e4682ec11fcd111f4938c94286d0ea28426e8013
[deliverable/linux.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33
34 /*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38 #define BIO_INLINE_VECS 4
39
40 /*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50
51 /*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57
58 /*
59 * Our slab pool management
60 */
61 struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70
71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125 }
126
127 static void bio_put_slab(struct bio_set *bs)
128 {
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152 out:
153 mutex_unlock(&bio_slab_lock);
154 }
155
156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 return bvec_slabs[idx].nr_vecs;
159 }
160
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172 }
173
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176 {
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235 }
236
237 static void __bio_free(struct bio *bio)
238 {
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243 }
244
245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267 }
268
269 void bio_init(struct bio *bio)
270 {
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274 }
275 EXPORT_SYMBOL(bio_init);
276
277 /**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287 void bio_reset(struct bio *bio)
288 {
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296 }
297 EXPORT_SYMBOL(bio_reset);
298
299 static struct bio *__bio_chain_endio(struct bio *bio)
300 {
301 struct bio *parent = bio->bi_private;
302
303 if (!parent->bi_error)
304 parent->bi_error = bio->bi_error;
305 bio_put(bio);
306 return parent;
307 }
308
309 static void bio_chain_endio(struct bio *bio)
310 {
311 bio_endio(__bio_chain_endio(bio));
312 }
313
314 /*
315 * Increment chain count for the bio. Make sure the CHAIN flag update
316 * is visible before the raised count.
317 */
318 static inline void bio_inc_remaining(struct bio *bio)
319 {
320 bio_set_flag(bio, BIO_CHAIN);
321 smp_mb__before_atomic();
322 atomic_inc(&bio->__bi_remaining);
323 }
324
325 /**
326 * bio_chain - chain bio completions
327 * @bio: the target bio
328 * @parent: the @bio's parent bio
329 *
330 * The caller won't have a bi_end_io called when @bio completes - instead,
331 * @parent's bi_end_io won't be called until both @parent and @bio have
332 * completed; the chained bio will also be freed when it completes.
333 *
334 * The caller must not set bi_private or bi_end_io in @bio.
335 */
336 void bio_chain(struct bio *bio, struct bio *parent)
337 {
338 BUG_ON(bio->bi_private || bio->bi_end_io);
339
340 bio->bi_private = parent;
341 bio->bi_end_io = bio_chain_endio;
342 bio_inc_remaining(parent);
343 }
344 EXPORT_SYMBOL(bio_chain);
345
346 static void bio_alloc_rescue(struct work_struct *work)
347 {
348 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
349 struct bio *bio;
350
351 while (1) {
352 spin_lock(&bs->rescue_lock);
353 bio = bio_list_pop(&bs->rescue_list);
354 spin_unlock(&bs->rescue_lock);
355
356 if (!bio)
357 break;
358
359 generic_make_request(bio);
360 }
361 }
362
363 static void punt_bios_to_rescuer(struct bio_set *bs)
364 {
365 struct bio_list punt, nopunt;
366 struct bio *bio;
367
368 /*
369 * In order to guarantee forward progress we must punt only bios that
370 * were allocated from this bio_set; otherwise, if there was a bio on
371 * there for a stacking driver higher up in the stack, processing it
372 * could require allocating bios from this bio_set, and doing that from
373 * our own rescuer would be bad.
374 *
375 * Since bio lists are singly linked, pop them all instead of trying to
376 * remove from the middle of the list:
377 */
378
379 bio_list_init(&punt);
380 bio_list_init(&nopunt);
381
382 while ((bio = bio_list_pop(current->bio_list)))
383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384
385 *current->bio_list = nopunt;
386
387 spin_lock(&bs->rescue_lock);
388 bio_list_merge(&bs->rescue_list, &punt);
389 spin_unlock(&bs->rescue_lock);
390
391 queue_work(bs->rescue_workqueue, &bs->rescue_work);
392 }
393
394 /**
395 * bio_alloc_bioset - allocate a bio for I/O
396 * @gfp_mask: the GFP_ mask given to the slab allocator
397 * @nr_iovecs: number of iovecs to pre-allocate
398 * @bs: the bio_set to allocate from.
399 *
400 * Description:
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
403 *
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
410 *
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
414 * stack overflows.
415 *
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
419 * thread.
420 *
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
425 *
426 * RETURNS:
427 * Pointer to new bio on success, NULL on failure.
428 */
429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
430 {
431 gfp_t saved_gfp = gfp_mask;
432 unsigned front_pad;
433 unsigned inline_vecs;
434 unsigned long idx = BIO_POOL_NONE;
435 struct bio_vec *bvl = NULL;
436 struct bio *bio;
437 void *p;
438
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 return NULL;
452 /*
453 * generic_make_request() converts recursion to iteration; this
454 * means if we're running beneath it, any bios we allocate and
455 * submit will not be submitted (and thus freed) until after we
456 * return.
457 *
458 * This exposes us to a potential deadlock if we allocate
459 * multiple bios from the same bio_set() while running
460 * underneath generic_make_request(). If we were to allocate
461 * multiple bios (say a stacking block driver that was splitting
462 * bios), we would deadlock if we exhausted the mempool's
463 * reserve.
464 *
465 * We solve this, and guarantee forward progress, with a rescuer
466 * workqueue per bio_set. If we go to allocate and there are
467 * bios on current->bio_list, we first try the allocation
468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 * bios we would be blocking to the rescuer workqueue before
470 * we retry with the original gfp_flags.
