcu_read_lock();
fec5e652
TH
3347
3348 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3349 if (cpu < 0)
3350 cpu = smp_processor_id();
fec5e652
TH
3351
3352 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3353
b0e28f1e 3354 rcu_read_unlock();
cece1945 3355 preempt_enable();
adc9300e
ED
3356 } else
3357#endif
fec5e652
TH
3358 {
3359 unsigned int qtail;
3360 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3361 put_cpu();
3362 }
b0e28f1e 3363 return ret;
1da177e4 3364}
ae78dbfa
BH
3365
3366/**
3367 * netif_rx - post buffer to the network code
3368 * @skb: buffer to post
3369 *
3370 * This function receives a packet from a device driver and queues it for
3371 * the upper (protocol) levels to process. It always succeeds. The buffer
3372 * may be dropped during processing for congestion control or by the
3373 * protocol layers.
3374 *
3375 * return values:
3376 * NET_RX_SUCCESS (no congestion)
3377 * NET_RX_DROP (packet was dropped)
3378 *
3379 */
3380
3381int netif_rx(struct sk_buff *skb)
3382{
3383 trace_netif_rx_entry(skb);
3384
3385 return netif_rx_internal(skb);
3386}
d1b19dff 3387EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3388
3389int netif_rx_ni(struct sk_buff *skb)
3390{
3391 int err;
3392
ae78dbfa
BH
3393 trace_netif_rx_ni_entry(skb);
3394
1da177e4 3395 preempt_disable();
ae78dbfa 3396 err = netif_rx_internal(skb);
1da177e4
LT
3397 if (local_softirq_pending())
3398 do_softirq();
3399 preempt_enable();
3400
3401 return err;
3402}
1da177e4
LT
3403EXPORT_SYMBOL(netif_rx_ni);
3404
1da177e4
LT
3405static void net_tx_action(struct softirq_action *h)
3406{
903ceff7 3407 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3408
3409 if (sd->completion_queue) {
3410 struct sk_buff *clist;
3411
3412 local_irq_disable();
3413 clist = sd->completion_queue;
3414 sd->completion_queue = NULL;
3415 local_irq_enable();
3416
3417 while (clist) {
3418 struct sk_buff *skb = clist;
3419 clist = clist->next;
3420
547b792c 3421 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3422 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3423 trace_consume_skb(skb);
3424 else
3425 trace_kfree_skb(skb, net_tx_action);
1da177e4
LT
3426 __kfree_skb(skb);
3427 }
3428 }
3429
3430 if (sd->output_queue) {
37437bb2 3431 struct Qdisc *head;
1da177e4
LT
3432
3433 local_irq_disable();
3434 head = sd->output_queue;
3435 sd->output_queue = NULL;
a9cbd588 3436 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3437 local_irq_enable();
3438
3439 while (head) {
37437bb2
DM
3440 struct Qdisc *q = head;
3441 spinlock_t *root_lock;
3442
1da177e4
LT
3443 head = head->next_sched;
3444
5fb66229 3445 root_lock = qdisc_lock(q);
37437bb2 3446 if (spin_trylock(root_lock)) {
4e857c58 3447 smp_mb__before_atomic();
def82a1d
JP
3448 clear_bit(__QDISC_STATE_SCHED,
3449 &q->state);
37437bb2
DM
3450 qdisc_run(q);
3451 spin_unlock(root_lock);
1da177e4 3452 } else {
195648bb 3453 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 3454 &q->state)) {
195648bb 3455 __netif_reschedule(q);
e8a83e10 3456 } else {
4e857c58 3457 smp_mb__before_atomic();
e8a83e10
JP
3458 clear_bit(__QDISC_STATE_SCHED,
3459 &q->state);
3460 }
1da177e4
LT
3461 }
3462 }
3463 }
3464}
3465
ab95bfe0
JP
3466#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3467 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
da678292
MM
3468/* This hook is defined here for ATM LANE */
3469int (*br_fdb_test_addr_hook)(struct net_device *dev,
3470 unsigned char *addr) __read_mostly;
4fb019a0 3471EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3472#endif
1da177e4 3473
1da177e4
LT
3474#ifdef CONFIG_NET_CLS_ACT
3475/* TODO: Maybe we should just force sch_ingress to be compiled in
3476 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3477 * a compare and 2 stores extra right now if we dont have it on
3478 * but have CONFIG_NET_CLS_ACT
25985edc
LDM
3479 * NOTE: This doesn't stop any functionality; if you dont have
3480 * the ingress scheduler, you just can't add policies on ingress.
1da177e4
LT
3481 *
3482 */
24824a09 3483static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
1da177e4 3484{
1da177e4 3485 struct net_device *dev = skb->dev;
f697c3e8 3486 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
3487 int result = TC_ACT_OK;
3488 struct Qdisc *q;
4ec93edb 3489
de384830 3490 if (unlikely(MAX_RED_LOOP < ttl++)) {
e87cc472
JP
3491 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3492 skb->skb_iif, dev->ifindex);
f697c3e8
HX
3493 return TC_ACT_SHOT;
3494 }
1da177e4 3495
f697c3e8
HX
3496 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3497 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 3498
46e5da40 3499 q = rcu_dereference(rxq->qdisc);
8d50b53d 3500 if (q != &noop_qdisc) {
83874000 3501 spin_lock(qdisc_lock(q));
a9312ae8
DM
3502 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3503 result = qdisc_enqueue_root(skb, q);
83874000
DM
3504 spin_unlock(qdisc_lock(q));
3505 }
f697c3e8
HX
3506
3507 return result;
3508}
86e65da9 3509
f697c3e8
HX
3510static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3511 struct packet_type **pt_prev,
3512 int *ret, struct net_device *orig_dev)
3513{
24824a09
ED
3514 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3515
46e5da40 3516 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
f697c3e8 3517 goto out;
1da177e4 3518
f697c3e8
HX
3519 if (*pt_prev) {
3520 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3521 *pt_prev = NULL;
1da177e4
LT
3522 }
3523
24824a09 3524 switch (ing_filter(skb, rxq)) {
f697c3e8
HX
3525 case TC_ACT_SHOT:
3526 case TC_ACT_STOLEN:
3527 kfree_skb(skb);
3528 return NULL;
3529 }
3530
3531out:
3532 skb->tc_verd = 0;
3533 return skb;
1da177e4
LT
3534}
3535#endif
3536
ab95bfe0
JP
3537/**
3538 * netdev_rx_handler_register - register receive handler
3539 * @dev: device to register a handler for
3540 * @rx_handler: receive handler to register
93e2c32b 3541 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3542 *
e227867f 3543 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3544 * called from __netif_receive_skb. A negative errno code is returned
3545 * on a failure.
3546 *
3547 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3548 *
3549 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3550 */
3551int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3552 rx_handler_func_t *rx_handler,
3553 void *rx_handler_data)
ab95bfe0
JP
3554{
3555 ASSERT_RTNL();
3556
3557 if (dev->rx_handler)
3558 return -EBUSY;
3559
00cfec37 3560 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 3561 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
3562 rcu_assign_pointer(dev->rx_handler, rx_handler);
3563
3564 return 0;
3565}
3566EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3567
3568/**
3569 * netdev_rx_handler_unregister - unregister receive handler
3570 * @dev: device to unregister a handler from
3571 *
166ec369 3572 * Unregister a receive handler from a device.
ab95bfe0
JP
3573 *
3574 * The caller must hold the rtnl_mutex.
3575 */
3576void netdev_rx_handler_unregister(struct net_device *dev)
3577{
3578
3579 ASSERT_RTNL();
a9b3cd7f 3580 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
3581 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3582 * section has a guarantee to see a non NULL rx_handler_data
3583 * as well.
3584 */
3585 synchronize_net();
a9b3cd7f 3586 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
3587}
3588EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3589
b4b9e355
MG
3590/*
3591 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3592 * the special handling of PFMEMALLOC skbs.
3593 */
3594static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3595{
3596 switch (skb->protocol) {
2b8837ae
JP
3597 case htons(ETH_P_ARP):
3598 case htons(ETH_P_IP):
3599 case htons(ETH_P_IPV6):
3600 case htons(ETH_P_8021Q):
3601 case htons(ETH_P_8021AD):
b4b9e355
MG
3602 return true;
3603 default:
3604 return false;
3605 }
3606}
3607
9754e293 3608static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
3609{
3610 struct packet_type *ptype, *pt_prev;
ab95bfe0 3611 rx_handler_func_t *rx_handler;
f2ccd8fa 3612 struct net_device *orig_dev;
63d8ea7f 3613 struct net_device *null_or_dev;
8a4eb573 3614 bool deliver_exact = false;
1da177e4 3615 int ret = NET_RX_DROP;
252e3346 3616 __be16 type;
1da177e4 3617
588f0330 3618 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 3619
cf66ba58 3620 trace_netif_receive_skb(skb);
9b22ea56 3621
cc9bd5ce 3622 orig_dev = skb->dev;
8f903c70 3623
c1d2bbe1 3624 skb_reset_network_header(skb);
fda55eca
ED
3625 if (!skb_transport_header_was_set(skb))
3626 skb_reset_transport_header(skb);
0b5c9db1 3627 skb_reset_mac_len(skb);
1da177e4
LT
3628
3629 pt_prev = NULL;
3630
3631 rcu_read_lock();
3632
63d8ea7f 3633another_round:
b6858177 3634 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
3635
3636 __this_cpu_inc(softnet_data.processed);
3637
8ad227ff
PM
3638 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3639 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 3640 skb = skb_vlan_untag(skb);
bcc6d479 3641 if (unlikely(!skb))
b4b9e355 3642 goto unlock;
bcc6d479
JP
3643 }
3644
1da177e4
LT
3645#ifdef CONFIG_NET_CLS_ACT
3646 if (skb->tc_verd & TC_NCLS) {
3647 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3648 goto ncls;
3649 }
3650#endif
3651
9754e293 3652 if (pfmemalloc)
b4b9e355
MG
3653 goto skip_taps;
3654
1da177e4 3655 list_for_each_entry_rcu(ptype, &ptype_all, list) {
63d8ea7f 3656 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 3657 if (pt_prev)
f2ccd8fa 3658 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3659 pt_prev = ptype;
3660 }
3661 }
3662
b4b9e355 3663skip_taps:
1da177e4 3664#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
3665 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3666 if (!skb)
b4b9e355 3667 goto unlock;
1da177e4
LT
3668ncls:
3669#endif
3670
9754e293 3671 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
3672 goto drop;
3673
2425717b
JF
3674 if (vlan_tx_tag_present(skb)) {
3675 if (pt_prev) {
3676 ret = deliver_skb(skb, pt_prev, orig_dev);
3677 pt_prev = NULL;
3678 }
48cc32d3 3679 if (vlan_do_receive(&skb))
2425717b
JF
3680 goto another_round;
3681 else if (unlikely(!skb))
b4b9e355 3682 goto unlock;
2425717b
JF
3683 }
3684
48cc32d3 3685 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
3686 if (rx_handler) {
3687 if (pt_prev) {
3688 ret = deliver_skb(skb, pt_prev, orig_dev);
3689 pt_prev = NULL;
3690 }
8a4eb573
JP
3691 switch (rx_handler(&skb)) {
3692 case RX_HANDLER_CONSUMED:
3bc1b1ad 3693 ret = NET_RX_SUCCESS;
b4b9e355 3694 goto unlock;
8a4eb573 3695 case RX_HANDLER_ANOTHER:
63d8ea7f 3696 goto another_round;
8a4eb573
JP
3697 case RX_HANDLER_EXACT:
3698 deliver_exact = true;
3699 case RX_HANDLER_PASS:
3700 break;
3701 default:
3702 BUG();
3703 }
ab95bfe0 3704 }
1da177e4 3705
d4b812de
ED
3706 if (unlikely(vlan_tx_tag_present(skb))) {
3707 if (vlan_tx_tag_get_id(skb))
3708 skb->pkt_type = PACKET_OTHERHOST;
3709 /* Note: we might in the future use prio bits
3710 * and set skb->priority like in vlan_do_receive()
3711 * For the time being, just ignore Priority Code Point
3712 */
3713 skb->vlan_tci = 0;
3714 }
48cc32d3 3715
63d8ea7f 3716 /* deliver only exact match when indicated */
8a4eb573 3717 null_or_dev = deliver_exact ? skb->dev : NULL;
1f3c8804 3718
1da177e4 3719 type = skb->protocol;
82d8a867
PE
3720 list_for_each_entry_rcu(ptype,
3721 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
63d8ea7f 3722 if (ptype->type == type &&
e3f48d37
JP
3723 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3724 ptype->dev == orig_dev)) {
4ec93edb 3725 if (pt_prev)
f2ccd8fa 3726 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
3727 pt_prev = ptype;
3728 }
3729 }
3730
3731 if (pt_prev) {
1080e512 3732 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 3733 goto drop;
1080e512
MT
3734 else
3735 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 3736 } else {
b4b9e355 3737drop:
caf586e5 3738 atomic_long_inc(&skb->dev->rx_dropped);
1da177e4
LT
3739 kfree_skb(skb);
3740 /* Jamal, now you will not able to escape explaining
3741 * me how you were going to use this. :-)
3742 */
3743 ret = NET_RX_DROP;
3744 }
3745
b4b9e355 3746unlock:
1da177e4 3747 rcu_read_unlock();
9754e293
DM
3748 return ret;
3749}
3750
3751static int __netif_receive_skb(struct sk_buff *skb)
3752{
3753 int ret;
3754
3755 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3756 unsigned long pflags = current->flags;
3757
3758 /*
3759 * PFMEMALLOC skbs are special, they should
3760 * - be delivered to SOCK_MEMALLOC sockets only
3761 * - stay away from userspace
3762 * - have bounded memory usage
3763 *
3764 * Use PF_MEMALLOC as this saves us from propagating the allocation
3765 * context down to all allocation sites.
3766 */
3767 current->flags |= PF_MEMALLOC;
3768 ret = __netif_receive_skb_core(skb, true);
3769 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3770 } else
3771 ret = __netif_receive_skb_core(skb, false);
3772
1da177e4
LT
3773 return ret;
3774}
0a9627f2 3775
ae78dbfa 3776static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 3777{
588f0330 3778 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 3779
c1f19b51
RC
3780 if (skb_defer_rx_timestamp(skb))
3781 return NET_RX_SUCCESS;
3782
df334545 3783#ifdef CONFIG_RPS
c5905afb 3784 if (static_key_false(&rps_needed)) {
3b098e2d
ED
3785 struct rps_dev_flow voidflow, *rflow = &voidflow;
3786 int cpu, ret;
fec5e652 3787
3b098e2d
ED
3788 rcu_read_lock();
3789
3790 cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 3791
3b098e2d
ED
3792 if (cpu >= 0) {
3793 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3794 rcu_read_unlock();
adc9300e 3795 return ret;
3b098e2d 3796 }
adc9300e 3797 rcu_read_unlock();
fec5e652 3798 }
1e94d72f 3799#endif
adc9300e 3800 return __netif_receive_skb(skb);
0a9627f2 3801}
ae78dbfa
BH
3802
3803/**
3804 * netif_receive_skb - process receive buffer from network
3805 * @skb: buffer to process
3806 *
3807 * netif_receive_skb() is the main receive data processing function.
3808 * It always succeeds. The buffer may be dropped during processing
3809 * for congestion control or by the protocol layers.
3810 *
3811 * This function may only be called from softirq context and interrupts
3812 * should be enabled.
3813 *
3814 * Return values (usually ignored):
3815 * NET_RX_SUCCESS: no congestion
3816 * NET_RX_DROP: packet was dropped
3817 */
3818int netif_receive_skb(struct sk_buff *skb)
3819{
3820 trace_netif_receive_skb_entry(skb);
3821
3822 return netif_receive_skb_internal(skb);
3823}
d1b19dff 3824EXPORT_SYMBOL(netif_receive_skb);
1da177e4 3825
88751275
ED
3826/* Network device is going away, flush any packets still pending
3827 * Called with irqs disabled.
