ata: add AMD Seattle platform driver
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74 return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79 {
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100 {
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117 {
118 trace_ext4_begin_ordered_truncate(inode, new_size);
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
138
139 /*
140 * Test whether an inode is a fast symlink.
141 */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147 if (ext4_has_inline_data(inode))
148 return 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages_final(&inode->i_data);
218
219 goto no_delete;
220 }
221
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
229
230 /*
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
233 */
234 sb_start_intwrite(inode->i_sb);
235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
244 ext4_orphan_del(NULL, inode);
245 sb_end_intwrite(inode->i_sb);
246 goto no_delete;
247 }
248
249 if (IS_SYNC(inode))
250 ext4_handle_sync(handle);
251 inode->i_size = 0;
252 err = ext4_mark_inode_dirty(handle, inode);
253 if (err) {
254 ext4_warning(inode->i_sb,
255 "couldn't mark inode dirty (err %d)", err);
256 goto stop_handle;
257 }
258 if (inode->i_blocks)
259 ext4_truncate(inode);
260
261 /*
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
266 */
267 if (!ext4_handle_has_enough_credits(handle, 3)) {
268 err = ext4_journal_extend(handle, 3);
269 if (err > 0)
270 err = ext4_journal_restart(handle, 3);
271 if (err != 0) {
272 ext4_warning(inode->i_sb,
273 "couldn't extend journal (err %d)", err);
274 stop_handle:
275 ext4_journal_stop(handle);
276 ext4_orphan_del(NULL, inode);
277 sb_end_intwrite(inode->i_sb);
278 goto no_delete;
279 }
280 }
281
282 /*
283 * Kill off the orphan record which ext4_truncate created.
284 * AKPM: I think this can be inside the above `if'.
285 * Note that ext4_orphan_del() has to be able to cope with the
286 * deletion of a non-existent orphan - this is because we don't
287 * know if ext4_truncate() actually created an orphan record.
288 * (Well, we could do this if we need to, but heck - it works)
289 */
290 ext4_orphan_del(handle, inode);
291 EXT4_I(inode)->i_dtime = get_seconds();
292
293 /*
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
298 * fails.
299 */
300 if (ext4_mark_inode_dirty(handle, inode))
301 /* If that failed, just do the required in-core inode clear. */
302 ext4_clear_inode(inode);
303 else
304 ext4_free_inode(handle, inode);
305 ext4_journal_stop(handle);
306 sb_end_intwrite(inode->i_sb);
307 return;
308 no_delete:
309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
310 }
311
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315 return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318
319 /*
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
322 */
323 void ext4_da_update_reserve_space(struct inode *inode,
324 int used, int quota_claim)
325 {
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 struct ext4_inode_info *ei = EXT4_I(inode);
328
329 spin_lock(&ei->i_block_reservation_lock);
330 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 if (unlikely(used > ei->i_reserved_data_blocks)) {
332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 "with only %d reserved data blocks",
334 __func__, inode->i_ino, used,
335 ei->i_reserved_data_blocks);
336 WARN_ON(1);
337 used = ei->i_reserved_data_blocks;
338 }
339
340 /* Update per-inode reservations */
341 ei->i_reserved_data_blocks -= used;
342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343
344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345
346 /* Update quota subsystem for data blocks */
347 if (quota_claim)
348 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349 else {
350 /*
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
353 * not re-claim the quota for fallocated blocks.
354 */
355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356 }
357
358 /*
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
362 */
363 if ((ei->i_reserved_data_blocks == 0) &&
364 (atomic_read(&inode->i_writecount) == 0))
365 ext4_discard_preallocations(inode);
366 }
367
368 static int __check_block_validity(struct inode *inode, const char *func,
369 unsigned int line,
370 struct ext4_map_blocks *map)
371 {
372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 map->m_len)) {
374 ext4_error_inode(inode, func, line, map->m_pblk,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map->m_lblk,
377 map->m_len);
378 return -EFSCORRUPTED;
379 }
380 return 0;
381 }
382
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 ext4_lblk_t len)
385 {
386 int ret;
387
388 if (ext4_encrypted_inode(inode))
389 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 if (ret > 0)
393 ret = 0;
394
395 return ret;
396 }
397
398 #define check_block_validity(inode, map) \
399 __check_block_validity((inode), __func__, __LINE__, (map))
400
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403 struct inode *inode,
404 struct ext4_map_blocks *es_map,
405 struct ext4_map_blocks *map,
406 int flags)
407 {
408 int retval;
409
410 map->m_flags = 0;
411 /*
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
417 */
418 down_read(&EXT4_I(inode)->i_data_sem);
419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 EXT4_GET_BLOCKS_KEEP_SIZE);
422 } else {
423 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 }
426 up_read((&EXT4_I(inode)->i_data_sem));
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
435 printk("ES cache assertion failed for inode: %lu "
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447 * The ext4_map_blocks() function tries to look up the requested blocks,
448 * and returns if the blocks are already mapped.
449 *
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456 * based files
457 *
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
465 *
466 * It returns the error in case of allocation failure.
467 */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
470 {
471 struct extent_status es;
472 int retval;
473 int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
484
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EFSCORRUPTED;
494
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
504 retval = map->m_len;
505 map->m_len = retval;
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 map->m_pblk = 0;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
512 retval = 0;
513 } else {
514 BUG_ON(1);
515 }
516 #ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle, inode, map,
518 &orig_map, flags);
519 #endif
520 goto found;
521 }
522
523 /*
524 * Try to see if we can get the block without requesting a new
525 * file system block.
526 */
527 down_read(&EXT4_I(inode)->i_data_sem);
528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
531 } else {
532 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 EXT4_GET_BLOCKS_KEEP_SIZE);
534 }
535 if (retval > 0) {
536 unsigned int status;
537
538 if (unlikely(retval != map->m_len)) {
539 ext4_warning(inode->i_sb,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode->i_ino, retval, map->m_len);
543 WARN_ON(1);
544 }
545
546 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 !(status & EXTENT_STATUS_WRITTEN) &&
550 ext4_find_delalloc_range(inode, map->m_lblk,
551 map->m_lblk + map->m_len - 1))
552 status |= EXTENT_STATUS_DELAYED;
553 ret = ext4_es_insert_extent(inode, map->m_lblk,
554 map->m_len, map->m_pblk, status);
555 if (ret < 0)
556 retval = ret;
557 }
558 up_read((&EXT4_I(inode)->i_data_sem));
559
560 found:
561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 ret = check_block_validity(inode, map);
563 if (ret != 0)
564 return ret;
565 }
566
567 /* If it is only a block(s) look up */
568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 return retval;
570
571 /*
572 * Returns if the blocks have already allocated
573 *
574 * Note that if blocks have been preallocated
575 * ext4_ext_get_block() returns the create = 0
576 * with buffer head unmapped.