471 */
472
473 if (current->bio_list && !bio_list_empty(current->bio_list))
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio);
492
493 if (nr_iovecs > inline_vecs) {
494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 }
500
501 if (unlikely(!bvl))
502 goto err_free;
503
504 bio_set_flag(bio, BIO_OWNS_VEC);
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
507 }
508
509 bio->bi_pool = bs;
510 bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 bio->bi_max_vecs = nr_iovecs;
512 bio->bi_io_vec = bvl;
513 return bio;
514
515 err_free:
516 mempool_free(p, bs->bio_pool);
517 return NULL;
518 }
519 EXPORT_SYMBOL(bio_alloc_bioset);
520
521 void zero_fill_bio(struct bio *bio)
522 {
523 unsigned long flags;
524 struct bio_vec bv;
525 struct bvec_iter iter;
526
527 bio_for_each_segment(bv, bio, iter) {
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
531 bvec_kunmap_irq(data, &flags);
532 }
533 }
534 EXPORT_SYMBOL(zero_fill_bio);
535
536 /**
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
539 *
540 * Description:
541 * Put a reference to a &struct bio, either one you have gotten with
542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
543 **/
544 void bio_put(struct bio *bio)
545 {
546 if (!bio_flagged(bio, BIO_REFFED))
547 bio_free(bio);
548 else {
549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550
551 /*
552 * last put frees it
553 */
554 if (atomic_dec_and_test(&bio->__bi_cnt))
555 bio_free(bio);
556 }
557 }
558 EXPORT_SYMBOL(bio_put);
559
560 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
561 {
562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 blk_recount_segments(q, bio);
564
565 return bio->bi_phys_segments;
566 }
567 EXPORT_SYMBOL(bio_phys_segments);
568
569 /**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581 {
582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583
584 /*
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_bdev = bio_src->bi_bdev;
589 bio_set_flag(bio, BIO_CLONED);
590 bio->bi_rw = bio_src->bi_rw;
591 bio->bi_iter = bio_src->bi_iter;
592 bio->bi_io_vec = bio_src->bi_io_vec;
593 }
594 EXPORT_SYMBOL(__bio_clone_fast);
595
596 /**
597 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @bio: bio to clone
599 * @gfp_mask: allocation priority
600 * @bs: bio_set to allocate from
601 *
602 * Like __bio_clone_fast, only also allocates the returned bio
603 */
604 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605 {
606 struct bio *b;
607
608 b = bio_alloc_bioset(gfp_mask, 0, bs);
609 if (!b)
610 return NULL;
611
612 __bio_clone_fast(b, bio);
613
614 if (bio_integrity(bio)) {
615 int ret;
616
617 ret = bio_integrity_clone(b, bio, gfp_mask);
618
619 if (ret < 0) {
620 bio_put(b);
621 return NULL;
622 }
623 }
624
625 return b;
626 }
627 EXPORT_SYMBOL(bio_clone_fast);
628
629 /**
630 * bio_clone_bioset - clone a bio
631 * @bio_src: bio to clone
632 * @gfp_mask: allocation priority
633 * @bs: bio_set to allocate from
634 *
635 * Clone bio. Caller will own the returned bio, but not the actual data it
636 * points to. Reference count of returned bio will be one.
637 */
638 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
639 struct bio_set *bs)
640 {
641 struct bvec_iter iter;
642 struct bio_vec bv;
643 struct bio *bio;
644
645 /*
646 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
647 * bio_src->bi_io_vec to bio->bi_io_vec.
648 *
649 * We can't do that anymore, because:
650 *
651 * - The point of cloning the biovec is to produce a bio with a biovec
652 * the caller can modify: bi_idx and bi_bvec_done should be 0.
653 *
654 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
655 * we tried to clone the whole thing bio_alloc_bioset() would fail.
656 * But the clone should succeed as long as the number of biovecs we
657 * actually need to allocate is fewer than BIO_MAX_PAGES.
658 *
659 * - Lastly, bi_vcnt should not be looked at or relied upon by code
660 * that does not own the bio - reason being drivers don't use it for
661 * iterating over the biovec anymore, so expecting it to be kept up
662 * to date (i.e. for clones that share the parent biovec) is just
663 * asking for trouble and would force extra work on
664 * __bio_clone_fast() anyways.
665 */
666
667 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
668 if (!bio)
669 return NULL;
670
671 bio->bi_bdev = bio_src->bi_bdev;
672 bio->bi_rw = bio_src->bi_rw;
673 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
674 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
675
676 if (bio->bi_rw & REQ_DISCARD)
677 goto integrity_clone;
678
679 if (bio->bi_rw & REQ_WRITE_SAME) {
680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 goto integrity_clone;
682 }
683
684 bio_for_each_segment(bv, bio_src, iter)
685 bio->bi_io_vec[bio->bi_vcnt++] = bv;
686
687 integrity_clone:
688 if (bio_integrity(bio_src)) {
689 int ret;
690
691 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 if (ret < 0) {
693 bio_put(bio);
694 return NULL;
695 }
696 }
697
698 return bio;
699 }
700 EXPORT_SYMBOL(bio_clone_bioset);
701
702 /**
703 * bio_add_pc_page - attempt to add page to bio
704 * @q: the target queue
705 * @bio: destination bio
706 * @page: page to add
707 * @len: vec entry length
708 * @offset: vec entry offset
709 *
710 * Attempt to add a page to the bio_vec maplist. This can fail for a
711 * number of reasons, such as the bio being full or target block device
712 * limitations. The target block device must allow bio's up to PAGE_SIZE,
713 * so it is always possible to add a single page to an empty bio.
714 *
715 * This should only be used by REQ_PC bios.
716 */
717 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
718 *page, unsigned int len, unsigned int offset)
719 {
720 int retried_segments = 0;
721 struct bio_vec *bvec;
722
723 /*
724 * cloned bio must not modify vec list
725 */
726 if (unlikely(bio_flagged(bio, BIO_CLONED)))
727 return 0;
728
729 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
730 return 0;
731
732 /*
733 * For filesystems with a blocksize smaller than the pagesize
734 * we will often be called with the same page as last time and
735 * a consecutive offset. Optimize this special case.
736 */
737 if (bio->bi_vcnt > 0) {
738 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
739
740 if (page == prev->bv_page &&
741 offset == prev->bv_offset + prev->bv_len) {
742 prev->bv_len += len;
743 bio->bi_iter.bi_size += len;
744 goto done;
745 }
746
747 /*
748 * If the queue doesn't support SG gaps and adding this
749 * offset would create a gap, disallow it.
750 */
751 if (bvec_gap_to_prev(q, prev, offset))
752 return 0;
753 }
754
755 if (bio->bi_vcnt >= bio->bi_max_vecs)
756 return 0;
757
758 /*
759 * setup the new entry, we might clear it again later if we
760 * cannot add the page
761 */
762 bvec = &bio->bi_io_vec[bio->bi_vcnt];
763 bvec->bv_page = page;
764 bvec->bv_len = len;
765 bvec->bv_offset = offset;
766 bio->bi_vcnt++;
767 bio->bi_phys_segments++;
768 bio->bi_iter.bi_size += len;
769
770 /*
771 * Perform a recount if the number of segments is greater
772 * than queue_max_segments(q).