3828 */
152102c7 3829static void flush_backlog(void *arg)
6e583ce5 3830{
152102c7 3831 struct net_device *dev = arg;
903ceff7 3832 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6e583ce5
SH
3833 struct sk_buff *skb, *tmp;
3834
e36fa2f7 3835 rps_lock(sd);
6e7676c1 3836 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6e583ce5 3837 if (skb->dev == dev) {
e36fa2f7 3838 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 3839 kfree_skb(skb);
76cc8b13 3840 input_queue_head_incr(sd);
6e583ce5 3841 }
6e7676c1 3842 }
e36fa2f7 3843 rps_unlock(sd);
6e7676c1
CG
3844
3845 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3846 if (skb->dev == dev) {
3847 __skb_unlink(skb, &sd->process_queue);
3848 kfree_skb(skb);
76cc8b13 3849 input_queue_head_incr(sd);
6e7676c1
CG
3850 }
3851 }
6e583ce5
SH
3852}
3853
d565b0a1
HX
3854static int napi_gro_complete(struct sk_buff *skb)
3855{
22061d80 3856 struct packet_offload *ptype;
d565b0a1 3857 __be16 type = skb->protocol;
22061d80 3858 struct list_head *head = &offload_base;
d565b0a1
HX
3859 int err = -ENOENT;
3860
c3c7c254
ED
3861 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3862
fc59f9a3
HX
3863 if (NAPI_GRO_CB(skb)->count == 1) {
3864 skb_shinfo(skb)->gso_size = 0;
d565b0a1 3865 goto out;
fc59f9a3 3866 }
d565b0a1
HX
3867
3868 rcu_read_lock();
3869 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 3870 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
3871 continue;
3872
299603e8 3873 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
3874 break;
3875 }
3876 rcu_read_unlock();
3877
3878 if (err) {
3879 WARN_ON(&ptype->list == head);
3880 kfree_skb(skb);
3881 return NET_RX_SUCCESS;
3882 }
3883
3884out:
ae78dbfa 3885 return netif_receive_skb_internal(skb);
d565b0a1
HX
3886}
3887
2e71a6f8
ED
3888/* napi->gro_list contains packets ordered by age.
3889 * youngest packets at the head of it.
3890 * Complete skbs in reverse order to reduce latencies.
3891 */
3892void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 3893{
2e71a6f8 3894 struct sk_buff *skb, *prev = NULL;
d565b0a1 3895
2e71a6f8
ED
3896 /* scan list and build reverse chain */
3897 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3898 skb->prev = prev;
3899 prev = skb;
3900 }
3901
3902 for (skb = prev; skb; skb = prev) {
d565b0a1 3903 skb->next = NULL;
2e71a6f8
ED
3904
3905 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3906 return;
3907
3908 prev = skb->prev;
d565b0a1 3909 napi_gro_complete(skb);
2e71a6f8 3910 napi->gro_count--;
d565b0a1
HX
3911 }
3912
3913 napi->gro_list = NULL;
3914}
86cac58b 3915EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 3916
89c5fa33
ED
3917static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3918{
3919 struct sk_buff *p;
3920 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 3921 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
3922
3923 for (p = napi->gro_list; p; p = p->next) {
3924 unsigned long diffs;
3925
0b4cec8c
TH
3926 NAPI_GRO_CB(p)->flush = 0;
3927
3928 if (hash != skb_get_hash_raw(p)) {
3929 NAPI_GRO_CB(p)->same_flow = 0;
3930 continue;
3931 }
3932
89c5fa33
ED
3933 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3934 diffs |= p->vlan_tci ^ skb->vlan_tci;
3935 if (maclen == ETH_HLEN)
3936 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 3937 skb_mac_header(skb));
89c5fa33
ED
3938 else if (!diffs)
3939 diffs = memcmp(skb_mac_header(p),
a50e233c 3940 skb_mac_header(skb),
89c5fa33
ED
3941 maclen);
3942 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
3943 }
3944}
3945
299603e8
JC
3946static void skb_gro_reset_offset(struct sk_buff *skb)
3947{
3948 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3949 const skb_frag_t *frag0 = &pinfo->frags[0];
3950
3951 NAPI_GRO_CB(skb)->data_offset = 0;
3952 NAPI_GRO_CB(skb)->frag0 = NULL;
3953 NAPI_GRO_CB(skb)->frag0_len = 0;
3954
3955 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3956 pinfo->nr_frags &&
3957 !PageHighMem(skb_frag_page(frag0))) {
3958 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3959 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
3960 }
3961}
3962
a50e233c
ED
3963static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3964{
3965 struct skb_shared_info *pinfo = skb_shinfo(skb);
3966
3967 BUG_ON(skb->end - skb->tail < grow);
3968
3969 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3970
3971 skb->data_len -= grow;
3972 skb->tail += grow;
3973
3974 pinfo->frags[0].page_offset += grow;
3975 skb_frag_size_sub(&pinfo->frags[0], grow);
3976
3977 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3978 skb_frag_unref(skb, 0);
3979 memmove(pinfo->frags, pinfo->frags + 1,
3980 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3981 }
3982}
3983
bb728820 3984static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
3985{
3986 struct sk_buff **pp = NULL;
22061d80 3987 struct packet_offload *ptype;
d565b0a1 3988 __be16 type = skb->protocol;
22061d80 3989 struct list_head *head = &offload_base;
0da2afd5 3990 int same_flow;
5b252f0c 3991 enum gro_result ret;
a50e233c 3992 int grow;
d565b0a1 3993
9c62a68d 3994 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
3995 goto normal;
3996
5a212329 3997 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
3998 goto normal;
3999
89c5fa33
ED
4000 gro_list_prepare(napi, skb);
4001
d565b0a1
HX
4002 rcu_read_lock();
4003 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4004 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4005 continue;
4006
86911732 4007 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4008 skb_reset_mac_len(skb);
d565b0a1
HX
4009 NAPI_GRO_CB(skb)->same_flow = 0;
4010 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4011 NAPI_GRO_CB(skb)->free = 0;
b582ef09 4012 NAPI_GRO_CB(skb)->udp_mark = 0;
d565b0a1 4013
662880f4
TH
4014 /* Setup for GRO checksum validation */
4015 switch (skb->ip_summed) {
4016 case CHECKSUM_COMPLETE:
4017 NAPI_GRO_CB(skb)->csum = skb->csum;
4018 NAPI_GRO_CB(skb)->csum_valid = 1;
4019 NAPI_GRO_CB(skb)->csum_cnt = 0;
4020 break;
4021 case CHECKSUM_UNNECESSARY:
4022 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4023 NAPI_GRO_CB(skb)->csum_valid = 0;
4024 break;
4025 default:
4026 NAPI_GRO_CB(skb)->csum_cnt = 0;
4027 NAPI_GRO_CB(skb)->csum_valid = 0;
4028 }
d565b0a1 4029
f191a1d1 4030 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4031 break;
4032 }
4033 rcu_read_unlock();
4034
4035 if (&ptype->list == head)
4036 goto normal;
4037
0da2afd5 4038 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4039 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4040
d565b0a1
HX
4041 if (pp) {
4042 struct sk_buff *nskb = *pp;
4043
4044 *pp = nskb->next;
4045 nskb->next = NULL;
4046 napi_gro_complete(nskb);
4ae5544f 4047 napi->gro_count--;
d565b0a1
HX
4048 }
4049
0da2afd5 4050 if (same_flow)
d565b0a1
HX
4051 goto ok;
4052
600adc18 4053 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4054 goto normal;
d565b0a1 4055
600adc18
ED
4056 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4057 struct sk_buff *nskb = napi->gro_list;
4058
4059 /* locate the end of the list to select the 'oldest' flow */
4060 while (nskb->next) {
4061 pp = &nskb->next;
4062 nskb = *pp;
4063 }
4064 *pp = NULL;
4065 nskb->next = NULL;
4066 napi_gro_complete(nskb);
4067 } else {
4068 napi->gro_count++;
4069 }
d565b0a1 4070 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4071 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4072 NAPI_GRO_CB(skb)->last = skb;
86911732 4073 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4074 skb->next = napi->gro_list;
4075 napi->gro_list = skb;
5d0d9be8 4076 ret = GRO_HELD;
d565b0a1 4077
ad0f9904 4078pull:
a50e233c
ED
4079 grow = skb_gro_offset(skb) - skb_headlen(skb);
4080 if (grow > 0)
4081 gro_pull_from_frag0(skb, grow);
d565b0a1 4082ok:
5d0d9be8 4083 return ret;
d565b0a1
HX
4084
4085normal:
ad0f9904
HX
4086 ret = GRO_NORMAL;
4087 goto pull;
5d38a079 4088}
96e93eab 4089
bf5a755f
JC
4090struct packet_offload *gro_find_receive_by_type(__be16 type)
4091{
4092 struct list_head *offload_head = &offload_base;
4093 struct packet_offload *ptype;
4094
4095 list_for_each_entry_rcu(ptype, offload_head, list) {
4096 if (ptype->type != type || !ptype->callbacks.gro_receive)
4097 continue;
4098 return ptype;
4099 }
4100 return NULL;
4101}
e27a2f83 4102EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4103
4104struct packet_offload *gro_find_complete_by_type(__be16 type)
4105{
4106 struct list_head *offload_head = &offload_base;
4107 struct packet_offload *ptype;
4108
4109 list_for_each_entry_rcu(ptype, offload_head, list) {
4110 if (ptype->type != type || !ptype->callbacks.gro_complete)
4111 continue;
4112 return ptype;
4113 }
4114 return NULL;
4115}
e27a2f83 4116EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4117
bb728820 4118static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4119{
5d0d9be8
HX
4120 switch (ret) {
4121 case GRO_NORMAL:
ae78dbfa 4122 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4123 ret = GRO_DROP;
4124 break;
5d38a079 4125
5d0d9be8 4126 case GRO_DROP:
5d38a079
HX
4127 kfree_skb(skb);
4128 break;
5b252f0c 4129
daa86548 4130 case GRO_MERGED_FREE:
d7e8883c
ED
4131 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4132 kmem_cache_free(skbuff_head_cache, skb);
4133 else
4134 __kfree_skb(skb);
daa86548
ED
4135 break;
4136
5b252f0c
BH
4137 case GRO_HELD:
4138 case GRO_MERGED:
4139 break;
5d38a079
HX
4140 }
4141
c7c4b3b6 4142 return ret;
5d0d9be8 4143}
5d0d9be8 4144
c7c4b3b6 4145gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4146{
ae78dbfa 4147 trace_napi_gro_receive_entry(skb);
86911732 4148
a50e233c
ED
4149 skb_gro_reset_offset(skb);
4150
89c5fa33 4151 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4152}
4153EXPORT_SYMBOL(napi_gro_receive);
4154
d0c2b0d2 4155static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4156{
93a35f59
ED
4157 if (unlikely(skb->pfmemalloc)) {
4158 consume_skb(skb);
4159 return;
4160 }
96e93eab 4161 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4162 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4163 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4164 skb->vlan_tci = 0;
66c46d74 4165 skb->dev = napi->dev;
6d152e23 4166 skb->skb_iif = 0;
c3caf119
JC
4167 skb->encapsulation = 0;
4168 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4169 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4170
4171 napi->skb = skb;
4172}
96e93eab 4173
76620aaf 4174struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4175{
5d38a079 4176 struct sk_buff *skb = napi->skb;
5d38a079
HX
4177
4178 if (!skb) {
fd11a83d 4179 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
84b9cd63 4180 napi->skb = skb;
80595d59 4181 }
96e93eab
HX
4182 return skb;
4183}
76620aaf 4184EXPORT_SYMBOL(napi_get_frags);
96e93eab 4185
a50e233c
ED
4186static gro_result_t napi_frags_finish(struct napi_struct *napi,
4187 struct sk_buff *skb,
4188 gro_result_t ret)
96e93eab 4189{
5d0d9be8
HX
4190 switch (ret) {
4191 case GRO_NORMAL:
a50e233c
ED
4192 case GRO_HELD:
4193 __skb_push(skb, ETH_HLEN);
4194 skb->protocol = eth_type_trans(skb, skb->dev);
4195 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4196 ret = GRO_DROP;
86911732 4197 break;
5d38a079 4198
5d0d9be8 4199 case GRO_DROP:
5d0d9be8
HX
4200 case GRO_MERGED_FREE:
4201 napi_reuse_skb(napi, skb);
4202 break;
5b252f0c
BH
4203
4204 case GRO_MERGED:
4205 break;
5d0d9be8 4206 }
5d38a079 4207
c7c4b3b6 4208 return ret;
5d38a079 4209}
5d0d9be8 4210
a50e233c
ED
4211/* Upper GRO stack assumes network header starts at gro_offset=0
4212 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4213 * We copy ethernet header into skb->data to have a common layout.
4214 */
4adb9c4a 4215static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4216{
4217 struct sk_buff *skb = napi->skb;
a50e233c
ED
4218 const struct ethhdr *eth;
4219 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4220
4221 napi->skb = NULL;
4222
a50e233c
ED
4223 skb_reset_mac_header(skb);
4224 skb_gro_reset_offset(skb);
4225
4226 eth = skb_gro_header_fast(skb, 0);
4227 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4228 eth = skb_gro_header_slow(skb, hlen, 0);
4229 if (unlikely(!eth)) {
4230 napi_reuse_skb(napi, skb);
4231 return NULL;
4232 }
4233 } else {
4234 gro_pull_from_frag0(skb, hlen);
4235 NAPI_GRO_CB(skb)->frag0 += hlen;
4236 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4237 }
a50e233c
ED
4238 __skb_pull(skb, hlen);
4239
4240 /*
4241 * This works because the only protocols we care about don't require
4242 * special handling.
4243 * We'll fix it up properly in napi_frags_finish()
4244 */
4245 skb->protocol = eth->h_proto;
76620aaf 4246
76620aaf
HX
4247 return skb;
4248}
76620aaf 4249
c7c4b3b6 4250gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4251{
76620aaf 4252 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4253
4254 if (!skb)
c7c4b3b6 4255 return GRO_DROP;
5d0d9be8 4256
ae78dbfa
BH
4257 trace_napi_gro_frags_entry(skb);
4258
89c5fa33 4259 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4260}
5d38a079
HX
4261EXPORT_SYMBOL(napi_gro_frags);
4262
573e8fca
TH
4263/* Compute the checksum from gro_offset and return the folded value
4264 * after adding in any pseudo checksum.
4265 */
4266__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4267{
4268 __wsum wsum;
4269 __sum16 sum;
4270
4271 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4272
4273 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4274 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4275 if (likely(!sum)) {
4276 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4277 !skb->csum_complete_sw)
4278 netdev_rx_csum_fault(skb->dev);
4279 }
4280
4281 NAPI_GRO_CB(skb)->csum = wsum;
4282 NAPI_GRO_CB(skb)->csum_valid = 1;
4283
4284 return sum;
4285}
4286EXPORT_SYMBOL(__skb_gro_checksum_complete);
4287
e326bed2 4288/*
855abcf0 4289 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4290 * Note: called with local irq disabled, but exits with local irq enabled.
4291 */
4292static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4293{
4294#ifdef CONFIG_RPS
4295 struct softnet_data *remsd = sd->rps_ipi_list;
4296
4297 if (remsd) {
4298 sd->rps_ipi_list = NULL;
4299
4300 local_irq_enable();
4301
4302 /* Send pending IPI's to kick RPS processing on remote cpus. */
4303 while (remsd) {
4304 struct softnet_data *next = remsd->rps_ipi_next;
4305
4306 if (cpu_online(remsd->cpu))
c46fff2a 4307 smp_call_function_single_async(remsd->cpu,
fce8ad15 4308 &remsd->csd);
e326bed2
ED
4309 remsd = next;
4310 }
4311 } else
4312#endif
4313 local_irq_enable();
4314}
4315
d75b1ade
ED
4316static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4317{
4318#ifdef CONFIG_RPS
4319 return sd->rps_ipi_list != NULL;
4320#else
4321 return false;
4322#endif
4323}
4324
bea3348e 4325static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
4326{
4327 int work = 0;
eecfd7c4 4328 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
1da177e4 4329
e326bed2
ED
4330 /* Check if we have pending ipi, its better to send them now,
4331 * not waiting net_rx_action() end.
4332 */
d75b1ade 4333 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4334 local_irq_disable();
4335 net_rps_action_and_irq_enable(sd);
4336 }
d75b1ade 4337
bea3348e 4338 napi->weight = weight_p;
6e7676c1 4339 local_irq_disable();
11ef7a89 4340 while (1) {
1da177e4 4341 struct sk_buff *skb;
6e7676c1
CG
4342
4343 while ((skb = __skb_dequeue(&sd->process_queue))) {
4344 local_irq_enable();
4345 __netif_receive_skb(skb);
6e7676c1 4346 local_irq_disable();
76cc8b13
TH
4347 input_queue_head_incr(sd);
4348 if (++work >= quota) {
4349 local_irq_enable();
4350 return work;
4351 }
6e7676c1 4352 }
1da177e4 4353
e36fa2f7 4354 rps_lock(sd);
11ef7a89 4355 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4356 /*
4357 * Inline a custom version of __napi_complete().
4358 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4359 * and NAPI_STATE_SCHED is the only possible flag set
4360 * on backlog.
4361 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4362 * and we dont need an smp_mb() memory barrier.
4363 */
eecfd7c4 4364 napi->state = 0;
11ef7a89 4365 rps_unlock(sd);
eecfd7c4 4366
11ef7a89 4367 break;
bea3348e 4368 }
11ef7a89
TH
4369
4370 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4371 &sd->process_queue);
e36fa2f7 4372 rps_unlock(sd);
6e7676c1
CG
4373 }
4374 local_irq_enable();
1da177e4 4375
bea3348e
SH
4376 return work;
4377}
1da177e4 4378
bea3348e
SH
4379/**
4380 * __napi_schedule - schedule for receive
c4ea43c5 4381 * @n: entry to schedule
bea3348e 4382 *
bc9ad166
ED
4383 * The entry's receive function will be scheduled to run.