577 */
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579 /*
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
583 */
584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 return retval;
586
587 /*
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
590 */
591 map->m_flags &= ~EXT4_MAP_FLAGS;
592
593 /*
594 * New blocks allocate and/or writing to unwritten extent
595 * will possibly result in updating i_data, so we take
596 * the write lock of i_data_sem, and call get_block()
597 * with create == 1 flag.
598 */
599 down_write(&EXT4_I(inode)->i_data_sem);
600
601 /*
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
604 */
605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607 } else {
608 retval = ext4_ind_map_blocks(handle, inode, map, flags);
609
610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611 /*
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
615 */
616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617 }
618
619 /*
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
624 */
625 if ((retval > 0) &&
626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 ext4_da_update_reserve_space(inode, retval, 1);
628 }
629
630 if (retval > 0) {
631 unsigned int status;
632
633 if (unlikely(retval != map->m_len)) {
634 ext4_warning(inode->i_sb,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode->i_ino, retval, map->m_len);
638 WARN_ON(1);
639 }
640
641 /*
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
645 */
646 if (flags & EXT4_GET_BLOCKS_ZERO &&
647 map->m_flags & EXT4_MAP_MAPPED &&
648 map->m_flags & EXT4_MAP_NEW) {
649 ret = ext4_issue_zeroout(inode, map->m_lblk,
650 map->m_pblk, map->m_len);
651 if (ret) {
652 retval = ret;
653 goto out_sem;
654 }
655 }
656
657 /*
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
660 */
661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 if (ext4_es_is_written(&es))
664 goto out_sem;
665 }
666 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 !(status & EXTENT_STATUS_WRITTEN) &&
670 ext4_find_delalloc_range(inode, map->m_lblk,
671 map->m_lblk + map->m_len - 1))
672 status |= EXTENT_STATUS_DELAYED;
673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 map->m_pblk, status);
675 if (ret < 0) {
676 retval = ret;
677 goto out_sem;
678 }
679 }
680
681 out_sem:
682 up_write((&EXT4_I(inode)->i_data_sem));
683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 ret = check_block_validity(inode, map);
685 if (ret != 0)
686 return ret;
687 }
688 return retval;
689 }
690
691 /*
692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693 * we have to be careful as someone else may be manipulating b_state as well.
694 */
695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696 {
697 unsigned long old_state;
698 unsigned long new_state;
699
700 flags &= EXT4_MAP_FLAGS;
701
702 /* Dummy buffer_head? Set non-atomically. */
703 if (!bh->b_page) {
704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705 return;
706 }
707 /*
708 * Someone else may be modifying b_state. Be careful! This is ugly but
709 * once we get rid of using bh as a container for mapping information
710 * to pass to / from get_block functions, this can go away.
711 */
712 do {
713 old_state = READ_ONCE(bh->b_state);
714 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715 } while (unlikely(
716 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717 }
718
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 struct buffer_head *bh, int flags)
721 {
722 struct ext4_map_blocks map;
723 int ret = 0;
724
725 if (ext4_has_inline_data(inode))
726 return -ERANGE;
727
728 map.m_lblk = iblock;
729 map.m_len = bh->b_size >> inode->i_blkbits;
730
731 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732 flags);
733 if (ret > 0) {
734 map_bh(bh, inode->i_sb, map.m_pblk);
735 ext4_update_bh_state(bh, map.m_flags);
736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 ret = 0;
738 }
739 return ret;
740 }
741
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh, int create)
744 {
745 return _ext4_get_block(inode, iblock, bh,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748
749 /*
750 * Get block function used when preparing for buffered write if we require
751 * creating an unwritten extent if blocks haven't been allocated. The extent
752 * will be converted to written after the IO is complete.
753 */
754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh_result, int create)
756 {
757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 inode->i_ino, create);
759 return _ext4_get_block(inode, iblock, bh_result,
760 EXT4_GET_BLOCKS_IO_CREATE_EXT);
761 }
762
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
765
766 static handle_t *start_dio_trans(struct inode *inode,
767 struct buffer_head *bh_result)
768 {
769 int dio_credits;
770
771 /* Trim mapping request to maximum we can map at once for DIO */
772 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
773 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
774 dio_credits = ext4_chunk_trans_blocks(inode,
775 bh_result->b_size >> inode->i_blkbits);
776 return ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
777 }
778
779 /* Get block function for DIO reads and writes to inodes without extents */
780 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782 {
783 handle_t *handle;
784 int ret;
785
786 /* We don't expect handle for direct IO */
787 WARN_ON_ONCE(ext4_journal_current_handle());
788
789 if (create) {
790 handle = start_dio_trans(inode, bh);
791 if (IS_ERR(handle))
792 return PTR_ERR(handle);
793 }
794 ret = _ext4_get_block(inode, iblock, bh,
795 create ? EXT4_GET_BLOCKS_CREATE : 0);
796 if (create)
797 ext4_journal_stop(handle);
798 return ret;
799 }
800
801 /*
802 * Get block function for AIO DIO writes when we create unwritten extent if
803 * blocks are not allocated yet. The extent will be converted to written
804 * after IO is complete.
805 */
806 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
807 sector_t iblock, struct buffer_head *bh_result, int create)
808 {
809 handle_t *handle;
810 int ret;
811
812 /* We don't expect handle for direct IO */
813 WARN_ON_ONCE(ext4_journal_current_handle());
814
815 handle = start_dio_trans(inode, bh_result);
816 if (IS_ERR(handle))
817 return PTR_ERR(handle);
818 ret = _ext4_get_block(inode, iblock, bh_result,
819 EXT4_GET_BLOCKS_IO_CREATE_EXT);
820 ext4_journal_stop(handle);
821
822 /*
823 * When doing DIO using unwritten extents, we need io_end to convert
824 * unwritten extents to written on IO completion. We allocate io_end
825 * once we spot unwritten extent and store it in b_private. Generic
826 * DIO code keeps b_private set and furthermore passes the value to
827 * our completion callback in 'private' argument.
