xen/evtchn: fix ring resize when binding new events
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <asm/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
70 {
71 BUG_ON(preemptible());
72 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
73 }
74
75 /**
76 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
77 * Must be called from non-preemptible context
78 */
79 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
80 {
81 BUG_ON(preemptible());
82 return __this_cpu_read(kvm_arm_running_vcpu);
83 }
84
85 /**
86 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
87 */
88 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
89 {
90 return &kvm_arm_running_vcpu;
91 }
92
93 int kvm_arch_hardware_enable(void)
94 {
95 return 0;
96 }
97
98 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
99 {
100 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105 return 0;
106 }
107
108 void kvm_arch_check_processor_compat(void *rtn)
109 {
110 *(int *)rtn = 0;
111 }
112
113
114 /**
115 * kvm_arch_init_vm - initializes a VM data structure
116 * @kvm: pointer to the KVM struct
117 */
118 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
119 {
120 int ret = 0;
121
122 if (type)
123 return -EINVAL;
124
125 ret = kvm_alloc_stage2_pgd(kvm);
126 if (ret)
127 goto out_fail_alloc;
128
129 ret = create_hyp_mappings(kvm, kvm + 1);
130 if (ret)
131 goto out_free_stage2_pgd;
132
133 kvm_vgic_early_init(kvm);
134 kvm_timer_init(kvm);
135
136 /* Mark the initial VMID generation invalid */
137 kvm->arch.vmid_gen = 0;
138
139 /* The maximum number of VCPUs is limited by the host's GIC model */
140 kvm->arch.max_vcpus = vgic_present ?
141 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
142
143 return ret;
144 out_free_stage2_pgd:
145 kvm_free_stage2_pgd(kvm);
146 out_fail_alloc:
147 return ret;
148 }
149
150 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 {
152 return VM_FAULT_SIGBUS;
153 }
154
155
156 /**
157 * kvm_arch_destroy_vm - destroy the VM data structure
158 * @kvm: pointer to the KVM struct
159 */
160 void kvm_arch_destroy_vm(struct kvm *kvm)
161 {
162 int i;
163
164 kvm_free_stage2_pgd(kvm);
165
166 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
167 if (kvm->vcpus[i]) {
168 kvm_arch_vcpu_free(kvm->vcpus[i]);
169 kvm->vcpus[i] = NULL;
170 }
171 }
172
173 kvm_vgic_destroy(kvm);
174 }
175
176 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
177 {
178 int r;
179 switch (ext) {
180 case KVM_CAP_IRQCHIP:
181 r = vgic_present;
182 break;
183 case KVM_CAP_IOEVENTFD:
184 case KVM_CAP_DEVICE_CTRL:
185 case KVM_CAP_USER_MEMORY:
186 case KVM_CAP_SYNC_MMU:
187 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
188 case KVM_CAP_ONE_REG:
189 case KVM_CAP_ARM_PSCI:
190 case KVM_CAP_ARM_PSCI_0_2:
191 case KVM_CAP_READONLY_MEM:
192 case KVM_CAP_MP_STATE:
193 r = 1;
194 break;
195 case KVM_CAP_COALESCED_MMIO:
196 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
197 break;
198 case KVM_CAP_ARM_SET_DEVICE_ADDR:
199 r = 1;
200 break;
201 case KVM_CAP_NR_VCPUS:
202 r = num_online_cpus();
203 break;
204 case KVM_CAP_MAX_VCPUS:
205 r = KVM_MAX_VCPUS;
206 break;
207 default:
208 r = kvm_arch_dev_ioctl_check_extension(ext);
209 break;
210 }
211 return r;
212 }
213
214 long kvm_arch_dev_ioctl(struct file *filp,
215 unsigned int ioctl, unsigned long arg)
216 {
217 return -EINVAL;
218 }
219
220
221 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
222 {
223 int err;
224 struct kvm_vcpu *vcpu;
225
226 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
227 err = -EBUSY;
228 goto out;
229 }
230
231 if (id >= kvm->arch.max_vcpus) {
232 err = -EINVAL;
233 goto out;
234 }
235
236 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
237 if (!vcpu) {
238 err = -ENOMEM;
239 goto out;
240 }
241
242 err = kvm_vcpu_init(vcpu, kvm, id);
243 if (err)
244 goto free_vcpu;
245
246 err = create_hyp_mappings(vcpu, vcpu + 1);
247 if (err)
248 goto vcpu_uninit;
249
250 return vcpu;
251 vcpu_uninit:
252 kvm_vcpu_uninit(vcpu);
253 free_vcpu:
254 kmem_cache_free(kvm_vcpu_cache, vcpu);
255 out:
256 return ERR_PTR(err);
257 }
258
259 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
260 {