4384 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4385 */
b5606c2d 4386void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4387{
4388 unsigned long flags;
1da177e4 4389
bea3348e 4390 local_irq_save(flags);
903ceff7 4391 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4392 local_irq_restore(flags);
1da177e4 4393}
bea3348e
SH
4394EXPORT_SYMBOL(__napi_schedule);
4395
bc9ad166
ED
4396/**
4397 * __napi_schedule_irqoff - schedule for receive
4398 * @n: entry to schedule
4399 *
4400 * Variant of __napi_schedule() assuming hard irqs are masked
4401 */
4402void __napi_schedule_irqoff(struct napi_struct *n)
4403{
4404 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4405}
4406EXPORT_SYMBOL(__napi_schedule_irqoff);
4407
d565b0a1
HX
4408void __napi_complete(struct napi_struct *n)
4409{
4410 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4411
d75b1ade 4412 list_del_init(&n->poll_list);
4e857c58 4413 smp_mb__before_atomic();
d565b0a1
HX
4414 clear_bit(NAPI_STATE_SCHED, &n->state);
4415}
4416EXPORT_SYMBOL(__napi_complete);
4417
3b47d303 4418void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4419{
4420 unsigned long flags;
4421
4422 /*
4423 * don't let napi dequeue from the cpu poll list
4424 * just in case its running on a different cpu
4425 */
4426 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4427 return;
4428
3b47d303
ED
4429 if (n->gro_list) {
4430 unsigned long timeout = 0;
d75b1ade 4431
3b47d303
ED
4432 if (work_done)
4433 timeout = n->dev->gro_flush_timeout;
4434
4435 if (timeout)
4436 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4437 HRTIMER_MODE_REL_PINNED);
4438 else
4439 napi_gro_flush(n, false);
4440 }
d75b1ade
ED
4441 if (likely(list_empty(&n->poll_list))) {
4442 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4443 } else {
4444 /* If n->poll_list is not empty, we need to mask irqs */
4445 local_irq_save(flags);
4446 __napi_complete(n);
4447 local_irq_restore(flags);
4448 }
d565b0a1 4449}
3b47d303 4450EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4451
af12fa6e
ET
4452/* must be called under rcu_read_lock(), as we dont take a reference */
4453struct napi_struct *napi_by_id(unsigned int napi_id)
4454{
4455 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4456 struct napi_struct *napi;
4457
4458 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4459 if (napi->napi_id == napi_id)
4460 return napi;
4461
4462 return NULL;
4463}
4464EXPORT_SYMBOL_GPL(napi_by_id);
4465
4466void napi_hash_add(struct napi_struct *napi)
4467{
4468 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4469
4470 spin_lock(&napi_hash_lock);
4471
4472 /* 0 is not a valid id, we also skip an id that is taken
4473 * we expect both events to be extremely rare
4474 */
4475 napi->napi_id = 0;
4476 while (!napi->napi_id) {
4477 napi->napi_id = ++napi_gen_id;
4478 if (napi_by_id(napi->napi_id))
4479 napi->napi_id = 0;
4480 }
4481
4482 hlist_add_head_rcu(&napi->napi_hash_node,
4483 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4484
4485 spin_unlock(&napi_hash_lock);
4486 }
4487}
4488EXPORT_SYMBOL_GPL(napi_hash_add);
4489
4490/* Warning : caller is responsible to make sure rcu grace period
4491 * is respected before freeing memory containing @napi
4492 */
4493void napi_hash_del(struct napi_struct *napi)
4494{
4495 spin_lock(&napi_hash_lock);
4496
4497 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4498 hlist_del_rcu(&napi->napi_hash_node);
4499
4500 spin_unlock(&napi_hash_lock);
4501}
4502EXPORT_SYMBOL_GPL(napi_hash_del);
4503
3b47d303
ED
4504static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4505{
4506 struct napi_struct *napi;
4507
4508 napi = container_of(timer, struct napi_struct, timer);
4509 if (napi->gro_list)
4510 napi_schedule(napi);
4511
4512 return HRTIMER_NORESTART;
4513}
4514
d565b0a1
HX
4515void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4516 int (*poll)(struct napi_struct *, int), int weight)
4517{
4518 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
4519 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4520 napi->timer.function = napi_watchdog;
4ae5544f 4521 napi->gro_count = 0;
d565b0a1 4522 napi->gro_list = NULL;
5d38a079 4523 napi->skb = NULL;
d565b0a1 4524 napi->poll = poll;
82dc3c63
ED
4525 if (weight > NAPI_POLL_WEIGHT)
4526 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4527 weight, dev->name);
d565b0a1
HX
4528 napi->weight = weight;
4529 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 4530 napi->dev = dev;
5d38a079 4531#ifdef CONFIG_NETPOLL
d565b0a1
HX
4532 spin_lock_init(&napi->poll_lock);
4533 napi->poll_owner = -1;
4534#endif
4535 set_bit(NAPI_STATE_SCHED, &napi->state);
4536}
4537EXPORT_SYMBOL(netif_napi_add);
4538
3b47d303
ED
4539void napi_disable(struct napi_struct *n)
4540{
4541 might_sleep();
4542 set_bit(NAPI_STATE_DISABLE, &n->state);
4543
4544 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4545 msleep(1);
4546
4547 hrtimer_cancel(&n->timer);
4548
4549 clear_bit(NAPI_STATE_DISABLE, &n->state);
4550}
4551EXPORT_SYMBOL(napi_disable);
4552
d565b0a1
HX
4553void netif_napi_del(struct napi_struct *napi)
4554{
d7b06636 4555 list_del_init(&napi->dev_list);
76620aaf 4556 napi_free_frags(napi);
d565b0a1 4557
289dccbe 4558 kfree_skb_list(napi->gro_list);
d565b0a1 4559 napi->gro_list = NULL;
4ae5544f 4560 napi->gro_count = 0;
d565b0a1
HX
4561}
4562EXPORT_SYMBOL(netif_napi_del);
4563
726ce70e
HX
4564static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4565{
4566 void *have;
4567 int work, weight;
4568
4569 list_del_init(&n->poll_list);
4570
4571 have = netpoll_poll_lock(n);
4572
4573 weight = n->weight;
4574
4575 /* This NAPI_STATE_SCHED test is for avoiding a race
4576 * with netpoll's poll_napi(). Only the entity which
4577 * obtains the lock and sees NAPI_STATE_SCHED set will
4578 * actually make the ->poll() call. Therefore we avoid
4579 * accidentally calling ->poll() when NAPI is not scheduled.
4580 */
4581 work = 0;
4582 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4583 work = n->poll(n, weight);
4584 trace_napi_poll(n);
4585 }
4586
4587 WARN_ON_ONCE(work > weight);
4588
4589 if (likely(work < weight))
4590 goto out_unlock;
4591
4592 /* Drivers must not modify the NAPI state if they
4593 * consume the entire weight. In such cases this code
4594 * still "owns" the NAPI instance and therefore can
4595 * move the instance around on the list at-will.
4596 */
4597 if (unlikely(napi_disable_pending(n))) {
4598 napi_complete(n);
4599 goto out_unlock;
4600 }
4601
4602 if (n->gro_list) {
4603 /* flush too old packets
4604 * If HZ < 1000, flush all packets.
4605 */
4606 napi_gro_flush(n, HZ >= 1000);
4607 }
4608
001ce546
HX
4609 /* Some drivers may have called napi_schedule
4610 * prior to exhausting their budget.
4611 */
4612 if (unlikely(!list_empty(&n->poll_list))) {
4613 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4614 n->dev ? n->dev->name : "backlog");
4615 goto out_unlock;
4616 }
4617
726ce70e
HX
4618 list_add_tail(&n->poll_list, repoll);
4619
4620out_unlock:
4621 netpoll_poll_unlock(have);
4622
4623 return work;
4624}
4625
1da177e4
LT
4626static void net_rx_action(struct softirq_action *h)
4627{
903ceff7 4628 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 4629 unsigned long time_limit = jiffies + 2;
51b0bded 4630 int budget = netdev_budget;
d75b1ade
ED
4631 LIST_HEAD(list);
4632 LIST_HEAD(repoll);
53fb95d3 4633
1da177e4 4634 local_irq_disable();
d75b1ade
ED
4635 list_splice_init(&sd->poll_list, &list);
4636 local_irq_enable();
1da177e4 4637
ceb8d5bf 4638 for (;;) {
bea3348e 4639 struct napi_struct *n;
1da177e4 4640
ceb8d5bf
HX
4641 if (list_empty(&list)) {
4642 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4643 return;
4644 break;
4645 }
4646
6bd373eb
HX
4647 n = list_first_entry(&list, struct napi_struct, poll_list);
4648 budget -= napi_poll(n, &repoll);
4649
d75b1ade 4650 /* If softirq window is exhausted then punt.
24f8b238
SH
4651 * Allow this to run for 2 jiffies since which will allow
4652 * an average latency of 1.5/HZ.
bea3348e 4653 */
ceb8d5bf
HX
4654 if (unlikely(budget <= 0 ||
4655 time_after_eq(jiffies, time_limit))) {
4656 sd->time_squeeze++;
4657 break;
4658 }
1da177e4 4659 }
d75b1ade 4660
d75b1ade
ED
4661 local_irq_disable();
4662
4663 list_splice_tail_init(&sd->poll_list, &list);
4664 list_splice_tail(&repoll, &list);
4665 list_splice(&list, &sd->poll_list);
4666 if (!list_empty(&sd->poll_list))
4667 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4668
e326bed2 4669 net_rps_action_and_irq_enable(sd);
1da177e4
LT
4670}
4671
aa9d8560 4672struct netdev_adjacent {
9ff162a8 4673 struct net_device *dev;
5d261913
VF
4674
4675 /* upper master flag, there can only be one master device per list */
9ff162a8 4676 bool master;
5d261913 4677
5d261913
VF
4678 /* counter for the number of times this device was added to us */
4679 u16 ref_nr;
4680
402dae96
VF
4681 /* private field for the users */
4682 void *private;
4683
9ff162a8
JP
4684 struct list_head list;
4685 struct rcu_head rcu;
9ff162a8
JP
4686};
4687
5d261913
VF
4688static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4689 struct net_device *adj_dev,
2f268f12 4690 struct list_head *adj_list)
9ff162a8 4691{
5d261913 4692 struct netdev_adjacent *adj;
5d261913 4693
2f268f12 4694 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
4695 if (adj->dev == adj_dev)
4696 return adj;
9ff162a8
JP
4697 }
4698 return NULL;
4699}
4700
4701/**
4702 * netdev_has_upper_dev - Check if device is linked to an upper device
4703 * @dev: device
4704 * @upper_dev: upper device to check
4705 *
4706 * Find out if a device is linked to specified upper device and return true
4707 * in case it is. Note that this checks only immediate upper device,
4708 * not through a complete stack of devices. The caller must hold the RTNL lock.
4709 */
4710bool netdev_has_upper_dev(struct net_device *dev,
4711 struct net_device *upper_dev)
4712{
4713 ASSERT_RTNL();
4714
2f268f12 4715 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
4716}
4717EXPORT_SYMBOL(netdev_has_upper_dev);
4718
4719/**
4720 * netdev_has_any_upper_dev - Check if device is linked to some device
4721 * @dev: device
4722 *
4723 * Find out if a device is linked to an upper device and return true in case
4724 * it is. The caller must hold the RTNL lock.
4725 */
1d143d9f 4726static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
4727{
4728 ASSERT_RTNL();
4729
2f268f12 4730 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 4731}
9ff162a8
JP
4732
4733/**
4734 * netdev_master_upper_dev_get - Get master upper device
4735 * @dev: device
4736 *
4737 * Find a master upper device and return pointer to it or NULL in case
4738 * it's not there. The caller must hold the RTNL lock.
4739 */
4740struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4741{
aa9d8560 4742 struct netdev_adjacent *upper;
9ff162a8
JP
4743
4744 ASSERT_RTNL();
4745
2f268f12 4746 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
4747 return NULL;
4748
2f268f12 4749 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 4750 struct netdev_adjacent, list);
9ff162a8
JP
4751 if (likely(upper->master))
4752 return upper->dev;
4753 return NULL;
4754}
4755EXPORT_SYMBOL(netdev_master_upper_dev_get);
4756
b6ccba4c
VF
4757void *netdev_adjacent_get_private(struct list_head *adj_list)
4758{
4759 struct netdev_adjacent *adj;
4760
4761 adj = list_entry(adj_list, struct netdev_adjacent, list);
4762
4763 return adj->private;
4764}
4765EXPORT_SYMBOL(netdev_adjacent_get_private);
4766
44a40855
VY
4767/**
4768 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4769 * @dev: device
4770 * @iter: list_head ** of the current position
4771 *
4772 * Gets the next device from the dev's upper list, starting from iter
4773 * position. The caller must hold RCU read lock.
4774 */
4775struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4776 struct list_head **iter)
4777{
4778 struct netdev_adjacent *upper;
4779
4780 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4781
4782 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4783
4784 if (&upper->list == &dev->adj_list.upper)
4785 return NULL;
4786
4787 *iter = &upper->list;
4788
4789 return upper->dev;
4790}
4791EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4792
31088a11
VF
4793/**
4794 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
4795 * @dev: device
4796 * @iter: list_head ** of the current position
4797 *
4798 * Gets the next device from the dev's upper list, starting from iter
4799 * position. The caller must hold RCU read lock.
4800 */
2f268f12
VF
4801struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4802 struct list_head **iter)
48311f46
VF
4803{
4804 struct netdev_adjacent *upper;
4805
85328240 4806 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
4807
4808 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4809
2f268f12 4810 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
4811 return NULL;
4812
4813 *iter = &upper->list;
4814
4815 return upper->dev;
4816}
2f268f12 4817EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 4818
31088a11
VF
4819/**
4820 * netdev_lower_get_next_private - Get the next ->private from the
4821 * lower neighbour list
4822 * @dev: device
4823 * @iter: list_head ** of the current position
4824 *
4825 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4826 * list, starting from iter position. The caller must hold either hold the
4827 * RTNL lock or its own locking that guarantees that the neighbour lower
4828 * list will remain unchainged.
4829 */
4830void *netdev_lower_get_next_private(struct net_device *dev,
4831 struct list_head **iter)
4832{
4833 struct netdev_adjacent *lower;
4834
4835 lower = list_entry(*iter, struct netdev_adjacent, list);
4836
4837 if (&lower->list == &dev->adj_list.lower)
4838 return NULL;
4839
6859e7df 4840 *iter = lower->list.next;
31088a11
VF
4841
4842 return lower->private;
4843}
4844EXPORT_SYMBOL(netdev_lower_get_next_private);
4845
4846/**
4847 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4848 * lower neighbour list, RCU
4849 * variant
4850 * @dev: device
4851 * @iter: list_head ** of the current position
4852 *
4853 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4854 * list, starting from iter position. The caller must hold RCU read lock.
4855 */
4856void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4857 struct list_head **iter)
4858{
4859 struct netdev_adjacent *lower;
4860
4861 WARN_ON_ONCE(!rcu_read_lock_held());
4862
4863 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4864
4865 if (&lower->list == &dev->adj_list.lower)
4866 return NULL;
4867
6859e7df 4868 *iter = &lower->list;
31088a11
VF
4869
4870 return lower->private;
4871}
4872EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4873
4085ebe8
VY
4874/**
4875 * netdev_lower_get_next - Get the next device from the lower neighbour
4876 * list
4877 * @dev: device
4878 * @iter: list_head ** of the current position
4879 *
4880 * Gets the next netdev_adjacent from the dev's lower neighbour
4881 * list, starting from iter position. The caller must hold RTNL lock or
4882 * its own locking that guarantees that the neighbour lower
4883 * list will remain unchainged.
4884 */
4885void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4886{
4887 struct netdev_adjacent *lower;
4888
4889 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4890
4891 if (&lower->list == &dev->adj_list.lower)
4892 return NULL;
4893
4894 *iter = &lower->list;
4895
4896 return lower->dev;
4897}
4898EXPORT_SYMBOL(netdev_lower_get_next);
4899
e001bfad 4900/**
4901 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4902 * lower neighbour list, RCU
4903 * variant
4904 * @dev: device
4905 *
4906 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4907 * list. The caller must hold RCU read lock.
4908 */
4909void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4910{
4911 struct netdev_adjacent *lower;
4912
4913 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4914 struct netdev_adjacent, list);
4915 if (lower)
4916 return lower->private;
4917 return NULL;
4918}
4919EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4920
9ff162a8
JP
4921/**
4922 * netdev_master_upper_dev_get_rcu - Get master upper device
4923 * @dev: device
4924 *
4925 * Find a master upper device and return pointer to it or NULL in case
4926 * it's not there. The caller must hold the RCU read lock.
