x86/mm: Add support for the non-standard protected e820 type
[deliverable/linux.git] / arch / x86 / Kconfig
1 # Select 32 or 64 bit
2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386"
5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386
8
9 config X86_32
10 def_bool y
11 depends on !64BIT
12 select CLKSRC_I8253
13 select HAVE_UID16
14
15 config X86_64
16 def_bool y
17 depends on 64BIT
18 select X86_DEV_DMA_OPS
19 select ARCH_USE_CMPXCHG_LOCKREF
20 select HAVE_LIVEPATCH
21
22 ### Arch settings
23 config X86
24 def_bool y
25 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI
26 select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
27 select ARCH_HAS_FAST_MULTIPLIER
28 select ARCH_HAS_GCOV_PROFILE_ALL
29 select ARCH_MIGHT_HAVE_PC_PARPORT
30 select ARCH_MIGHT_HAVE_PC_SERIO
31 select HAVE_AOUT if X86_32
32 select HAVE_UNSTABLE_SCHED_CLOCK
33 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64
34 select ARCH_SUPPORTS_INT128 if X86_64
35 select HAVE_IDE
36 select HAVE_OPROFILE
37 select HAVE_PCSPKR_PLATFORM
38 select HAVE_PERF_EVENTS
39 select HAVE_IOREMAP_PROT
40 select HAVE_KPROBES
41 select HAVE_MEMBLOCK
42 select HAVE_MEMBLOCK_NODE_MAP
43 select ARCH_DISCARD_MEMBLOCK
44 select ARCH_WANT_OPTIONAL_GPIOLIB
45 select ARCH_WANT_FRAME_POINTERS
46 select HAVE_DMA_ATTRS
47 select HAVE_DMA_CONTIGUOUS
48 select HAVE_KRETPROBES
49 select GENERIC_EARLY_IOREMAP
50 select HAVE_OPTPROBES
51 select HAVE_KPROBES_ON_FTRACE
52 select HAVE_FTRACE_MCOUNT_RECORD
53 select HAVE_FENTRY if X86_64
54 select HAVE_C_RECORDMCOUNT
55 select HAVE_DYNAMIC_FTRACE
56 select HAVE_DYNAMIC_FTRACE_WITH_REGS
57 select HAVE_FUNCTION_TRACER
58 select HAVE_FUNCTION_GRAPH_TRACER
59 select HAVE_FUNCTION_GRAPH_FP_TEST
60 select HAVE_SYSCALL_TRACEPOINTS
61 select SYSCTL_EXCEPTION_TRACE
62 select HAVE_KVM
63 select HAVE_ARCH_KGDB
64 select HAVE_ARCH_TRACEHOOK
65 select HAVE_GENERIC_DMA_COHERENT if X86_32
66 select HAVE_EFFICIENT_UNALIGNED_ACCESS
67 select USER_STACKTRACE_SUPPORT
68 select HAVE_REGS_AND_STACK_ACCESS_API
69 select HAVE_DMA_API_DEBUG
70 select HAVE_KERNEL_GZIP
71 select HAVE_KERNEL_BZIP2
72 select HAVE_KERNEL_LZMA
73 select HAVE_KERNEL_XZ
74 select HAVE_KERNEL_LZO
75 select HAVE_KERNEL_LZ4
76 select HAVE_HW_BREAKPOINT
77 select HAVE_MIXED_BREAKPOINTS_REGS
78 select PERF_EVENTS
79 select HAVE_PERF_EVENTS_NMI
80 select HAVE_PERF_REGS
81 select HAVE_PERF_USER_STACK_DUMP
82 select HAVE_DEBUG_KMEMLEAK
83 select ANON_INODES
84 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
85 select HAVE_CMPXCHG_LOCAL
86 select HAVE_CMPXCHG_DOUBLE
87 select HAVE_ARCH_KMEMCHECK
88 select HAVE_ARCH_KASAN if X86_64 && SPARSEMEM_VMEMMAP
89 select HAVE_USER_RETURN_NOTIFIER
90 select ARCH_BINFMT_ELF_RANDOMIZE_PIE
91 select HAVE_ARCH_JUMP_LABEL
92 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
93 select SPARSE_IRQ
94 select GENERIC_FIND_FIRST_BIT
95 select GENERIC_IRQ_PROBE
96 select GENERIC_PENDING_IRQ if SMP
97 select GENERIC_IRQ_SHOW
98 select GENERIC_CLOCKEVENTS_MIN_ADJUST
99 select IRQ_FORCED_THREADING
100 select HAVE_BPF_JIT if X86_64
101 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
102 select ARCH_HAS_SG_CHAIN
103 select CLKEVT_I8253
104 select ARCH_HAVE_NMI_SAFE_CMPXCHG
105 select GENERIC_IOMAP
106 select DCACHE_WORD_ACCESS
107 select GENERIC_SMP_IDLE_THREAD
108 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
109 select HAVE_ARCH_SECCOMP_FILTER
110 select BUILDTIME_EXTABLE_SORT
111 select GENERIC_CMOS_UPDATE
112 select HAVE_ARCH_SOFT_DIRTY if X86_64
113 select CLOCKSOURCE_WATCHDOG
114 select GENERIC_CLOCKEVENTS
115 select ARCH_CLOCKSOURCE_DATA
116 select CLOCKSOURCE_VALIDATE_LAST_CYCLE
117 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
118 select GENERIC_TIME_VSYSCALL
119 select GENERIC_STRNCPY_FROM_USER
120 select GENERIC_STRNLEN_USER
121 select HAVE_CONTEXT_TRACKING if X86_64
122 select HAVE_IRQ_TIME_ACCOUNTING
123 select VIRT_TO_BUS
124 select MODULES_USE_ELF_REL if X86_32
125 select MODULES_USE_ELF_RELA if X86_64
126 select CLONE_BACKWARDS if X86_32
127 select ARCH_USE_BUILTIN_BSWAP
128 select ARCH_USE_QUEUE_RWLOCK
129 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
130 select OLD_SIGACTION if X86_32
131 select COMPAT_OLD_SIGACTION if IA32_EMULATION
132 select RTC_LIB
133 select HAVE_DEBUG_STACKOVERFLOW
134 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64
135 select HAVE_CC_STACKPROTECTOR
136 select GENERIC_CPU_AUTOPROBE
137 select HAVE_ARCH_AUDITSYSCALL
138 select ARCH_SUPPORTS_ATOMIC_RMW
139 select HAVE_ACPI_APEI if ACPI
140 select HAVE_ACPI_APEI_NMI if ACPI
141 select ACPI_LEGACY_TABLES_LOOKUP if ACPI
142 select X86_FEATURE_NAMES if PROC_FS
143 select SRCU
144
145 config INSTRUCTION_DECODER
146 def_bool y
147 depends on KPROBES || PERF_EVENTS || UPROBES
148
149 config PERF_EVENTS_INTEL_UNCORE
150 def_bool y
151 depends on PERF_EVENTS && CPU_SUP_INTEL && PCI
152
153 config OUTPUT_FORMAT
154 string
155 default "elf32-i386" if X86_32
156 default "elf64-x86-64" if X86_64
157
158 config ARCH_DEFCONFIG
159 string
160 default "arch/x86/configs/i386_defconfig" if X86_32
161 default "arch/x86/configs/x86_64_defconfig" if X86_64
162
163 config LOCKDEP_SUPPORT
164 def_bool y
165
166 config STACKTRACE_SUPPORT
167 def_bool y
168
169 config HAVE_LATENCYTOP_SUPPORT
170 def_bool y
171
172 config MMU
173 def_bool y
174
175 config SBUS
176 bool
177
178 config NEED_DMA_MAP_STATE
179 def_bool y
180 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG
181
182 config NEED_SG_DMA_LENGTH
183 def_bool y
184
185 config GENERIC_ISA_DMA
186 def_bool y
187 depends on ISA_DMA_API
188
189 config GENERIC_BUG
190 def_bool y
191 depends on BUG
192 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
193
194 config GENERIC_BUG_RELATIVE_POINTERS
195 bool
196
197 config GENERIC_HWEIGHT
198 def_bool y
199
200 config ARCH_MAY_HAVE_PC_FDC
201 def_bool y
202 depends on ISA_DMA_API
203
204 config RWSEM_XCHGADD_ALGORITHM
205 def_bool y
206
207 config GENERIC_CALIBRATE_DELAY
208 def_bool y
209
210 config ARCH_HAS_CPU_RELAX
211 def_bool y
212
213 config ARCH_HAS_CACHE_LINE_SIZE
214 def_bool y
215
216 config HAVE_SETUP_PER_CPU_AREA
217 def_bool y
218
219 config NEED_PER_CPU_EMBED_FIRST_CHUNK
220 def_bool y
221
222 config NEED_PER_CPU_PAGE_FIRST_CHUNK
223 def_bool y
224
225 config ARCH_HIBERNATION_POSSIBLE
226 def_bool y
227
228 config ARCH_SUSPEND_POSSIBLE
229 def_bool y
230
231 config ARCH_WANT_HUGE_PMD_SHARE
232 def_bool y
233
234 config ARCH_WANT_GENERAL_HUGETLB
235 def_bool y
236
237 config ZONE_DMA32
238 bool
239 default X86_64
240
241 config AUDIT_ARCH
242 bool
243 default X86_64
244
245 config ARCH_SUPPORTS_OPTIMIZED_INLINING
246 def_bool y
247
248 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
249 def_bool y
250
251 config HAVE_INTEL_TXT
252 def_bool y
253 depends on INTEL_IOMMU && ACPI
254
255 config X86_32_SMP
256 def_bool y
257 depends on X86_32 && SMP
258
259 config X86_64_SMP
260 def_bool y
261 depends on X86_64 && SMP
262
263 config X86_HT
264 def_bool y
265 depends on SMP
266
267 config X86_32_LAZY_GS
268 def_bool y
269 depends on X86_32 && !CC_STACKPROTECTOR
270
271 config ARCH_HWEIGHT_CFLAGS
272 string
273 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
274 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
275
276 config ARCH_SUPPORTS_UPROBES
277 def_bool y
278
279 config FIX_EARLYCON_MEM
280 def_bool y
281
282 source "init/Kconfig"
283 source "kernel/Kconfig.freezer"
284
285 menu "Processor type and features"
286
287 config ZONE_DMA
288 bool "DMA memory allocation support" if EXPERT
289 default y
290 help
291 DMA memory allocation support allows devices with less than 32-bit
292 addressing to allocate within the first 16MB of address space.
293 Disable if no such devices will be used.
294
295 If unsure, say Y.
296
297 config SMP
298 bool "Symmetric multi-processing support"
299 ---help---
300 This enables support for systems with more than one CPU. If you have
301 a system with only one CPU, say N. If you have a system with more
302 than one CPU, say Y.
303
304 If you say N here, the kernel will run on uni- and multiprocessor
305 machines, but will use only one CPU of a multiprocessor machine. If
306 you say Y here, the kernel will run on many, but not all,
307 uniprocessor machines. On a uniprocessor machine, the kernel
308 will run faster if you say N here.
309
310 Note that if you say Y here and choose architecture "586" or
311 "Pentium" under "Processor family", the kernel will not work on 486
312 architectures. Similarly, multiprocessor kernels for the "PPro"
313 architecture may not work on all Pentium based boards.
314
315 People using multiprocessor machines who say Y here should also say
316 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
317 Management" code will be disabled if you say Y here.
318
319 See also <file:Documentation/x86/i386/IO-APIC.txt>,
320 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
321 <http://www.tldp.org/docs.html#howto>.
322
323 If you don't know what to do here, say N.
324
325 config X86_FEATURE_NAMES
326 bool "Processor feature human-readable names" if EMBEDDED
327 default y
328 ---help---
329 This option compiles in a table of x86 feature bits and corresponding
330 names. This is required to support /proc/cpuinfo and a few kernel
331 messages. You can disable this to save space, at the expense of
332 making those few kernel messages show numeric feature bits instead.