261 kvm_vgic_vcpu_early_init(vcpu);
262 }
263
264 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
265 {
266 kvm_mmu_free_memory_caches(vcpu);
267 kvm_timer_vcpu_terminate(vcpu);
268 kvm_vgic_vcpu_destroy(vcpu);
269 kvm_pmu_vcpu_destroy(vcpu);
270 kmem_cache_free(kvm_vcpu_cache, vcpu);
271 }
272
273 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
274 {
275 kvm_arch_vcpu_free(vcpu);
276 }
277
278 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
279 {
280 return kvm_timer_should_fire(vcpu);
281 }
282
283 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
284 {
285 kvm_timer_schedule(vcpu);
286 }
287
288 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
289 {
290 kvm_timer_unschedule(vcpu);
291 }
292
293 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
294 {
295 /* Force users to call KVM_ARM_VCPU_INIT */
296 vcpu->arch.target = -1;
297 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
298
299 /* Set up the timer */
300 kvm_timer_vcpu_init(vcpu);
301
302 kvm_arm_reset_debug_ptr(vcpu);
303
304 return 0;
305 }
306
307 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
308 {
309 vcpu->cpu = cpu;
310 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
311
312 kvm_arm_set_running_vcpu(vcpu);
313 }
314
315 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
316 {
317 /*
318 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
319 * if the vcpu is no longer assigned to a cpu. This is used for the
320 * optimized make_all_cpus_request path.
321 */
322 vcpu->cpu = -1;
323
324 kvm_arm_set_running_vcpu(NULL);
325 kvm_timer_vcpu_put(vcpu);
326 }
327
328 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
329 struct kvm_mp_state *mp_state)
330 {
331 if (vcpu->arch.power_off)
332 mp_state->mp_state = KVM_MP_STATE_STOPPED;
333 else
334 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
335
336 return 0;
337 }
338
339 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
340 struct kvm_mp_state *mp_state)
341 {
342 switch (mp_state->mp_state) {
343 case KVM_MP_STATE_RUNNABLE:
344 vcpu->arch.power_off = false;
345 break;
346 case KVM_MP_STATE_STOPPED:
347 vcpu->arch.power_off = true;
348 break;
349 default:
350 return -EINVAL;
351 }
352
353 return 0;
354 }
355
356 /**
357 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
358 * @v: The VCPU pointer
359 *
360 * If the guest CPU is not waiting for interrupts or an interrupt line is
361 * asserted, the CPU is by definition runnable.
362 */
363 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
364 {
365 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
366 && !v->arch.power_off && !v->arch.pause);
367 }
368
369 /* Just ensure a guest exit from a particular CPU */
370 static void exit_vm_noop(void *info)
371 {
372 }
373
374 void force_vm_exit(const cpumask_t *mask)
375 {
376 preempt_disable();
377 smp_call_function_many(mask, exit_vm_noop, NULL, true);
378 preempt_enable();
379 }
380
381 /**
382 * need_new_vmid_gen - check that the VMID is still valid
383 * @kvm: The VM's VMID to checkt
384 *
385 * return true if there is a new generation of VMIDs being used
386 *
387 * The hardware supports only 256 values with the value zero reserved for the
388 * host, so we check if an assigned value belongs to a previous generation,
389 * which which requires us to assign a new value. If we're the first to use a
390 * VMID for the new generation, we must flush necessary caches and TLBs on all
391 * CPUs.
392 */
393 static bool need_new_vmid_gen(struct kvm *kvm)
394 {
395 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
396 }
397
398 /**
399 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
400 * @kvm The guest that we are about to run
401 *
402 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
403 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
404 * caches and TLBs.
405 */
406 static void update_vttbr(struct kvm *kvm)
407 {
408 phys_addr_t pgd_phys;
409 u64 vmid;
410
411 if (!need_new_vmid_gen(kvm))
412 return;
413
414 spin_lock(&kvm_vmid_lock);
415
416 /*
417 * We need to re-check the vmid_gen here to ensure that if another vcpu
418 * already allocated a valid vmid for this vm, then this vcpu should
419 * use the same vmid.