828 */
829 if (!ret && buffer_unwritten(bh_result)) {
830 if (!bh_result->b_private) {
831 ext4_io_end_t *io_end;
832
833 io_end = ext4_init_io_end(inode, GFP_KERNEL);
834 if (!io_end)
835 return -ENOMEM;
836 bh_result->b_private = io_end;
837 ext4_set_io_unwritten_flag(inode, io_end);
838 }
839 set_buffer_defer_completion(bh_result);
840 }
841
842 return ret;
843 }
844
845 /*
846 * Get block function for non-AIO DIO writes when we create unwritten extent if
847 * blocks are not allocated yet. The extent will be converted to written
848 * after IO is complete from ext4_ext_direct_IO() function.
849 */
850 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
851 sector_t iblock, struct buffer_head *bh_result, int create)
852 {
853 handle_t *handle;
854 int ret;
855
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
859 handle = start_dio_trans(inode, bh_result);
860 if (IS_ERR(handle))
861 return PTR_ERR(handle);
862 ret = _ext4_get_block(inode, iblock, bh_result,
863 EXT4_GET_BLOCKS_IO_CREATE_EXT);
864 ext4_journal_stop(handle);
865
866 /*
867 * Mark inode as having pending DIO writes to unwritten extents.
868 * ext4_ext_direct_IO() checks this flag and converts extents to
869 * written.
870 */
871 if (!ret && buffer_unwritten(bh_result))
872 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
873
874 return ret;
875 }
876
877 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
878 struct buffer_head *bh_result, int create)
879 {
880 int ret;
881
882 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
883 inode->i_ino, create);
884 /* We don't expect handle for direct IO */
885 WARN_ON_ONCE(ext4_journal_current_handle());
886
887 ret = _ext4_get_block(inode, iblock, bh_result, 0);
888 /*
889 * Blocks should have been preallocated! ext4_file_write_iter() checks
890 * that.
891 */
892 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
893
894 return ret;
895 }
896
897
898 /*
899 * `handle' can be NULL if create is zero
900 */
901 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
902 ext4_lblk_t block, int map_flags)
903 {
904 struct ext4_map_blocks map;
905 struct buffer_head *bh;
906 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
907 int err;
908
909 J_ASSERT(handle != NULL || create == 0);
910
911 map.m_lblk = block;
912 map.m_len = 1;
913 err = ext4_map_blocks(handle, inode, &map, map_flags);
914
915 if (err == 0)
916 return create ? ERR_PTR(-ENOSPC) : NULL;
917 if (err < 0)
918 return ERR_PTR(err);
919
920 bh = sb_getblk(inode->i_sb, map.m_pblk);
921 if (unlikely(!bh))
922 return ERR_PTR(-ENOMEM);
923 if (map.m_flags & EXT4_MAP_NEW) {
924 J_ASSERT(create != 0);
925 J_ASSERT(handle != NULL);
926
927 /*
928 * Now that we do not always journal data, we should
929 * keep in mind whether this should always journal the
930 * new buffer as metadata. For now, regular file
931 * writes use ext4_get_block instead, so it's not a
932 * problem.
933 */
934 lock_buffer(bh);
935 BUFFER_TRACE(bh, "call get_create_access");
936 err = ext4_journal_get_create_access(handle, bh);
937 if (unlikely(err)) {
938 unlock_buffer(bh);
939 goto errout;
940 }
941 if (!buffer_uptodate(bh)) {
942 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
943 set_buffer_uptodate(bh);
944 }
945 unlock_buffer(bh);
946 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
947 err = ext4_handle_dirty_metadata(handle, inode, bh);
948 if (unlikely(err))
949 goto errout;
950 } else
951 BUFFER_TRACE(bh, "not a new buffer");
952 return bh;
953 errout:
954 brelse(bh);
955 return ERR_PTR(err);
956 }
957
958 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
959 ext4_lblk_t block, int map_flags)
960 {
961 struct buffer_head *bh;
962
963 bh = ext4_getblk(handle, inode, block, map_flags);
964 if (IS_ERR(bh))
965 return bh;
966 if (!bh || buffer_uptodate(bh))
967 return bh;
968 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
969 wait_on_buffer(bh);
970 if (buffer_uptodate(bh))
971 return bh;
972 put_bh(bh);
973 return ERR_PTR(-EIO);
974 }
975
976 int ext4_walk_page_buffers(handle_t *handle,
977 struct buffer_head *head,
978 unsigned from,
979 unsigned to,
980 int *partial,
981 int (*fn)(handle_t *handle,
982 struct buffer_head *bh))
983 {
984 struct buffer_head *bh;
985 unsigned block_start, block_end;
986 unsigned blocksize = head->b_size;
987 int err, ret = 0;
988 struct buffer_head *next;
989
990 for (bh = head, block_start = 0;
991 ret == 0 && (bh != head || !block_start);
992 block_start = block_end, bh = next) {
993 next = bh->b_this_page;
994 block_end = block_start + blocksize;
995 if (block_end <= from || block_start >= to) {
996 if (partial && !buffer_uptodate(bh))
997 *partial = 1;
998 continue;
999 }
1000 err = (*fn)(handle, bh);
1001 if (!ret)
1002 ret = err;
1003 }
1004 return ret;
1005 }
1006
1007 /*
1008 * To preserve ordering, it is essential that the hole instantiation and
1009 * the data write be encapsulated in a single transaction. We cannot
1010 * close off a transaction and start a new one between the ext4_get_block()
1011 * and the commit_write(). So doing the jbd2_journal_start at the start of
1012 * prepare_write() is the right place.
1013 *
1014 * Also, this function can nest inside ext4_writepage(). In that case, we
1015 * *know* that ext4_writepage() has generated enough buffer credits to do the
1016 * whole page. So we won't block on the journal in that case, which is good,
1017 * because the caller may be PF_MEMALLOC.