333
334 If in doubt, say Y.
335
336 config X86_X2APIC
337 bool "Support x2apic"
338 depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP
339 ---help---
340 This enables x2apic support on CPUs that have this feature.
341
342 This allows 32-bit apic IDs (so it can support very large systems),
343 and accesses the local apic via MSRs not via mmio.
344
345 If you don't know what to do here, say N.
346
347 config X86_MPPARSE
348 bool "Enable MPS table" if ACPI || SFI
349 default y
350 depends on X86_LOCAL_APIC
351 ---help---
352 For old smp systems that do not have proper acpi support. Newer systems
353 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
354
355 config X86_BIGSMP
356 bool "Support for big SMP systems with more than 8 CPUs"
357 depends on X86_32 && SMP
358 ---help---
359 This option is needed for the systems that have more than 8 CPUs
360
361 config GOLDFISH
362 def_bool y
363 depends on X86_GOLDFISH
364
365 if X86_32
366 config X86_EXTENDED_PLATFORM
367 bool "Support for extended (non-PC) x86 platforms"
368 default y
369 ---help---
370 If you disable this option then the kernel will only support
371 standard PC platforms. (which covers the vast majority of
372 systems out there.)
373
374 If you enable this option then you'll be able to select support
375 for the following (non-PC) 32 bit x86 platforms:
376 Goldfish (Android emulator)
377 AMD Elan
378 RDC R-321x SoC
379 SGI 320/540 (Visual Workstation)
380 STA2X11-based (e.g. Northville)
381 Moorestown MID devices
382
383 If you have one of these systems, or if you want to build a
384 generic distribution kernel, say Y here - otherwise say N.
385 endif
386
387 if X86_64
388 config X86_EXTENDED_PLATFORM
389 bool "Support for extended (non-PC) x86 platforms"
390 default y
391 ---help---
392 If you disable this option then the kernel will only support
393 standard PC platforms. (which covers the vast majority of
394 systems out there.)
395
396 If you enable this option then you'll be able to select support
397 for the following (non-PC) 64 bit x86 platforms:
398 Numascale NumaChip
399 ScaleMP vSMP
400 SGI Ultraviolet
401
402 If you have one of these systems, or if you want to build a
403 generic distribution kernel, say Y here - otherwise say N.
404 endif
405 # This is an alphabetically sorted list of 64 bit extended platforms
406 # Please maintain the alphabetic order if and when there are additions
407 config X86_NUMACHIP
408 bool "Numascale NumaChip"
409 depends on X86_64
410 depends on X86_EXTENDED_PLATFORM
411 depends on NUMA
412 depends on SMP
413 depends on X86_X2APIC
414 depends on PCI_MMCONFIG
415 ---help---
416 Adds support for Numascale NumaChip large-SMP systems. Needed to
417 enable more than ~168 cores.
418 If you don't have one of these, you should say N here.
419
420 config X86_VSMP
421 bool "ScaleMP vSMP"
422 select HYPERVISOR_GUEST
423 select PARAVIRT
424 depends on X86_64 && PCI
425 depends on X86_EXTENDED_PLATFORM
426 depends on SMP
427 ---help---
428 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
429 supposed to run on these EM64T-based machines. Only choose this option
430 if you have one of these machines.
431
432 config X86_UV
433 bool "SGI Ultraviolet"
434 depends on X86_64
435 depends on X86_EXTENDED_PLATFORM
436 depends on NUMA
437 depends on X86_X2APIC
438 ---help---
439 This option is needed in order to support SGI Ultraviolet systems.
440 If you don't have one of these, you should say N here.
441
442 # Following is an alphabetically sorted list of 32 bit extended platforms
443 # Please maintain the alphabetic order if and when there are additions
444
445 config X86_GOLDFISH
446 bool "Goldfish (Virtual Platform)"
447 depends on X86_EXTENDED_PLATFORM
448 ---help---
449 Enable support for the Goldfish virtual platform used primarily
450 for Android development. Unless you are building for the Android
451 Goldfish emulator say N here.
452
453 config X86_INTEL_CE
454 bool "CE4100 TV platform"
455 depends on PCI
456 depends on PCI_GODIRECT
457 depends on X86_IO_APIC
458 depends on X86_32
459 depends on X86_EXTENDED_PLATFORM
460 select X86_REBOOTFIXUPS
461 select OF
462 select OF_EARLY_FLATTREE
463 select IRQ_DOMAIN
464 ---help---
465 Select for the Intel CE media processor (CE4100) SOC.
466 This option compiles in support for the CE4100 SOC for settop
467 boxes and media devices.
468
469 config X86_INTEL_MID
470 bool "Intel MID platform support"
471 depends on X86_32
472 depends on X86_EXTENDED_PLATFORM
473 depends on X86_PLATFORM_DEVICES
474 depends on PCI
475 depends on PCI_GOANY
476 depends on X86_IO_APIC
477 select SFI
478 select I2C
479 select DW_APB_TIMER
480 select APB_TIMER
481 select INTEL_SCU_IPC
482 select MFD_INTEL_MSIC
483 ---help---
484 Select to build a kernel capable of supporting Intel MID (Mobile
485 Internet Device) platform systems which do not have the PCI legacy
486 interfaces. If you are building for a PC class system say N here.
487
488 Intel MID platforms are based on an Intel processor and chipset which
489 consume less power than most of the x86 derivatives.
490
491 config X86_INTEL_QUARK
492 bool "Intel Quark platform support"
493 depends on X86_32
494 depends on X86_EXTENDED_PLATFORM
495 depends on X86_PLATFORM_DEVICES
496 depends on X86_TSC
497 depends on PCI
498 depends on PCI_GOANY
499 depends on X86_IO_APIC
500 select IOSF_MBI
501 select INTEL_IMR
502 select COMMON_CLK
503 ---help---
504 Select to include support for Quark X1000 SoC.
505 Say Y here if you have a Quark based system such as the Arduino
506 compatible Intel Galileo.
507
508 config X86_INTEL_LPSS
509 bool "Intel Low Power Subsystem Support"
510 depends on ACPI
511 select COMMON_CLK
512 select PINCTRL
513 ---help---
514 Select to build support for Intel Low Power Subsystem such as
515 found on Intel Lynxpoint PCH. Selecting this option enables
516 things like clock tree (common clock framework) and pincontrol
517 which are needed by the LPSS peripheral drivers.
518
519 config X86_AMD_PLATFORM_DEVICE
520 bool "AMD ACPI2Platform devices support"
521 depends on ACPI
522 select COMMON_CLK
523 select PINCTRL
524 ---help---
525 Select to interpret AMD specific ACPI device to platform device
526 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
527 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
528 implemented under PINCTRL subsystem.
529
530 config IOSF_MBI
531 tristate "Intel SoC IOSF Sideband support for SoC platforms"
532 depends on PCI
533 ---help---
534 This option enables sideband register access support for Intel SoC
535 platforms. On these platforms the IOSF sideband is used in lieu of
536 MSR's for some register accesses, mostly but not limited to thermal
537 and power. Drivers may query the availability of this device to
538 determine if they need the sideband in order to work on these
539 platforms. The sideband is available on the following SoC products.
540 This list is not meant to be exclusive.
541 - BayTrail
542 - Braswell
543 - Quark
544
545 You should say Y if you are running a kernel on one of these SoC's.
546
547 config IOSF_MBI_DEBUG
548 bool "Enable IOSF sideband access through debugfs"
549 depends on IOSF_MBI && DEBUG_FS
550 ---help---
551 Select this option to expose the IOSF sideband access registers (MCR,
552 MDR, MCRX) through debugfs to write and read register information from
553 different units on the SoC. This is most useful for obtaining device
554 state information for debug and analysis. As this is a general access
555 mechanism, users of this option would have specific knowledge of the
556 device they want to access.
557
558 If you don't require the option or are in doubt, say N.
559
560 config X86_RDC321X
561 bool "RDC R-321x SoC"
562 depends on X86_32
563 depends on X86_EXTENDED_PLATFORM
564 select M486
565 select X86_REBOOTFIXUPS
566 ---help---
567 This option is needed for RDC R-321x system-on-chip, also known
568 as R-8610-(G).
569 If you don't have one of these chips, you should say N here.
570
571 config X86_32_NON_STANDARD
572 bool "Support non-standard 32-bit SMP architectures"
573 depends on X86_32 && SMP
574 depends on X86_EXTENDED_PLATFORM
575 ---help---
576 This option compiles in the bigsmp and STA2X11 default
577 subarchitectures. It is intended for a generic binary
578 kernel. If you select them all, kernel will probe it one by
579 one and will fallback to default.
580
581 # Alphabetically sorted list of Non standard 32 bit platforms
582
583 config X86_SUPPORTS_MEMORY_FAILURE
584 def_bool y
585 # MCE code calls memory_failure():
586 depends on X86_MCE
587 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
588 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
589 depends on X86_64 || !SPARSEMEM
590 select ARCH_SUPPORTS_MEMORY_FAILURE
591
592 config STA2X11
593 bool "STA2X11 Companion Chip Support"
594 depends on X86_32_NON_STANDARD && PCI
595 select X86_DEV_DMA_OPS
596 select X86_DMA_REMAP
597 select SWIOTLB
598 select MFD_STA2X11
599 select ARCH_REQUIRE_GPIOLIB
600 default n
601 ---help---
602 This adds support for boards based on the STA2X11 IO-Hub,
603 a.k.a. "ConneXt". The chip is used in place of the standard
604 PC chipset, so all "standard" peripherals are missing. If this
605 option is selected the kernel will still be able to boot on
606 standard PC machines.
607
608 config X86_32_IRIS
609 tristate "Eurobraille/Iris poweroff module"
610 depends on X86_32
611 ---help---
612 The Iris machines from EuroBraille do not have APM or ACPI support
613 to shut themselves down properly. A special I/O sequence is
614 needed to do so, which is what this module does at
615 kernel shutdown.
616
617 This is only for Iris machines from EuroBraille.
618
619 If unused, say N.
620
621 config SCHED_OMIT_FRAME_POINTER
622 def_bool y
623 prompt "Single-depth WCHAN output"
624 depends on X86
625 ---help---
626 Calculate simpler /proc/<PID>/wchan values. If this option
627 is disabled then wchan values will recurse back to the
628 caller function. This provides more accurate wchan values,
629 at the expense of slightly more scheduling overhead.
630
631 If in doubt, say "Y".
632
633 menuconfig HYPERVISOR_GUEST
634 bool "Linux guest support"
635 ---help---
636 Say Y here to enable options for running Linux under various hyper-
637 visors. This option enables basic hypervisor detection and platform
638 setup.
639
640 If you say N, all options in this submenu will be skipped and
641 disabled, and Linux guest support won't be built in.
642
643 if HYPERVISOR_GUEST
644
645 config PARAVIRT
646 bool "Enable paravirtualization code"
647 ---help---
648 This changes the kernel so it can modify itself when it is run
649 under a hypervisor, potentially improving performance significantly
650 over full virtualization. However, when run without a hypervisor
651 the kernel is theoretically slower and slightly larger.
652
653 config PARAVIRT_DEBUG
654 bool "paravirt-ops debugging"
655 depends on PARAVIRT && DEBUG_KERNEL
656 ---help---
657 Enable to debug paravirt_ops internals. Specifically, BUG if
658 a paravirt_op is missing when it is called.
659
660 config PARAVIRT_SPINLOCKS
661 bool "Paravirtualization layer for spinlocks"
662 depends on PARAVIRT && SMP
663 select UNINLINE_SPIN_UNLOCK
664 ---help---
665 Paravirtualized spinlocks allow a pvops backend to replace the
666 spinlock implementation with something virtualization-friendly
667 (for example, block the virtual CPU rather than spinning).