420 */
421 if (!need_new_vmid_gen(kvm)) {
422 spin_unlock(&kvm_vmid_lock);
423 return;
424 }
425
426 /* First user of a new VMID generation? */
427 if (unlikely(kvm_next_vmid == 0)) {
428 atomic64_inc(&kvm_vmid_gen);
429 kvm_next_vmid = 1;
430
431 /*
432 * On SMP we know no other CPUs can use this CPU's or each
433 * other's VMID after force_vm_exit returns since the
434 * kvm_vmid_lock blocks them from reentry to the guest.
435 */
436 force_vm_exit(cpu_all_mask);
437 /*
438 * Now broadcast TLB + ICACHE invalidation over the inner
439 * shareable domain to make sure all data structures are
440 * clean.
441 */
442 kvm_call_hyp(__kvm_flush_vm_context);
443 }
444
445 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
446 kvm->arch.vmid = kvm_next_vmid;
447 kvm_next_vmid++;
448 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
449
450 /* update vttbr to be used with the new vmid */
451 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
452 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
453 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
454 kvm->arch.vttbr = pgd_phys | vmid;
455
456 spin_unlock(&kvm_vmid_lock);
457 }
458
459 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
460 {
461 struct kvm *kvm = vcpu->kvm;
462 int ret;
463
464 if (likely(vcpu->arch.has_run_once))
465 return 0;
466
467 vcpu->arch.has_run_once = true;
468
469 /*
470 * Map the VGIC hardware resources before running a vcpu the first
471 * time on this VM.
472 */
473 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
474 ret = kvm_vgic_map_resources(kvm);
475 if (ret)
476 return ret;
477 }
478
479 /*
480 * Enable the arch timers only if we have an in-kernel VGIC
481 * and it has been properly initialized, since we cannot handle
482 * interrupts from the virtual timer with a userspace gic.
483 */
484 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
485 kvm_timer_enable(kvm);
486
487 return 0;
488 }
489
490 bool kvm_arch_intc_initialized(struct kvm *kvm)
491 {
492 return vgic_initialized(kvm);
493 }
494
495 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
496 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
497
498 static void kvm_arm_halt_guest(struct kvm *kvm)
499 {
500 int i;
501 struct kvm_vcpu *vcpu;
502
503 kvm_for_each_vcpu(i, vcpu, kvm)
504 vcpu->arch.pause = true;
505 force_vm_exit(cpu_all_mask);
506 }
507
508 static void kvm_arm_resume_guest(struct kvm *kvm)
509 {
510 int i;
511 struct kvm_vcpu *vcpu;
512
513 kvm_for_each_vcpu(i, vcpu, kvm) {
514 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
515
516 vcpu->arch.pause = false;
517 swake_up(wq);
518 }
519 }
520
521 static void vcpu_sleep(struct kvm_vcpu *vcpu)
522 {
523 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
524
525 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
526 (!vcpu->arch.pause)));
527 }
528
529 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
530 {
531 return vcpu->arch.target >= 0;
532 }
533
534 /**
535 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
536 * @vcpu: The VCPU pointer
537 * @run: The kvm_run structure pointer used for userspace state exchange
538 *
539 * This function is called through the VCPU_RUN ioctl called from user space. It
540 * will execute VM code in a loop until the time slice for the process is used
541 * or some emulation is needed from user space in which case the function will
542 * return with return value 0 and with the kvm_run structure filled in with the
543 * required data for the requested emulation.
544 */
545 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
546 {
547 int ret;
548 sigset_t sigsaved;
549
550 if (unlikely(!kvm_vcpu_initialized(vcpu)))
551 return -ENOEXEC;
552
553 ret = kvm_vcpu_first_run_init(vcpu);
554 if (ret)
555 return ret;
556
557 if (run->exit_reason == KVM_EXIT_MMIO) {
558 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
559 if (ret)
560 return ret;
561 }
562
563 if (vcpu->sigset_active)
564 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
565
566 ret = 1;
567 run->exit_reason = KVM_EXIT_UNKNOWN;
568 while (ret > 0) {
569 /*
570 * Check conditions before entering the guest
571 */
572 cond_resched();
573
574 update_vttbr(vcpu->kvm);
575
576 if (vcpu->arch.power_off || vcpu->arch.pause)
577 vcpu_sleep(vcpu);
578
579 /*
580 * Preparing the interrupts to be injected also
581 * involves poking the GIC, which must be done in a
582 * non-preemptible context.