1018 *
1019 * By accident, ext4 can be reentered when a transaction is open via
1020 * quota file writes. If we were to commit the transaction while thus
1021 * reentered, there can be a deadlock - we would be holding a quota
1022 * lock, and the commit would never complete if another thread had a
1023 * transaction open and was blocking on the quota lock - a ranking
1024 * violation.
1025 *
1026 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1027 * will _not_ run commit under these circumstances because handle->h_ref
1028 * is elevated. We'll still have enough credits for the tiny quotafile
1029 * write.
1030 */
1031 int do_journal_get_write_access(handle_t *handle,
1032 struct buffer_head *bh)
1033 {
1034 int dirty = buffer_dirty(bh);
1035 int ret;
1036
1037 if (!buffer_mapped(bh) || buffer_freed(bh))
1038 return 0;
1039 /*
1040 * __block_write_begin() could have dirtied some buffers. Clean
1041 * the dirty bit as jbd2_journal_get_write_access() could complain
1042 * otherwise about fs integrity issues. Setting of the dirty bit
1043 * by __block_write_begin() isn't a real problem here as we clear
1044 * the bit before releasing a page lock and thus writeback cannot
1045 * ever write the buffer.
1046 */
1047 if (dirty)
1048 clear_buffer_dirty(bh);
1049 BUFFER_TRACE(bh, "get write access");
1050 ret = ext4_journal_get_write_access(handle, bh);
1051 if (!ret && dirty)
1052 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1053 return ret;
1054 }
1055
1056 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1057 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1058 get_block_t *get_block)
1059 {
1060 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1061 unsigned to = from + len;
1062 struct inode *inode = page->mapping->host;
1063 unsigned block_start, block_end;
1064 sector_t block;
1065 int err = 0;
1066 unsigned blocksize = inode->i_sb->s_blocksize;
1067 unsigned bbits;
1068 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1069 bool decrypt = false;
1070
1071 BUG_ON(!PageLocked(page));
1072 BUG_ON(from > PAGE_CACHE_SIZE);
1073 BUG_ON(to > PAGE_CACHE_SIZE);
1074 BUG_ON(from > to);
1075
1076 if (!page_has_buffers(page))
1077 create_empty_buffers(page, blocksize, 0);
1078 head = page_buffers(page);
1079 bbits = ilog2(blocksize);
1080 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1081
1082 for (bh = head, block_start = 0; bh != head || !block_start;
1083 block++, block_start = block_end, bh = bh->b_this_page) {
1084 block_end = block_start + blocksize;
1085 if (block_end <= from || block_start >= to) {
1086 if (PageUptodate(page)) {
1087 if (!buffer_uptodate(bh))
1088 set_buffer_uptodate(bh);
1089 }
1090 continue;
1091 }
1092 if (buffer_new(bh))
1093 clear_buffer_new(bh);
1094 if (!buffer_mapped(bh)) {
1095 WARN_ON(bh->b_size != blocksize);
1096 err = get_block(inode, block, bh, 1);
1097 if (err)
1098 break;
1099 if (buffer_new(bh)) {
1100 unmap_underlying_metadata(bh->b_bdev,
1101 bh->b_blocknr);
1102 if (PageUptodate(page)) {
1103 clear_buffer_new(bh);
1104 set_buffer_uptodate(bh);
1105 mark_buffer_dirty(bh);
1106 continue;
1107 }
1108 if (block_end > to || block_start < from)
1109 zero_user_segments(page, to, block_end,
1110 block_start, from);
1111 continue;
1112 }
1113 }
1114 if (PageUptodate(page)) {
1115 if (!buffer_uptodate(bh))
1116 set_buffer_uptodate(bh);
1117 continue;
1118 }
1119 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1120 !buffer_unwritten(bh) &&
1121 (block_start < from || block_end > to)) {
1122 ll_rw_block(READ, 1, &bh);
1123 *wait_bh++ = bh;
1124 decrypt = ext4_encrypted_inode(inode) &&
1125 S_ISREG(inode->i_mode);
1126 }
1127 }
1128 /*
1129 * If we issued read requests, let them complete.
1130 */
1131 while (wait_bh > wait) {
1132 wait_on_buffer(*--wait_bh);
1133 if (!buffer_uptodate(*wait_bh))
1134 err = -EIO;
1135 }
1136 if (unlikely(err))
1137 page_zero_new_buffers(page, from, to);
1138 else if (decrypt)
1139 err = ext4_decrypt(page);
1140 return err;
1141 }
1142 #endif
1143
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 loff_t pos, unsigned len, unsigned flags,
1146 struct page **pagep, void **fsdata)
1147 {
1148 struct inode *inode = mapping->host;
1149 int ret, needed_blocks;
1150 handle_t *handle;
1151 int retries = 0;
1152 struct page *page;
1153 pgoff_t index;
1154 unsigned from, to;
1155
1156 trace_ext4_write_begin(inode, pos, len, flags);
1157 /*
1158 * Reserve one block more for addition to orphan list in case
1159 * we allocate blocks but write fails for some reason
1160 */
1161 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1162 index = pos >> PAGE_CACHE_SHIFT;
1163 from = pos & (PAGE_CACHE_SIZE - 1);
1164 to = from + len;
1165
1166 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1167 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1168 flags, pagep);
1169 if (ret < 0)
1170 return ret;
1171 if (ret == 1)
1172 return 0;
1173 }
1174
1175 /*
1176 * grab_cache_page_write_begin() can take a long time if the
1177 * system is thrashing due to memory pressure, or if the page
1178 * is being written back. So grab it first before we start
1179 * the transaction handle. This also allows us to allocate
1180 * the page (if needed) without using GFP_NOFS.