773 */
774
775 while (bio->bi_phys_segments > queue_max_segments(q)) {
776
777 if (retried_segments)
778 goto failed;
779
780 retried_segments = 1;
781 blk_recount_segments(q, bio);
782 }
783
784 /* If we may be able to merge these biovecs, force a recount */
785 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
786 bio_clear_flag(bio, BIO_SEG_VALID);
787
788 done:
789 return len;
790
791 failed:
792 bvec->bv_page = NULL;
793 bvec->bv_len = 0;
794 bvec->bv_offset = 0;
795 bio->bi_vcnt--;
796 bio->bi_iter.bi_size -= len;
797 blk_recount_segments(q, bio);
798 return 0;
799 }
800 EXPORT_SYMBOL(bio_add_pc_page);
801
802 /**
803 * bio_add_page - attempt to add page to bio
804 * @bio: destination bio
805 * @page: page to add
806 * @len: vec entry length
807 * @offset: vec entry offset
808 *
809 * Attempt to add a page to the bio_vec maplist. This will only fail
810 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
811 */
812 int bio_add_page(struct bio *bio, struct page *page,
813 unsigned int len, unsigned int offset)
814 {
815 struct bio_vec *bv;
816
817 /*
818 * cloned bio must not modify vec list
819 */
820 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
821 return 0;
822
823 /*
824 * For filesystems with a blocksize smaller than the pagesize
825 * we will often be called with the same page as last time and
826 * a consecutive offset. Optimize this special case.
827 */
828 if (bio->bi_vcnt > 0) {
829 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
830
831 if (page == bv->bv_page &&
832 offset == bv->bv_offset + bv->bv_len) {
833 bv->bv_len += len;
834 goto done;
835 }
836 }
837
838 if (bio->bi_vcnt >= bio->bi_max_vecs)
839 return 0;
840
841 bv = &bio->bi_io_vec[bio->bi_vcnt];
842 bv->bv_page = page;
843 bv->bv_len = len;
844 bv->bv_offset = offset;
845
846 bio->bi_vcnt++;
847 done:
848 bio->bi_iter.bi_size += len;
849 return len;
850 }
851 EXPORT_SYMBOL(bio_add_page);
852
853 struct submit_bio_ret {
854 struct completion event;
855 int error;
856 };
857
858 static void submit_bio_wait_endio(struct bio *bio)
859 {
860 struct submit_bio_ret *ret = bio->bi_private;
861
862 ret->error = bio->bi_error;
863 complete(&ret->event);
864 }
865
866 /**
867 * submit_bio_wait - submit a bio, and wait until it completes
868 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
869 * @bio: The &struct bio which describes the I/O
870 *
871 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
872 * bio_endio() on failure.
873 */
874 int submit_bio_wait(int rw, struct bio *bio)
875 {
876 struct submit_bio_ret ret;
877
878 rw |= REQ_SYNC;
879 init_completion(&ret.event);
880 bio->bi_private = &ret;
881 bio->bi_end_io = submit_bio_wait_endio;
882 submit_bio(rw, bio);
883 wait_for_completion(&ret.event);
884
885 return ret.error;
886 }
887 EXPORT_SYMBOL(submit_bio_wait);
888
889 /**
890 * bio_advance - increment/complete a bio by some number of bytes
891 * @bio: bio to advance
892 * @bytes: number of bytes to complete
893 *
894 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
895 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
896 * be updated on the last bvec as well.
897 *
898 * @bio will then represent the remaining, uncompleted portion of the io.
899 */
900 void bio_advance(struct bio *bio, unsigned bytes)
901 {
902 if (bio_integrity(bio))
903 bio_integrity_advance(bio, bytes);
904
905 bio_advance_iter(bio, &bio->bi_iter, bytes);
906 }
907 EXPORT_SYMBOL(bio_advance);
908
909 /**
910 * bio_alloc_pages - allocates a single page for each bvec in a bio
911 * @bio: bio to allocate pages for
912 * @gfp_mask: flags for allocation
913 *
914 * Allocates pages up to @bio->bi_vcnt.
915 *
916 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
917 * freed.
918 */
919 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
920 {
921 int i;
922 struct bio_vec *bv;
923
924 bio_for_each_segment_all(bv, bio, i) {
925 bv->bv_page = alloc_page(gfp_mask);
926 if (!bv->bv_page) {
927 while (--bv >= bio->bi_io_vec)
928 __free_page(bv->bv_page);
929 return -ENOMEM;
930 }
931 }
932
933 return 0;
934 }
935 EXPORT_SYMBOL(bio_alloc_pages);
936
937 /**
938 * bio_copy_data - copy contents of data buffers from one chain of bios to
939 * another
940 * @src: source bio list
941 * @dst: destination bio list
942 *
943 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
944 * @src and @dst as linked lists of bios.
945 *
946 * Stops when it reaches the end of either @src or @dst - that is, copies
947 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
948 */
949 void bio_copy_data(struct bio *dst, struct bio *src)
950 {
951 struct bvec_iter src_iter, dst_iter;
952 struct bio_vec src_bv, dst_bv;
953 void *src_p, *dst_p;
954 unsigned bytes;
955
956 src_iter = src->bi_iter;
957 dst_iter = dst->bi_iter;
958
959 while (1) {
960 if (!src_iter.bi_size) {
961 src = src->bi_next;
962 if (!src)
963 break;
964
965 src_iter = src->bi_iter;
966 }
967
968 if (!dst_iter.bi_size) {
969 dst = dst->bi_next;
970 if (!dst)
971 break;
972
973 dst_iter = dst->bi_iter;
974 }
975
976 src_bv = bio_iter_iovec(src, src_iter);
977 dst_bv = bio_iter_iovec(dst, dst_iter);
978
979 bytes = min(src_bv.bv_len, dst_bv.bv_len);
980
981 src_p = kmap_atomic(src_bv.bv_page);
982 dst_p = kmap_atomic(dst_bv.bv_page);
983
984 memcpy(dst_p + dst_bv.bv_offset,
985 src_p + src_bv.bv_offset,
986 bytes);
987
988 kunmap_atomic(dst_p);
989 kunmap_atomic(src_p);
990
991 bio_advance_iter(src, &src_iter, bytes);
992 bio_advance_iter(dst, &dst_iter, bytes);
993 }
994 }
995 EXPORT_SYMBOL(bio_copy_data);
996
997 struct bio_map_data {
998 int is_our_pages;
999 struct iov_iter iter;
1000 struct iovec iov[];
1001 };
1002
1003 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1004 gfp_t gfp_mask)
1005 {
1006 if (iov_count > UIO_MAXIOV)
1007 return NULL;
1008
1009 return kmalloc(sizeof(struct bio_map_data) +
1010 sizeof(struct iovec) * iov_count, gfp_mask);
1011 }
1012
1013 /**
1014 * bio_copy_from_iter - copy all pages from iov_iter to bio
1015 * @bio: The &struct bio which describes the I/O as destination
1016 * @iter: iov_iter as source
1017 *
1018 * Copy all pages from iov_iter to bio.