583 */
584 preempt_disable();
585 kvm_pmu_flush_hwstate(vcpu);
586 kvm_timer_flush_hwstate(vcpu);
587 kvm_vgic_flush_hwstate(vcpu);
588
589 local_irq_disable();
590
591 /*
592 * Re-check atomic conditions
593 */
594 if (signal_pending(current)) {
595 ret = -EINTR;
596 run->exit_reason = KVM_EXIT_INTR;
597 }
598
599 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
600 vcpu->arch.power_off || vcpu->arch.pause) {
601 local_irq_enable();
602 kvm_pmu_sync_hwstate(vcpu);
603 kvm_timer_sync_hwstate(vcpu);
604 kvm_vgic_sync_hwstate(vcpu);
605 preempt_enable();
606 continue;
607 }
608
609 kvm_arm_setup_debug(vcpu);
610
611 /**************************************************************
612 * Enter the guest
613 */
614 trace_kvm_entry(*vcpu_pc(vcpu));
615 __kvm_guest_enter();
616 vcpu->mode = IN_GUEST_MODE;
617
618 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
619
620 vcpu->mode = OUTSIDE_GUEST_MODE;
621 vcpu->stat.exits++;
622 /*
623 * Back from guest
624 *************************************************************/
625
626 kvm_arm_clear_debug(vcpu);
627
628 /*
629 * We may have taken a host interrupt in HYP mode (ie
630 * while executing the guest). This interrupt is still
631 * pending, as we haven't serviced it yet!
632 *
633 * We're now back in SVC mode, with interrupts
634 * disabled. Enabling the interrupts now will have
635 * the effect of taking the interrupt again, in SVC
636 * mode this time.
637 */
638 local_irq_enable();
639
640 /*
641 * We do local_irq_enable() before calling kvm_guest_exit() so
642 * that if a timer interrupt hits while running the guest we
643 * account that tick as being spent in the guest. We enable
644 * preemption after calling kvm_guest_exit() so that if we get
645 * preempted we make sure ticks after that is not counted as
646 * guest time.
647 */
648 kvm_guest_exit();
649 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
650
651 /*
652 * We must sync the PMU and timer state before the vgic state so
653 * that the vgic can properly sample the updated state of the
654 * interrupt line.
655 */
656 kvm_pmu_sync_hwstate(vcpu);
657 kvm_timer_sync_hwstate(vcpu);
658
659 kvm_vgic_sync_hwstate(vcpu);
660
661 preempt_enable();
662
663 ret = handle_exit(vcpu, run, ret);
664 }
665
666 if (vcpu->sigset_active)
667 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
668 return ret;
669 }
670
671 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
672 {
673 int bit_index;
674 bool set;
675 unsigned long *ptr;
676
677 if (number == KVM_ARM_IRQ_CPU_IRQ)
678 bit_index = __ffs(HCR_VI);
679 else /* KVM_ARM_IRQ_CPU_FIQ */
680 bit_index = __ffs(HCR_VF);
681
682 ptr = (unsigned long *)&vcpu->arch.irq_lines;
683 if (level)
684 set = test_and_set_bit(bit_index, ptr);
685 else
686 set = test_and_clear_bit(bit_index, ptr);
687
688 /*
689 * If we didn't change anything, no need to wake up or kick other CPUs
690 */
691 if (set == level)
692 return 0;
693
694 /*
695 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
696 * trigger a world-switch round on the running physical CPU to set the
697 * virtual IRQ/FIQ fields in the HCR appropriately.