668
669 It has a minimal impact on native kernels and gives a nice performance
670 benefit on paravirtualized KVM / Xen kernels.
671
672 If you are unsure how to answer this question, answer Y.
673
674 source "arch/x86/xen/Kconfig"
675
676 config KVM_GUEST
677 bool "KVM Guest support (including kvmclock)"
678 depends on PARAVIRT
679 select PARAVIRT_CLOCK
680 default y
681 ---help---
682 This option enables various optimizations for running under the KVM
683 hypervisor. It includes a paravirtualized clock, so that instead
684 of relying on a PIT (or probably other) emulation by the
685 underlying device model, the host provides the guest with
686 timing infrastructure such as time of day, and system time
687
688 config KVM_DEBUG_FS
689 bool "Enable debug information for KVM Guests in debugfs"
690 depends on KVM_GUEST && DEBUG_FS
691 default n
692 ---help---
693 This option enables collection of various statistics for KVM guest.
694 Statistics are displayed in debugfs filesystem. Enabling this option
695 may incur significant overhead.
696
697 source "arch/x86/lguest/Kconfig"
698
699 config PARAVIRT_TIME_ACCOUNTING
700 bool "Paravirtual steal time accounting"
701 depends on PARAVIRT
702 default n
703 ---help---
704 Select this option to enable fine granularity task steal time
705 accounting. Time spent executing other tasks in parallel with
706 the current vCPU is discounted from the vCPU power. To account for
707 that, there can be a small performance impact.
708
709 If in doubt, say N here.
710
711 config PARAVIRT_CLOCK
712 bool
713
714 endif #HYPERVISOR_GUEST
715
716 config NO_BOOTMEM
717 def_bool y
718
719 config MEMTEST
720 bool "Memtest"
721 ---help---
722 This option adds a kernel parameter 'memtest', which allows memtest
723 to be set.
724 memtest=0, mean disabled; -- default
725 memtest=1, mean do 1 test pattern;
726 ...
727 memtest=4, mean do 4 test patterns.
728 If you are unsure how to answer this question, answer N.
729
730 source "arch/x86/Kconfig.cpu"
731
732 config HPET_TIMER
733 def_bool X86_64
734 prompt "HPET Timer Support" if X86_32
735 ---help---
736 Use the IA-PC HPET (High Precision Event Timer) to manage
737 time in preference to the PIT and RTC, if a HPET is
738 present.
739 HPET is the next generation timer replacing legacy 8254s.
740 The HPET provides a stable time base on SMP
741 systems, unlike the TSC, but it is more expensive to access,
742 as it is off-chip. You can find the HPET spec at
743 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
744
745 You can safely choose Y here. However, HPET will only be
746 activated if the platform and the BIOS support this feature.
747 Otherwise the 8254 will be used for timing services.
748
749 Choose N to continue using the legacy 8254 timer.
750
751 config HPET_EMULATE_RTC
752 def_bool y
753 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
754
755 config APB_TIMER
756 def_bool y if X86_INTEL_MID
757 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
758 select DW_APB_TIMER
759 depends on X86_INTEL_MID && SFI
760 help
761 APB timer is the replacement for 8254, HPET on X86 MID platforms.
762 The APBT provides a stable time base on SMP
763 systems, unlike the TSC, but it is more expensive to access,
764 as it is off-chip. APB timers are always running regardless of CPU
765 C states, they are used as per CPU clockevent device when possible.
766
767 # Mark as expert because too many people got it wrong.
768 # The code disables itself when not needed.
769 config DMI
770 default y
771 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
772 bool "Enable DMI scanning" if EXPERT
773 ---help---
774 Enabled scanning of DMI to identify machine quirks. Say Y
775 here unless you have verified that your setup is not
776 affected by entries in the DMI blacklist. Required by PNP
777 BIOS code.
778
779 config GART_IOMMU
780 bool "Old AMD GART IOMMU support"
781 select SWIOTLB
782 depends on X86_64 && PCI && AMD_NB
783 ---help---
784 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
785 GART based hardware IOMMUs.
786
787 The GART supports full DMA access for devices with 32-bit access
788 limitations, on systems with more than 3 GB. This is usually needed
789 for USB, sound, many IDE/SATA chipsets and some other devices.
790
791 Newer systems typically have a modern AMD IOMMU, supported via
792 the CONFIG_AMD_IOMMU=y config option.
793
794 In normal configurations this driver is only active when needed:
795 there's more than 3 GB of memory and the system contains a
796 32-bit limited device.
797
798 If unsure, say Y.
799
800 config CALGARY_IOMMU
801 bool "IBM Calgary IOMMU support"
802 select SWIOTLB
803 depends on X86_64 && PCI
804 ---help---
805 Support for hardware IOMMUs in IBM's xSeries x366 and x460
806 systems. Needed to run systems with more than 3GB of memory
807 properly with 32-bit PCI devices that do not support DAC
808 (Double Address Cycle). Calgary also supports bus level
809 isolation, where all DMAs pass through the IOMMU. This
810 prevents them from going anywhere except their intended
811 destination. This catches hard-to-find kernel bugs and
812 mis-behaving drivers and devices that do not use the DMA-API
813 properly to set up their DMA buffers. The IOMMU can be
814 turned off at boot time with the iommu=off parameter.
815 Normally the kernel will make the right choice by itself.
816 If unsure, say Y.
817
818 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
819 def_bool y
820 prompt "Should Calgary be enabled by default?"
821 depends on CALGARY_IOMMU
822 ---help---
823 Should Calgary be enabled by default? if you choose 'y', Calgary
824 will be used (if it exists). If you choose 'n', Calgary will not be
825 used even if it exists. If you choose 'n' and would like to use
826 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
827 If unsure, say Y.
828
829 # need this always selected by IOMMU for the VIA workaround
830 config SWIOTLB
831 def_bool y if X86_64
832 ---help---
833 Support for software bounce buffers used on x86-64 systems
834 which don't have a hardware IOMMU. Using this PCI devices
835 which can only access 32-bits of memory can be used on systems
836 with more than 3 GB of memory.
837 If unsure, say Y.
838
839 config IOMMU_HELPER
840 def_bool y
841 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
842
843 config MAXSMP
844 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
845 depends on X86_64 && SMP && DEBUG_KERNEL
846 select CPUMASK_OFFSTACK
847 ---help---
848 Enable maximum number of CPUS and NUMA Nodes for this architecture.
849 If unsure, say N.
850
851 config NR_CPUS
852 int "Maximum number of CPUs" if SMP && !MAXSMP
853 range 2 8 if SMP && X86_32 && !X86_BIGSMP
854 range 2 512 if SMP && !MAXSMP && !CPUMASK_OFFSTACK
855 range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
856 default "1" if !SMP
857 default "8192" if MAXSMP
858 default "32" if SMP && X86_BIGSMP
859 default "8" if SMP
860 ---help---
861 This allows you to specify the maximum number of CPUs which this
862 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum
863 supported value is 4096, otherwise the maximum value is 512. The
864 minimum value which makes sense is 2.
865
866 This is purely to save memory - each supported CPU adds
867 approximately eight kilobytes to the kernel image.
868
869 config SCHED_SMT
870 bool "SMT (Hyperthreading) scheduler support"
871 depends on X86_HT
872 ---help---
873 SMT scheduler support improves the CPU scheduler's decision making
874 when dealing with Intel Pentium 4 chips with HyperThreading at a
875 cost of slightly increased overhead in some places. If unsure say
876 N here.
877
878 config SCHED_MC
879 def_bool y
880 prompt "Multi-core scheduler support"
881 depends on X86_HT
882 ---help---
883 Multi-core scheduler support improves the CPU scheduler's decision
884 making when dealing with multi-core CPU chips at a cost of slightly
885 increased overhead in some places. If unsure say N here.
886
887 source "kernel/Kconfig.preempt"
888
889 config UP_LATE_INIT
890 def_bool y
891 depends on !SMP && X86_LOCAL_APIC
892
893 config X86_UP_APIC
894 bool "Local APIC support on uniprocessors"
895 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
896 ---help---
897 A local APIC (Advanced Programmable Interrupt Controller) is an
898 integrated interrupt controller in the CPU. If you have a single-CPU
899 system which has a processor with a local APIC, you can say Y here to
900 enable and use it. If you say Y here even though your machine doesn't
901 have a local APIC, then the kernel will still run with no slowdown at
902 all. The local APIC supports CPU-generated self-interrupts (timer,
903 performance counters), and the NMI watchdog which detects hard
904 lockups.
905
906 config X86_UP_APIC_MSI
907 def_bool y
908 select X86_UP_APIC if X86_32 && !SMP && !X86_32_NON_STANDARD && PCI_MSI
909
910 config X86_UP_IOAPIC
911 bool "IO-APIC support on uniprocessors"
912 depends on X86_UP_APIC
913 ---help---
914 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
915 SMP-capable replacement for PC-style interrupt controllers. Most
916 SMP systems and many recent uniprocessor systems have one.
917
918 If you have a single-CPU system with an IO-APIC, you can say Y here
919 to use it. If you say Y here even though your machine doesn't have
920 an IO-APIC, then the kernel will still run with no slowdown at all.
921
922 config X86_LOCAL_APIC
923 def_bool y
924 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
925 select GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
926
927 config X86_IO_APIC
928 def_bool X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC
929 depends on X86_LOCAL_APIC
930 select IRQ_DOMAIN
931
932 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
933 bool "Reroute for broken boot IRQs"
934 depends on X86_IO_APIC
935 ---help---
936 This option enables a workaround that fixes a source of
937 spurious interrupts. This is recommended when threaded
938 interrupt handling is used on systems where the generation of
939 superfluous "boot interrupts" cannot be disabled.
940
941 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
942 entry in the chipset's IO-APIC is masked (as, e.g. the RT
943 kernel does during interrupt handling). On chipsets where this
944 boot IRQ generation cannot be disabled, this workaround keeps
945 the original IRQ line masked so that only the equivalent "boot
946 IRQ" is delivered to the CPUs. The workaround also tells the
947 kernel to set up the IRQ handler on the boot IRQ line. In this
948 way only one interrupt is delivered to the kernel. Otherwise
949 the spurious second interrupt may cause the kernel to bring
950 down (vital) interrupt lines.
951
952 Only affects "broken" chipsets. Interrupt sharing may be
953 increased on these systems.
954
955 config X86_MCE
956 bool "Machine Check / overheating reporting"
957 default y
958 ---help---
959 Machine Check support allows the processor to notify the
960 kernel if it detects a problem (e.g. overheating, data corruption).
961 The action the kernel takes depends on the severity of the problem,
962 ranging from warning messages to halting the machine.
963
964 config X86_MCE_INTEL
965 def_bool y
966 prompt "Intel MCE features"
967 depends on X86_MCE && X86_LOCAL_APIC
968 ---help---
969 Additional support for intel specific MCE features such as
970 the thermal monitor.
971
972 config X86_MCE_AMD
973 def_bool y
974 prompt "AMD MCE features"
975 depends on X86_MCE && X86_LOCAL_APIC
976 ---help---
977 Additional support for AMD specific MCE features such as
978 the DRAM Error Threshold.
979
980 config X86_ANCIENT_MCE
981 bool "Support for old Pentium 5 / WinChip machine checks"
982 depends on X86_32 && X86_MCE
983 ---help---
984 Include support for machine check handling on old Pentium 5 or WinChip
985 systems. These typically need to be enabled explicitly on the command
986 line.