1019 * Returns 0 on success, or error on failure.
1020 */
1021 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1022 {
1023 int i;
1024 struct bio_vec *bvec;
1025
1026 bio_for_each_segment_all(bvec, bio, i) {
1027 ssize_t ret;
1028
1029 ret = copy_page_from_iter(bvec->bv_page,
1030 bvec->bv_offset,
1031 bvec->bv_len,
1032 &iter);
1033
1034 if (!iov_iter_count(&iter))
1035 break;
1036
1037 if (ret < bvec->bv_len)
1038 return -EFAULT;
1039 }
1040
1041 return 0;
1042 }
1043
1044 /**
1045 * bio_copy_to_iter - copy all pages from bio to iov_iter
1046 * @bio: The &struct bio which describes the I/O as source
1047 * @iter: iov_iter as destination
1048 *
1049 * Copy all pages from bio to iov_iter.
1050 * Returns 0 on success, or error on failure.
1051 */
1052 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1053 {
1054 int i;
1055 struct bio_vec *bvec;
1056
1057 bio_for_each_segment_all(bvec, bio, i) {
1058 ssize_t ret;
1059
1060 ret = copy_page_to_iter(bvec->bv_page,
1061 bvec->bv_offset,
1062 bvec->bv_len,
1063 &iter);
1064
1065 if (!iov_iter_count(&iter))
1066 break;
1067
1068 if (ret < bvec->bv_len)
1069 return -EFAULT;
1070 }
1071
1072 return 0;
1073 }
1074
1075 static void bio_free_pages(struct bio *bio)
1076 {
1077 struct bio_vec *bvec;
1078 int i;
1079
1080 bio_for_each_segment_all(bvec, bio, i)
1081 __free_page(bvec->bv_page);
1082 }
1083
1084 /**
1085 * bio_uncopy_user - finish previously mapped bio
1086 * @bio: bio being terminated
1087 *
1088 * Free pages allocated from bio_copy_user_iov() and write back data
1089 * to user space in case of a read.
1090 */
1091 int bio_uncopy_user(struct bio *bio)
1092 {
1093 struct bio_map_data *bmd = bio->bi_private;
1094 int ret = 0;
1095
1096 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1097 /*
1098 * if we're in a workqueue, the request is orphaned, so
1099 * don't copy into a random user address space, just free.
1100 */
1101 if (current->mm && bio_data_dir(bio) == READ)
1102 ret = bio_copy_to_iter(bio, bmd->iter);
1103 if (bmd->is_our_pages)
1104 bio_free_pages(bio);
1105 }
1106 kfree(bmd);
1107 bio_put(bio);
1108 return ret;
1109 }
1110 EXPORT_SYMBOL(bio_uncopy_user);
1111
1112 /**
1113 * bio_copy_user_iov - copy user data to bio
1114 * @q: destination block queue
1115 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1116 * @iter: iovec iterator
1117 * @gfp_mask: memory allocation flags
1118 *
1119 * Prepares and returns a bio for indirect user io, bouncing data
1120 * to/from kernel pages as necessary. Must be paired with
1121 * call bio_uncopy_user() on io completion.
1122 */
1123 struct bio *bio_copy_user_iov(struct request_queue *q,
1124 struct rq_map_data *map_data,
1125 const struct iov_iter *iter,
1126 gfp_t gfp_mask)
1127 {
1128 struct bio_map_data *bmd;
1129 struct page *page;
1130 struct bio *bio;
1131 int i, ret;
1132 int nr_pages = 0;
1133 unsigned int len = iter->count;
1134 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1135
1136 for (i = 0; i < iter->nr_segs; i++) {
1137 unsigned long uaddr;
1138 unsigned long end;
1139 unsigned long start;
1140
1141 uaddr = (unsigned long) iter->iov[i].iov_base;
1142 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1143 >> PAGE_SHIFT;
1144 start = uaddr >> PAGE_SHIFT;
1145
1146 /*
1147 * Overflow, abort
1148 */
1149 if (end < start)
1150 return ERR_PTR(-EINVAL);
1151
1152 nr_pages += end - start;
1153 }
1154
1155 if (offset)
1156 nr_pages++;
1157
1158 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1159 if (!bmd)
1160 return ERR_PTR(-ENOMEM);
1161
1162 /*
1163 * We need to do a deep copy of the iov_iter including the iovecs.
1164 * The caller provided iov might point to an on-stack or otherwise
1165 * shortlived one.
1166 */
1167 bmd->is_our_pages = map_data ? 0 : 1;
1168 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1169 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1170 iter->nr_segs, iter->count);
1171
1172 ret = -ENOMEM;
1173 bio = bio_kmalloc(gfp_mask, nr_pages);
1174 if (!bio)
1175 goto out_bmd;
1176
1177 if (iter->type & WRITE)
1178 bio->bi_rw |= REQ_WRITE;
1179
1180 ret = 0;
1181
1182 if (map_data) {
1183 nr_pages = 1 << map_data->page_order;
1184 i = map_data->offset / PAGE_SIZE;
1185 }
1186 while (len) {
1187 unsigned int bytes = PAGE_SIZE;
1188
1189 bytes -= offset;
1190
1191 if (bytes > len)
1192 bytes = len;
1193
1194 if (map_data) {
1195 if (i == map_data->nr_entries * nr_pages) {
1196 ret = -ENOMEM;
1197 break;
1198 }
1199
1200 page = map_data->pages[i / nr_pages];
1201 page += (i % nr_pages);
1202
1203 i++;
1204 } else {
1205 page = alloc_page(q->bounce_gfp | gfp_mask);
1206 if (!page) {
1207 ret = -ENOMEM;
1208 break;
1209 }
1210 }
1211
1212 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1213 break;
1214
1215 len -= bytes;
1216 offset = 0;
1217 }
1218
1219 if (ret)
1220 goto cleanup;
1221
1222 /*
1223 * success
1224 */
1225 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1226 (map_data && map_data->from_user)) {
1227 ret = bio_copy_from_iter(bio, *iter);
1228 if (ret)
1229 goto cleanup;
1230 }
1231
1232 bio->bi_private = bmd;
1233 return bio;
1234 cleanup:
1235 if (!map_data)
1236 bio_free_pages(bio);
1237 bio_put(bio);
1238 out_bmd:
1239 kfree(bmd);
1240 return ERR_PTR(ret);
1241 }
1242
1243 /**
1244 * bio_map_user_iov - map user iovec into bio
1245 * @q: the struct request_queue for the bio
1246 * @iter: iovec iterator
1247 * @gfp_mask: memory allocation flags
1248 *
1249 * Map the user space address into a bio suitable for io to a block
1250 * device. Returns an error pointer in case of error.