1181 */
1182 retry_grab:
1183 page = grab_cache_page_write_begin(mapping, index, flags);
1184 if (!page)
1185 return -ENOMEM;
1186 unlock_page(page);
1187
1188 retry_journal:
1189 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1190 if (IS_ERR(handle)) {
1191 page_cache_release(page);
1192 return PTR_ERR(handle);
1193 }
1194
1195 lock_page(page);
1196 if (page->mapping != mapping) {
1197 /* The page got truncated from under us */
1198 unlock_page(page);
1199 page_cache_release(page);
1200 ext4_journal_stop(handle);
1201 goto retry_grab;
1202 }
1203 /* In case writeback began while the page was unlocked */
1204 wait_for_stable_page(page);
1205
1206 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1207 if (ext4_should_dioread_nolock(inode))
1208 ret = ext4_block_write_begin(page, pos, len,
1209 ext4_get_block_unwritten);
1210 else
1211 ret = ext4_block_write_begin(page, pos, len,
1212 ext4_get_block);
1213 #else
1214 if (ext4_should_dioread_nolock(inode))
1215 ret = __block_write_begin(page, pos, len,
1216 ext4_get_block_unwritten);
1217 else
1218 ret = __block_write_begin(page, pos, len, ext4_get_block);
1219 #endif
1220 if (!ret && ext4_should_journal_data(inode)) {
1221 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1222 from, to, NULL,
1223 do_journal_get_write_access);
1224 }
1225
1226 if (ret) {
1227 unlock_page(page);
1228 /*
1229 * __block_write_begin may have instantiated a few blocks
1230 * outside i_size. Trim these off again. Don't need
1231 * i_size_read because we hold i_mutex.
1232 *
1233 * Add inode to orphan list in case we crash before
1234 * truncate finishes
1235 */
1236 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1237 ext4_orphan_add(handle, inode);
1238
1239 ext4_journal_stop(handle);
1240 if (pos + len > inode->i_size) {
1241 ext4_truncate_failed_write(inode);
1242 /*
1243 * If truncate failed early the inode might
1244 * still be on the orphan list; we need to
1245 * make sure the inode is removed from the
1246 * orphan list in that case.
1247 */
1248 if (inode->i_nlink)
1249 ext4_orphan_del(NULL, inode);
1250 }
1251
1252 if (ret == -ENOSPC &&
1253 ext4_should_retry_alloc(inode->i_sb, &retries))
1254 goto retry_journal;
1255 page_cache_release(page);
1256 return ret;
1257 }
1258 *pagep = page;
1259 return ret;
1260 }
1261
1262 /* For write_end() in data=journal mode */
1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1264 {
1265 int ret;
1266 if (!buffer_mapped(bh) || buffer_freed(bh))
1267 return 0;
1268 set_buffer_uptodate(bh);
1269 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270 clear_buffer_meta(bh);
1271 clear_buffer_prio(bh);
1272 return ret;
1273 }
1274
1275 /*
1276 * We need to pick up the new inode size which generic_commit_write gave us
1277 * `file' can be NULL - eg, when called from page_symlink().
1278 *
1279 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1280 * buffers are managed internally.
1281 */
1282 static int ext4_write_end(struct file *file,
1283 struct address_space *mapping,
1284 loff_t pos, unsigned len, unsigned copied,
1285 struct page *page, void *fsdata)
1286 {
1287 handle_t *handle = ext4_journal_current_handle();
1288 struct inode *inode = mapping->host;
1289 loff_t old_size = inode->i_size;
1290 int ret = 0, ret2;
1291 int i_size_changed = 0;
1292
1293 trace_ext4_write_end(inode, pos, len, copied);
1294 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1295 ret = ext4_jbd2_file_inode(handle, inode);
1296 if (ret) {
1297 unlock_page(page);
1298 page_cache_release(page);
1299 goto errout;
1300 }
1301 }
1302
1303 if (ext4_has_inline_data(inode)) {
1304 ret = ext4_write_inline_data_end(inode, pos, len,
1305 copied, page);
1306 if (ret < 0)
1307 goto errout;
1308 copied = ret;
1309 } else
1310 copied = block_write_end(file, mapping, pos,
1311 len, copied, page, fsdata);
1312 /*
1313 * it's important to update i_size while still holding page lock:
1314 * page writeout could otherwise come in and zero beyond i_size.
1315 */
1316 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1317 unlock_page(page);
1318 page_cache_release(page);
1319
1320 if (old_size < pos)
1321 pagecache_isize_extended(inode, old_size, pos);
1322 /*
1323 * Don't mark the inode dirty under page lock. First, it unnecessarily
1324 * makes the holding time of page lock longer. Second, it forces lock
1325 * ordering of page lock and transaction start for journaling
1326 * filesystems.
1327 */
1328 if (i_size_changed)
1329 ext4_mark_inode_dirty(handle, inode);
1330
1331 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1332 /* if we have allocated more blocks and copied
1333 * less. We will have blocks allocated outside
1334 * inode->i_size. So truncate them
1335 */
1336 ext4_orphan_add(handle, inode);
1337 errout:
1338 ret2 = ext4_journal_stop(handle);
1339 if (!ret)
1340 ret = ret2;
1341
1342 if (pos + len > inode->i_size) {
1343 ext4_truncate_failed_write(inode);
1344 /*
1345 * If truncate failed early the inode might still be
1346 * on the orphan list; we need to make sure the inode
1347 * is removed from the orphan list in that case.
1348 */
1349 if (inode->i_nlink)
1350 ext4_orphan_del(NULL, inode);
1351 }
1352
1353 return ret ? ret : copied;
1354 }
1355
1356 /*
1357 * This is a private version of page_zero_new_buffers() which doesn't
1358 * set the buffer to be dirty, since in data=journalled mode we need
1359 * to call ext4_handle_dirty_metadata() instead.