698 */
699 kvm_vcpu_kick(vcpu);
700
701 return 0;
702 }
703
704 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
705 bool line_status)
706 {
707 u32 irq = irq_level->irq;
708 unsigned int irq_type, vcpu_idx, irq_num;
709 int nrcpus = atomic_read(&kvm->online_vcpus);
710 struct kvm_vcpu *vcpu = NULL;
711 bool level = irq_level->level;
712
713 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
714 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
715 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
716
717 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
718
719 switch (irq_type) {
720 case KVM_ARM_IRQ_TYPE_CPU:
721 if (irqchip_in_kernel(kvm))
722 return -ENXIO;
723
724 if (vcpu_idx >= nrcpus)
725 return -EINVAL;
726
727 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
728 if (!vcpu)
729 return -EINVAL;
730
731 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
732 return -EINVAL;
733
734 return vcpu_interrupt_line(vcpu, irq_num, level);
735 case KVM_ARM_IRQ_TYPE_PPI:
736 if (!irqchip_in_kernel(kvm))
737 return -ENXIO;
738
739 if (vcpu_idx >= nrcpus)
740 return -EINVAL;
741
742 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
743 if (!vcpu)
744 return -EINVAL;
745
746 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
747 return -EINVAL;
748
749 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
750 case KVM_ARM_IRQ_TYPE_SPI:
751 if (!irqchip_in_kernel(kvm))
752 return -ENXIO;
753
754 if (irq_num < VGIC_NR_PRIVATE_IRQS)
755 return -EINVAL;
756
757 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
758 }
759
760 return -EINVAL;
761 }
762
763 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
764 const struct kvm_vcpu_init *init)
765 {
766 unsigned int i;
767 int phys_target = kvm_target_cpu();
768
769 if (init->target != phys_target)
770 return -EINVAL;
771
772 /*
773 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
774 * use the same target.
775 */
776 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
777 return -EINVAL;
778
779 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
780 for (i = 0; i < sizeof(init->features) * 8; i++) {
781 bool set = (init->features[i / 32] & (1 << (i % 32)));
782
783 if (set && i >= KVM_VCPU_MAX_FEATURES)
784 return -ENOENT;
785
786 /*
787 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
788 * use the same feature set.
789 */
790 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
791 test_bit(i, vcpu->arch.features) != set)
792 return -EINVAL;
793
794 if (set)
795 set_bit(i, vcpu->arch.features);
796 }
797
798 vcpu->arch.target = phys_target;
799
800 /* Now we know what it is, we can reset it. */
801 return kvm_reset_vcpu(vcpu);
802 }
803
804
805 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
806 struct kvm_vcpu_init *init)
807 {
808 int ret;
809
810 ret = kvm_vcpu_set_target(vcpu, init);
811 if (ret)
812 return ret;
813
814 /*
815 * Ensure a rebooted VM will fault in RAM pages and detect if the
816 * guest MMU is turned off and flush the caches as needed.
817 */
818 if (vcpu->arch.has_run_once)
819 stage2_unmap_vm(vcpu->kvm);
820
821 vcpu_reset_hcr(vcpu);
822
823 /*
824 * Handle the "start in power-off" case.
825 */
826 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
827 vcpu->arch.power_off = true;
828 else
829 vcpu->arch.power_off = false;
830
831 return 0;
832 }
833
834 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
835 struct kvm_device_attr *attr)
836 {
837 int ret = -ENXIO;
838
839 switch (attr->group) {
840 default:
841 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
842 break;
843 }
844
845 return ret;
846 }
847
848 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
849 struct kvm_device_attr *attr)
850 {
851 int ret = -ENXIO;
852
853 switch (attr->group) {
854 default:
855 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
856 break;
857 }
858
859 return ret;
860 }
861
862 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
863 struct kvm_device_attr *attr)
864 {
865 int ret = -ENXIO;
866
867 switch (attr->group) {
868 default:
869 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
870 break;
871 }
872