4927 */
4928struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4929{
aa9d8560 4930 struct netdev_adjacent *upper;
9ff162a8 4931
2f268f12 4932 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 4933 struct netdev_adjacent, list);
9ff162a8
JP
4934 if (upper && likely(upper->master))
4935 return upper->dev;
4936 return NULL;
4937}
4938EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4939
0a59f3a9 4940static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
4941 struct net_device *adj_dev,
4942 struct list_head *dev_list)
4943{
4944 char linkname[IFNAMSIZ+7];
4945 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4946 "upper_%s" : "lower_%s", adj_dev->name);
4947 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4948 linkname);
4949}
0a59f3a9 4950static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
4951 char *name,
4952 struct list_head *dev_list)
4953{
4954 char linkname[IFNAMSIZ+7];
4955 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4956 "upper_%s" : "lower_%s", name);
4957 sysfs_remove_link(&(dev->dev.kobj), linkname);
4958}
4959
7ce64c79
AF
4960static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4961 struct net_device *adj_dev,
4962 struct list_head *dev_list)
4963{
4964 return (dev_list == &dev->adj_list.upper ||
4965 dev_list == &dev->adj_list.lower) &&
4966 net_eq(dev_net(dev), dev_net(adj_dev));
4967}
3ee32707 4968
5d261913
VF
4969static int __netdev_adjacent_dev_insert(struct net_device *dev,
4970 struct net_device *adj_dev,
7863c054 4971 struct list_head *dev_list,
402dae96 4972 void *private, bool master)
5d261913
VF
4973{
4974 struct netdev_adjacent *adj;
842d67a7 4975 int ret;
5d261913 4976
7863c054 4977 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913
VF
4978
4979 if (adj) {
5d261913
VF
4980 adj->ref_nr++;
4981 return 0;
4982 }
4983
4984 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4985 if (!adj)
4986 return -ENOMEM;
4987
4988 adj->dev = adj_dev;
4989 adj->master = master;
5d261913 4990 adj->ref_nr = 1;
402dae96 4991 adj->private = private;
5d261913 4992 dev_hold(adj_dev);
2f268f12
VF
4993
4994 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4995 adj_dev->name, dev->name, adj_dev->name);
5d261913 4996
7ce64c79 4997 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 4998 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
4999 if (ret)
5000 goto free_adj;
5001 }
5002
7863c054 5003 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5004 if (master) {
5005 ret = sysfs_create_link(&(dev->dev.kobj),
5006 &(adj_dev->dev.kobj), "master");
5007 if (ret)
5831d66e 5008 goto remove_symlinks;
842d67a7 5009
7863c054 5010 list_add_rcu(&adj->list, dev_list);
842d67a7 5011 } else {
7863c054 5012 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5013 }
5d261913
VF
5014
5015 return 0;
842d67a7 5016
5831d66e 5017remove_symlinks:
7ce64c79 5018 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5019 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5020free_adj:
5021 kfree(adj);
974daef7 5022 dev_put(adj_dev);
842d67a7
VF
5023
5024 return ret;
5d261913
VF
5025}
5026
1d143d9f 5027static void __netdev_adjacent_dev_remove(struct net_device *dev,
5028 struct net_device *adj_dev,
5029 struct list_head *dev_list)
5d261913
VF
5030{
5031 struct netdev_adjacent *adj;
5032
7863c054 5033 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5d261913 5034
2f268f12
VF
5035 if (!adj) {
5036 pr_err("tried to remove device %s from %s\n",
5037 dev->name, adj_dev->name);
5d261913 5038 BUG();
2f268f12 5039 }
5d261913
VF
5040
5041 if (adj->ref_nr > 1) {
2f268f12
VF
5042 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5043 adj->ref_nr-1);
5d261913
VF
5044 adj->ref_nr--;
5045 return;
5046 }
5047
842d67a7
VF
5048 if (adj->master)
5049 sysfs_remove_link(&(dev->dev.kobj), "master");
5050
7ce64c79 5051 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5052 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5053
5d261913 5054 list_del_rcu(&adj->list);
2f268f12
VF
5055 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5056 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5057 dev_put(adj_dev);
5058 kfree_rcu(adj, rcu);
5059}
5060
1d143d9f 5061static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5062 struct net_device *upper_dev,
5063 struct list_head *up_list,
5064 struct list_head *down_list,
5065 void *private, bool master)
5d261913
VF
5066{
5067 int ret;
5068
402dae96
VF
5069 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5070 master);
5d261913
VF
5071 if (ret)
5072 return ret;
5073
402dae96
VF
5074 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5075 false);
5d261913 5076 if (ret) {
2f268f12 5077 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5d261913
VF
5078 return ret;
5079 }
5080
5081 return 0;
5082}
5083
1d143d9f 5084static int __netdev_adjacent_dev_link(struct net_device *dev,
5085 struct net_device *upper_dev)
5d261913 5086{
2f268f12
VF
5087 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5088 &dev->all_adj_list.upper,
5089 &upper_dev->all_adj_list.lower,
402dae96 5090 NULL, false);
5d261913
VF
5091}
5092
1d143d9f 5093static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5094 struct net_device *upper_dev,
5095 struct list_head *up_list,
5096 struct list_head *down_list)
5d261913 5097{
2f268f12
VF
5098 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5099 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5d261913
VF
5100}
5101
1d143d9f 5102static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5103 struct net_device *upper_dev)
5d261913 5104{
2f268f12
VF
5105 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5106 &dev->all_adj_list.upper,
5107 &upper_dev->all_adj_list.lower);
5108}
5109
1d143d9f 5110static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5111 struct net_device *upper_dev,
5112 void *private, bool master)
2f268f12
VF
5113{
5114 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5115
5116 if (ret)
5117 return ret;
5118
5119 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5120 &dev->adj_list.upper,
5121 &upper_dev->adj_list.lower,
402dae96 5122 private, master);
2f268f12
VF
5123 if (ret) {
5124 __netdev_adjacent_dev_unlink(dev, upper_dev);
5125 return ret;
5126 }
5127
5128 return 0;
5d261913
VF
5129}
5130
1d143d9f 5131static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5132 struct net_device *upper_dev)
2f268f12
VF
5133{
5134 __netdev_adjacent_dev_unlink(dev, upper_dev);
5135 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5136 &dev->adj_list.upper,
5137 &upper_dev->adj_list.lower);
5138}
5d261913 5139
9ff162a8 5140static int __netdev_upper_dev_link(struct net_device *dev,
402dae96
VF
5141 struct net_device *upper_dev, bool master,
5142 void *private)
9ff162a8 5143{
5d261913
VF
5144 struct netdev_adjacent *i, *j, *to_i, *to_j;
5145 int ret = 0;
9ff162a8
JP
5146
5147 ASSERT_RTNL();
5148
5149 if (dev == upper_dev)
5150 return -EBUSY;
5151
5152 /* To prevent loops, check if dev is not upper device to upper_dev. */
2f268f12 5153 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5154 return -EBUSY;
5155
2f268f12 5156 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
9ff162a8
JP
5157 return -EEXIST;
5158
5159 if (master && netdev_master_upper_dev_get(dev))
5160 return -EBUSY;
5161
402dae96
VF
5162 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5163 master);
5d261913
VF
5164 if (ret)
5165 return ret;
9ff162a8 5166
5d261913 5167 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5168 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5169 * versa, and don't forget the devices itself. All of these
5170 * links are non-neighbours.
5171 */
2f268f12
VF
5172 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5173 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5174 pr_debug("Interlinking %s with %s, non-neighbour\n",
5175 i->dev->name, j->dev->name);
5d261913
VF
5176 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5177 if (ret)
5178 goto rollback_mesh;
5179 }
5180 }
5181
5182 /* add dev to every upper_dev's upper device */
2f268f12
VF
5183 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5184 pr_debug("linking %s's upper device %s with %s\n",
5185 upper_dev->name, i->dev->name, dev->name);
5d261913
VF
5186 ret = __netdev_adjacent_dev_link(dev, i->dev);
5187 if (ret)
5188 goto rollback_upper_mesh;
5189 }
5190
5191 /* add upper_dev to every dev's lower device */
2f268f12
VF
5192 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5193 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5194 i->dev->name, upper_dev->name);
5d261913
VF
5195 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5196 if (ret)
5197 goto rollback_lower_mesh;
5198 }
9ff162a8 5199
42e52bf9 5200 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8 5201 return 0;
5d261913
VF
5202
5203rollback_lower_mesh:
5204 to_i = i;
2f268f12 5205 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5206 if (i == to_i)
5207 break;
5208 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5209 }
5210
5211 i = NULL;
5212
5213rollback_upper_mesh:
5214 to_i = i;
2f268f12 5215 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5216 if (i == to_i)
5217 break;
5218 __netdev_adjacent_dev_unlink(dev, i->dev);
5219 }
5220
5221 i = j = NULL;
5222
5223rollback_mesh:
5224 to_i = i;
5225 to_j = j;
2f268f12
VF
5226 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5227 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5228 if (i == to_i && j == to_j)
5229 break;
5230 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5231 }
5232 if (i == to_i)
5233 break;
5234 }
5235
2f268f12 5236 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5237
5238 return ret;
9ff162a8
JP
5239}
5240
5241/**
5242 * netdev_upper_dev_link - Add a link to the upper device
5243 * @dev: device
5244 * @upper_dev: new upper device
5245 *
5246 * Adds a link to device which is upper to this one. The caller must hold
5247 * the RTNL lock. On a failure a negative errno code is returned.
5248 * On success the reference counts are adjusted and the function
5249 * returns zero.
5250 */
5251int netdev_upper_dev_link(struct net_device *dev,
5252 struct net_device *upper_dev)
5253{
402dae96 5254 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
9ff162a8
JP
5255}
5256EXPORT_SYMBOL(netdev_upper_dev_link);
5257
5258/**
5259 * netdev_master_upper_dev_link - Add a master link to the upper device
5260 * @dev: device
5261 * @upper_dev: new upper device
5262 *
5263 * Adds a link to device which is upper to this one. In this case, only
5264 * one master upper device can be linked, although other non-master devices
5265 * might be linked as well. The caller must hold the RTNL lock.
5266 * On a failure a negative errno code is returned. On success the reference
5267 * counts are adjusted and the function returns zero.
5268 */
5269int netdev_master_upper_dev_link(struct net_device *dev,
5270 struct net_device *upper_dev)
5271{
402dae96 5272 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
9ff162a8
JP
5273}
5274EXPORT_SYMBOL(netdev_master_upper_dev_link);
5275
402dae96
VF
5276int netdev_master_upper_dev_link_private(struct net_device *dev,
5277 struct net_device *upper_dev,
5278 void *private)
5279{
5280 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5281}
5282EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5283
9ff162a8
JP
5284/**
5285 * netdev_upper_dev_unlink - Removes a link to upper device
5286 * @dev: device
5287 * @upper_dev: new upper device
5288 *
5289 * Removes a link to device which is upper to this one. The caller must hold
5290 * the RTNL lock.
5291 */
5292void netdev_upper_dev_unlink(struct net_device *dev,
5293 struct net_device *upper_dev)
5294{
5d261913 5295 struct netdev_adjacent *i, *j;
9ff162a8
JP
5296 ASSERT_RTNL();
5297
2f268f12 5298 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5299
5300 /* Here is the tricky part. We must remove all dev's lower
5301 * devices from all upper_dev's upper devices and vice
5302 * versa, to maintain the graph relationship.
5303 */
2f268f12
VF
5304 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5305 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5306 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5307
5308 /* remove also the devices itself from lower/upper device
5309 * list
5310 */
2f268f12 5311 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5d261913
VF
5312 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5313
2f268f12 5314 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5d261913
VF
5315 __netdev_adjacent_dev_unlink(dev, i->dev);
5316
42e52bf9 5317 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
9ff162a8
JP
5318}
5319EXPORT_SYMBOL(netdev_upper_dev_unlink);
5320
4c75431a
AF
5321void netdev_adjacent_add_links(struct net_device *dev)
5322{
5323 struct netdev_adjacent *iter;
5324
5325 struct net *net = dev_net(dev);
5326
5327 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5328 if (!net_eq(net,dev_net(iter->dev)))
5329 continue;
5330 netdev_adjacent_sysfs_add(iter->dev, dev,
5331 &iter->dev->adj_list.lower);
5332 netdev_adjacent_sysfs_add(dev, iter->dev,
5333 &dev->adj_list.upper);
5334 }
5335
5336 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5337 if (!net_eq(net,dev_net(iter->dev)))
5338 continue;
5339 netdev_adjacent_sysfs_add(iter->dev, dev,
5340 &iter->dev->adj_list.upper);
5341 netdev_adjacent_sysfs_add(dev, iter->dev,
5342 &dev->adj_list.lower);
5343 }
5344}
5345
5346void netdev_adjacent_del_links(struct net_device *dev)
5347{
5348 struct netdev_adjacent *iter;
5349
5350 struct net *net = dev_net(dev);
5351
5352 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5353 if (!net_eq(net,dev_net(iter->dev)))
5354 continue;
5355 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5356 &iter->dev->adj_list.lower);
5357 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5358 &dev->adj_list.upper);
5359 }
5360
5361 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5362 if (!net_eq(net,dev_net(iter->dev)))
5363 continue;
5364 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5365 &iter->dev->adj_list.upper);
5366 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5367 &dev->adj_list.lower);
5368 }
5369}
5370
5bb025fa 5371void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 5372{
5bb025fa 5373 struct netdev_adjacent *iter;
402dae96 5374
4c75431a
AF
5375 struct net *net = dev_net(dev);
5376
5bb025fa 5377 list_for_each_entry(iter, &dev->adj_list.upper, list) {
4c75431a
AF
5378 if (!net_eq(net,dev_net(iter->dev)))
5379 continue;
5bb025fa
VF
5380 netdev_adjacent_sysfs_del(iter->dev, oldname,
5381 &iter->dev->adj_list.lower);
5382 netdev_adjacent_sysfs_add(iter->dev, dev,
5383 &iter->dev->adj_list.lower);
5384 }
402dae96 5385
5bb025fa 5386 list_for_each_entry(iter, &dev->adj_list.lower, list) {
4c75431a
AF
5387 if (!net_eq(net,dev_net(iter->dev)))
5388 continue;
5bb025fa
VF
5389 netdev_adjacent_sysfs_del(iter->dev, oldname,
5390 &iter->dev->adj_list.upper);
5391 netdev_adjacent_sysfs_add(iter->dev, dev,
5392 &iter->dev->adj_list.upper);
5393 }
402dae96 5394}
402dae96
VF
5395
5396void *netdev_lower_dev_get_private(struct net_device *dev,
5397 struct net_device *lower_dev)
5398{
5399 struct netdev_adjacent *lower;
5400
5401 if (!lower_dev)
5402 return NULL;
5403 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5404 if (!lower)
5405 return NULL;
5406
5407 return lower->private;
5408}
5409EXPORT_SYMBOL(netdev_lower_dev_get_private);
5410
4085ebe8
VY
5411
5412int dev_get_nest_level(struct net_device *dev,
5413 bool (*type_check)(struct net_device *dev))
5414{
5415 struct net_device *lower = NULL;
5416 struct list_head *iter;
5417 int max_nest = -1;
5418 int nest;
5419
5420 ASSERT_RTNL();
5421
5422 netdev_for_each_lower_dev(dev, lower, iter) {
5423 nest = dev_get_nest_level(lower, type_check);
5424 if (max_nest < nest)
5425 max_nest = nest;
5426 }
5427
5428 if (type_check(dev))
5429 max_nest++;
5430
5431 return max_nest;
5432}
5433EXPORT_SYMBOL(dev_get_nest_level);
5434
b6c40d68
PM
5435static void dev_change_rx_flags(struct net_device *dev, int flags)
5436{
d314774c
SH
5437 const struct net_device_ops *ops = dev->netdev_ops;
5438
d2615bf4 5439 if (ops->ndo_change_rx_flags)
d314774c 5440 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
5441}
5442
991fb3f7 5443static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 5444{
b536db93 5445 unsigned int old_flags = dev->flags;
d04a48b0
EB
5446 kuid_t uid;
5447 kgid_t gid;
1da177e4 5448
24023451
PM
5449 ASSERT_RTNL();
5450
dad9b335
WC
5451 dev->flags |= IFF_PROMISC;
5452 dev->promiscuity += inc;
5453 if (dev->promiscuity == 0) {
5454 /*
5455 * Avoid overflow.
5456 * If inc causes overflow, untouch promisc and return error.