1360 */
1361 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1362 {
1363 unsigned int block_start = 0, block_end;
1364 struct buffer_head *head, *bh;
1365
1366 bh = head = page_buffers(page);
1367 do {
1368 block_end = block_start + bh->b_size;
1369 if (buffer_new(bh)) {
1370 if (block_end > from && block_start < to) {
1371 if (!PageUptodate(page)) {
1372 unsigned start, size;
1373
1374 start = max(from, block_start);
1375 size = min(to, block_end) - start;
1376
1377 zero_user(page, start, size);
1378 set_buffer_uptodate(bh);
1379 }
1380 clear_buffer_new(bh);
1381 }
1382 }
1383 block_start = block_end;
1384 bh = bh->b_this_page;
1385 } while (bh != head);
1386 }
1387
1388 static int ext4_journalled_write_end(struct file *file,
1389 struct address_space *mapping,
1390 loff_t pos, unsigned len, unsigned copied,
1391 struct page *page, void *fsdata)
1392 {
1393 handle_t *handle = ext4_journal_current_handle();
1394 struct inode *inode = mapping->host;
1395 loff_t old_size = inode->i_size;
1396 int ret = 0, ret2;
1397 int partial = 0;
1398 unsigned from, to;
1399 int size_changed = 0;
1400
1401 trace_ext4_journalled_write_end(inode, pos, len, copied);
1402 from = pos & (PAGE_CACHE_SIZE - 1);
1403 to = from + len;
1404
1405 BUG_ON(!ext4_handle_valid(handle));
1406
1407 if (ext4_has_inline_data(inode))
1408 copied = ext4_write_inline_data_end(inode, pos, len,
1409 copied, page);
1410 else {
1411 if (copied < len) {
1412 if (!PageUptodate(page))
1413 copied = 0;
1414 zero_new_buffers(page, from+copied, to);
1415 }
1416
1417 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1418 to, &partial, write_end_fn);
1419 if (!partial)
1420 SetPageUptodate(page);
1421 }
1422 size_changed = ext4_update_inode_size(inode, pos + copied);
1423 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1424 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1425 unlock_page(page);
1426 page_cache_release(page);
1427
1428 if (old_size < pos)
1429 pagecache_isize_extended(inode, old_size, pos);
1430
1431 if (size_changed) {
1432 ret2 = ext4_mark_inode_dirty(handle, inode);
1433 if (!ret)
1434 ret = ret2;
1435 }
1436
1437 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1438 /* if we have allocated more blocks and copied
1439 * less. We will have blocks allocated outside
1440 * inode->i_size. So truncate them
1441 */
1442 ext4_orphan_add(handle, inode);
1443
1444 ret2 = ext4_journal_stop(handle);
1445 if (!ret)
1446 ret = ret2;
1447 if (pos + len > inode->i_size) {
1448 ext4_truncate_failed_write(inode);
1449 /*
1450 * If truncate failed early the inode might still be
1451 * on the orphan list; we need to make sure the inode
1452 * is removed from the orphan list in that case.
1453 */
1454 if (inode->i_nlink)
1455 ext4_orphan_del(NULL, inode);
1456 }
1457
1458 return ret ? ret : copied;
1459 }
1460
1461 /*
1462 * Reserve space for a single cluster
1463 */
1464 static int ext4_da_reserve_space(struct inode *inode)
1465 {
1466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467 struct ext4_inode_info *ei = EXT4_I(inode);
1468 int ret;
1469
1470 /*
1471 * We will charge metadata quota at writeout time; this saves
1472 * us from metadata over-estimation, though we may go over by
1473 * a small amount in the end. Here we just reserve for data.
1474 */
1475 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1476 if (ret)
1477 return ret;
1478
1479 spin_lock(&ei->i_block_reservation_lock);
1480 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1481 spin_unlock(&ei->i_block_reservation_lock);
1482 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1483 return -ENOSPC;
1484 }
1485 ei->i_reserved_data_blocks++;
1486 trace_ext4_da_reserve_space(inode);
1487 spin_unlock(&ei->i_block_reservation_lock);
1488
1489 return 0; /* success */
1490 }
1491
1492 static void ext4_da_release_space(struct inode *inode, int to_free)
1493 {
1494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1495 struct ext4_inode_info *ei = EXT4_I(inode);
1496
1497 if (!to_free)
1498 return; /* Nothing to release, exit */
1499
1500 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1501
1502 trace_ext4_da_release_space(inode, to_free);
1503 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1504 /*
1505 * if there aren't enough reserved blocks, then the
1506 * counter is messed up somewhere. Since this
1507 * function is called from invalidate page, it's
1508 * harmless to return without any action.
1509 */
1510 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1511 "ino %lu, to_free %d with only %d reserved "
1512 "data blocks", inode->i_ino, to_free,
1513 ei->i_reserved_data_blocks);
1514 WARN_ON(1);
1515 to_free = ei->i_reserved_data_blocks;
1516 }
1517 ei->i_reserved_data_blocks -= to_free;
1518
1519 /* update fs dirty data blocks counter */
1520 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1521
1522 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1523
1524 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1525 }
1526
1527 static void ext4_da_page_release_reservation(struct page *page,
1528 unsigned int offset,
1529 unsigned int length)
1530 {
1531 int to_release = 0, contiguous_blks = 0;
1532 struct buffer_head *head, *bh;
1533 unsigned int curr_off = 0;
1534 struct inode *inode = page->mapping->host;
1535 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1536 unsigned int stop = offset + length;
1537 int num_clusters;
1538 ext4_fsblk_t lblk;
1539
1540 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1541
1542 head = page_buffers(page);
1543 bh = head;
1544 do {
1545 unsigned int next_off = curr_off + bh->b_size;
1546
1547 if (next_off > stop)
1548 break;
1549
1550 if ((offset <= curr_off) && (buffer_delay(bh))) {
1551 to_release++;
1552 contiguous_blks++;
1553 clear_buffer_delay(bh);
1554 } else if (contiguous_blks) {
1555 lblk = page->index <<
1556 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1557 lblk += (curr_off >> inode->i_blkbits) -
1558 contiguous_blks;
1559 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1560 contiguous_blks = 0;
1561 }
1562 curr_off = next_off;
1563 } while ((bh = bh->b_this_page) != head);
1564
1565 if (contiguous_blks) {
1566 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1567 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1568 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1569 }
1570
1571 /* If we have released all the blocks belonging to a cluster, then we
1572 * need to release the reserved space for that cluster. */
1573 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1574 while (num_clusters > 0) {
1575 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1576 ((num_clusters - 1) << sbi->s_cluster_bits);
1577 if (sbi->s_cluster_ratio == 1 ||
1578 !ext4_find_delalloc_cluster(inode, lblk))
1579 ext4_da_release_space(inode, 1);
1580
1581 num_clusters--;
1582 }
1583 }
1584
1585 /*
1586 * Delayed allocation stuff
1587 */
1588
1589 struct mpage_da_data {
1590 struct inode *inode;
1591 struct writeback_control *wbc;
1592
1593 pgoff_t first_page; /* The first page to write */
1594 pgoff_t next_page; /* Current page to examine */
1595 pgoff_t last_page; /* Last page to examine */
1596 /*
1597 * Extent to map - this can be after first_page because that can be
1598 * fully mapped. We somewhat abuse m_flags to store whether the extent
1599 * is delalloc or unwritten.