1251 */
1252 struct bio *bio_map_user_iov(struct request_queue *q,
1253 const struct iov_iter *iter,
1254 gfp_t gfp_mask)
1255 {
1256 int j;
1257 int nr_pages = 0;
1258 struct page **pages;
1259 struct bio *bio;
1260 int cur_page = 0;
1261 int ret, offset;
1262 struct iov_iter i;
1263 struct iovec iov;
1264
1265 iov_for_each(iov, i, *iter) {
1266 unsigned long uaddr = (unsigned long) iov.iov_base;
1267 unsigned long len = iov.iov_len;
1268 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269 unsigned long start = uaddr >> PAGE_SHIFT;
1270
1271 /*
1272 * Overflow, abort
1273 */
1274 if (end < start)
1275 return ERR_PTR(-EINVAL);
1276
1277 nr_pages += end - start;
1278 /*
1279 * buffer must be aligned to at least hardsector size for now
1280 */
1281 if (uaddr & queue_dma_alignment(q))
1282 return ERR_PTR(-EINVAL);
1283 }
1284
1285 if (!nr_pages)
1286 return ERR_PTR(-EINVAL);
1287
1288 bio = bio_kmalloc(gfp_mask, nr_pages);
1289 if (!bio)
1290 return ERR_PTR(-ENOMEM);
1291
1292 ret = -ENOMEM;
1293 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1294 if (!pages)
1295 goto out;
1296
1297 iov_for_each(iov, i, *iter) {
1298 unsigned long uaddr = (unsigned long) iov.iov_base;
1299 unsigned long len = iov.iov_len;
1300 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301 unsigned long start = uaddr >> PAGE_SHIFT;
1302 const int local_nr_pages = end - start;
1303 const int page_limit = cur_page + local_nr_pages;
1304
1305 ret = get_user_pages_fast(uaddr, local_nr_pages,
1306 (iter->type & WRITE) != WRITE,
1307 &pages[cur_page]);
1308 if (ret < local_nr_pages) {
1309 ret = -EFAULT;
1310 goto out_unmap;
1311 }
1312
1313 offset = offset_in_page(uaddr);
1314 for (j = cur_page; j < page_limit; j++) {
1315 unsigned int bytes = PAGE_SIZE - offset;
1316
1317 if (len <= 0)
1318 break;
1319
1320 if (bytes > len)
1321 bytes = len;
1322
1323 /*
1324 * sorry...
1325 */
1326 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1327 bytes)
1328 break;
1329
1330 len -= bytes;
1331 offset = 0;
1332 }
1333
1334 cur_page = j;
1335 /*
1336 * release the pages we didn't map into the bio, if any
1337 */
1338 while (j < page_limit)
1339 page_cache_release(pages[j++]);
1340 }
1341
1342 kfree(pages);
1343
1344 /*
1345 * set data direction, and check if mapped pages need bouncing
1346 */
1347 if (iter->type & WRITE)
1348 bio->bi_rw |= REQ_WRITE;
1349
1350 bio_set_flag(bio, BIO_USER_MAPPED);
1351
1352 /*
1353 * subtle -- if __bio_map_user() ended up bouncing a bio,
1354 * it would normally disappear when its bi_end_io is run.
1355 * however, we need it for the unmap, so grab an extra
1356 * reference to it
1357 */
1358 bio_get(bio);
1359 return bio;
1360
1361 out_unmap:
1362 for (j = 0; j < nr_pages; j++) {
1363 if (!pages[j])
1364 break;
1365 page_cache_release(pages[j]);
1366 }
1367 out:
1368 kfree(pages);
1369 bio_put(bio);
1370 return ERR_PTR(ret);
1371 }
1372
1373 static void __bio_unmap_user(struct bio *bio)
1374 {
1375 struct bio_vec *bvec;
1376 int i;
1377
1378 /*
1379 * make sure we dirty pages we wrote to
1380 */
1381 bio_for_each_segment_all(bvec, bio, i) {
1382 if (bio_data_dir(bio) == READ)
1383 set_page_dirty_lock(bvec->bv_page);
1384
1385 page_cache_release(bvec->bv_page);
1386 }
1387
1388 bio_put(bio);
1389 }
1390
1391 /**
1392 * bio_unmap_user - unmap a bio
1393 * @bio: the bio being unmapped
1394 *
1395 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1396 * a process context.
1397 *
1398 * bio_unmap_user() may sleep.
1399 */
1400 void bio_unmap_user(struct bio *bio)
1401 {
1402 __bio_unmap_user(bio);
1403 bio_put(bio);
1404 }
1405 EXPORT_SYMBOL(bio_unmap_user);
1406
1407 static void bio_map_kern_endio(struct bio *bio)
1408 {
1409 bio_put(bio);
1410 }
1411
1412 /**
1413 * bio_map_kern - map kernel address into bio
1414 * @q: the struct request_queue for the bio
1415 * @data: pointer to buffer to map
1416 * @len: length in bytes
1417 * @gfp_mask: allocation flags for bio allocation
1418 *
1419 * Map the kernel address into a bio suitable for io to a block
1420 * device. Returns an error pointer in case of error.