873 return ret;
874 }
875
876 long kvm_arch_vcpu_ioctl(struct file *filp,
877 unsigned int ioctl, unsigned long arg)
878 {
879 struct kvm_vcpu *vcpu = filp->private_data;
880 void __user *argp = (void __user *)arg;
881 struct kvm_device_attr attr;
882
883 switch (ioctl) {
884 case KVM_ARM_VCPU_INIT: {
885 struct kvm_vcpu_init init;
886
887 if (copy_from_user(&init, argp, sizeof(init)))
888 return -EFAULT;
889
890 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
891 }
892 case KVM_SET_ONE_REG:
893 case KVM_GET_ONE_REG: {
894 struct kvm_one_reg reg;
895
896 if (unlikely(!kvm_vcpu_initialized(vcpu)))
897 return -ENOEXEC;
898
899 if (copy_from_user(&reg, argp, sizeof(reg)))
900 return -EFAULT;
901 if (ioctl == KVM_SET_ONE_REG)
902 return kvm_arm_set_reg(vcpu, &reg);
903 else
904 return kvm_arm_get_reg(vcpu, &reg);
905 }
906 case KVM_GET_REG_LIST: {
907 struct kvm_reg_list __user *user_list = argp;
908 struct kvm_reg_list reg_list;
909 unsigned n;
910
911 if (unlikely(!kvm_vcpu_initialized(vcpu)))
912 return -ENOEXEC;
913
914 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
915 return -EFAULT;
916 n = reg_list.n;
917 reg_list.n = kvm_arm_num_regs(vcpu);
918 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
919 return -EFAULT;
920 if (n < reg_list.n)
921 return -E2BIG;
922 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
923 }
924 case KVM_SET_DEVICE_ATTR: {
925 if (copy_from_user(&attr, argp, sizeof(attr)))
926 return -EFAULT;
927 return kvm_arm_vcpu_set_attr(vcpu, &attr);
928 }
929 case KVM_GET_DEVICE_ATTR: {
930 if (copy_from_user(&attr, argp, sizeof(attr)))
931 return -EFAULT;
932 return kvm_arm_vcpu_get_attr(vcpu, &attr);
933 }
934 case KVM_HAS_DEVICE_ATTR: {
935 if (copy_from_user(&attr, argp, sizeof(attr)))
936 return -EFAULT;
937 return kvm_arm_vcpu_has_attr(vcpu, &attr);
938 }
939 default:
940 return -EINVAL;
941 }
942 }
943
944 /**
945 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
946 * @kvm: kvm instance
947 * @log: slot id and address to which we copy the log
948 *
949 * Steps 1-4 below provide general overview of dirty page logging. See
950 * kvm_get_dirty_log_protect() function description for additional details.
951 *
952 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
953 * always flush the TLB (step 4) even if previous step failed and the dirty
954 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
955 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
956 * writes will be marked dirty for next log read.
957 *
958 * 1. Take a snapshot of the bit and clear it if needed.
959 * 2. Write protect the corresponding page.
960 * 3. Copy the snapshot to the userspace.
961 * 4. Flush TLB's if needed.
962 */
963 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
964 {
965 bool is_dirty = false;
966 int r;
967
968 mutex_lock(&kvm->slots_lock);
969
970 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
971
972 if (is_dirty)
973 kvm_flush_remote_tlbs(kvm);
974
975 mutex_unlock(&kvm->slots_lock);
976 return r;
977 }
978
979 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
980 struct kvm_arm_device_addr *dev_addr)
981 {
982 unsigned long dev_id, type;
983
984 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
985 KVM_ARM_DEVICE_ID_SHIFT;
986 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
987 KVM_ARM_DEVICE_TYPE_SHIFT;
988
989 switch (dev_id) {
990 case KVM_ARM_DEVICE_VGIC_V2:
991 if (!vgic_present)
992 return -ENXIO;
993 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
994 default:
995 return -ENODEV;
996 }
997 }
998
999 long kvm_arch_vm_ioctl(struct file *filp,
1000 unsigned int ioctl, unsigned long arg)
1001 {
1002 struct kvm *kvm = filp->private_data;
1003 void __user *argp = (void __user *)arg;
1004
1005 switch (ioctl) {
1006 case KVM_CREATE_IRQCHIP: {
1007 if (!vgic_present)
1008 return -ENXIO;
1009 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1010 }
1011 case KVM_ARM_SET_DEVICE_ADDR: {
1012 struct kvm_arm_device_addr dev_addr;
1013
1014 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1015 return -EFAULT;
1016 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1017 }