1600 */
1601 struct ext4_map_blocks map;
1602 struct ext4_io_submit io_submit; /* IO submission data */
1603 };
1604
1605 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1606 bool invalidate)
1607 {
1608 int nr_pages, i;
1609 pgoff_t index, end;
1610 struct pagevec pvec;
1611 struct inode *inode = mpd->inode;
1612 struct address_space *mapping = inode->i_mapping;
1613
1614 /* This is necessary when next_page == 0. */
1615 if (mpd->first_page >= mpd->next_page)
1616 return;
1617
1618 index = mpd->first_page;
1619 end = mpd->next_page - 1;
1620 if (invalidate) {
1621 ext4_lblk_t start, last;
1622 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1623 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1624 ext4_es_remove_extent(inode, start, last - start + 1);
1625 }
1626
1627 pagevec_init(&pvec, 0);
1628 while (index <= end) {
1629 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1630 if (nr_pages == 0)
1631 break;
1632 for (i = 0; i < nr_pages; i++) {
1633 struct page *page = pvec.pages[i];
1634 if (page->index > end)
1635 break;
1636 BUG_ON(!PageLocked(page));
1637 BUG_ON(PageWriteback(page));
1638 if (invalidate) {
1639 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1640 ClearPageUptodate(page);
1641 }
1642 unlock_page(page);
1643 }
1644 index = pvec.pages[nr_pages - 1]->index + 1;
1645 pagevec_release(&pvec);
1646 }
1647 }
1648
1649 static void ext4_print_free_blocks(struct inode *inode)
1650 {
1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652 struct super_block *sb = inode->i_sb;
1653 struct ext4_inode_info *ei = EXT4_I(inode);
1654
1655 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1656 EXT4_C2B(EXT4_SB(inode->i_sb),
1657 ext4_count_free_clusters(sb)));
1658 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1659 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1660 (long long) EXT4_C2B(EXT4_SB(sb),
1661 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1662 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1663 (long long) EXT4_C2B(EXT4_SB(sb),
1664 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1665 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1666 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1667 ei->i_reserved_data_blocks);
1668 return;
1669 }
1670
1671 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1672 {
1673 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1674 }
1675
1676 /*
1677 * This function is grabs code from the very beginning of
1678 * ext4_map_blocks, but assumes that the caller is from delayed write
1679 * time. This function looks up the requested blocks and sets the
1680 * buffer delay bit under the protection of i_data_sem.
1681 */
1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1683 struct ext4_map_blocks *map,
1684 struct buffer_head *bh)
1685 {
1686 struct extent_status es;
1687 int retval;
1688 sector_t invalid_block = ~((sector_t) 0xffff);
1689 #ifdef ES_AGGRESSIVE_TEST
1690 struct ext4_map_blocks orig_map;
1691
1692 memcpy(&orig_map, map, sizeof(*map));
1693 #endif
1694
1695 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1696 invalid_block = ~0;
1697
1698 map->m_flags = 0;
1699 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1700 "logical block %lu\n", inode->i_ino, map->m_len,
1701 (unsigned long) map->m_lblk);
1702
1703 /* Lookup extent status tree firstly */
1704 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1705 if (ext4_es_is_hole(&es)) {
1706 retval = 0;
1707 down_read(&EXT4_I(inode)->i_data_sem);
1708 goto add_delayed;
1709 }
1710
1711 /*
1712 * Delayed extent could be allocated by fallocate.
1713 * So we need to check it.
1714 */
1715 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716 map_bh(bh, inode->i_sb, invalid_block);
1717 set_buffer_new(bh);
1718 set_buffer_delay(bh);
1719 return 0;
1720 }
1721
1722 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723 retval = es.es_len - (iblock - es.es_lblk);
1724 if (retval > map->m_len)
1725 retval = map->m_len;
1726 map->m_len = retval;
1727 if (ext4_es_is_written(&es))
1728 map->m_flags |= EXT4_MAP_MAPPED;
1729 else if (ext4_es_is_unwritten(&es))
1730 map->m_flags |= EXT4_MAP_UNWRITTEN;
1731 else
1732 BUG_ON(1);
1733
1734 #ifdef ES_AGGRESSIVE_TEST
1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736 #endif
1737 return retval;
1738 }
1739
1740 /*
1741 * Try to see if we can get the block without requesting a new
1742 * file system block.
1743 */
1744 down_read(&EXT4_I(inode)->i_data_sem);
1745 if (ext4_has_inline_data(inode))
1746 retval = 0;
1747 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749 else
1750 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751
1752 add_delayed:
1753 if (retval == 0) {
1754 int ret;
1755 /*
1756 * XXX: __block_prepare_write() unmaps passed block,
1757 * is it OK?
1758 */
1759 /*
1760 * If the block was allocated from previously allocated cluster,
1761 * then we don't need to reserve it again. However we still need
1762 * to reserve metadata for every block we're going to write.
1763 */
1764 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1765 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1766 ret = ext4_da_reserve_space(inode);
1767 if (ret) {
1768 /* not enough space to reserve */
1769 retval = ret;
1770 goto out_unlock;
1771 }
1772 }
1773
1774 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1775 ~0, EXTENT_STATUS_DELAYED);
1776 if (ret) {
1777 retval = ret;
1778 goto out_unlock;
1779 }
1780
1781 map_bh(bh, inode->i_sb, invalid_block);
1782 set_buffer_new(bh);
1783 set_buffer_delay(bh);
1784 } else if (retval > 0) {
1785 int ret;
1786 unsigned int status;
1787
1788 if (unlikely(retval != map->m_len)) {
1789 ext4_warning(inode->i_sb,
1790 "ES len assertion failed for inode "
1791 "%lu: retval %d != map->m_len %d",
1792 inode->i_ino, retval, map->m_len);
1793 WARN_ON(1);
1794 }
1795
1796 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1797 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1798 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1799 map->m_pblk, status);
1800 if (ret != 0)
1801 retval = ret;
1802 }
1803
1804 out_unlock:
1805 up_read((&EXT4_I(inode)->i_data_sem));
1806
1807 return retval;
1808 }
1809
1810 /*
1811 * This is a special get_block_t callback which is used by
1812 * ext4_da_write_begin(). It will either return mapped block or
1813 * reserve space for a single block.