987
988 config X86_MCE_THRESHOLD
989 depends on X86_MCE_AMD || X86_MCE_INTEL
990 def_bool y
991
992 config X86_MCE_INJECT
993 depends on X86_MCE
994 tristate "Machine check injector support"
995 ---help---
996 Provide support for injecting machine checks for testing purposes.
997 If you don't know what a machine check is and you don't do kernel
998 QA it is safe to say n.
999
1000 config X86_THERMAL_VECTOR
1001 def_bool y
1002 depends on X86_MCE_INTEL
1003
1004 config VM86
1005 bool "Enable VM86 support" if EXPERT
1006 default y
1007 depends on X86_32
1008 ---help---
1009 This option is required by programs like DOSEMU to run
1010 16-bit real mode legacy code on x86 processors. It also may
1011 be needed by software like XFree86 to initialize some video
1012 cards via BIOS. Disabling this option saves about 6K.
1013
1014 config X86_16BIT
1015 bool "Enable support for 16-bit segments" if EXPERT
1016 default y
1017 ---help---
1018 This option is required by programs like Wine to run 16-bit
1019 protected mode legacy code on x86 processors. Disabling
1020 this option saves about 300 bytes on i386, or around 6K text
1021 plus 16K runtime memory on x86-64,
1022
1023 config X86_ESPFIX32
1024 def_bool y
1025 depends on X86_16BIT && X86_32
1026
1027 config X86_ESPFIX64
1028 def_bool y
1029 depends on X86_16BIT && X86_64
1030
1031 config X86_VSYSCALL_EMULATION
1032 bool "Enable vsyscall emulation" if EXPERT
1033 default y
1034 depends on X86_64
1035 ---help---
1036 This enables emulation of the legacy vsyscall page. Disabling
1037 it is roughly equivalent to booting with vsyscall=none, except
1038 that it will also disable the helpful warning if a program
1039 tries to use a vsyscall. With this option set to N, offending
1040 programs will just segfault, citing addresses of the form
1041 0xffffffffff600?00.
1042
1043 This option is required by many programs built before 2013, and
1044 care should be used even with newer programs if set to N.
1045
1046 Disabling this option saves about 7K of kernel size and
1047 possibly 4K of additional runtime pagetable memory.
1048
1049 config TOSHIBA
1050 tristate "Toshiba Laptop support"
1051 depends on X86_32
1052 ---help---
1053 This adds a driver to safely access the System Management Mode of
1054 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1055 not work on models with a Phoenix BIOS. The System Management Mode
1056 is used to set the BIOS and power saving options on Toshiba portables.
1057
1058 For information on utilities to make use of this driver see the
1059 Toshiba Linux utilities web site at:
1060 <http://www.buzzard.org.uk/toshiba/>.
1061
1062 Say Y if you intend to run this kernel on a Toshiba portable.
1063 Say N otherwise.
1064
1065 config I8K
1066 tristate "Dell laptop support"
1067 select HWMON
1068 ---help---
1069 This adds a driver to safely access the System Management Mode
1070 of the CPU on the Dell Inspiron 8000. The System Management Mode
1071 is used to read cpu temperature and cooling fan status and to
1072 control the fans on the I8K portables.
1073
1074 This driver has been tested only on the Inspiron 8000 but it may
1075 also work with other Dell laptops. You can force loading on other
1076 models by passing the parameter `force=1' to the module. Use at
1077 your own risk.
1078
1079 For information on utilities to make use of this driver see the
1080 I8K Linux utilities web site at:
1081 <http://people.debian.org/~dz/i8k/>
1082
1083 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
1084 Say N otherwise.
1085
1086 config X86_REBOOTFIXUPS
1087 bool "Enable X86 board specific fixups for reboot"
1088 depends on X86_32
1089 ---help---
1090 This enables chipset and/or board specific fixups to be done
1091 in order to get reboot to work correctly. This is only needed on
1092 some combinations of hardware and BIOS. The symptom, for which
1093 this config is intended, is when reboot ends with a stalled/hung
1094 system.
1095
1096 Currently, the only fixup is for the Geode machines using
1097 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1098
1099 Say Y if you want to enable the fixup. Currently, it's safe to
1100 enable this option even if you don't need it.
1101 Say N otherwise.
1102
1103 config MICROCODE
1104 tristate "CPU microcode loading support"
1105 depends on CPU_SUP_AMD || CPU_SUP_INTEL
1106 select FW_LOADER
1107 ---help---
1108
1109 If you say Y here, you will be able to update the microcode on
1110 certain Intel and AMD processors. The Intel support is for the
1111 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
1112 Xeon etc. The AMD support is for families 0x10 and later. You will
1113 obviously need the actual microcode binary data itself which is not
1114 shipped with the Linux kernel.
1115
1116 This option selects the general module only, you need to select
1117 at least one vendor specific module as well.
1118
1119 To compile this driver as a module, choose M here: the module
1120 will be called microcode.
1121
1122 config MICROCODE_INTEL
1123 bool "Intel microcode loading support"
1124 depends on MICROCODE
1125 default MICROCODE
1126 select FW_LOADER
1127 ---help---
1128 This options enables microcode patch loading support for Intel
1129 processors.
1130
1131 For the current Intel microcode data package go to
1132 <https://downloadcenter.intel.com> and search for
1133 'Linux Processor Microcode Data File'.
1134
1135 config MICROCODE_AMD
1136 bool "AMD microcode loading support"
1137 depends on MICROCODE
1138 select FW_LOADER
1139 ---help---
1140 If you select this option, microcode patch loading support for AMD
1141 processors will be enabled.
1142
1143 config MICROCODE_OLD_INTERFACE
1144 def_bool y
1145 depends on MICROCODE
1146
1147 config MICROCODE_INTEL_EARLY
1148 def_bool n
1149
1150 config MICROCODE_AMD_EARLY
1151 def_bool n
1152
1153 config MICROCODE_EARLY
1154 bool "Early load microcode"
1155 depends on MICROCODE=y && BLK_DEV_INITRD
1156 select MICROCODE_INTEL_EARLY if MICROCODE_INTEL
1157 select MICROCODE_AMD_EARLY if MICROCODE_AMD
1158 default y
1159 help
1160 This option provides functionality to read additional microcode data
1161 at the beginning of initrd image. The data tells kernel to load
1162 microcode to CPU's as early as possible. No functional change if no
1163 microcode data is glued to the initrd, therefore it's safe to say Y.
1164
1165 config X86_MSR
1166 tristate "/dev/cpu/*/msr - Model-specific register support"
1167 ---help---
1168 This device gives privileged processes access to the x86
1169 Model-Specific Registers (MSRs). It is a character device with
1170 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1171 MSR accesses are directed to a specific CPU on multi-processor
1172 systems.
1173
1174 config X86_CPUID
1175 tristate "/dev/cpu/*/cpuid - CPU information support"
1176 ---help---
1177 This device gives processes access to the x86 CPUID instruction to
1178 be executed on a specific processor. It is a character device
1179 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1180 /dev/cpu/31/cpuid.
1181
1182 choice
1183 prompt "High Memory Support"
1184 default HIGHMEM4G
1185 depends on X86_32
1186
1187 config NOHIGHMEM
1188 bool "off"
1189 ---help---
1190 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1191 However, the address space of 32-bit x86 processors is only 4
1192 Gigabytes large. That means that, if you have a large amount of
1193 physical memory, not all of it can be "permanently mapped" by the
1194 kernel. The physical memory that's not permanently mapped is called
1195 "high memory".
1196
1197 If you are compiling a kernel which will never run on a machine with
1198 more than 1 Gigabyte total physical RAM, answer "off" here (default
1199 choice and suitable for most users). This will result in a "3GB/1GB"
1200 split: 3GB are mapped so that each process sees a 3GB virtual memory
1201 space and the remaining part of the 4GB virtual memory space is used
1202 by the kernel to permanently map as much physical memory as
1203 possible.
1204
1205 If the machine has between 1 and 4 Gigabytes physical RAM, then
1206 answer "4GB" here.
1207
1208 If more than 4 Gigabytes is used then answer "64GB" here. This
1209 selection turns Intel PAE (Physical Address Extension) mode on.
1210 PAE implements 3-level paging on IA32 processors. PAE is fully
1211 supported by Linux, PAE mode is implemented on all recent Intel
1212 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1213 then the kernel will not boot on CPUs that don't support PAE!
1214
1215 The actual amount of total physical memory will either be
1216 auto detected or can be forced by using a kernel command line option
1217 such as "mem=256M". (Try "man bootparam" or see the documentation of
1218 your boot loader (lilo or loadlin) about how to pass options to the
1219 kernel at boot time.)
1220
1221 If unsure, say "off".
1222
1223 config HIGHMEM4G
1224 bool "4GB"
1225 ---help---
1226 Select this if you have a 32-bit processor and between 1 and 4
1227 gigabytes of physical RAM.
1228
1229 config HIGHMEM64G
1230 bool "64GB"
1231 depends on !M486
1232 select X86_PAE
1233 ---help---
1234 Select this if you have a 32-bit processor and more than 4
1235 gigabytes of physical RAM.
1236
1237 endchoice
1238
1239 choice
1240 prompt "Memory split" if EXPERT
1241 default VMSPLIT_3G
1242 depends on X86_32
1243 ---help---
1244 Select the desired split between kernel and user memory.
1245
1246 If the address range available to the kernel is less than the
1247 physical memory installed, the remaining memory will be available
1248 as "high memory". Accessing high memory is a little more costly
1249 than low memory, as it needs to be mapped into the kernel first.
1250 Note that increasing the kernel address space limits the range
1251 available to user programs, making the address space there
1252 tighter. Selecting anything other than the default 3G/1G split
1253 will also likely make your kernel incompatible with binary-only
1254 kernel modules.
1255
1256 If you are not absolutely sure what you are doing, leave this
1257 option alone!
1258
1259 config VMSPLIT_3G
1260 bool "3G/1G user/kernel split"
1261 config VMSPLIT_3G_OPT
1262 depends on !X86_PAE
1263 bool "3G/1G user/kernel split (for full 1G low memory)"
1264 config VMSPLIT_2G
1265 bool "2G/2G user/kernel split"
1266 config VMSPLIT_2G_OPT
1267 depends on !X86_PAE
1268 bool "2G/2G user/kernel split (for full 2G low memory)"
1269 config VMSPLIT_1G
1270 bool "1G/3G user/kernel split"
1271 endchoice
1272
1273 config PAGE_OFFSET
1274 hex
1275 default 0xB0000000 if VMSPLIT_3G_OPT
1276 default 0x80000000 if VMSPLIT_2G
1277 default 0x78000000 if VMSPLIT_2G_OPT
1278 default 0x40000000 if VMSPLIT_1G
1279 default 0xC0000000
1280 depends on X86_32
1281
1282 config HIGHMEM
1283 def_bool y
1284 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1285
1286 config X86_PAE
1287 bool "PAE (Physical Address Extension) Support"
1288 depends on X86_32 && !HIGHMEM4G
1289 ---help---
1290 PAE is required for NX support, and furthermore enables
1291 larger swapspace support for non-overcommit purposes. It
1292 has the cost of more pagetable lookup overhead, and also
1293 consumes more pagetable space per process.
1294
1295 config ARCH_PHYS_ADDR_T_64BIT
1296 def_bool y
1297 depends on X86_64 || X86_PAE
1298
1299 config ARCH_DMA_ADDR_T_64BIT
1300 def_bool y
1301 depends on X86_64 || HIGHMEM64G
1302
1303 config DIRECT_GBPAGES
1304 bool "Enable 1GB pages for kernel pagetables" if EXPERT
1305 default y
1306 depends on X86_64
1307 ---help---
1308 Allow the kernel linear mapping to use 1GB pages on CPUs that
1309 support it. This can improve the kernel's performance a tiny bit by
1310 reducing TLB pressure. If in doubt, say "Y".