5457 */
5458 if (inc < 0)
5459 dev->flags &= ~IFF_PROMISC;
5460 else {
5461 dev->promiscuity -= inc;
7b6cd1ce
JP
5462 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5463 dev->name);
dad9b335
WC
5464 return -EOVERFLOW;
5465 }
5466 }
52609c0b 5467 if (dev->flags != old_flags) {
7b6cd1ce
JP
5468 pr_info("device %s %s promiscuous mode\n",
5469 dev->name,
5470 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
5471 if (audit_enabled) {
5472 current_uid_gid(&uid, &gid);
7759db82
KHK
5473 audit_log(current->audit_context, GFP_ATOMIC,
5474 AUDIT_ANOM_PROMISCUOUS,
5475 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5476 dev->name, (dev->flags & IFF_PROMISC),
5477 (old_flags & IFF_PROMISC),
e1760bd5 5478 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
5479 from_kuid(&init_user_ns, uid),
5480 from_kgid(&init_user_ns, gid),
7759db82 5481 audit_get_sessionid(current));
8192b0c4 5482 }
24023451 5483
b6c40d68 5484 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 5485 }
991fb3f7
ND
5486 if (notify)
5487 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 5488 return 0;
1da177e4
LT
5489}
5490
4417da66
PM
5491/**
5492 * dev_set_promiscuity - update promiscuity count on a device
5493 * @dev: device
5494 * @inc: modifier
5495 *
5496 * Add or remove promiscuity from a device. While the count in the device
5497 * remains above zero the interface remains promiscuous. Once it hits zero
5498 * the device reverts back to normal filtering operation. A negative inc
5499 * value is used to drop promiscuity on the device.
dad9b335 5500 * Return 0 if successful or a negative errno code on error.
4417da66 5501 */
dad9b335 5502int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 5503{
b536db93 5504 unsigned int old_flags = dev->flags;
dad9b335 5505 int err;
4417da66 5506
991fb3f7 5507 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 5508 if (err < 0)
dad9b335 5509 return err;
4417da66
PM
5510 if (dev->flags != old_flags)
5511 dev_set_rx_mode(dev);
dad9b335 5512 return err;
4417da66 5513}
d1b19dff 5514EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 5515
991fb3f7 5516static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 5517{
991fb3f7 5518 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 5519
24023451
PM
5520 ASSERT_RTNL();
5521
1da177e4 5522 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
5523 dev->allmulti += inc;
5524 if (dev->allmulti == 0) {
5525 /*
5526 * Avoid overflow.
5527 * If inc causes overflow, untouch allmulti and return error.
5528 */
5529 if (inc < 0)
5530 dev->flags &= ~IFF_ALLMULTI;
5531 else {
5532 dev->allmulti -= inc;
7b6cd1ce
JP
5533 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5534 dev->name);
dad9b335
WC
5535 return -EOVERFLOW;
5536 }
5537 }
24023451 5538 if (dev->flags ^ old_flags) {
b6c40d68 5539 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 5540 dev_set_rx_mode(dev);
991fb3f7
ND
5541 if (notify)
5542 __dev_notify_flags(dev, old_flags,
5543 dev->gflags ^ old_gflags);
24023451 5544 }
dad9b335 5545 return 0;
4417da66 5546}
991fb3f7
ND
5547
5548/**
5549 * dev_set_allmulti - update allmulti count on a device
5550 * @dev: device
5551 * @inc: modifier
5552 *
5553 * Add or remove reception of all multicast frames to a device. While the
5554 * count in the device remains above zero the interface remains listening
5555 * to all interfaces. Once it hits zero the device reverts back to normal
5556 * filtering operation. A negative @inc value is used to drop the counter
5557 * when releasing a resource needing all multicasts.
5558 * Return 0 if successful or a negative errno code on error.
5559 */
5560
5561int dev_set_allmulti(struct net_device *dev, int inc)
5562{
5563 return __dev_set_allmulti(dev, inc, true);
5564}
d1b19dff 5565EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
5566
5567/*
5568 * Upload unicast and multicast address lists to device and
5569 * configure RX filtering. When the device doesn't support unicast
53ccaae1 5570 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
5571 * are present.
5572 */
5573void __dev_set_rx_mode(struct net_device *dev)
5574{
d314774c
SH
5575 const struct net_device_ops *ops = dev->netdev_ops;
5576
4417da66
PM
5577 /* dev_open will call this function so the list will stay sane. */
5578 if (!(dev->flags&IFF_UP))
5579 return;
5580
5581 if (!netif_device_present(dev))
40b77c94 5582 return;
4417da66 5583
01789349 5584 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
5585 /* Unicast addresses changes may only happen under the rtnl,
5586 * therefore calling __dev_set_promiscuity here is safe.
5587 */
32e7bfc4 5588 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 5589 __dev_set_promiscuity(dev, 1, false);
2d348d1f 5590 dev->uc_promisc = true;
32e7bfc4 5591 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 5592 __dev_set_promiscuity(dev, -1, false);
2d348d1f 5593 dev->uc_promisc = false;
4417da66 5594 }
4417da66 5595 }
01789349
JP
5596
5597 if (ops->ndo_set_rx_mode)
5598 ops->ndo_set_rx_mode(dev);
4417da66
PM
5599}
5600
5601void dev_set_rx_mode(struct net_device *dev)
5602{
b9e40857 5603 netif_addr_lock_bh(dev);
4417da66 5604 __dev_set_rx_mode(dev);
b9e40857 5605 netif_addr_unlock_bh(dev);
1da177e4
LT
5606}
5607
f0db275a
SH
5608/**
5609 * dev_get_flags - get flags reported to userspace
5610 * @dev: device
5611 *
5612 * Get the combination of flag bits exported through APIs to userspace.
5613 */
95c96174 5614unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 5615{
95c96174 5616 unsigned int flags;
1da177e4
LT
5617
5618 flags = (dev->flags & ~(IFF_PROMISC |
5619 IFF_ALLMULTI |
b00055aa
SR
5620 IFF_RUNNING |
5621 IFF_LOWER_UP |
5622 IFF_DORMANT)) |
1da177e4
LT
5623 (dev->gflags & (IFF_PROMISC |
5624 IFF_ALLMULTI));
5625
b00055aa
SR
5626 if (netif_running(dev)) {
5627 if (netif_oper_up(dev))
5628 flags |= IFF_RUNNING;
5629 if (netif_carrier_ok(dev))
5630 flags |= IFF_LOWER_UP;
5631 if (netif_dormant(dev))
5632 flags |= IFF_DORMANT;
5633 }
1da177e4
LT
5634
5635 return flags;
5636}
d1b19dff 5637EXPORT_SYMBOL(dev_get_flags);
1da177e4 5638
bd380811 5639int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 5640{
b536db93 5641 unsigned int old_flags = dev->flags;
bd380811 5642 int ret;
1da177e4 5643
24023451
PM
5644 ASSERT_RTNL();
5645
1da177e4
LT
5646 /*
5647 * Set the flags on our device.
5648 */
5649
5650 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5651 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5652 IFF_AUTOMEDIA)) |
5653 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5654 IFF_ALLMULTI));
5655
5656 /*
5657 * Load in the correct multicast list now the flags have changed.
5658 */
5659
b6c40d68
PM
5660 if ((old_flags ^ flags) & IFF_MULTICAST)
5661 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 5662
4417da66 5663 dev_set_rx_mode(dev);
1da177e4
LT
5664
5665 /*
5666 * Have we downed the interface. We handle IFF_UP ourselves
5667 * according to user attempts to set it, rather than blindly
5668 * setting it.
5669 */
5670
5671 ret = 0;
d215d10f 5672 if ((old_flags ^ flags) & IFF_UP)
bd380811 5673 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 5674
1da177e4 5675 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 5676 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 5677 unsigned int old_flags = dev->flags;
d1b19dff 5678
1da177e4 5679 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
5680
5681 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5682 if (dev->flags != old_flags)
5683 dev_set_rx_mode(dev);
1da177e4
LT
5684 }
5685
5686 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5687 is important. Some (broken) drivers set IFF_PROMISC, when
5688 IFF_ALLMULTI is requested not asking us and not reporting.
5689 */
5690 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
5691 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5692
1da177e4 5693 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 5694 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
5695 }
5696
bd380811
PM
5697 return ret;
5698}
5699
a528c219
ND
5700void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5701 unsigned int gchanges)
bd380811
PM
5702{
5703 unsigned int changes = dev->flags ^ old_flags;
5704
a528c219 5705 if (gchanges)
7f294054 5706 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 5707
bd380811
PM
5708 if (changes & IFF_UP) {
5709 if (dev->flags & IFF_UP)
5710 call_netdevice_notifiers(NETDEV_UP, dev);
5711 else
5712 call_netdevice_notifiers(NETDEV_DOWN, dev);
5713 }
5714
5715 if (dev->flags & IFF_UP &&
be9efd36
JP
5716 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5717 struct netdev_notifier_change_info change_info;
5718
5719 change_info.flags_changed = changes;
5720 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5721 &change_info.info);
5722 }
bd380811
PM
5723}
5724
5725/**
5726 * dev_change_flags - change device settings
5727 * @dev: device
5728 * @flags: device state flags
5729 *
5730 * Change settings on device based state flags. The flags are
5731 * in the userspace exported format.
5732 */
b536db93 5733int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 5734{
b536db93 5735 int ret;
991fb3f7 5736 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
5737
5738 ret = __dev_change_flags(dev, flags);
5739 if (ret < 0)
5740 return ret;
5741
991fb3f7 5742 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 5743 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
5744 return ret;
5745}
d1b19dff 5746EXPORT_SYMBOL(dev_change_flags);
1da177e4 5747
2315dc91
VF
5748static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5749{
5750 const struct net_device_ops *ops = dev->netdev_ops;
5751
5752 if (ops->ndo_change_mtu)
5753 return ops->ndo_change_mtu(dev, new_mtu);
5754
5755 dev->mtu = new_mtu;
5756 return 0;
5757}
5758
f0db275a
SH
5759/**
5760 * dev_set_mtu - Change maximum transfer unit
5761 * @dev: device
5762 * @new_mtu: new transfer unit
5763 *
5764 * Change the maximum transfer size of the network device.
5765 */
1da177e4
LT
5766int dev_set_mtu(struct net_device *dev, int new_mtu)
5767{
2315dc91 5768 int err, orig_mtu;
1da177e4
LT
5769
5770 if (new_mtu == dev->mtu)
5771 return 0;
5772
5773 /* MTU must be positive. */
5774 if (new_mtu < 0)
5775 return -EINVAL;
5776
5777 if (!netif_device_present(dev))
5778 return -ENODEV;
5779
1d486bfb
VF
5780 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5781 err = notifier_to_errno(err);
5782 if (err)
5783 return err;
d314774c 5784
2315dc91
VF
5785 orig_mtu = dev->mtu;
5786 err = __dev_set_mtu(dev, new_mtu);
d314774c 5787
2315dc91
VF
5788 if (!err) {
5789 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5790 err = notifier_to_errno(err);
5791 if (err) {
5792 /* setting mtu back and notifying everyone again,
5793 * so that they have a chance to revert changes.
5794 */
5795 __dev_set_mtu(dev, orig_mtu);
5796 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5797 }
5798 }
1da177e4
LT
5799 return err;
5800}
d1b19dff 5801EXPORT_SYMBOL(dev_set_mtu);
1da177e4 5802
cbda10fa
VD
5803/**
5804 * dev_set_group - Change group this device belongs to
5805 * @dev: device
5806 * @new_group: group this device should belong to
5807 */
5808void dev_set_group(struct net_device *dev, int new_group)
5809{
5810 dev->group = new_group;
5811}
5812EXPORT_SYMBOL(dev_set_group);
5813
f0db275a
SH
5814/**
5815 * dev_set_mac_address - Change Media Access Control Address
5816 * @dev: device
5817 * @sa: new address
5818 *
5819 * Change the hardware (MAC) address of the device
5820 */
1da177e4
LT
5821int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5822{
d314774c 5823 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
5824 int err;
5825
d314774c 5826 if (!ops->ndo_set_mac_address)
1da177e4
LT
5827 return -EOPNOTSUPP;
5828 if (sa->sa_family != dev->type)
5829 return -EINVAL;
5830 if (!netif_device_present(dev))
5831 return -ENODEV;
d314774c 5832 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
5833 if (err)
5834 return err;
fbdeca2d 5835 dev->addr_assign_type = NET_ADDR_SET;
f6521516 5836 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 5837 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 5838 return 0;
1da177e4 5839}
d1b19dff 5840EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 5841
4bf84c35
JP
5842/**
5843 * dev_change_carrier - Change device carrier
5844 * @dev: device
691b3b7e 5845 * @new_carrier: new value
4bf84c35
JP
5846 *
5847 * Change device carrier
5848 */
5849int dev_change_carrier(struct net_device *dev, bool new_carrier)
5850{
5851 const struct net_device_ops *ops = dev->netdev_ops;
5852
5853 if (!ops->ndo_change_carrier)
5854 return -EOPNOTSUPP;
5855 if (!netif_device_present(dev))
5856 return -ENODEV;
5857 return ops->ndo_change_carrier(dev, new_carrier);
5858}
5859EXPORT_SYMBOL(dev_change_carrier);
5860
66b52b0d
JP
5861/**
5862 * dev_get_phys_port_id - Get device physical port ID
5863 * @dev: device
5864 * @ppid: port ID
5865 *
5866 * Get device physical port ID
5867 */
5868int dev_get_phys_port_id(struct net_device *dev,
02637fce 5869 struct netdev_phys_item_id *ppid)
66b52b0d
JP
5870{
5871 const struct net_device_ops *ops = dev->netdev_ops;
5872
5873 if (!ops->ndo_get_phys_port_id)
5874 return -EOPNOTSUPP;
5875 return ops->ndo_get_phys_port_id(dev, ppid);
5876}
5877EXPORT_SYMBOL(dev_get_phys_port_id);
5878
1da177e4
LT
5879/**
5880 * dev_new_index - allocate an ifindex
c4ea43c5 5881 * @net: the applicable net namespace
1da177e4
LT
5882 *
5883 * Returns a suitable unique value for a new device interface
5884 * number. The caller must hold the rtnl semaphore or the
5885 * dev_base_lock to be sure it remains unique.
5886 */
881d966b 5887static int dev_new_index(struct net *net)
1da177e4 5888{
aa79e66e 5889 int ifindex = net->ifindex;
1da177e4
LT
5890 for (;;) {
5891 if (++ifindex <= 0)
5892 ifindex = 1;
881d966b 5893 if (!__dev_get_by_index(net, ifindex))
aa79e66e 5894 return net->ifindex = ifindex;
1da177e4
LT
5895 }
5896}
5897
1da177e4 5898/* Delayed registration/unregisteration */
3b5b34fd 5899static LIST_HEAD(net_todo_list);
200b916f 5900DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 5901
6f05f629 5902static void net_set_todo(struct net_device *dev)
1da177e4 5903{
1da177e4 5904 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 5905 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
5906}
5907
9b5e383c 5908static void rollback_registered_many(struct list_head *head)
93ee31f1 5909{
e93737b0 5910 struct net_device *dev, *tmp;
5cde2829 5911 LIST_HEAD(close_head);
9b5e383c 5912
93ee31f1
DL
5913 BUG_ON(dev_boot_phase);
5914 ASSERT_RTNL();
5915
e93737b0 5916 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5917 /* Some devices call without registering
e93737b0
KK
5918 * for initialization unwind. Remove those
5919 * devices and proceed with the remaining.
9b5e383c
ED
5920 */
5921 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
5922 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5923 dev->name, dev);
93ee31f1 5924
9b5e383c 5925 WARN_ON(1);
e93737b0
KK
5926 list_del(&dev->unreg_list);
5927 continue;
9b5e383c 5928 }
449f4544 5929 dev->dismantle = true;
9b5e383c 5930 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 5931 }
93ee31f1 5932
44345724 5933 /* If device is running, close it first. */
5cde2829
EB
5934 list_for_each_entry(dev, head, unreg_list)
5935 list_add_tail(&dev->close_list, &close_head);
5936 dev_close_many(&close_head);
93ee31f1 5937
44345724 5938 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
5939 /* And unlink it from device chain. */
5940 unlist_netdevice(dev);
93ee31f1 5941
9b5e383c
ED
5942 dev->reg_state = NETREG_UNREGISTERING;
5943 }
93ee31f1
DL
5944
5945 synchronize_net();
5946
9b5e383c 5947 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
5948 struct sk_buff *skb = NULL;
5949
9b5e383c
ED
5950 /* Shutdown queueing discipline. */
5951 dev_shutdown(dev);
93ee31f1
DL
5952
5953
9b5e383c
ED
5954 /* Notify protocols, that we are about to destroy
5955 this device. They should clean all the things.