1421 */
1422 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1423 gfp_t gfp_mask)
1424 {
1425 unsigned long kaddr = (unsigned long)data;
1426 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1427 unsigned long start = kaddr >> PAGE_SHIFT;
1428 const int nr_pages = end - start;
1429 int offset, i;
1430 struct bio *bio;
1431
1432 bio = bio_kmalloc(gfp_mask, nr_pages);
1433 if (!bio)
1434 return ERR_PTR(-ENOMEM);
1435
1436 offset = offset_in_page(kaddr);
1437 for (i = 0; i < nr_pages; i++) {
1438 unsigned int bytes = PAGE_SIZE - offset;
1439
1440 if (len <= 0)
1441 break;
1442
1443 if (bytes > len)
1444 bytes = len;
1445
1446 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1447 offset) < bytes) {
1448 /* we don't support partial mappings */
1449 bio_put(bio);
1450 return ERR_PTR(-EINVAL);
1451 }
1452
1453 data += bytes;
1454 len -= bytes;
1455 offset = 0;
1456 }
1457
1458 bio->bi_end_io = bio_map_kern_endio;
1459 return bio;
1460 }
1461 EXPORT_SYMBOL(bio_map_kern);
1462
1463 static void bio_copy_kern_endio(struct bio *bio)
1464 {
1465 bio_free_pages(bio);
1466 bio_put(bio);
1467 }
1468
1469 static void bio_copy_kern_endio_read(struct bio *bio)
1470 {
1471 char *p = bio->bi_private;
1472 struct bio_vec *bvec;
1473 int i;
1474
1475 bio_for_each_segment_all(bvec, bio, i) {
1476 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1477 p += bvec->bv_len;
1478 }
1479
1480 bio_copy_kern_endio(bio);
1481 }
1482
1483 /**
1484 * bio_copy_kern - copy kernel address into bio
1485 * @q: the struct request_queue for the bio
1486 * @data: pointer to buffer to copy
1487 * @len: length in bytes
1488 * @gfp_mask: allocation flags for bio and page allocation
1489 * @reading: data direction is READ
1490 *
1491 * copy the kernel address into a bio suitable for io to a block
1492 * device. Returns an error pointer in case of error.
1493 */
1494 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1495 gfp_t gfp_mask, int reading)
1496 {
1497 unsigned long kaddr = (unsigned long)data;
1498 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1499 unsigned long start = kaddr >> PAGE_SHIFT;
1500 struct bio *bio;
1501 void *p = data;
1502 int nr_pages = 0;
1503
1504 /*
1505 * Overflow, abort
1506 */
1507 if (end < start)
1508 return ERR_PTR(-EINVAL);
1509
1510 nr_pages = end - start;
1511 bio = bio_kmalloc(gfp_mask, nr_pages);
1512 if (!bio)
1513 return ERR_PTR(-ENOMEM);
1514
1515 while (len) {
1516 struct page *page;
1517 unsigned int bytes = PAGE_SIZE;
1518
1519 if (bytes > len)
1520 bytes = len;
1521
1522 page = alloc_page(q->bounce_gfp | gfp_mask);
1523 if (!page)
1524 goto cleanup;
1525
1526 if (!reading)
1527 memcpy(page_address(page), p, bytes);
1528
1529 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1530 break;
1531
1532 len -= bytes;
1533 p += bytes;
1534 }
1535
1536 if (reading) {
1537 bio->bi_end_io = bio_copy_kern_endio_read;
1538 bio->bi_private = data;
1539 } else {
1540 bio->bi_end_io = bio_copy_kern_endio;
1541 bio->bi_rw |= REQ_WRITE;
1542 }
1543
1544 return bio;
1545
1546 cleanup:
1547 bio_free_pages(bio);
1548 bio_put(bio);
1549 return ERR_PTR(-ENOMEM);
1550 }
1551 EXPORT_SYMBOL(bio_copy_kern);
1552
1553 /*
1554 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1555 * for performing direct-IO in BIOs.
1556 *
1557 * The problem is that we cannot run set_page_dirty() from interrupt context
1558 * because the required locks are not interrupt-safe. So what we can do is to
1559 * mark the pages dirty _before_ performing IO. And in interrupt context,
1560 * check that the pages are still dirty. If so, fine. If not, redirty them
1561 * in process context.
1562 *
1563 * We special-case compound pages here: normally this means reads into hugetlb
1564 * pages. The logic in here doesn't really work right for compound pages
1565 * because the VM does not uniformly chase down the head page in all cases.
1566 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1567 * handle them at all. So we skip compound pages here at an early stage.
1568 *
1569 * Note that this code is very hard to test under normal circumstances because
1570 * direct-io pins the pages with get_user_pages(). This makes
1571 * is_page_cache_freeable return false, and the VM will not clean the pages.
1572 * But other code (eg, flusher threads) could clean the pages if they are mapped
1573 * pagecache.
1574 *
1575 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1576 * deferred bio dirtying paths.
1577 */
1578
1579 /*
1580 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1581 */
1582 void bio_set_pages_dirty(struct bio *bio)
1583 {
1584 struct bio_vec *bvec;
1585 int i;
1586
1587 bio_for_each_segment_all(bvec, bio, i) {
1588 struct page *page = bvec->bv_page;
1589
1590 if (page && !PageCompound(page))
1591 set_page_dirty_lock(page);
1592 }
1593 }
1594
1595 static void bio_release_pages(struct bio *bio)
1596 {
1597 struct bio_vec *bvec;
1598 int i;
1599
1600 bio_for_each_segment_all(bvec, bio, i) {
1601 struct page *page = bvec->bv_page;
1602
1603 if (page)
1604 put_page(page);
1605 }
1606 }
1607
1608 /*
1609 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1610 * If they are, then fine. If, however, some pages are clean then they must
1611 * have been written out during the direct-IO read. So we take another ref on
1612 * the BIO and the offending pages and re-dirty the pages in process context.
1613 *
1614 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1615 * here on. It will run one page_cache_release() against each page and will
1616 * run one bio_put() against the BIO.