1311
1312 # Common NUMA Features
1313 config NUMA
1314 bool "Numa Memory Allocation and Scheduler Support"
1315 depends on SMP
1316 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1317 default y if X86_BIGSMP
1318 ---help---
1319 Enable NUMA (Non Uniform Memory Access) support.
1320
1321 The kernel will try to allocate memory used by a CPU on the
1322 local memory controller of the CPU and add some more
1323 NUMA awareness to the kernel.
1324
1325 For 64-bit this is recommended if the system is Intel Core i7
1326 (or later), AMD Opteron, or EM64T NUMA.
1327
1328 For 32-bit this is only needed if you boot a 32-bit
1329 kernel on a 64-bit NUMA platform.
1330
1331 Otherwise, you should say N.
1332
1333 config AMD_NUMA
1334 def_bool y
1335 prompt "Old style AMD Opteron NUMA detection"
1336 depends on X86_64 && NUMA && PCI
1337 ---help---
1338 Enable AMD NUMA node topology detection. You should say Y here if
1339 you have a multi processor AMD system. This uses an old method to
1340 read the NUMA configuration directly from the builtin Northbridge
1341 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1342 which also takes priority if both are compiled in.
1343
1344 config X86_64_ACPI_NUMA
1345 def_bool y
1346 prompt "ACPI NUMA detection"
1347 depends on X86_64 && NUMA && ACPI && PCI
1348 select ACPI_NUMA
1349 ---help---
1350 Enable ACPI SRAT based node topology detection.
1351
1352 # Some NUMA nodes have memory ranges that span
1353 # other nodes. Even though a pfn is valid and
1354 # between a node's start and end pfns, it may not
1355 # reside on that node. See memmap_init_zone()
1356 # for details.
1357 config NODES_SPAN_OTHER_NODES
1358 def_bool y
1359 depends on X86_64_ACPI_NUMA
1360
1361 config NUMA_EMU
1362 bool "NUMA emulation"
1363 depends on NUMA
1364 ---help---
1365 Enable NUMA emulation. A flat machine will be split
1366 into virtual nodes when booted with "numa=fake=N", where N is the
1367 number of nodes. This is only useful for debugging.
1368
1369 config NODES_SHIFT
1370 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1371 range 1 10
1372 default "10" if MAXSMP
1373 default "6" if X86_64
1374 default "3"
1375 depends on NEED_MULTIPLE_NODES
1376 ---help---
1377 Specify the maximum number of NUMA Nodes available on the target
1378 system. Increases memory reserved to accommodate various tables.
1379
1380 config ARCH_HAVE_MEMORY_PRESENT
1381 def_bool y
1382 depends on X86_32 && DISCONTIGMEM
1383
1384 config NEED_NODE_MEMMAP_SIZE
1385 def_bool y
1386 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1387
1388 config ARCH_FLATMEM_ENABLE
1389 def_bool y
1390 depends on X86_32 && !NUMA
1391
1392 config ARCH_DISCONTIGMEM_ENABLE
1393 def_bool y
1394 depends on NUMA && X86_32
1395
1396 config ARCH_DISCONTIGMEM_DEFAULT
1397 def_bool y
1398 depends on NUMA && X86_32
1399
1400 config ARCH_SPARSEMEM_ENABLE
1401 def_bool y
1402 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1403 select SPARSEMEM_STATIC if X86_32
1404 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1405
1406 config ARCH_SPARSEMEM_DEFAULT
1407 def_bool y
1408 depends on X86_64
1409
1410 config ARCH_SELECT_MEMORY_MODEL
1411 def_bool y
1412 depends on ARCH_SPARSEMEM_ENABLE
1413
1414 config ARCH_MEMORY_PROBE
1415 bool "Enable sysfs memory/probe interface"
1416 depends on X86_64 && MEMORY_HOTPLUG
1417 help
1418 This option enables a sysfs memory/probe interface for testing.
1419 See Documentation/memory-hotplug.txt for more information.
1420 If you are unsure how to answer this question, answer N.
1421
1422 config ARCH_PROC_KCORE_TEXT
1423 def_bool y
1424 depends on X86_64 && PROC_KCORE
1425
1426 config ILLEGAL_POINTER_VALUE
1427 hex
1428 default 0 if X86_32
1429 default 0xdead000000000000 if X86_64
1430
1431 source "mm/Kconfig"
1432
1433 config X86_PMEM_LEGACY
1434 bool "Support non-standard NVDIMMs and ADR protected memory"
1435 help
1436 Treat memory marked using the non-standard e820 type of 12 as used
1437 by the Intel Sandy Bridge-EP reference BIOS as protected memory.
1438 The kernel will offer these regions to the 'pmem' driver so
1439 they can be used for persistent storage.
1440
1441 Say Y if unsure.
1442
1443 config HIGHPTE
1444 bool "Allocate 3rd-level pagetables from highmem"
1445 depends on HIGHMEM
1446 ---help---
1447 The VM uses one page table entry for each page of physical memory.
1448 For systems with a lot of RAM, this can be wasteful of precious
1449 low memory. Setting this option will put user-space page table
1450 entries in high memory.
1451
1452 config X86_CHECK_BIOS_CORRUPTION
1453 bool "Check for low memory corruption"
1454 ---help---
1455 Periodically check for memory corruption in low memory, which
1456 is suspected to be caused by BIOS. Even when enabled in the
1457 configuration, it is disabled at runtime. Enable it by
1458 setting "memory_corruption_check=1" on the kernel command
1459 line. By default it scans the low 64k of memory every 60
1460 seconds; see the memory_corruption_check_size and
1461 memory_corruption_check_period parameters in
1462 Documentation/kernel-parameters.txt to adjust this.
1463
1464 When enabled with the default parameters, this option has
1465 almost no overhead, as it reserves a relatively small amount
1466 of memory and scans it infrequently. It both detects corruption
1467 and prevents it from affecting the running system.
1468
1469 It is, however, intended as a diagnostic tool; if repeatable
1470 BIOS-originated corruption always affects the same memory,
1471 you can use memmap= to prevent the kernel from using that
1472 memory.
1473
1474 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1475 bool "Set the default setting of memory_corruption_check"
1476 depends on X86_CHECK_BIOS_CORRUPTION
1477 default y
1478 ---help---
1479 Set whether the default state of memory_corruption_check is
1480 on or off.
1481
1482 config X86_RESERVE_LOW
1483 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1484 default 64
1485 range 4 640
1486 ---help---
1487 Specify the amount of low memory to reserve for the BIOS.
1488
1489 The first page contains BIOS data structures that the kernel
1490 must not use, so that page must always be reserved.
1491
1492 By default we reserve the first 64K of physical RAM, as a
1493 number of BIOSes are known to corrupt that memory range
1494 during events such as suspend/resume or monitor cable
1495 insertion, so it must not be used by the kernel.
1496
1497 You can set this to 4 if you are absolutely sure that you
1498 trust the BIOS to get all its memory reservations and usages
1499 right. If you know your BIOS have problems beyond the
1500 default 64K area, you can set this to 640 to avoid using the
1501 entire low memory range.
1502
1503 If you have doubts about the BIOS (e.g. suspend/resume does
1504 not work or there's kernel crashes after certain hardware
1505 hotplug events) then you might want to enable
1506 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1507 typical corruption patterns.
1508
1509 Leave this to the default value of 64 if you are unsure.
1510
1511 config MATH_EMULATION
1512 bool
1513 prompt "Math emulation" if X86_32
1514 ---help---
1515 Linux can emulate a math coprocessor (used for floating point
1516 operations) if you don't have one. 486DX and Pentium processors have
1517 a math coprocessor built in, 486SX and 386 do not, unless you added
1518 a 487DX or 387, respectively. (The messages during boot time can
1519 give you some hints here ["man dmesg"].) Everyone needs either a
1520 coprocessor or this emulation.
1521
1522 If you don't have a math coprocessor, you need to say Y here; if you
1523 say Y here even though you have a coprocessor, the coprocessor will
1524 be used nevertheless. (This behavior can be changed with the kernel
1525 command line option "no387", which comes handy if your coprocessor
1526 is broken. Try "man bootparam" or see the documentation of your boot
1527 loader (lilo or loadlin) about how to pass options to the kernel at
1528 boot time.) This means that it is a good idea to say Y here if you
1529 intend to use this kernel on different machines.
1530
1531 More information about the internals of the Linux math coprocessor
1532 emulation can be found in <file:arch/x86/math-emu/README>.
1533
1534 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1535 kernel, it won't hurt.
1536
1537 config MTRR
1538 def_bool y
1539 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1540 ---help---
1541 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1542 the Memory Type Range Registers (MTRRs) may be used to control
1543 processor access to memory ranges. This is most useful if you have
1544 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1545 allows bus write transfers to be combined into a larger transfer
1546 before bursting over the PCI/AGP bus. This can increase performance
1547 of image write operations 2.5 times or more. Saying Y here creates a
1548 /proc/mtrr file which may be used to manipulate your processor's
1549 MTRRs. Typically the X server should use this.
1550
1551 This code has a reasonably generic interface so that similar
1552 control registers on other processors can be easily supported
1553 as well:
1554
1555 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1556 Registers (ARRs) which provide a similar functionality to MTRRs. For
1557 these, the ARRs are used to emulate the MTRRs.
1558 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1559 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1560 write-combining. All of these processors are supported by this code
1561 and it makes sense to say Y here if you have one of them.
1562
1563 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1564 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1565 can lead to all sorts of problems, so it's good to say Y here.
1566
1567 You can safely say Y even if your machine doesn't have MTRRs, you'll
1568 just add about 9 KB to your kernel.
1569
1570 See <file:Documentation/x86/mtrr.txt> for more information.
1571
1572 config MTRR_SANITIZER
1573 def_bool y
1574 prompt "MTRR cleanup support"
1575 depends on MTRR
1576 ---help---
1577 Convert MTRR layout from continuous to discrete, so X drivers can
1578 add writeback entries.
1579
1580 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1581 The largest mtrr entry size for a continuous block can be set with
1582 mtrr_chunk_size.
1583
1584 If unsure, say Y.
1585
1586 config MTRR_SANITIZER_ENABLE_DEFAULT
1587 int "MTRR cleanup enable value (0-1)"
1588 range 0 1
1589 default "0"
1590 depends on MTRR_SANITIZER
1591 ---help---
1592 Enable mtrr cleanup default value
1593
1594 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1595 int "MTRR cleanup spare reg num (0-7)"
1596 range 0 7
1597 default "1"
1598 depends on MTRR_SANITIZER
1599 ---help---
1600 mtrr cleanup spare entries default, it can be changed via
1601 mtrr_spare_reg_nr=N on the kernel command line.
1602
1603 config X86_PAT
1604 def_bool y
1605 prompt "x86 PAT support" if EXPERT
1606 depends on MTRR
1607 ---help---
1608 Use PAT attributes to setup page level cache control.
1609
1610 PATs are the modern equivalents of MTRRs and are much more
1611 flexible than MTRRs.
1612
1613 Say N here if you see bootup problems (boot crash, boot hang,
1614 spontaneous reboots) or a non-working video driver.
1615
1616 If unsure, say Y.
1617
1618 config ARCH_USES_PG_UNCACHED
1619 def_bool y
1620 depends on X86_PAT
1621
1622 config ARCH_RANDOM
1623 def_bool y
1624 prompt "x86 architectural random number generator" if EXPERT
1625 ---help---
1626 Enable the x86 architectural RDRAND instruction
1627 (Intel Bull Mountain technology) to generate random numbers.
1628 If supported, this is a high bandwidth, cryptographically
1629 secure hardware random number generator.
1630
1631 config X86_SMAP
1632 def_bool y
1633 prompt "Supervisor Mode Access Prevention" if EXPERT
1634 ---help---
1635 Supervisor Mode Access Prevention (SMAP) is a security
1636 feature in newer Intel processors. There is a small
1637 performance cost if this enabled and turned on; there is
1638 also a small increase in the kernel size if this is enabled.