5956 */
5957 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5958
395eea6c
MB
5959 if (!dev->rtnl_link_ops ||
5960 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5961 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5962 GFP_KERNEL);
5963
9b5e383c
ED
5964 /*
5965 * Flush the unicast and multicast chains
5966 */
a748ee24 5967 dev_uc_flush(dev);
22bedad3 5968 dev_mc_flush(dev);
93ee31f1 5969
9b5e383c
ED
5970 if (dev->netdev_ops->ndo_uninit)
5971 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5972
395eea6c
MB
5973 if (skb)
5974 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 5975
9ff162a8
JP
5976 /* Notifier chain MUST detach us all upper devices. */
5977 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 5978
9b5e383c
ED
5979 /* Remove entries from kobject tree */
5980 netdev_unregister_kobject(dev);
024e9679
AD
5981#ifdef CONFIG_XPS
5982 /* Remove XPS queueing entries */
5983 netif_reset_xps_queues_gt(dev, 0);
5984#endif
9b5e383c 5985 }
93ee31f1 5986
850a545b 5987 synchronize_net();
395264d5 5988
a5ee1551 5989 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5990 dev_put(dev);
5991}
5992
5993static void rollback_registered(struct net_device *dev)
5994{
5995 LIST_HEAD(single);
5996
5997 list_add(&dev->unreg_list, &single);
5998 rollback_registered_many(&single);
ceaaec98 5999 list_del(&single);
93ee31f1
DL
6000}
6001
c8f44aff
MM
6002static netdev_features_t netdev_fix_features(struct net_device *dev,
6003 netdev_features_t features)
b63365a2 6004{
57422dc5
MM
6005 /* Fix illegal checksum combinations */
6006 if ((features & NETIF_F_HW_CSUM) &&
6007 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6008 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6009 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6010 }
6011
b63365a2 6012 /* TSO requires that SG is present as well. */
ea2d3688 6013 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6014 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6015 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6016 }
6017
ec5f0615
PS
6018 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6019 !(features & NETIF_F_IP_CSUM)) {
6020 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6021 features &= ~NETIF_F_TSO;
6022 features &= ~NETIF_F_TSO_ECN;
6023 }
6024
6025 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6026 !(features & NETIF_F_IPV6_CSUM)) {
6027 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6028 features &= ~NETIF_F_TSO6;
6029 }
6030
31d8b9e0
BH
6031 /* TSO ECN requires that TSO is present as well. */
6032 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6033 features &= ~NETIF_F_TSO_ECN;
6034
212b573f
MM
6035 /* Software GSO depends on SG. */
6036 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6037 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6038 features &= ~NETIF_F_GSO;
6039 }
6040
acd1130e 6041 /* UFO needs SG and checksumming */
b63365a2 6042 if (features & NETIF_F_UFO) {
79032644
MM
6043 /* maybe split UFO into V4 and V6? */
6044 if (!((features & NETIF_F_GEN_CSUM) ||
6045 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6046 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6047 netdev_dbg(dev,
acd1130e 6048 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6049 features &= ~NETIF_F_UFO;
6050 }
6051
6052 if (!(features & NETIF_F_SG)) {
6f404e44 6053 netdev_dbg(dev,
acd1130e 6054 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6055 features &= ~NETIF_F_UFO;
6056 }
6057 }
6058
d0290214
JP
6059#ifdef CONFIG_NET_RX_BUSY_POLL
6060 if (dev->netdev_ops->ndo_busy_poll)
6061 features |= NETIF_F_BUSY_POLL;
6062 else
6063#endif
6064 features &= ~NETIF_F_BUSY_POLL;
6065
b63365a2
HX
6066 return features;
6067}
b63365a2 6068
6cb6a27c 6069int __netdev_update_features(struct net_device *dev)
5455c699 6070{
c8f44aff 6071 netdev_features_t features;
5455c699
MM
6072 int err = 0;
6073
87267485
MM
6074 ASSERT_RTNL();
6075
5455c699
MM
6076 features = netdev_get_wanted_features(dev);
6077
6078 if (dev->netdev_ops->ndo_fix_features)
6079 features = dev->netdev_ops->ndo_fix_features(dev, features);
6080
6081 /* driver might be less strict about feature dependencies */
6082 features = netdev_fix_features(dev, features);
6083
6084 if (dev->features == features)
6cb6a27c 6085 return 0;
5455c699 6086
c8f44aff
MM
6087 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6088 &dev->features, &features);
5455c699
MM
6089
6090 if (dev->netdev_ops->ndo_set_features)
6091 err = dev->netdev_ops->ndo_set_features(dev, features);
6092
6cb6a27c 6093 if (unlikely(err < 0)) {
5455c699 6094 netdev_err(dev,
c8f44aff
MM
6095 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6096 err, &features, &dev->features);
6cb6a27c
MM
6097 return -1;
6098 }
6099
6100 if (!err)
6101 dev->features = features;
6102
6103 return 1;
6104}
6105
afe12cc8
MM
6106/**
6107 * netdev_update_features - recalculate device features
6108 * @dev: the device to check
6109 *
6110 * Recalculate dev->features set and send notifications if it
6111 * has changed. Should be called after driver or hardware dependent
6112 * conditions might have changed that influence the features.
6113 */
6cb6a27c
MM
6114void netdev_update_features(struct net_device *dev)
6115{
6116 if (__netdev_update_features(dev))
6117 netdev_features_change(dev);
5455c699
MM
6118}
6119EXPORT_SYMBOL(netdev_update_features);
6120
afe12cc8
MM
6121/**
6122 * netdev_change_features - recalculate device features
6123 * @dev: the device to check
6124 *
6125 * Recalculate dev->features set and send notifications even
6126 * if they have not changed. Should be called instead of
6127 * netdev_update_features() if also dev->vlan_features might
6128 * have changed to allow the changes to be propagated to stacked
6129 * VLAN devices.
6130 */
6131void netdev_change_features(struct net_device *dev)
6132{
6133 __netdev_update_features(dev);
6134 netdev_features_change(dev);
6135}
6136EXPORT_SYMBOL(netdev_change_features);
6137
fc4a7489
PM
6138/**
6139 * netif_stacked_transfer_operstate - transfer operstate
6140 * @rootdev: the root or lower level device to transfer state from
6141 * @dev: the device to transfer operstate to
6142 *
6143 * Transfer operational state from root to device. This is normally
6144 * called when a stacking relationship exists between the root
6145 * device and the device(a leaf device).
6146 */
6147void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6148 struct net_device *dev)
6149{
6150 if (rootdev->operstate == IF_OPER_DORMANT)
6151 netif_dormant_on(dev);
6152 else
6153 netif_dormant_off(dev);
6154
6155 if (netif_carrier_ok(rootdev)) {
6156 if (!netif_carrier_ok(dev))
6157 netif_carrier_on(dev);
6158 } else {
6159 if (netif_carrier_ok(dev))
6160 netif_carrier_off(dev);
6161 }
6162}
6163EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6164
a953be53 6165#ifdef CONFIG_SYSFS
1b4bf461
ED
6166static int netif_alloc_rx_queues(struct net_device *dev)
6167{
1b4bf461 6168 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 6169 struct netdev_rx_queue *rx;
1b4bf461 6170
bd25fa7b 6171 BUG_ON(count < 1);
1b4bf461 6172
bd25fa7b 6173 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
62b5942a 6174 if (!rx)
bd25fa7b 6175 return -ENOMEM;
62b5942a 6176
bd25fa7b
TH
6177 dev->_rx = rx;
6178
bd25fa7b 6179 for (i = 0; i < count; i++)
fe822240 6180 rx[i].dev = dev;
1b4bf461
ED
6181 return 0;
6182}
bf264145 6183#endif
1b4bf461 6184
aa942104
CG
6185static void netdev_init_one_queue(struct net_device *dev,
6186 struct netdev_queue *queue, void *_unused)
6187{
6188 /* Initialize queue lock */
6189 spin_lock_init(&queue->_xmit_lock);
6190 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6191 queue->xmit_lock_owner = -1;
b236da69 6192 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 6193 queue->dev = dev;
114cf580
TH
6194#ifdef CONFIG_BQL
6195 dql_init(&queue->dql, HZ);
6196#endif
aa942104
CG
6197}
6198
60877a32
ED
6199static void netif_free_tx_queues(struct net_device *dev)
6200{
4cb28970 6201 kvfree(dev->_tx);
60877a32
ED
6202}
6203
e6484930
TH
6204static int netif_alloc_netdev_queues(struct net_device *dev)
6205{
6206 unsigned int count = dev->num_tx_queues;
6207 struct netdev_queue *tx;
60877a32 6208 size_t sz = count * sizeof(*tx);
e6484930 6209
60877a32 6210 BUG_ON(count < 1 || count > 0xffff);
62b5942a 6211
60877a32
ED
6212 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6213 if (!tx) {
6214 tx = vzalloc(sz);
6215 if (!tx)
6216 return -ENOMEM;
6217 }
e6484930 6218 dev->_tx = tx;
1d24eb48 6219
e6484930
TH
6220 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6221 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
6222
6223 return 0;
e6484930
TH
6224}
6225
1da177e4
LT
6226/**
6227 * register_netdevice - register a network device
6228 * @dev: device to register
6229 *
6230 * Take a completed network device structure and add it to the kernel
6231 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6232 * chain. 0 is returned on success. A negative errno code is returned
6233 * on a failure to set up the device, or if the name is a duplicate.
6234 *
6235 * Callers must hold the rtnl semaphore. You may want
6236 * register_netdev() instead of this.
6237 *
6238 * BUGS:
6239 * The locking appears insufficient to guarantee two parallel registers
6240 * will not get the same name.
6241 */
6242
6243int register_netdevice(struct net_device *dev)
6244{
1da177e4 6245 int ret;
d314774c 6246 struct net *net = dev_net(dev);
1da177e4
LT
6247
6248 BUG_ON(dev_boot_phase);
6249 ASSERT_RTNL();
6250
b17a7c17
SH
6251 might_sleep();
6252
1da177e4
LT
6253 /* When net_device's are persistent, this will be fatal. */
6254 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 6255 BUG_ON(!net);
1da177e4 6256
f1f28aa3 6257 spin_lock_init(&dev->addr_list_lock);
cf508b12 6258 netdev_set_addr_lockdep_class(dev);
1da177e4 6259
1da177e4
LT
6260 dev->iflink = -1;
6261
828de4f6 6262 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
6263 if (ret < 0)
6264 goto out;
6265
1da177e4 6266 /* Init, if this function is available */
d314774c
SH
6267 if (dev->netdev_ops->ndo_init) {
6268 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
6269 if (ret) {
6270 if (ret > 0)
6271 ret = -EIO;
90833aa4 6272 goto out;
1da177e4
LT
6273 }
6274 }
4ec93edb 6275
f646968f
PM
6276 if (((dev->hw_features | dev->features) &
6277 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
6278 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6279 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6280 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6281 ret = -EINVAL;
6282 goto err_uninit;
6283 }
6284
9c7dafbf
PE
6285 ret = -EBUSY;
6286 if (!dev->ifindex)
6287 dev->ifindex = dev_new_index(net);
6288 else if (__dev_get_by_index(net, dev->ifindex))
6289 goto err_uninit;
6290
1da177e4
LT
6291 if (dev->iflink == -1)
6292 dev->iflink = dev->ifindex;
6293
5455c699
MM
6294 /* Transfer changeable features to wanted_features and enable
6295 * software offloads (GSO and GRO).
6296 */
6297 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
6298 dev->features |= NETIF_F_SOFT_FEATURES;
6299 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 6300
34324dc2
MM
6301 if (!(dev->flags & IFF_LOOPBACK)) {
6302 dev->hw_features |= NETIF_F_NOCACHE_COPY;
c6e1a0d1
TH
6303 }
6304
1180e7d6 6305 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 6306 */
1180e7d6 6307 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 6308
ee579677
PS
6309 /* Make NETIF_F_SG inheritable to tunnel devices.
6310 */
6311 dev->hw_enc_features |= NETIF_F_SG;
6312
0d89d203
SH
6313 /* Make NETIF_F_SG inheritable to MPLS.
6314 */
6315 dev->mpls_features |= NETIF_F_SG;
6316
7ffbe3fd
JB
6317 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6318 ret = notifier_to_errno(ret);
6319 if (ret)
6320 goto err_uninit;
6321
8b41d188 6322 ret = netdev_register_kobject(dev);
b17a7c17 6323 if (ret)
7ce1b0ed 6324 goto err_uninit;
b17a7c17
SH
6325 dev->reg_state = NETREG_REGISTERED;
6326
6cb6a27c 6327 __netdev_update_features(dev);
8e9b59b2 6328
1da177e4
LT
6329 /*
6330 * Default initial state at registry is that the
6331 * device is present.
6332 */
6333
6334 set_bit(__LINK_STATE_PRESENT, &dev->state);
6335
8f4cccbb
BH
6336 linkwatch_init_dev(dev);
6337
1da177e4 6338 dev_init_scheduler(dev);
1da177e4 6339 dev_hold(dev);
ce286d32 6340 list_netdevice(dev);
7bf23575 6341 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 6342
948b337e
JP
6343 /* If the device has permanent device address, driver should
6344 * set dev_addr and also addr_assign_type should be set to
6345 * NET_ADDR_PERM (default value).
6346 */
6347 if (dev->addr_assign_type == NET_ADDR_PERM)
6348 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6349
1da177e4 6350 /* Notify protocols, that a new device appeared. */
056925ab 6351 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 6352 ret = notifier_to_errno(ret);
93ee31f1
DL
6353 if (ret) {
6354 rollback_registered(dev);
6355 dev->reg_state = NETREG_UNREGISTERED;
6356 }
d90a909e
EB
6357 /*
6358 * Prevent userspace races by waiting until the network
6359 * device is fully setup before sending notifications.
6360 */
a2835763
PM
6361 if (!dev->rtnl_link_ops ||
6362 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 6363 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
6364
6365out:
6366 return ret;
7ce1b0ed
HX
6367
6368err_uninit:
d314774c
SH
6369 if (dev->netdev_ops->ndo_uninit)
6370 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 6371 goto out;
1da177e4 6372}
d1b19dff 6373EXPORT_SYMBOL(register_netdevice);
1da177e4 6374
937f1ba5
BH
6375/**
6376 * init_dummy_netdev - init a dummy network device for NAPI
6377 * @dev: device to init
6378 *
6379 * This takes a network device structure and initialize the minimum
6380 * amount of fields so it can be used to schedule NAPI polls without
6381 * registering a full blown interface. This is to be used by drivers
6382 * that need to tie several hardware interfaces to a single NAPI
6383 * poll scheduler due to HW limitations.
6384 */
6385int init_dummy_netdev(struct net_device *dev)
6386{
6387 /* Clear everything. Note we don't initialize spinlocks
6388 * are they aren't supposed to be taken by any of the
6389 * NAPI code and this dummy netdev is supposed to be
6390 * only ever used for NAPI polls
6391 */
6392 memset(dev, 0, sizeof(struct net_device));
6393
6394 /* make sure we BUG if trying to hit standard
6395 * register/unregister code path
6396 */
6397 dev->reg_state = NETREG_DUMMY;
6398
937f1ba5
BH
6399 /* NAPI wants this */
6400 INIT_LIST_HEAD(&dev->napi_list);
6401
6402 /* a dummy interface is started by default */
6403 set_bit(__LINK_STATE_PRESENT, &dev->state);
6404 set_bit(__LINK_STATE_START, &dev->state);
6405
29b4433d
ED
6406 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6407 * because users of this 'device' dont need to change
6408 * its refcount.
6409 */
6410
937f1ba5
BH
6411 return 0;
6412}
6413EXPORT_SYMBOL_GPL(init_dummy_netdev);
6414
6415
1da177e4
LT
6416/**
6417 * register_netdev - register a network device
6418 * @dev: device to register
6419 *
6420 * Take a completed network device structure and add it to the kernel
6421 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6422 * chain. 0 is returned on success. A negative errno code is returned
6423 * on a failure to set up the device, or if the name is a duplicate.
6424 *
38b4da38 6425 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
6426 * and expands the device name if you passed a format string to
6427 * alloc_netdev.
6428 */
6429int register_netdev(struct net_device *dev)
6430{
6431 int err;
6432
6433 rtnl_lock();
1da177e4 6434 err = register_netdevice(dev);
1da177e4
LT
6435 rtnl_unlock();
6436 return err;
6437}
6438EXPORT_SYMBOL(register_netdev);
6439
29b4433d
ED
6440int netdev_refcnt_read(const struct net_device *dev)
6441{
6442 int i, refcnt = 0;
6443
6444 for_each_possible_cpu(i)
6445 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6446 return refcnt;
6447}
6448EXPORT_SYMBOL(netdev_refcnt_read);
6449
2c53040f 6450/**
1da177e4 6451 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 6452 * @dev: target net_device
1da177e4
LT
6453 *
6454 * This is called when unregistering network devices.
6455 *
6456 * Any protocol or device that holds a reference should register
6457 * for netdevice notification, and cleanup and put back the
6458 * reference if they receive an UNREGISTER event.