1018 case KVM_ARM_PREFERRED_TARGET: {
1019 int err;
1020 struct kvm_vcpu_init init;
1021
1022 err = kvm_vcpu_preferred_target(&init);
1023 if (err)
1024 return err;
1025
1026 if (copy_to_user(argp, &init, sizeof(init)))
1027 return -EFAULT;
1028
1029 return 0;
1030 }
1031 default:
1032 return -EINVAL;
1033 }
1034 }
1035
1036 static void cpu_init_stage2(void *dummy)
1037 {
1038 __cpu_init_stage2();
1039 }
1040
1041 static void cpu_init_hyp_mode(void *dummy)
1042 {
1043 phys_addr_t boot_pgd_ptr;
1044 phys_addr_t pgd_ptr;
1045 unsigned long hyp_stack_ptr;
1046 unsigned long stack_page;
1047 unsigned long vector_ptr;
1048
1049 /* Switch from the HYP stub to our own HYP init vector */
1050 __hyp_set_vectors(kvm_get_idmap_vector());
1051
1052 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1053 pgd_ptr = kvm_mmu_get_httbr();
1054 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1055 hyp_stack_ptr = stack_page + PAGE_SIZE;
1056 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1057
1058 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1059 __cpu_init_stage2();
1060
1061 kvm_arm_init_debug();
1062 }
1063
1064 static int hyp_init_cpu_notify(struct notifier_block *self,
1065 unsigned long action, void *cpu)
1066 {
1067 switch (action) {
1068 case CPU_STARTING:
1069 case CPU_STARTING_FROZEN:
1070 if (__hyp_get_vectors() == hyp_default_vectors)
1071 cpu_init_hyp_mode(NULL);
1072 break;
1073 }
1074
1075 return NOTIFY_OK;
1076 }
1077
1078 static struct notifier_block hyp_init_cpu_nb = {
1079 .notifier_call = hyp_init_cpu_notify,
1080 };
1081
1082 #ifdef CONFIG_CPU_PM
1083 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1084 unsigned long cmd,
1085 void *v)
1086 {
1087 if (cmd == CPU_PM_EXIT &&
1088 __hyp_get_vectors() == hyp_default_vectors) {
1089 cpu_init_hyp_mode(NULL);
1090 return NOTIFY_OK;
1091 }
1092
1093 return NOTIFY_DONE;
1094 }
1095
1096 static struct notifier_block hyp_init_cpu_pm_nb = {
1097 .notifier_call = hyp_init_cpu_pm_notifier,
1098 };
1099
1100 static void __init hyp_cpu_pm_init(void)
1101 {
1102 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1103 }
1104 #else
1105 static inline void hyp_cpu_pm_init(void)
1106 {
1107 }
1108 #endif
1109
1110 static void teardown_common_resources(void)
1111 {
1112 free_percpu(kvm_host_cpu_state);
1113 }
1114
1115 static int init_common_resources(void)
1116 {
1117 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1118 if (!kvm_host_cpu_state) {
1119 kvm_err("Cannot allocate host CPU state\n");
1120 return -ENOMEM;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static int init_subsystems(void)
1127 {
1128 int err;
1129
1130 /*
1131 * Init HYP view of VGIC
1132 */
1133 err = kvm_vgic_hyp_init();
1134 switch (err) {
1135 case 0:
1136 vgic_present = true;
1137 break;
1138 case -ENODEV:
1139 case -ENXIO:
1140 vgic_present = false;
1141 break;
1142 default:
1143 return err;
1144 }
1145
1146 /*
1147 * Init HYP architected timer support
1148 */
1149 err = kvm_timer_hyp_init();
1150 if (err)
1151 return err;
1152
1153 kvm_perf_init();
1154 kvm_coproc_table_init();
1155
1156 return 0;
1157 }
1158
1159 static void teardown_hyp_mode(void)
1160 {
1161 int cpu;
1162
1163 if (is_kernel_in_hyp_mode())
1164 return;
1165
1166 free_hyp_pgds();
1167 for_each_possible_cpu(cpu)
1168 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1169 }
1170
1171 static int init_vhe_mode(void)
1172 {
1173 /*
1174 * Execute the init code on each CPU.
1175 */
1176 on_each_cpu(cpu_init_stage2, NULL, 1);
1177
1178 /* set size of VMID supported by CPU */
1179 kvm_vmid_bits = kvm_get_vmid_bits();
1180 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1181
1182 kvm_info("VHE mode initialized successfully\n");
1183 return 0;
1184 }
1185
1186 /**
1187 * Inits Hyp-mode on all online CPUs
1188 */
1189 static int init_hyp_mode(void)
1190 {
1191 int cpu;
1192 int err = 0;
1193
1194 /*
1195 * Allocate Hyp PGD and setup Hyp identity mapping
1196 */
1197 err = kvm_mmu_init();
1198 if (err)
1199 goto out_err;
1200
1201 /*
1202 * It is probably enough to obtain the default on one
1203 * CPU. It's unlikely to be different on the others.