1639
1640 If unsure, say Y.
1641
1642 config X86_INTEL_MPX
1643 prompt "Intel MPX (Memory Protection Extensions)"
1644 def_bool n
1645 depends on CPU_SUP_INTEL
1646 ---help---
1647 MPX provides hardware features that can be used in
1648 conjunction with compiler-instrumented code to check
1649 memory references. It is designed to detect buffer
1650 overflow or underflow bugs.
1651
1652 This option enables running applications which are
1653 instrumented or otherwise use MPX. It does not use MPX
1654 itself inside the kernel or to protect the kernel
1655 against bad memory references.
1656
1657 Enabling this option will make the kernel larger:
1658 ~8k of kernel text and 36 bytes of data on a 64-bit
1659 defconfig. It adds a long to the 'mm_struct' which
1660 will increase the kernel memory overhead of each
1661 process and adds some branches to paths used during
1662 exec() and munmap().
1663
1664 For details, see Documentation/x86/intel_mpx.txt
1665
1666 If unsure, say N.
1667
1668 config EFI
1669 bool "EFI runtime service support"
1670 depends on ACPI
1671 select UCS2_STRING
1672 select EFI_RUNTIME_WRAPPERS
1673 ---help---
1674 This enables the kernel to use EFI runtime services that are
1675 available (such as the EFI variable services).
1676
1677 This option is only useful on systems that have EFI firmware.
1678 In addition, you should use the latest ELILO loader available
1679 at <http://elilo.sourceforge.net> in order to take advantage
1680 of EFI runtime services. However, even with this option, the
1681 resultant kernel should continue to boot on existing non-EFI
1682 platforms.
1683
1684 config EFI_STUB
1685 bool "EFI stub support"
1686 depends on EFI && !X86_USE_3DNOW
1687 select RELOCATABLE
1688 ---help---
1689 This kernel feature allows a bzImage to be loaded directly
1690 by EFI firmware without the use of a bootloader.
1691
1692 See Documentation/efi-stub.txt for more information.
1693
1694 config EFI_MIXED
1695 bool "EFI mixed-mode support"
1696 depends on EFI_STUB && X86_64
1697 ---help---
1698 Enabling this feature allows a 64-bit kernel to be booted
1699 on a 32-bit firmware, provided that your CPU supports 64-bit
1700 mode.
1701
1702 Note that it is not possible to boot a mixed-mode enabled
1703 kernel via the EFI boot stub - a bootloader that supports
1704 the EFI handover protocol must be used.
1705
1706 If unsure, say N.
1707
1708 config SECCOMP
1709 def_bool y
1710 prompt "Enable seccomp to safely compute untrusted bytecode"
1711 ---help---
1712 This kernel feature is useful for number crunching applications
1713 that may need to compute untrusted bytecode during their
1714 execution. By using pipes or other transports made available to
1715 the process as file descriptors supporting the read/write
1716 syscalls, it's possible to isolate those applications in
1717 their own address space using seccomp. Once seccomp is
1718 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1719 and the task is only allowed to execute a few safe syscalls
1720 defined by each seccomp mode.
1721
1722 If unsure, say Y. Only embedded should say N here.
1723
1724 source kernel/Kconfig.hz
1725
1726 config KEXEC
1727 bool "kexec system call"
1728 ---help---
1729 kexec is a system call that implements the ability to shutdown your
1730 current kernel, and to start another kernel. It is like a reboot
1731 but it is independent of the system firmware. And like a reboot
1732 you can start any kernel with it, not just Linux.
1733
1734 The name comes from the similarity to the exec system call.
1735
1736 It is an ongoing process to be certain the hardware in a machine
1737 is properly shutdown, so do not be surprised if this code does not
1738 initially work for you. As of this writing the exact hardware
1739 interface is strongly in flux, so no good recommendation can be
1740 made.
1741
1742 config KEXEC_FILE
1743 bool "kexec file based system call"
1744 select BUILD_BIN2C
1745 depends on KEXEC
1746 depends on X86_64
1747 depends on CRYPTO=y
1748 depends on CRYPTO_SHA256=y
1749 ---help---
1750 This is new version of kexec system call. This system call is
1751 file based and takes file descriptors as system call argument
1752 for kernel and initramfs as opposed to list of segments as
1753 accepted by previous system call.
1754
1755 config KEXEC_VERIFY_SIG
1756 bool "Verify kernel signature during kexec_file_load() syscall"
1757 depends on KEXEC_FILE
1758 ---help---
1759 This option makes kernel signature verification mandatory for
1760 kexec_file_load() syscall. If kernel is signature can not be
1761 verified, kexec_file_load() will fail.
1762
1763 This option enforces signature verification at generic level.
1764 One needs to enable signature verification for type of kernel
1765 image being loaded to make sure it works. For example, enable
1766 bzImage signature verification option to be able to load and
1767 verify signatures of bzImage. Otherwise kernel loading will fail.
1768
1769 config KEXEC_BZIMAGE_VERIFY_SIG
1770 bool "Enable bzImage signature verification support"
1771 depends on KEXEC_VERIFY_SIG
1772 depends on SIGNED_PE_FILE_VERIFICATION
1773 select SYSTEM_TRUSTED_KEYRING
1774 ---help---
1775 Enable bzImage signature verification support.
1776
1777 config CRASH_DUMP
1778 bool "kernel crash dumps"
1779 depends on X86_64 || (X86_32 && HIGHMEM)
1780 ---help---
1781 Generate crash dump after being started by kexec.
1782 This should be normally only set in special crash dump kernels
1783 which are loaded in the main kernel with kexec-tools into
1784 a specially reserved region and then later executed after
1785 a crash by kdump/kexec. The crash dump kernel must be compiled
1786 to a memory address not used by the main kernel or BIOS using
1787 PHYSICAL_START, or it must be built as a relocatable image
1788 (CONFIG_RELOCATABLE=y).
1789 For more details see Documentation/kdump/kdump.txt
1790
1791 config KEXEC_JUMP
1792 bool "kexec jump"
1793 depends on KEXEC && HIBERNATION
1794 ---help---
1795 Jump between original kernel and kexeced kernel and invoke
1796 code in physical address mode via KEXEC
1797
1798 config PHYSICAL_START
1799 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1800 default "0x1000000"
1801 ---help---
1802 This gives the physical address where the kernel is loaded.
1803
1804 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1805 bzImage will decompress itself to above physical address and
1806 run from there. Otherwise, bzImage will run from the address where
1807 it has been loaded by the boot loader and will ignore above physical
1808 address.
1809
1810 In normal kdump cases one does not have to set/change this option
1811 as now bzImage can be compiled as a completely relocatable image
1812 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1813 address. This option is mainly useful for the folks who don't want
1814 to use a bzImage for capturing the crash dump and want to use a
1815 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1816 to be specifically compiled to run from a specific memory area
1817 (normally a reserved region) and this option comes handy.
1818
1819 So if you are using bzImage for capturing the crash dump,
1820 leave the value here unchanged to 0x1000000 and set
1821 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1822 for capturing the crash dump change this value to start of
1823 the reserved region. In other words, it can be set based on
1824 the "X" value as specified in the "crashkernel=YM@XM"
1825 command line boot parameter passed to the panic-ed
1826 kernel. Please take a look at Documentation/kdump/kdump.txt
1827 for more details about crash dumps.
1828
1829 Usage of bzImage for capturing the crash dump is recommended as
1830 one does not have to build two kernels. Same kernel can be used
1831 as production kernel and capture kernel. Above option should have
1832 gone away after relocatable bzImage support is introduced. But it
1833 is present because there are users out there who continue to use
1834 vmlinux for dump capture. This option should go away down the
1835 line.
1836
1837 Don't change this unless you know what you are doing.
1838
1839 config RELOCATABLE
1840 bool "Build a relocatable kernel"
1841 default y
1842 ---help---
1843 This builds a kernel image that retains relocation information
1844 so it can be loaded someplace besides the default 1MB.
1845 The relocations tend to make the kernel binary about 10% larger,
1846 but are discarded at runtime.
1847
1848 One use is for the kexec on panic case where the recovery kernel
1849 must live at a different physical address than the primary
1850 kernel.
1851
1852 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1853 it has been loaded at and the compile time physical address
1854 (CONFIG_PHYSICAL_START) is used as the minimum location.
1855
1856 config RANDOMIZE_BASE
1857 bool "Randomize the address of the kernel image"
1858 depends on RELOCATABLE
1859 default n
1860 ---help---
1861 Randomizes the physical and virtual address at which the
1862 kernel image is decompressed, as a security feature that
1863 deters exploit attempts relying on knowledge of the location
1864 of kernel internals.
1865
1866 Entropy is generated using the RDRAND instruction if it is
1867 supported. If RDTSC is supported, it is used as well. If
1868 neither RDRAND nor RDTSC are supported, then randomness is
1869 read from the i8254 timer.
1870
1871 The kernel will be offset by up to RANDOMIZE_BASE_MAX_OFFSET,
1872 and aligned according to PHYSICAL_ALIGN. Since the kernel is
1873 built using 2GiB addressing, and PHYSICAL_ALGIN must be at a
1874 minimum of 2MiB, only 10 bits of entropy is theoretically
1875 possible. At best, due to page table layouts, 64-bit can use
1876 9 bits of entropy and 32-bit uses 8 bits.
1877
1878 If unsure, say N.
1879
1880 config RANDOMIZE_BASE_MAX_OFFSET
1881 hex "Maximum kASLR offset allowed" if EXPERT
1882 depends on RANDOMIZE_BASE
1883 range 0x0 0x20000000 if X86_32
1884 default "0x20000000" if X86_32
1885 range 0x0 0x40000000 if X86_64
1886 default "0x40000000" if X86_64
1887 ---help---
1888 The lesser of RANDOMIZE_BASE_MAX_OFFSET and available physical
1889 memory is used to determine the maximal offset in bytes that will
1890 be applied to the kernel when kernel Address Space Layout
1891 Randomization (kASLR) is active. This must be a multiple of
1892 PHYSICAL_ALIGN.
1893
1894 On 32-bit this is limited to 512MiB by page table layouts. The
1895 default is 512MiB.
1896
1897 On 64-bit this is limited by how the kernel fixmap page table is
1898 positioned, so this cannot be larger than 1GiB currently. Without
1899 RANDOMIZE_BASE, there is a 512MiB to 1.5GiB split between kernel
1900 and modules. When RANDOMIZE_BASE_MAX_OFFSET is above 512MiB, the
1901 modules area will shrink to compensate, up to the current maximum
1902 1GiB to 1GiB split. The default is 1GiB.
1903
1904 If unsure, leave at the default value.
1905
1906 # Relocation on x86 needs some additional build support
1907 config X86_NEED_RELOCS
1908 def_bool y
1909 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
1910
1911 config PHYSICAL_ALIGN
1912 hex "Alignment value to which kernel should be aligned"
1913 default "0x200000"
1914 range 0x2000 0x1000000 if X86_32
1915 range 0x200000 0x1000000 if X86_64
1916 ---help---
1917 This value puts the alignment restrictions on physical address
1918 where kernel is loaded and run from. Kernel is compiled for an
1919 address which meets above alignment restriction.
1920
1921 If bootloader loads the kernel at a non-aligned address and
1922 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1923 address aligned to above value and run from there.
1924
1925 If bootloader loads the kernel at a non-aligned address and
1926 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1927 load address and decompress itself to the address it has been
1928 compiled for and run from there. The address for which kernel is
1929 compiled already meets above alignment restrictions. Hence the
1930 end result is that kernel runs from a physical address meeting
1931 above alignment restrictions.
1932
1933 On 32-bit this value must be a multiple of 0x2000. On 64-bit
1934 this value must be a multiple of 0x200000.