6459 * We can get stuck here if buggy protocols don't correctly
4ec93edb 6460 * call dev_put.
1da177e4
LT
6461 */
6462static void netdev_wait_allrefs(struct net_device *dev)
6463{
6464 unsigned long rebroadcast_time, warning_time;
29b4433d 6465 int refcnt;
1da177e4 6466
e014debe
ED
6467 linkwatch_forget_dev(dev);
6468
1da177e4 6469 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
6470 refcnt = netdev_refcnt_read(dev);
6471
6472 while (refcnt != 0) {
1da177e4 6473 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 6474 rtnl_lock();
1da177e4
LT
6475
6476 /* Rebroadcast unregister notification */
056925ab 6477 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 6478
748e2d93 6479 __rtnl_unlock();
0115e8e3 6480 rcu_barrier();
748e2d93
ED
6481 rtnl_lock();
6482
0115e8e3 6483 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
6484 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6485 &dev->state)) {
6486 /* We must not have linkwatch events
6487 * pending on unregister. If this
6488 * happens, we simply run the queue
6489 * unscheduled, resulting in a noop
6490 * for this device.
6491 */
6492 linkwatch_run_queue();
6493 }
6494
6756ae4b 6495 __rtnl_unlock();
1da177e4
LT
6496
6497 rebroadcast_time = jiffies;
6498 }
6499
6500 msleep(250);
6501
29b4433d
ED
6502 refcnt = netdev_refcnt_read(dev);
6503
1da177e4 6504 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
6505 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6506 dev->name, refcnt);
1da177e4
LT
6507 warning_time = jiffies;
6508 }
6509 }
6510}
6511
6512/* The sequence is:
6513 *
6514 * rtnl_lock();
6515 * ...
6516 * register_netdevice(x1);
6517 * register_netdevice(x2);
6518 * ...
6519 * unregister_netdevice(y1);
6520 * unregister_netdevice(y2);
6521 * ...
6522 * rtnl_unlock();
6523 * free_netdev(y1);
6524 * free_netdev(y2);
6525 *
58ec3b4d 6526 * We are invoked by rtnl_unlock().
1da177e4 6527 * This allows us to deal with problems:
b17a7c17 6528 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
6529 * without deadlocking with linkwatch via keventd.
6530 * 2) Since we run with the RTNL semaphore not held, we can sleep
6531 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
6532 *
6533 * We must not return until all unregister events added during
6534 * the interval the lock was held have been completed.
1da177e4 6535 */
1da177e4
LT
6536void netdev_run_todo(void)
6537{
626ab0e6 6538 struct list_head list;
1da177e4 6539
1da177e4 6540 /* Snapshot list, allow later requests */
626ab0e6 6541 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
6542
6543 __rtnl_unlock();
626ab0e6 6544
0115e8e3
ED
6545
6546 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
6547 if (!list_empty(&list))
6548 rcu_barrier();
6549
1da177e4
LT
6550 while (!list_empty(&list)) {
6551 struct net_device *dev
e5e26d75 6552 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
6553 list_del(&dev->todo_list);
6554
748e2d93 6555 rtnl_lock();
0115e8e3 6556 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 6557 __rtnl_unlock();
0115e8e3 6558
b17a7c17 6559 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 6560 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
6561 dev->name, dev->reg_state);
6562 dump_stack();
6563 continue;
6564 }
1da177e4 6565
b17a7c17 6566 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 6567
152102c7 6568 on_each_cpu(flush_backlog, dev, 1);
6e583ce5 6569
b17a7c17 6570 netdev_wait_allrefs(dev);
1da177e4 6571
b17a7c17 6572 /* paranoia */
29b4433d 6573 BUG_ON(netdev_refcnt_read(dev));
33d480ce
ED
6574 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6575 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 6576 WARN_ON(dev->dn_ptr);
1da177e4 6577
b17a7c17
SH
6578 if (dev->destructor)
6579 dev->destructor(dev);
9093bbb2 6580
50624c93
EB
6581 /* Report a network device has been unregistered */
6582 rtnl_lock();
6583 dev_net(dev)->dev_unreg_count--;
6584 __rtnl_unlock();
6585 wake_up(&netdev_unregistering_wq);
6586
9093bbb2
SH
6587 /* Free network device */
6588 kobject_put(&dev->dev.kobj);
1da177e4 6589 }
1da177e4
LT
6590}
6591
3cfde79c
BH
6592/* Convert net_device_stats to rtnl_link_stats64. They have the same
6593 * fields in the same order, with only the type differing.
6594 */
77a1abf5
ED
6595void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6596 const struct net_device_stats *netdev_stats)
3cfde79c
BH
6597{
6598#if BITS_PER_LONG == 64
77a1abf5
ED
6599 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6600 memcpy(stats64, netdev_stats, sizeof(*stats64));
3cfde79c
BH
6601#else
6602 size_t i, n = sizeof(*stats64) / sizeof(u64);
6603 const unsigned long *src = (const unsigned long *)netdev_stats;
6604 u64 *dst = (u64 *)stats64;
6605
6606 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6607 sizeof(*stats64) / sizeof(u64));
6608 for (i = 0; i < n; i++)
6609 dst[i] = src[i];
6610#endif
6611}
77a1abf5 6612EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 6613
eeda3fd6
SH
6614/**
6615 * dev_get_stats - get network device statistics
6616 * @dev: device to get statistics from
28172739 6617 * @storage: place to store stats
eeda3fd6 6618 *
d7753516
BH
6619 * Get network statistics from device. Return @storage.
6620 * The device driver may provide its own method by setting
6621 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6622 * otherwise the internal statistics structure is used.
eeda3fd6 6623 */
d7753516
BH
6624struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6625 struct rtnl_link_stats64 *storage)
7004bf25 6626{
eeda3fd6
SH
6627 const struct net_device_ops *ops = dev->netdev_ops;
6628
28172739
ED
6629 if (ops->ndo_get_stats64) {
6630 memset(storage, 0, sizeof(*storage));
caf586e5
ED
6631 ops->ndo_get_stats64(dev, storage);
6632 } else if (ops->ndo_get_stats) {
3cfde79c 6633 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
6634 } else {
6635 netdev_stats_to_stats64(storage, &dev->stats);
28172739 6636 }
caf586e5 6637 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 6638 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
28172739 6639 return storage;
c45d286e 6640}
eeda3fd6 6641EXPORT_SYMBOL(dev_get_stats);
c45d286e 6642
24824a09 6643struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 6644{
24824a09 6645 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 6646
24824a09
ED
6647#ifdef CONFIG_NET_CLS_ACT
6648 if (queue)
6649 return queue;
6650 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6651 if (!queue)
6652 return NULL;
6653 netdev_init_one_queue(dev, queue, NULL);
24824a09
ED
6654 queue->qdisc = &noop_qdisc;
6655 queue->qdisc_sleeping = &noop_qdisc;
6656 rcu_assign_pointer(dev->ingress_queue, queue);
6657#endif
6658 return queue;
bb949fbd
DM
6659}
6660
2c60db03
ED
6661static const struct ethtool_ops default_ethtool_ops;
6662
d07d7507
SG
6663void netdev_set_default_ethtool_ops(struct net_device *dev,
6664 const struct ethtool_ops *ops)
6665{
6666 if (dev->ethtool_ops == &default_ethtool_ops)
6667 dev->ethtool_ops = ops;
6668}
6669EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6670
74d332c1
ED
6671void netdev_freemem(struct net_device *dev)
6672{
6673 char *addr = (char *)dev - dev->padded;
6674
4cb28970 6675 kvfree(addr);
74d332c1
ED
6676}
6677
1da177e4 6678/**
36909ea4 6679 * alloc_netdev_mqs - allocate network device
c835a677
TG
6680 * @sizeof_priv: size of private data to allocate space for
6681 * @name: device name format string
6682 * @name_assign_type: origin of device name
6683 * @setup: callback to initialize device
6684 * @txqs: the number of TX subqueues to allocate
6685 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
6686 *
6687 * Allocates a struct net_device with private data area for driver use
90e51adf 6688 * and performs basic initialization. Also allocates subqueue structs
36909ea4 6689 * for each queue on the device.
1da177e4 6690 */
36909ea4 6691struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 6692 unsigned char name_assign_type,
36909ea4
TH
6693 void (*setup)(struct net_device *),
6694 unsigned int txqs, unsigned int rxqs)
1da177e4 6695{
1da177e4 6696 struct net_device *dev;
7943986c 6697 size_t alloc_size;
1ce8e7b5 6698 struct net_device *p;
1da177e4 6699
b6fe17d6
SH
6700 BUG_ON(strlen(name) >= sizeof(dev->name));
6701
36909ea4 6702 if (txqs < 1) {
7b6cd1ce 6703 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
6704 return NULL;
6705 }
6706
a953be53 6707#ifdef CONFIG_SYSFS
36909ea4 6708 if (rxqs < 1) {
7b6cd1ce 6709 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
6710 return NULL;
6711 }
6712#endif
6713
fd2ea0a7 6714 alloc_size = sizeof(struct net_device);
d1643d24
AD
6715 if (sizeof_priv) {
6716 /* ensure 32-byte alignment of private area */
1ce8e7b5 6717 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
6718 alloc_size += sizeof_priv;
6719 }
6720 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 6721 alloc_size += NETDEV_ALIGN - 1;
1da177e4 6722
74d332c1
ED
6723 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6724 if (!p)
6725 p = vzalloc(alloc_size);
62b5942a 6726 if (!p)
1da177e4 6727 return NULL;
1da177e4 6728
1ce8e7b5 6729 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 6730 dev->padded = (char *)dev - (char *)p;
ab9c73cc 6731
29b4433d
ED
6732 dev->pcpu_refcnt = alloc_percpu(int);
6733 if (!dev->pcpu_refcnt)
74d332c1 6734 goto free_dev;
ab9c73cc 6735
ab9c73cc 6736 if (dev_addr_init(dev))
29b4433d 6737 goto free_pcpu;
ab9c73cc 6738
22bedad3 6739 dev_mc_init(dev);
a748ee24 6740 dev_uc_init(dev);
ccffad25 6741
c346dca1 6742 dev_net_set(dev, &init_net);
1da177e4 6743
8d3bdbd5 6744 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 6745 dev->gso_max_segs = GSO_MAX_SEGS;
fcbeb976 6746 dev->gso_min_segs = 0;
8d3bdbd5 6747
8d3bdbd5
DM
6748 INIT_LIST_HEAD(&dev->napi_list);
6749 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 6750 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 6751 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
6752 INIT_LIST_HEAD(&dev->adj_list.upper);
6753 INIT_LIST_HEAD(&dev->adj_list.lower);
6754 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6755 INIT_LIST_HEAD(&dev->all_adj_list.lower);
02875878 6756 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
6757 setup(dev);
6758
36909ea4
TH
6759 dev->num_tx_queues = txqs;
6760 dev->real_num_tx_queues = txqs;
ed9af2e8 6761 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 6762 goto free_all;
e8a0464c 6763
a953be53 6764#ifdef CONFIG_SYSFS
36909ea4
TH
6765 dev->num_rx_queues = rxqs;
6766 dev->real_num_rx_queues = rxqs;
fe822240 6767 if (netif_alloc_rx_queues(dev))
8d3bdbd5 6768 goto free_all;
df334545 6769#endif
0a9627f2 6770
1da177e4 6771 strcpy(dev->name, name);
c835a677 6772 dev->name_assign_type = name_assign_type;
cbda10fa 6773 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
6774 if (!dev->ethtool_ops)
6775 dev->ethtool_ops = &default_ethtool_ops;
1da177e4 6776 return dev;
ab9c73cc 6777
8d3bdbd5
DM
6778free_all:
6779 free_netdev(dev);
6780 return NULL;
6781
29b4433d
ED
6782free_pcpu:
6783 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
6784free_dev:
6785 netdev_freemem(dev);
ab9c73cc 6786 return NULL;
1da177e4 6787}
36909ea4 6788EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
6789
6790/**
6791 * free_netdev - free network device
6792 * @dev: device
6793 *
4ec93edb
YH
6794 * This function does the last stage of destroying an allocated device
6795 * interface. The reference to the device object is released.
1da177e4
LT
6796 * If this is the last reference then it will be freed.
6797 */
6798void free_netdev(struct net_device *dev)
6799{
d565b0a1
HX
6800 struct napi_struct *p, *n;
6801
f3005d7f
DL
6802 release_net(dev_net(dev));
6803
60877a32 6804 netif_free_tx_queues(dev);
a953be53 6805#ifdef CONFIG_SYSFS
fe822240
TH
6806 kfree(dev->_rx);
6807#endif
e8a0464c 6808
33d480ce 6809 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 6810
f001fde5
JP
6811 /* Flush device addresses */
6812 dev_addr_flush(dev);
6813
d565b0a1
HX
6814 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6815 netif_napi_del(p);
6816
29b4433d
ED
6817 free_percpu(dev->pcpu_refcnt);
6818 dev->pcpu_refcnt = NULL;
6819
3041a069 6820 /* Compatibility with error handling in drivers */
1da177e4 6821 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 6822 netdev_freemem(dev);
1da177e4
LT
6823 return;
6824 }
6825
6826 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6827 dev->reg_state = NETREG_RELEASED;
6828
43cb76d9
GKH
6829 /* will free via device release */
6830 put_device(&dev->dev);
1da177e4 6831}
d1b19dff 6832EXPORT_SYMBOL(free_netdev);
4ec93edb 6833
f0db275a
SH
6834/**
6835 * synchronize_net - Synchronize with packet receive processing
6836 *
6837 * Wait for packets currently being received to be done.
6838 * Does not block later packets from starting.
6839 */
4ec93edb 6840void synchronize_net(void)
1da177e4
LT
6841{
6842 might_sleep();
be3fc413
ED
6843 if (rtnl_is_locked())
6844 synchronize_rcu_expedited();
6845 else
6846 synchronize_rcu();
1da177e4 6847}
d1b19dff 6848EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
6849
6850/**
44a0873d 6851 * unregister_netdevice_queue - remove device from the kernel
1da177e4 6852 * @dev: device
44a0873d 6853 * @head: list
6ebfbc06 6854 *
1da177e4 6855 * This function shuts down a device interface and removes it
d59b54b1 6856 * from the kernel tables.
44a0873d 6857 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
6858 *
6859 * Callers must hold the rtnl semaphore. You may want
6860 * unregister_netdev() instead of this.
6861 */
6862
44a0873d 6863void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 6864{
a6620712
HX
6865 ASSERT_RTNL();
6866
44a0873d 6867 if (head) {
9fdce099 6868 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
6869 } else {
6870 rollback_registered(dev);
6871 /* Finish processing unregister after unlock */
6872 net_set_todo(dev);
6873 }
1da177e4 6874}
44a0873d 6875EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 6876
9b5e383c
ED
6877/**
6878 * unregister_netdevice_many - unregister many devices
6879 * @head: list of devices
87757a91
ED
6880 *
6881 * Note: As most callers use a stack allocated list_head,
6882 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
6883 */
6884void unregister_netdevice_many(struct list_head *head)
6885{
6886 struct net_device *dev;
6887
6888 if (!list_empty(head)) {
6889 rollback_registered_many(head);
6890 list_for_each_entry(dev, head, unreg_list)
6891 net_set_todo(dev);
87757a91 6892 list_del(head);
9b5e383c
ED
6893 }
6894}
63c8099d 6895EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 6896
1da177e4
LT
6897/**
6898 * unregister_netdev - remove device from the kernel
6899 * @dev: device
6900 *
6901 * This function shuts down a device interface and removes it
d59b54b1 6902 * from the kernel tables.
1da177e4
LT
6903 *
6904 * This is just a wrapper for unregister_netdevice that takes
6905 * the rtnl semaphore. In general you want to use this and not
6906 * unregister_netdevice.
6907 */
6908void unregister_netdev(struct net_device *dev)
6909{
6910 rtnl_lock();
6911 unregister_netdevice(dev);
6912 rtnl_unlock();
6913}
1da177e4
LT
6914EXPORT_SYMBOL(unregister_netdev);
6915
ce286d32
EB
6916/**
6917 * dev_change_net_namespace - move device to different nethost namespace
6918 * @dev: device
6919 * @net: network namespace
6920 * @pat: If not NULL name pattern to try if the current device name
6921 * is already taken in the destination network namespace.
6922 *
6923 * This function shuts down a device interface and moves it
6924 * to a new network namespace. On success 0 is returned, on
6925 * a failure a netagive errno code is returned.
6926 *
6927 * Callers must hold the rtnl semaphore.