1617 */
1618
1619 static void bio_dirty_fn(struct work_struct *work);
1620
1621 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1622 static DEFINE_SPINLOCK(bio_dirty_lock);
1623 static struct bio *bio_dirty_list;
1624
1625 /*
1626 * This runs in process context
1627 */
1628 static void bio_dirty_fn(struct work_struct *work)
1629 {
1630 unsigned long flags;
1631 struct bio *bio;
1632
1633 spin_lock_irqsave(&bio_dirty_lock, flags);
1634 bio = bio_dirty_list;
1635 bio_dirty_list = NULL;
1636 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1637
1638 while (bio) {
1639 struct bio *next = bio->bi_private;
1640
1641 bio_set_pages_dirty(bio);
1642 bio_release_pages(bio);
1643 bio_put(bio);
1644 bio = next;
1645 }
1646 }
1647
1648 void bio_check_pages_dirty(struct bio *bio)
1649 {
1650 struct bio_vec *bvec;
1651 int nr_clean_pages = 0;
1652 int i;
1653
1654 bio_for_each_segment_all(bvec, bio, i) {
1655 struct page *page = bvec->bv_page;
1656
1657 if (PageDirty(page) || PageCompound(page)) {
1658 page_cache_release(page);
1659 bvec->bv_page = NULL;
1660 } else {
1661 nr_clean_pages++;
1662 }
1663 }
1664
1665 if (nr_clean_pages) {
1666 unsigned long flags;
1667
1668 spin_lock_irqsave(&bio_dirty_lock, flags);
1669 bio->bi_private = bio_dirty_list;
1670 bio_dirty_list = bio;
1671 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1672 schedule_work(&bio_dirty_work);
1673 } else {
1674 bio_put(bio);
1675 }
1676 }
1677
1678 void generic_start_io_acct(int rw, unsigned long sectors,
1679 struct hd_struct *part)
1680 {
1681 int cpu = part_stat_lock();
1682
1683 part_round_stats(cpu, part);
1684 part_stat_inc(cpu, part, ios[rw]);
1685 part_stat_add(cpu, part, sectors[rw], sectors);
1686 part_inc_in_flight(part, rw);
1687
1688 part_stat_unlock();
1689 }
1690 EXPORT_SYMBOL(generic_start_io_acct);
1691
1692 void generic_end_io_acct(int rw, struct hd_struct *part,
1693 unsigned long start_time)
1694 {
1695 unsigned long duration = jiffies - start_time;
1696 int cpu = part_stat_lock();
1697
1698 part_stat_add(cpu, part, ticks[rw], duration);
1699 part_round_stats(cpu, part);
1700 part_dec_in_flight(part, rw);
1701
1702 part_stat_unlock();
1703 }
1704 EXPORT_SYMBOL(generic_end_io_acct);
1705
1706 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1707 void bio_flush_dcache_pages(struct bio *bi)
1708 {
1709 struct bio_vec bvec;
1710 struct bvec_iter iter;
1711
1712 bio_for_each_segment(bvec, bi, iter)
1713 flush_dcache_page(bvec.bv_page);
1714 }
1715 EXPORT_SYMBOL(bio_flush_dcache_pages);
1716 #endif
1717
1718 static inline bool bio_remaining_done(struct bio *bio)
1719 {
1720 /*
1721 * If we're not chaining, then ->__bi_remaining is always 1 and
1722 * we always end io on the first invocation.
1723 */
1724 if (!bio_flagged(bio, BIO_CHAIN))
1725 return true;
1726
1727 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1728
1729 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1730 bio_clear_flag(bio, BIO_CHAIN);
1731 return true;
1732 }
1733
1734 return false;
1735 }
1736
1737 /**
1738 * bio_endio - end I/O on a bio
1739 * @bio: bio
1740 *
1741 * Description:
1742 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1743 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1744 * bio unless they own it and thus know that it has an end_io function.
1745 **/
1746 void bio_endio(struct bio *bio)
1747 {
1748 again:
1749 if (unlikely(!bio_remaining_done(bio)))
1750 return;
1751
1752 /*
1753 * Need to have a real endio function for chained bios, otherwise
1754 * various corner cases will break (like stacking block devices that
1755 * save/restore bi_end_io) - however, we want to avoid unbounded
1756 * recursion and blowing the stack. Tail call optimization would
1757 * handle this, but compiling with frame pointers also disables
1758 * gcc's sibling call optimization.
1759 */
1760 if (bio->bi_end_io == bio_chain_endio) {
1761 bio = __bio_chain_endio(bio);
1762 goto again;
1763 }
1764
1765 if (bio->bi_end_io)
1766 bio->bi_end_io(bio);
1767 }
1768 EXPORT_SYMBOL(bio_endio);
1769
1770 /**
1771 * bio_split - split a bio
1772 * @bio: bio to split
1773 * @sectors: number of sectors to split from the front of @bio
1774 * @gfp: gfp mask
1775 * @bs: bio set to allocate from
1776 *
1777 * Allocates and returns a new bio which represents @sectors from the start of
1778 * @bio, and updates @bio to represent the remaining sectors.
1779 *
1780 * Unless this is a discard request the newly allocated bio will point
1781 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1782 * @bio is not freed before the split.
1783 */
1784 struct bio *bio_split(struct bio *bio, int sectors,
1785 gfp_t gfp, struct bio_set *bs)
1786 {
1787 struct bio *split = NULL;
1788
1789 BUG_ON(sectors <= 0);
1790 BUG_ON(sectors >= bio_sectors(bio));
1791
1792 /*
1793 * Discards need a mutable bio_vec to accommodate the payload
1794 * required by the DSM TRIM and UNMAP commands.
1795 */
1796 if (bio->bi_rw & REQ_DISCARD)
1797 split = bio_clone_bioset(bio, gfp, bs);
1798 else
1799 split = bio_clone_fast(bio, gfp, bs);
1800
1801 if (!split)
1802 return NULL;
1803
1804 split->bi_iter.bi_size = sectors << 9;
1805
1806 if (bio_integrity(split))
1807 bio_integrity_trim(split, 0, sectors);
1808
1809 bio_advance(bio, split->bi_iter.bi_size);
1810
1811 return split;
1812 }
1813 EXPORT_SYMBOL(bio_split);
1814
1815 /**
1816 * bio_trim - trim a bio
1817 * @bio: bio to trim
1818 * @offset: number of sectors to trim from the front of @bio
1819 * @size: size we want to trim @bio to, in sectors
1820 */
1821 void bio_trim(struct bio *bio, int offset, int size)
1822 {
1823 /* 'bio' is a cloned bio which we need to trim to match
1824 * the given offset and size.
1825 */
1826
1827 size <<= 9;
1828 if (offset == 0 && size == bio->bi_iter.bi_size)
1829 return;
1830
1831 bio_clear_flag(bio, BIO_SEG_VALID);
1832
1833 bio_advance(bio, offset << 9);
1834
1835 bio->bi_iter.bi_size = size;
1836 }
1837 EXPORT_SYMBOL_GPL(bio_trim);
1838
1839 /*
1840 * create memory pools for biovec's in a bio_set.