1935
1936 Don't change this unless you know what you are doing.
1937
1938 config HOTPLUG_CPU
1939 bool "Support for hot-pluggable CPUs"
1940 depends on SMP
1941 ---help---
1942 Say Y here to allow turning CPUs off and on. CPUs can be
1943 controlled through /sys/devices/system/cpu.
1944 ( Note: power management support will enable this option
1945 automatically on SMP systems. )
1946 Say N if you want to disable CPU hotplug.
1947
1948 config BOOTPARAM_HOTPLUG_CPU0
1949 bool "Set default setting of cpu0_hotpluggable"
1950 default n
1951 depends on HOTPLUG_CPU
1952 ---help---
1953 Set whether default state of cpu0_hotpluggable is on or off.
1954
1955 Say Y here to enable CPU0 hotplug by default. If this switch
1956 is turned on, there is no need to give cpu0_hotplug kernel
1957 parameter and the CPU0 hotplug feature is enabled by default.
1958
1959 Please note: there are two known CPU0 dependencies if you want
1960 to enable the CPU0 hotplug feature either by this switch or by
1961 cpu0_hotplug kernel parameter.
1962
1963 First, resume from hibernate or suspend always starts from CPU0.
1964 So hibernate and suspend are prevented if CPU0 is offline.
1965
1966 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
1967 offline if any interrupt can not migrate out of CPU0. There may
1968 be other CPU0 dependencies.
1969
1970 Please make sure the dependencies are under your control before
1971 you enable this feature.
1972
1973 Say N if you don't want to enable CPU0 hotplug feature by default.
1974 You still can enable the CPU0 hotplug feature at boot by kernel
1975 parameter cpu0_hotplug.
1976
1977 config DEBUG_HOTPLUG_CPU0
1978 def_bool n
1979 prompt "Debug CPU0 hotplug"
1980 depends on HOTPLUG_CPU
1981 ---help---
1982 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
1983 soon as possible and boots up userspace with CPU0 offlined. User
1984 can online CPU0 back after boot time.
1985
1986 To debug CPU0 hotplug, you need to enable CPU0 offline/online
1987 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
1988 compilation or giving cpu0_hotplug kernel parameter at boot.
1989
1990 If unsure, say N.
1991
1992 config COMPAT_VDSO
1993 def_bool n
1994 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
1995 depends on X86_32 || IA32_EMULATION
1996 ---help---
1997 Certain buggy versions of glibc will crash if they are
1998 presented with a 32-bit vDSO that is not mapped at the address
1999 indicated in its segment table.
2000
2001 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
2002 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
2003 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is
2004 the only released version with the bug, but OpenSUSE 9
2005 contains a buggy "glibc 2.3.2".
2006
2007 The symptom of the bug is that everything crashes on startup, saying:
2008 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
2009
2010 Saying Y here changes the default value of the vdso32 boot
2011 option from 1 to 0, which turns off the 32-bit vDSO entirely.
2012 This works around the glibc bug but hurts performance.
2013
2014 If unsure, say N: if you are compiling your own kernel, you
2015 are unlikely to be using a buggy version of glibc.
2016
2017 config CMDLINE_BOOL
2018 bool "Built-in kernel command line"
2019 ---help---
2020 Allow for specifying boot arguments to the kernel at
2021 build time. On some systems (e.g. embedded ones), it is
2022 necessary or convenient to provide some or all of the
2023 kernel boot arguments with the kernel itself (that is,
2024 to not rely on the boot loader to provide them.)
2025
2026 To compile command line arguments into the kernel,
2027 set this option to 'Y', then fill in the
2028 the boot arguments in CONFIG_CMDLINE.
2029
2030 Systems with fully functional boot loaders (i.e. non-embedded)
2031 should leave this option set to 'N'.
2032
2033 config CMDLINE
2034 string "Built-in kernel command string"
2035 depends on CMDLINE_BOOL
2036 default ""
2037 ---help---
2038 Enter arguments here that should be compiled into the kernel
2039 image and used at boot time. If the boot loader provides a
2040 command line at boot time, it is appended to this string to
2041 form the full kernel command line, when the system boots.
2042
2043 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2044 change this behavior.
2045
2046 In most cases, the command line (whether built-in or provided
2047 by the boot loader) should specify the device for the root
2048 file system.
2049
2050 config CMDLINE_OVERRIDE
2051 bool "Built-in command line overrides boot loader arguments"
2052 depends on CMDLINE_BOOL
2053 ---help---
2054 Set this option to 'Y' to have the kernel ignore the boot loader
2055 command line, and use ONLY the built-in command line.
2056
2057 This is used to work around broken boot loaders. This should
2058 be set to 'N' under normal conditions.
2059
2060 source "kernel/livepatch/Kconfig"
2061
2062 endmenu
2063
2064 config ARCH_ENABLE_MEMORY_HOTPLUG
2065 def_bool y
2066 depends on X86_64 || (X86_32 && HIGHMEM)
2067
2068 config ARCH_ENABLE_MEMORY_HOTREMOVE
2069 def_bool y
2070 depends on MEMORY_HOTPLUG
2071
2072 config USE_PERCPU_NUMA_NODE_ID
2073 def_bool y
2074 depends on NUMA
2075
2076 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
2077 def_bool y
2078 depends on X86_64 || X86_PAE
2079
2080 config ARCH_ENABLE_HUGEPAGE_MIGRATION
2081 def_bool y
2082 depends on X86_64 && HUGETLB_PAGE && MIGRATION
2083
2084 menu "Power management and ACPI options"
2085
2086 config ARCH_HIBERNATION_HEADER
2087 def_bool y
2088 depends on X86_64 && HIBERNATION
2089
2090 source "kernel/power/Kconfig"
2091
2092 source "drivers/acpi/Kconfig"
2093
2094 source "drivers/sfi/Kconfig"
2095
2096 config X86_APM_BOOT
2097 def_bool y
2098 depends on APM
2099
2100 menuconfig APM
2101 tristate "APM (Advanced Power Management) BIOS support"
2102 depends on X86_32 && PM_SLEEP
2103 ---help---
2104 APM is a BIOS specification for saving power using several different
2105 techniques. This is mostly useful for battery powered laptops with
2106 APM compliant BIOSes. If you say Y here, the system time will be
2107 reset after a RESUME operation, the /proc/apm device will provide
2108 battery status information, and user-space programs will receive
2109 notification of APM "events" (e.g. battery status change).
2110
2111 If you select "Y" here, you can disable actual use of the APM
2112 BIOS by passing the "apm=off" option to the kernel at boot time.
2113
2114 Note that the APM support is almost completely disabled for
2115 machines with more than one CPU.
2116
2117 In order to use APM, you will need supporting software. For location
2118 and more information, read <file:Documentation/power/apm-acpi.txt>
2119 and the Battery Powered Linux mini-HOWTO, available from
2120 <http://www.tldp.org/docs.html#howto>.
2121
2122 This driver does not spin down disk drives (see the hdparm(8)
2123 manpage ("man 8 hdparm") for that), and it doesn't turn off
2124 VESA-compliant "green" monitors.
2125
2126 This driver does not support the TI 4000M TravelMate and the ACER
2127 486/DX4/75 because they don't have compliant BIOSes. Many "green"
2128 desktop machines also don't have compliant BIOSes, and this driver
2129 may cause those machines to panic during the boot phase.
2130
2131 Generally, if you don't have a battery in your machine, there isn't
2132 much point in using this driver and you should say N. If you get
2133 random kernel OOPSes or reboots that don't seem to be related to
2134 anything, try disabling/enabling this option (or disabling/enabling
2135 APM in your BIOS).
2136
2137 Some other things you should try when experiencing seemingly random,
2138 "weird" problems:
2139
2140 1) make sure that you have enough swap space and that it is
2141 enabled.
2142 2) pass the "no-hlt" option to the kernel
2143 3) switch on floating point emulation in the kernel and pass
2144 the "no387" option to the kernel
2145 4) pass the "floppy=nodma" option to the kernel
2146 5) pass the "mem=4M" option to the kernel (thereby disabling
2147 all but the first 4 MB of RAM)
2148 6) make sure that the CPU is not over clocked.
2149 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2150 8) disable the cache from your BIOS settings
2151 9) install a fan for the video card or exchange video RAM
2152 10) install a better fan for the CPU
2153 11) exchange RAM chips
2154 12) exchange the motherboard.
2155
2156 To compile this driver as a module, choose M here: the
2157 module will be called apm.
2158
2159 if APM
2160
2161 config APM_IGNORE_USER_SUSPEND
2162 bool "Ignore USER SUSPEND"
2163 ---help---
2164 This option will ignore USER SUSPEND requests. On machines with a
2165 compliant APM BIOS, you want to say N. However, on the NEC Versa M
2166 series notebooks, it is necessary to say Y because of a BIOS bug.
2167
2168 config APM_DO_ENABLE
2169 bool "Enable PM at boot time"
2170 ---help---
2171 Enable APM features at boot time. From page 36 of the APM BIOS
2172 specification: "When disabled, the APM BIOS does not automatically
2173 power manage devices, enter the Standby State, enter the Suspend
2174 State, or take power saving steps in response to CPU Idle calls."
2175 This driver will make CPU Idle calls when Linux is idle (unless this
2176 feature is turned off -- see "Do CPU IDLE calls", below). This
2177 should always save battery power, but more complicated APM features
2178 will be dependent on your BIOS implementation. You may need to turn
2179 this option off if your computer hangs at boot time when using APM
2180 support, or if it beeps continuously instead of suspending. Turn
2181 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2182 T400CDT. This is off by default since most machines do fine without
2183 this feature.
2184
2185 config APM_CPU_IDLE
2186 depends on CPU_IDLE
2187 bool "Make CPU Idle calls when idle"
2188 ---help---
2189 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2190 On some machines, this can activate improved power savings, such as
2191 a slowed CPU clock rate, when the machine is idle. These idle calls
2192 are made after the idle loop has run for some length of time (e.g.,
2193 333 mS). On some machines, this will cause a hang at boot time or
2194 whenever the CPU becomes idle. (On machines with more than one CPU,
2195 this option does nothing.)
2196
2197 config APM_DISPLAY_BLANK
2198 bool "Enable console blanking using APM"
2199 ---help---
2200 Enable console blanking using the APM. Some laptops can use this to
2201 turn off the LCD backlight when the screen blanker of the Linux
2202 virtual console blanks the screen. Note that this is only used by
2203 the virtual console screen blanker, and won't turn off the backlight
2204 when using the X Window system. This also doesn't have anything to
2205 do with your VESA-compliant power-saving monitor. Further, this
2206 option doesn't work for all laptops -- it might not turn off your
2207 backlight at all, or it might print a lot of errors to the console,
2208 especially if you are using gpm.
2209
2210 config APM_ALLOW_INTS
2211 bool "Allow interrupts during APM BIOS calls"
2212 ---help---
2213 Normally we disable external interrupts while we are making calls to
2214 the APM BIOS as a measure to lessen the effects of a badly behaving
2215 BIOS implementation. The BIOS should reenable interrupts if it
2216 needs to. Unfortunately, some BIOSes do not -- especially those in
2217 many of the newer IBM Thinkpads. If you experience hangs when you
2218 suspend, try setting this to Y. Otherwise, say N.
2219
2220 endif # APM
2221
2222 source "drivers/cpufreq/Kconfig"
2223
2224 source "drivers/cpuidle/Kconfig"
2225
2226 source "drivers/idle/Kconfig"
2227
2228 endmenu
2229
2230
2231 menu "Bus options (PCI etc.)"
2232
2233 config PCI
2234 bool "PCI support"
2235 default y
2236 ---help---
2237 Find out whether you have a PCI motherboard. PCI is the name of a
2238 bus system, i.e. the way the CPU talks to the other stuff inside
2239 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2240 VESA. If you have PCI, say Y, otherwise N.