6928 */
6929
6930int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6931{
ce286d32
EB
6932 int err;
6933
6934 ASSERT_RTNL();
6935
6936 /* Don't allow namespace local devices to be moved. */
6937 err = -EINVAL;
6938 if (dev->features & NETIF_F_NETNS_LOCAL)
6939 goto out;
6940
6941 /* Ensure the device has been registrered */
ce286d32
EB
6942 if (dev->reg_state != NETREG_REGISTERED)
6943 goto out;
6944
6945 /* Get out if there is nothing todo */
6946 err = 0;
878628fb 6947 if (net_eq(dev_net(dev), net))
ce286d32
EB
6948 goto out;
6949
6950 /* Pick the destination device name, and ensure
6951 * we can use it in the destination network namespace.
6952 */
6953 err = -EEXIST;
d9031024 6954 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
6955 /* We get here if we can't use the current device name */
6956 if (!pat)
6957 goto out;
828de4f6 6958 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
6959 goto out;
6960 }
6961
6962 /*
6963 * And now a mini version of register_netdevice unregister_netdevice.
6964 */
6965
6966 /* If device is running close it first. */
9b772652 6967 dev_close(dev);
ce286d32
EB
6968
6969 /* And unlink it from device chain */
6970 err = -ENODEV;
6971 unlist_netdevice(dev);
6972
6973 synchronize_net();
6974
6975 /* Shutdown queueing discipline. */
6976 dev_shutdown(dev);
6977
6978 /* Notify protocols, that we are about to destroy
6979 this device. They should clean all the things.
3b27e105
DL
6980
6981 Note that dev->reg_state stays at NETREG_REGISTERED.
6982 This is wanted because this way 8021q and macvlan know
6983 the device is just moving and can keep their slaves up.
ce286d32
EB
6984 */
6985 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
6986 rcu_barrier();
6987 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 6988 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
6989
6990 /*
6991 * Flush the unicast and multicast chains
6992 */
a748ee24 6993 dev_uc_flush(dev);
22bedad3 6994 dev_mc_flush(dev);
ce286d32 6995
4e66ae2e
SH
6996 /* Send a netdev-removed uevent to the old namespace */
6997 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 6998 netdev_adjacent_del_links(dev);
4e66ae2e 6999
ce286d32 7000 /* Actually switch the network namespace */
c346dca1 7001 dev_net_set(dev, net);
ce286d32 7002
ce286d32
EB
7003 /* If there is an ifindex conflict assign a new one */
7004 if (__dev_get_by_index(net, dev->ifindex)) {
7005 int iflink = (dev->iflink == dev->ifindex);
7006 dev->ifindex = dev_new_index(net);
7007 if (iflink)
7008 dev->iflink = dev->ifindex;
7009 }
7010
4e66ae2e
SH
7011 /* Send a netdev-add uevent to the new namespace */
7012 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7013 netdev_adjacent_add_links(dev);
4e66ae2e 7014
8b41d188 7015 /* Fixup kobjects */
a1b3f594 7016 err = device_rename(&dev->dev, dev->name);
8b41d188 7017 WARN_ON(err);
ce286d32
EB
7018
7019 /* Add the device back in the hashes */
7020 list_netdevice(dev);
7021
7022 /* Notify protocols, that a new device appeared. */
7023 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7024
d90a909e
EB
7025 /*
7026 * Prevent userspace races by waiting until the network
7027 * device is fully setup before sending notifications.
7028 */
7f294054 7029 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7030
ce286d32
EB
7031 synchronize_net();
7032 err = 0;
7033out:
7034 return err;
7035}
463d0183 7036EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7037
1da177e4
LT
7038static int dev_cpu_callback(struct notifier_block *nfb,
7039 unsigned long action,
7040 void *ocpu)
7041{
7042 struct sk_buff **list_skb;
1da177e4
LT
7043 struct sk_buff *skb;
7044 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7045 struct softnet_data *sd, *oldsd;
7046
8bb78442 7047 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7048 return NOTIFY_OK;
7049
7050 local_irq_disable();
7051 cpu = smp_processor_id();
7052 sd = &per_cpu(softnet_data, cpu);
7053 oldsd = &per_cpu(softnet_data, oldcpu);
7054
7055 /* Find end of our completion_queue. */
7056 list_skb = &sd->completion_queue;
7057 while (*list_skb)
7058 list_skb = &(*list_skb)->next;
7059 /* Append completion queue from offline CPU. */
7060 *list_skb = oldsd->completion_queue;
7061 oldsd->completion_queue = NULL;
7062
1da177e4 7063 /* Append output queue from offline CPU. */
a9cbd588
CG
7064 if (oldsd->output_queue) {
7065 *sd->output_queue_tailp = oldsd->output_queue;
7066 sd->output_queue_tailp = oldsd->output_queue_tailp;
7067 oldsd->output_queue = NULL;
7068 oldsd->output_queue_tailp = &oldsd->output_queue;
7069 }
264524d5
HC
7070 /* Append NAPI poll list from offline CPU. */
7071 if (!list_empty(&oldsd->poll_list)) {
7072 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7073 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7074 }
1da177e4
LT
7075
7076 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7077 local_irq_enable();
7078
7079 /* Process offline CPU's input_pkt_queue */
76cc8b13 7080 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ae78dbfa 7081 netif_rx_internal(skb);
76cc8b13 7082 input_queue_head_incr(oldsd);
fec5e652 7083 }
76cc8b13 7084 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
ae78dbfa 7085 netif_rx_internal(skb);
76cc8b13
TH
7086 input_queue_head_incr(oldsd);
7087 }
1da177e4
LT
7088
7089 return NOTIFY_OK;
7090}
1da177e4
LT
7091
7092
7f353bf2 7093/**
b63365a2
HX
7094 * netdev_increment_features - increment feature set by one
7095 * @all: current feature set
7096 * @one: new feature set
7097 * @mask: mask feature set
7f353bf2
HX
7098 *
7099 * Computes a new feature set after adding a device with feature set
b63365a2
HX
7100 * @one to the master device with current feature set @all. Will not
7101 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 7102 */
c8f44aff
MM
7103netdev_features_t netdev_increment_features(netdev_features_t all,
7104 netdev_features_t one, netdev_features_t mask)
b63365a2 7105{
1742f183
MM
7106 if (mask & NETIF_F_GEN_CSUM)
7107 mask |= NETIF_F_ALL_CSUM;
7108 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 7109
1742f183
MM
7110 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7111 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 7112
1742f183
MM
7113 /* If one device supports hw checksumming, set for all. */
7114 if (all & NETIF_F_GEN_CSUM)
7115 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7f353bf2
HX
7116
7117 return all;
7118}
b63365a2 7119EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 7120
430f03cd 7121static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
7122{
7123 int i;
7124 struct hlist_head *hash;
7125
7126 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7127 if (hash != NULL)
7128 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7129 INIT_HLIST_HEAD(&hash[i]);
7130
7131 return hash;
7132}
7133
881d966b 7134/* Initialize per network namespace state */
4665079c 7135static int __net_init netdev_init(struct net *net)
881d966b 7136{
734b6541
RM
7137 if (net != &init_net)
7138 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 7139
30d97d35
PE
7140 net->dev_name_head = netdev_create_hash();
7141 if (net->dev_name_head == NULL)
7142 goto err_name;
881d966b 7143
30d97d35
PE
7144 net->dev_index_head = netdev_create_hash();
7145 if (net->dev_index_head == NULL)
7146 goto err_idx;
881d966b
EB
7147
7148 return 0;
30d97d35
PE
7149
7150err_idx:
7151 kfree(net->dev_name_head);
7152err_name:
7153 return -ENOMEM;
881d966b
EB
7154}
7155
f0db275a
SH
7156/**
7157 * netdev_drivername - network driver for the device
7158 * @dev: network device
f0db275a
SH
7159 *
7160 * Determine network driver for device.
7161 */
3019de12 7162const char *netdev_drivername(const struct net_device *dev)
6579e57b 7163{
cf04a4c7
SH
7164 const struct device_driver *driver;
7165 const struct device *parent;
3019de12 7166 const char *empty = "";
6579e57b
AV
7167
7168 parent = dev->dev.parent;
6579e57b 7169 if (!parent)
3019de12 7170 return empty;
6579e57b
AV
7171
7172 driver = parent->driver;
7173 if (driver && driver->name)
3019de12
DM
7174 return driver->name;
7175 return empty;
6579e57b
AV
7176}
7177
6ea754eb
JP
7178static void __netdev_printk(const char *level, const struct net_device *dev,
7179 struct va_format *vaf)
256df2f3 7180{
b004ff49 7181 if (dev && dev->dev.parent) {
6ea754eb
JP
7182 dev_printk_emit(level[1] - '0',
7183 dev->dev.parent,
7184 "%s %s %s%s: %pV",
7185 dev_driver_string(dev->dev.parent),
7186 dev_name(dev->dev.parent),
7187 netdev_name(dev), netdev_reg_state(dev),
7188 vaf);
b004ff49 7189 } else if (dev) {
6ea754eb
JP
7190 printk("%s%s%s: %pV",
7191 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 7192 } else {
6ea754eb 7193 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 7194 }
256df2f3
JP
7195}
7196
6ea754eb
JP
7197void netdev_printk(const char *level, const struct net_device *dev,
7198 const char *format, ...)
256df2f3
JP
7199{
7200 struct va_format vaf;
7201 va_list args;
256df2f3
JP
7202
7203 va_start(args, format);
7204
7205 vaf.fmt = format;
7206 vaf.va = &args;
7207
6ea754eb 7208 __netdev_printk(level, dev, &vaf);
b004ff49 7209
256df2f3 7210 va_end(args);
256df2f3
JP
7211}
7212EXPORT_SYMBOL(netdev_printk);
7213
7214#define define_netdev_printk_level(func, level) \
6ea754eb 7215void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 7216{ \
256df2f3
JP
7217 struct va_format vaf; \
7218 va_list args; \
7219 \
7220 va_start(args, fmt); \
7221 \
7222 vaf.fmt = fmt; \
7223 vaf.va = &args; \
7224 \
6ea754eb 7225 __netdev_printk(level, dev, &vaf); \
b004ff49 7226 \
256df2f3 7227 va_end(args); \
256df2f3
JP
7228} \
7229EXPORT_SYMBOL(func);
7230
7231define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7232define_netdev_printk_level(netdev_alert, KERN_ALERT);
7233define_netdev_printk_level(netdev_crit, KERN_CRIT);
7234define_netdev_printk_level(netdev_err, KERN_ERR);
7235define_netdev_printk_level(netdev_warn, KERN_WARNING);
7236define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7237define_netdev_printk_level(netdev_info, KERN_INFO);
7238
4665079c 7239static void __net_exit netdev_exit(struct net *net)
881d966b
EB
7240{
7241 kfree(net->dev_name_head);
7242 kfree(net->dev_index_head);
7243}
7244
022cbae6 7245static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
7246 .init = netdev_init,
7247 .exit = netdev_exit,
7248};
7249
4665079c 7250static void __net_exit default_device_exit(struct net *net)
ce286d32 7251{
e008b5fc 7252 struct net_device *dev, *aux;
ce286d32 7253 /*
e008b5fc 7254 * Push all migratable network devices back to the
ce286d32
EB
7255 * initial network namespace
7256 */
7257 rtnl_lock();
e008b5fc 7258 for_each_netdev_safe(net, dev, aux) {
ce286d32 7259 int err;
aca51397 7260 char fb_name[IFNAMSIZ];
ce286d32
EB
7261
7262 /* Ignore unmoveable devices (i.e. loopback) */
7263 if (dev->features & NETIF_F_NETNS_LOCAL)
7264 continue;
7265
e008b5fc
EB
7266 /* Leave virtual devices for the generic cleanup */
7267 if (dev->rtnl_link_ops)
7268 continue;
d0c082ce 7269
25985edc 7270 /* Push remaining network devices to init_net */
aca51397
PE
7271 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7272 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 7273 if (err) {
7b6cd1ce
JP
7274 pr_emerg("%s: failed to move %s to init_net: %d\n",
7275 __func__, dev->name, err);
aca51397 7276 BUG();
ce286d32
EB
7277 }
7278 }
7279 rtnl_unlock();
7280}
7281
50624c93
EB
7282static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7283{
7284 /* Return with the rtnl_lock held when there are no network
7285 * devices unregistering in any network namespace in net_list.
7286 */
7287 struct net *net;
7288 bool unregistering;
ff960a73 7289 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 7290
ff960a73 7291 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 7292 for (;;) {
50624c93
EB
7293 unregistering = false;
7294 rtnl_lock();
7295 list_for_each_entry(net, net_list, exit_list) {
7296 if (net->dev_unreg_count > 0) {
7297 unregistering = true;
7298 break;
7299 }
7300 }
7301 if (!unregistering)
7302 break;
7303 __rtnl_unlock();
ff960a73
PZ
7304
7305 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 7306 }
ff960a73 7307 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
7308}
7309
04dc7f6b
EB
7310static void __net_exit default_device_exit_batch(struct list_head *net_list)
7311{
7312 /* At exit all network devices most be removed from a network
b595076a 7313 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
7314 * Do this across as many network namespaces as possible to
7315 * improve batching efficiency.
7316 */
7317 struct net_device *dev;
7318 struct net *net;
7319 LIST_HEAD(dev_kill_list);
7320
50624c93
EB
7321 /* To prevent network device cleanup code from dereferencing
7322 * loopback devices or network devices that have been freed
7323 * wait here for all pending unregistrations to complete,
7324 * before unregistring the loopback device and allowing the
7325 * network namespace be freed.
7326 *
7327 * The netdev todo list containing all network devices
7328 * unregistrations that happen in default_device_exit_batch
7329 * will run in the rtnl_unlock() at the end of
7330 * default_device_exit_batch.
7331 */
7332 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
7333 list_for_each_entry(net, net_list, exit_list) {
7334 for_each_netdev_reverse(net, dev) {
b0ab2fab 7335 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
7336 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7337 else
7338 unregister_netdevice_queue(dev, &dev_kill_list);
7339 }
7340 }
7341 unregister_netdevice_many(&dev_kill_list);
7342 rtnl_unlock();
7343}
7344
022cbae6 7345static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 7346 .exit = default_device_exit,
04dc7f6b 7347 .exit_batch = default_device_exit_batch,
ce286d32
EB
7348};
7349
1da177e4
LT
7350/*
7351 * Initialize the DEV module. At boot time this walks the device list and
7352 * unhooks any devices that fail to initialise (normally hardware not
7353 * present) and leaves us with a valid list of present and active devices.
7354 *
7355 */
7356
7357/*
7358 * This is called single threaded during boot, so no need
7359 * to take the rtnl semaphore.
7360 */
7361static int __init net_dev_init(void)
7362{
7363 int i, rc = -ENOMEM;
7364
7365 BUG_ON(!dev_boot_phase);
7366
1da177e4
LT
7367 if (dev_proc_init())
7368 goto out;
7369
8b41d188 7370 if (netdev_kobject_init())
1da177e4
LT
7371 goto out;
7372
7373 INIT_LIST_HEAD(&ptype_all);
82d8a867 7374 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
7375 INIT_LIST_HEAD(&ptype_base[i]);
7376
62532da9
VY
7377 INIT_LIST_HEAD(&offload_base);
7378
881d966b
EB
7379 if (register_pernet_subsys(&netdev_net_ops))
7380 goto out;
1da177e4
LT
7381
7382 /*
7383 * Initialise the packet receive queues.
7384 */
7385
6f912042 7386 for_each_possible_cpu(i) {
e36fa2f7 7387 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 7388
e36fa2f7 7389 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 7390 skb_queue_head_init(&sd->process_queue);
e36fa2f7 7391 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 7392 sd->output_queue_tailp = &sd->output_queue;
df334545 7393#ifdef CONFIG_RPS
e36fa2f7
ED
7394 sd->csd.func = rps_trigger_softirq;
7395 sd->csd.info = sd;
e36fa2f7 7396 sd->cpu = i;
1e94d72f 7397#endif
0a9627f2 7398
e36fa2f7
ED
7399 sd->backlog.poll = process_backlog;
7400 sd->backlog.weight = weight_p;
1da177e4
LT
7401 }
7402
1da177e4
LT
7403 dev_boot_phase = 0;
7404
505d4f73
EB
7405 /* The loopback device is special if any other network devices
7406 * is present in a network namespace the loopback device must
7407 * be present. Since we now dynamically allocate and free the
7408 * loopback device ensure this invariant is maintained by
7409 * keeping the loopback device as the first device on the
7410 * list of network devices. Ensuring the loopback devices
7411 * is the first device that appears and the last network device
7412 * that disappears.
7413 */
7414 if (register_pernet_device(&loopback_net_ops))
7415 goto out;
7416
7417 if (register_pernet_device(&default_device_ops))
7418 goto out;
7419
962cf36c
CM
7420 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7421 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
7422
7423 hotcpu_notifier(dev_cpu_callback, 0);
7424 dst_init();
1da177e4
LT
7425 rc = 0;
7426out:
7427 return rc;
7428}
7429
7430subsys_initcall(net_dev_init);
This page took 1.769878 seconds and 5 git commands to generate.