1841 * use the global biovec slabs created for general use.
1842 */
1843 mempool_t *biovec_create_pool(int pool_entries)
1844 {
1845 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1846
1847 return mempool_create_slab_pool(pool_entries, bp->slab);
1848 }
1849
1850 void bioset_free(struct bio_set *bs)
1851 {
1852 if (bs->rescue_workqueue)
1853 destroy_workqueue(bs->rescue_workqueue);
1854
1855 if (bs->bio_pool)
1856 mempool_destroy(bs->bio_pool);
1857
1858 if (bs->bvec_pool)
1859 mempool_destroy(bs->bvec_pool);
1860
1861 bioset_integrity_free(bs);
1862 bio_put_slab(bs);
1863
1864 kfree(bs);
1865 }
1866 EXPORT_SYMBOL(bioset_free);
1867
1868 static struct bio_set *__bioset_create(unsigned int pool_size,
1869 unsigned int front_pad,
1870 bool create_bvec_pool)
1871 {
1872 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1873 struct bio_set *bs;
1874
1875 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1876 if (!bs)
1877 return NULL;
1878
1879 bs->front_pad = front_pad;
1880
1881 spin_lock_init(&bs->rescue_lock);
1882 bio_list_init(&bs->rescue_list);
1883 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1884
1885 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1886 if (!bs->bio_slab) {
1887 kfree(bs);
1888 return NULL;
1889 }
1890
1891 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1892 if (!bs->bio_pool)
1893 goto bad;
1894
1895 if (create_bvec_pool) {
1896 bs->bvec_pool = biovec_create_pool(pool_size);
1897 if (!bs->bvec_pool)
1898 goto bad;
1899 }
1900
1901 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1902 if (!bs->rescue_workqueue)
1903 goto bad;
1904
1905 return bs;
1906 bad:
1907 bioset_free(bs);
1908 return NULL;
1909 }
1910
1911 /**
1912 * bioset_create - Create a bio_set
1913 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1914 * @front_pad: Number of bytes to allocate in front of the returned bio
1915 *
1916 * Description:
1917 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1918 * to ask for a number of bytes to be allocated in front of the bio.
1919 * Front pad allocation is useful for embedding the bio inside
1920 * another structure, to avoid allocating extra data to go with the bio.
1921 * Note that the bio must be embedded at the END of that structure always,
1922 * or things will break badly.
1923 */
1924 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1925 {
1926 return __bioset_create(pool_size, front_pad, true);
1927 }
1928 EXPORT_SYMBOL(bioset_create);
1929
1930 /**
1931 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1932 * @pool_size: Number of bio to cache in the mempool
1933 * @front_pad: Number of bytes to allocate in front of the returned bio
1934 *
1935 * Description:
1936 * Same functionality as bioset_create() except that mempool is not
1937 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1938 */
1939 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1940 {
1941 return __bioset_create(pool_size, front_pad, false);
1942 }
1943 EXPORT_SYMBOL(bioset_create_nobvec);
1944
1945 #ifdef CONFIG_BLK_CGROUP
1946
1947 /**
1948 * bio_associate_blkcg - associate a bio with the specified blkcg
1949 * @bio: target bio
1950 * @blkcg_css: css of the blkcg to associate
1951 *
1952 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1953 * treat @bio as if it were issued by a task which belongs to the blkcg.
1954 *
1955 * This function takes an extra reference of @blkcg_css which will be put
1956 * when @bio is released. The caller must own @bio and is responsible for
1957 * synchronizing calls to this function.
1958 */
1959 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1960 {
1961 if (unlikely(bio->bi_css))
1962 return -EBUSY;
1963 css_get(blkcg_css);
1964 bio->bi_css = blkcg_css;
1965 return 0;
1966 }
1967 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1968
1969 /**
1970 * bio_associate_current - associate a bio with %current
1971 * @bio: target bio
1972 *
1973 * Associate @bio with %current if it hasn't been associated yet. Block
1974 * layer will treat @bio as if it were issued by %current no matter which
1975 * task actually issues it.
1976 *
1977 * This function takes an extra reference of @task's io_context and blkcg
1978 * which will be put when @bio is released. The caller must own @bio,
1979 * ensure %current->io_context exists, and is responsible for synchronizing
1980 * calls to this function.
1981 */
1982 int bio_associate_current(struct bio *bio)
1983 {
1984 struct io_context *ioc;
1985
1986 if (bio->bi_css)
1987 return -EBUSY;
1988
1989 ioc = current->io_context;
1990 if (!ioc)
1991 return -ENOENT;
1992
1993 get_io_context_active(ioc);
1994 bio->bi_ioc = ioc;
1995 bio->bi_css = task_get_css(current, io_cgrp_id);
1996 return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(bio_associate_current);
1999
2000 /**
2001 * bio_disassociate_task - undo bio_associate_current()
2002 * @bio: target bio
2003 */
2004 void bio_disassociate_task(struct bio *bio)
2005 {
2006 if (bio->bi_ioc) {
2007 put_io_context(bio->bi_ioc);
2008 bio->bi_ioc = NULL;
2009 }
2010 if (bio->bi_css) {
2011 css_put(bio->bi_css);
2012 bio->bi_css = NULL;
2013 }
2014 }
2015
2016 #endif /* CONFIG_BLK_CGROUP */
2017
2018 static void __init biovec_init_slabs(void)
2019 {
2020 int i;
2021
2022 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2023 int size;
2024 struct biovec_slab *bvs = bvec_slabs + i;
2025
2026 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2027 bvs->slab = NULL;
2028 continue;
2029 }
2030
2031 size = bvs->nr_vecs * sizeof(struct bio_vec);
2032 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2033 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2034 }
2035 }
2036
2037 static int __init init_bio(void)
2038 {
2039 bio_slab_max = 2;
2040 bio_slab_nr = 0;
2041 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2042 if (!bio_slabs)
2043 panic("bio: can't allocate bios\n");
2044
2045 bio_integrity_init();
2046 biovec_init_slabs();
2047
2048 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2049 if (!fs_bio_set)
2050 panic("bio: can't allocate bios\n");
2051
2052 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2053 panic("bio: can't create integrity pool\n");
2054
2055 return 0;
2056 }
2057 subsys_initcall(init_bio);
This page took 0.068135 seconds and 4 git commands to generate.