2241
2242 choice
2243 prompt "PCI access mode"
2244 depends on X86_32 && PCI
2245 default PCI_GOANY
2246 ---help---
2247 On PCI systems, the BIOS can be used to detect the PCI devices and
2248 determine their configuration. However, some old PCI motherboards
2249 have BIOS bugs and may crash if this is done. Also, some embedded
2250 PCI-based systems don't have any BIOS at all. Linux can also try to
2251 detect the PCI hardware directly without using the BIOS.
2252
2253 With this option, you can specify how Linux should detect the
2254 PCI devices. If you choose "BIOS", the BIOS will be used,
2255 if you choose "Direct", the BIOS won't be used, and if you
2256 choose "MMConfig", then PCI Express MMCONFIG will be used.
2257 If you choose "Any", the kernel will try MMCONFIG, then the
2258 direct access method and falls back to the BIOS if that doesn't
2259 work. If unsure, go with the default, which is "Any".
2260
2261 config PCI_GOBIOS
2262 bool "BIOS"
2263
2264 config PCI_GOMMCONFIG
2265 bool "MMConfig"
2266
2267 config PCI_GODIRECT
2268 bool "Direct"
2269
2270 config PCI_GOOLPC
2271 bool "OLPC XO-1"
2272 depends on OLPC
2273
2274 config PCI_GOANY
2275 bool "Any"
2276
2277 endchoice
2278
2279 config PCI_BIOS
2280 def_bool y
2281 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2282
2283 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2284 config PCI_DIRECT
2285 def_bool y
2286 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2287
2288 config PCI_MMCONFIG
2289 def_bool y
2290 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2291
2292 config PCI_OLPC
2293 def_bool y
2294 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2295
2296 config PCI_XEN
2297 def_bool y
2298 depends on PCI && XEN
2299 select SWIOTLB_XEN
2300
2301 config PCI_DOMAINS
2302 def_bool y
2303 depends on PCI
2304
2305 config PCI_MMCONFIG
2306 bool "Support mmconfig PCI config space access"
2307 depends on X86_64 && PCI && ACPI
2308
2309 config PCI_CNB20LE_QUIRK
2310 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2311 depends on PCI
2312 help
2313 Read the PCI windows out of the CNB20LE host bridge. This allows
2314 PCI hotplug to work on systems with the CNB20LE chipset which do
2315 not have ACPI.
2316
2317 There's no public spec for this chipset, and this functionality
2318 is known to be incomplete.
2319
2320 You should say N unless you know you need this.
2321
2322 source "drivers/pci/pcie/Kconfig"
2323
2324 source "drivers/pci/Kconfig"
2325
2326 # x86_64 have no ISA slots, but can have ISA-style DMA.
2327 config ISA_DMA_API
2328 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2329 default y
2330 help
2331 Enables ISA-style DMA support for devices requiring such controllers.
2332 If unsure, say Y.
2333
2334 if X86_32
2335
2336 config ISA
2337 bool "ISA support"
2338 ---help---
2339 Find out whether you have ISA slots on your motherboard. ISA is the
2340 name of a bus system, i.e. the way the CPU talks to the other stuff
2341 inside your box. Other bus systems are PCI, EISA, MicroChannel
2342 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2343 newer boards don't support it. If you have ISA, say Y, otherwise N.
2344
2345 config EISA
2346 bool "EISA support"
2347 depends on ISA
2348 ---help---
2349 The Extended Industry Standard Architecture (EISA) bus was
2350 developed as an open alternative to the IBM MicroChannel bus.
2351
2352 The EISA bus provided some of the features of the IBM MicroChannel
2353 bus while maintaining backward compatibility with cards made for
2354 the older ISA bus. The EISA bus saw limited use between 1988 and
2355 1995 when it was made obsolete by the PCI bus.
2356
2357 Say Y here if you are building a kernel for an EISA-based machine.
2358
2359 Otherwise, say N.
2360
2361 source "drivers/eisa/Kconfig"
2362
2363 config SCx200
2364 tristate "NatSemi SCx200 support"
2365 ---help---
2366 This provides basic support for National Semiconductor's
2367 (now AMD's) Geode processors. The driver probes for the
2368 PCI-IDs of several on-chip devices, so its a good dependency
2369 for other scx200_* drivers.
2370
2371 If compiled as a module, the driver is named scx200.
2372
2373 config SCx200HR_TIMER
2374 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2375 depends on SCx200
2376 default y
2377 ---help---
2378 This driver provides a clocksource built upon the on-chip
2379 27MHz high-resolution timer. Its also a workaround for
2380 NSC Geode SC-1100's buggy TSC, which loses time when the
2381 processor goes idle (as is done by the scheduler). The
2382 other workaround is idle=poll boot option.
2383
2384 config OLPC
2385 bool "One Laptop Per Child support"
2386 depends on !X86_PAE
2387 select GPIOLIB
2388 select OF
2389 select OF_PROMTREE
2390 select IRQ_DOMAIN
2391 ---help---
2392 Add support for detecting the unique features of the OLPC
2393 XO hardware.
2394
2395 config OLPC_XO1_PM
2396 bool "OLPC XO-1 Power Management"
2397 depends on OLPC && MFD_CS5535 && PM_SLEEP
2398 select MFD_CORE
2399 ---help---
2400 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2401
2402 config OLPC_XO1_RTC
2403 bool "OLPC XO-1 Real Time Clock"
2404 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2405 ---help---
2406 Add support for the XO-1 real time clock, which can be used as a
2407 programmable wakeup source.
2408
2409 config OLPC_XO1_SCI
2410 bool "OLPC XO-1 SCI extras"
2411 depends on OLPC && OLPC_XO1_PM
2412 depends on INPUT=y
2413 select POWER_SUPPLY
2414 select GPIO_CS5535
2415 select MFD_CORE
2416 ---help---
2417 Add support for SCI-based features of the OLPC XO-1 laptop:
2418 - EC-driven system wakeups
2419 - Power button
2420 - Ebook switch
2421 - Lid switch
2422 - AC adapter status updates
2423 - Battery status updates
2424
2425 config OLPC_XO15_SCI
2426 bool "OLPC XO-1.5 SCI extras"
2427 depends on OLPC && ACPI
2428 select POWER_SUPPLY
2429 ---help---
2430 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2431 - EC-driven system wakeups
2432 - AC adapter status updates
2433 - Battery status updates
2434
2435 config ALIX
2436 bool "PCEngines ALIX System Support (LED setup)"
2437 select GPIOLIB
2438 ---help---
2439 This option enables system support for the PCEngines ALIX.
2440 At present this just sets up LEDs for GPIO control on
2441 ALIX2/3/6 boards. However, other system specific setup should
2442 get added here.
2443
2444 Note: You must still enable the drivers for GPIO and LED support
2445 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2446
2447 Note: You have to set alix.force=1 for boards with Award BIOS.
2448
2449 config NET5501
2450 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2451 select GPIOLIB
2452 ---help---
2453 This option enables system support for the Soekris Engineering net5501.
2454
2455 config GEOS
2456 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2457 select GPIOLIB
2458 depends on DMI
2459 ---help---
2460 This option enables system support for the Traverse Technologies GEOS.
2461
2462 config TS5500
2463 bool "Technologic Systems TS-5500 platform support"
2464 depends on MELAN
2465 select CHECK_SIGNATURE
2466 select NEW_LEDS
2467 select LEDS_CLASS
2468 ---help---
2469 This option enables system support for the Technologic Systems TS-5500.
2470
2471 endif # X86_32
2472
2473 config AMD_NB
2474 def_bool y
2475 depends on CPU_SUP_AMD && PCI
2476
2477 source "drivers/pcmcia/Kconfig"
2478
2479 source "drivers/pci/hotplug/Kconfig"
2480
2481 config RAPIDIO
2482 tristate "RapidIO support"
2483 depends on PCI
2484 default n
2485 help
2486 If enabled this option will include drivers and the core
2487 infrastructure code to support RapidIO interconnect devices.
2488
2489 source "drivers/rapidio/Kconfig"
2490
2491 config X86_SYSFB
2492 bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
2493 help
2494 Firmwares often provide initial graphics framebuffers so the BIOS,
2495 bootloader or kernel can show basic video-output during boot for
2496 user-guidance and debugging. Historically, x86 used the VESA BIOS
2497 Extensions and EFI-framebuffers for this, which are mostly limited
2498 to x86.
2499 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
2500 framebuffers so the new generic system-framebuffer drivers can be
2501 used on x86. If the framebuffer is not compatible with the generic
2502 modes, it is adverticed as fallback platform framebuffer so legacy
2503 drivers like efifb, vesafb and uvesafb can pick it up.
2504 If this option is not selected, all system framebuffers are always
2505 marked as fallback platform framebuffers as usual.
2506
2507 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
2508 not be able to pick up generic system framebuffers if this option
2509 is selected. You are highly encouraged to enable simplefb as
2510 replacement if you select this option. simplefb can correctly deal
2511 with generic system framebuffers. But you should still keep vesafb
2512 and others enabled as fallback if a system framebuffer is
2513 incompatible with simplefb.
2514
2515 If unsure, say Y.
2516
2517 endmenu
2518
2519
2520 menu "Executable file formats / Emulations"
2521
2522 source "fs/Kconfig.binfmt"
2523
2524 config IA32_EMULATION
2525 bool "IA32 Emulation"
2526 depends on X86_64
2527 select BINFMT_ELF
2528 select COMPAT_BINFMT_ELF
2529 select HAVE_UID16
2530 ---help---
2531 Include code to run legacy 32-bit programs under a
2532 64-bit kernel. You should likely turn this on, unless you're
2533 100% sure that you don't have any 32-bit programs left.
2534
2535 config IA32_AOUT
2536 tristate "IA32 a.out support"
2537 depends on IA32_EMULATION
2538 ---help---
2539 Support old a.out binaries in the 32bit emulation.
2540
2541 config X86_X32
2542 bool "x32 ABI for 64-bit mode"
2543 depends on X86_64 && IA32_EMULATION
2544 ---help---
2545 Include code to run binaries for the x32 native 32-bit ABI
2546 for 64-bit processors. An x32 process gets access to the
2547 full 64-bit register file and wide data path while leaving
2548 pointers at 32 bits for smaller memory footprint.
2549
2550 You will need a recent binutils (2.22 or later) with
2551 elf32_x86_64 support enabled to compile a kernel with this
2552 option set.
2553
2554 config COMPAT
2555 def_bool y
2556 depends on IA32_EMULATION || X86_X32
2557 select ARCH_WANT_OLD_COMPAT_IPC
2558
2559 if COMPAT
2560 config COMPAT_FOR_U64_ALIGNMENT
2561 def_bool y
2562
2563 config SYSVIPC_COMPAT
2564 def_bool y
2565 depends on SYSVIPC
2566
2567 config KEYS_COMPAT
2568 def_bool y
2569 depends on KEYS
2570 endif
2571
2572 endmenu
2573
2574
2575 config HAVE_ATOMIC_IOMAP
2576 def_bool y
2577 depends on X86_32
2578
2579 config X86_DEV_DMA_OPS
2580 bool
2581 depends on X86_64 || STA2X11
2582
2583 config X86_DMA_REMAP
2584 bool
2585 depends on STA2X11
2586
2587 config PMC_ATOM
2588 def_bool y
2589 depends on PCI
2590
2591 source "net/Kconfig"
2592
2593 source "drivers/Kconfig"
2594
2595 source "drivers/firmware/Kconfig"
2596
2597 source "fs/Kconfig"
2598
2599 source "arch/x86/Kconfig.debug"
2600
2601 source "security/Kconfig"
2602
2603 source "crypto/Kconfig"
2604
2605 source "arch/x86/kvm/Kconfig"
2606
2607 source "lib/Kconfig"
This page took 0.093309 seconds and 5 git commands to generate.