1204 */
1205 hyp_default_vectors = __hyp_get_vectors();
1206
1207 /*
1208 * Allocate stack pages for Hypervisor-mode
1209 */
1210 for_each_possible_cpu(cpu) {
1211 unsigned long stack_page;
1212
1213 stack_page = __get_free_page(GFP_KERNEL);
1214 if (!stack_page) {
1215 err = -ENOMEM;
1216 goto out_err;
1217 }
1218
1219 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1220 }
1221
1222 /*
1223 * Map the Hyp-code called directly from the host
1224 */
1225 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1226 kvm_ksym_ref(__hyp_text_end));
1227 if (err) {
1228 kvm_err("Cannot map world-switch code\n");
1229 goto out_err;
1230 }
1231
1232 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1233 kvm_ksym_ref(__end_rodata));
1234 if (err) {
1235 kvm_err("Cannot map rodata section\n");
1236 goto out_err;
1237 }
1238
1239 /*
1240 * Map the Hyp stack pages
1241 */
1242 for_each_possible_cpu(cpu) {
1243 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1244 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1245
1246 if (err) {
1247 kvm_err("Cannot map hyp stack\n");
1248 goto out_err;
1249 }
1250 }
1251
1252 for_each_possible_cpu(cpu) {
1253 kvm_cpu_context_t *cpu_ctxt;
1254
1255 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1256 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1257
1258 if (err) {
1259 kvm_err("Cannot map host CPU state: %d\n", err);
1260 goto out_err;
1261 }
1262 }
1263
1264 /*
1265 * Execute the init code on each CPU.
1266 */
1267 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1268
1269 #ifndef CONFIG_HOTPLUG_CPU
1270 free_boot_hyp_pgd();
1271 #endif
1272
1273 cpu_notifier_register_begin();
1274
1275 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1276
1277 cpu_notifier_register_done();
1278
1279 if (err) {
1280 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1281 goto out_err;
1282 }
1283
1284 hyp_cpu_pm_init();
1285
1286 /* set size of VMID supported by CPU */
1287 kvm_vmid_bits = kvm_get_vmid_bits();
1288 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1289
1290 kvm_info("Hyp mode initialized successfully\n");
1291
1292 return 0;
1293
1294 out_err:
1295 teardown_hyp_mode();
1296 kvm_err("error initializing Hyp mode: %d\n", err);
1297 return err;
1298 }
1299
1300 static void check_kvm_target_cpu(void *ret)
1301 {
1302 *(int *)ret = kvm_target_cpu();
1303 }
1304
1305 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1306 {
1307 struct kvm_vcpu *vcpu;
1308 int i;
1309
1310 mpidr &= MPIDR_HWID_BITMASK;
1311 kvm_for_each_vcpu(i, vcpu, kvm) {
1312 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1313 return vcpu;
1314 }
1315 return NULL;
1316 }
1317
1318 /**
1319 * Initialize Hyp-mode and memory mappings on all CPUs.
1320 */
1321 int kvm_arch_init(void *opaque)
1322 {
1323 int err;
1324 int ret, cpu;
1325
1326 if (!is_hyp_mode_available()) {
1327 kvm_err("HYP mode not available\n");
1328 return -ENODEV;
1329 }
1330
1331 for_each_online_cpu(cpu) {
1332 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1333 if (ret < 0) {
1334 kvm_err("Error, CPU %d not supported!\n", cpu);
1335 return -ENODEV;
1336 }
1337 }
1338
1339 err = init_common_resources();
1340 if (err)
1341 return err;
1342
1343 if (is_kernel_in_hyp_mode())
1344 err = init_vhe_mode();
1345 else
1346 err = init_hyp_mode();
1347 if (err)
1348 goto out_err;
1349
1350 err = init_subsystems();
1351 if (err)
1352 goto out_hyp;
1353
1354 return 0;
1355
1356 out_hyp:
1357 teardown_hyp_mode();
1358 out_err:
1359 teardown_common_resources();
1360 return err;
1361 }
1362
1363 /* NOP: Compiling as a module not supported */
1364 void kvm_arch_exit(void)
1365 {
1366 kvm_perf_teardown();
1367 }
1368
1369 static int arm_init(void)
1370 {
1371 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1372 return rc;
1373 }
1374
1375 module_init(arm_init);
This page took 0.05895 seconds and 5 git commands to generate.