1814 *
1815 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1816 * We also have b_blocknr = -1 and b_bdev initialized properly
1817 *
1818 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1819 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1820 * initialized properly.
1821 */
1822 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1823 struct buffer_head *bh, int create)
1824 {
1825 struct ext4_map_blocks map;
1826 int ret = 0;
1827
1828 BUG_ON(create == 0);
1829 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830
1831 map.m_lblk = iblock;
1832 map.m_len = 1;
1833
1834 /*
1835 * first, we need to know whether the block is allocated already
1836 * preallocated blocks are unmapped but should treated
1837 * the same as allocated blocks.
1838 */
1839 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1840 if (ret <= 0)
1841 return ret;
1842
1843 map_bh(bh, inode->i_sb, map.m_pblk);
1844 ext4_update_bh_state(bh, map.m_flags);
1845
1846 if (buffer_unwritten(bh)) {
1847 /* A delayed write to unwritten bh should be marked
1848 * new and mapped. Mapped ensures that we don't do
1849 * get_block multiple times when we write to the same
1850 * offset and new ensures that we do proper zero out
1851 * for partial write.
1852 */
1853 set_buffer_new(bh);
1854 set_buffer_mapped(bh);
1855 }
1856 return 0;
1857 }
1858
1859 static int bget_one(handle_t *handle, struct buffer_head *bh)
1860 {
1861 get_bh(bh);
1862 return 0;
1863 }
1864
1865 static int bput_one(handle_t *handle, struct buffer_head *bh)
1866 {
1867 put_bh(bh);
1868 return 0;
1869 }
1870
1871 static int __ext4_journalled_writepage(struct page *page,
1872 unsigned int len)
1873 {
1874 struct address_space *mapping = page->mapping;
1875 struct inode *inode = mapping->host;
1876 struct buffer_head *page_bufs = NULL;
1877 handle_t *handle = NULL;
1878 int ret = 0, err = 0;
1879 int inline_data = ext4_has_inline_data(inode);
1880 struct buffer_head *inode_bh = NULL;
1881
1882 ClearPageChecked(page);
1883
1884 if (inline_data) {
1885 BUG_ON(page->index != 0);
1886 BUG_ON(len > ext4_get_max_inline_size(inode));
1887 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1888 if (inode_bh == NULL)
1889 goto out;
1890 } else {
1891 page_bufs = page_buffers(page);
1892 if (!page_bufs) {
1893 BUG();
1894 goto out;
1895 }
1896 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1897 NULL, bget_one);
1898 }
1899 /*
1900 * We need to release the page lock before we start the
1901 * journal, so grab a reference so the page won't disappear
1902 * out from under us.
1903 */
1904 get_page(page);
1905 unlock_page(page);
1906
1907 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1908 ext4_writepage_trans_blocks(inode));
1909 if (IS_ERR(handle)) {
1910 ret = PTR_ERR(handle);
1911 put_page(page);
1912 goto out_no_pagelock;
1913 }
1914 BUG_ON(!ext4_handle_valid(handle));
1915
1916 lock_page(page);
1917 put_page(page);
1918 if (page->mapping != mapping) {
1919 /* The page got truncated from under us */
1920 ext4_journal_stop(handle);
1921 ret = 0;
1922 goto out;
1923 }
1924
1925 if (inline_data) {
1926 BUFFER_TRACE(inode_bh, "get write access");
1927 ret = ext4_journal_get_write_access(handle, inode_bh);
1928
1929 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1930
1931 } else {
1932 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933 do_journal_get_write_access);
1934
1935 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1936 write_end_fn);
1937 }
1938 if (ret == 0)
1939 ret = err;
1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941 err = ext4_journal_stop(handle);
1942 if (!ret)
1943 ret = err;
1944
1945 if (!ext4_has_inline_data(inode))
1946 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1947 NULL, bput_one);
1948 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1949 out:
1950 unlock_page(page);
1951 out_no_pagelock:
1952 brelse(inode_bh);
1953 return ret;
1954 }
1955
1956 /*
1957 * Note that we don't need to start a transaction unless we're journaling data
1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959 * need to file the inode to the transaction's list in ordered mode because if
1960 * we are writing back data added by write(), the inode is already there and if
1961 * we are writing back data modified via mmap(), no one guarantees in which
1962 * transaction the data will hit the disk. In case we are journaling data, we
1963 * cannot start transaction directly because transaction start ranks above page
1964 * lock so we have to do some magic.
1965 *
1966 * This function can get called via...
1967 * - ext4_writepages after taking page lock (have journal handle)
1968 * - journal_submit_inode_data_buffers (no journal handle)
1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970 * - grab_page_cache when doing write_begin (have journal handle)
1971 *
1972 * We don't do any block allocation in this function. If we have page with
1973 * multiple blocks we need to write those buffer_heads that are mapped. This
1974 * is important for mmaped based write. So if we do with blocksize 1K
1975 * truncate(f, 1024);
1976 * a = mmap(f, 0, 4096);
1977 * a[0] = 'a';
1978 * truncate(f, 4096);
1979 * we have in the page first buffer_head mapped via page_mkwrite call back
1980 * but other buffer_heads would be unmapped but dirty (dirty done via the
1981 * do_wp_page). So writepage should write the first block. If we modify
1982 * the mmap area beyond 1024 we will again get a page_fault and the
1983 * page_mkwrite callback will do the block allocation and mark the
1984 * buffer_heads mapped.
1985 *
1986 * We redirty the page if we have any buffer_heads that is either delay or
1987 * unwritten in the page.
1988 *
1989 * We can get recursively called as show below.
1990 *
1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992 * ext4_writepage()
1993 *
1994 * But since we don't do any block allocation we should not deadlock.
1995 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1996 */
1997 static int ext4_writepage(struct page *page,
1998 struct writeback_control *wbc)
1999 {
2000 int ret = 0;
2001 loff_t size;
2002 unsigned int len;
2003 struct buffer_head *page_bufs = NULL;
2004 struct inode *inode = page->mapping->host;
2005 struct ext4_io_submit io_submit;
2006 bool keep_towrite = false;
2007
2008 trace_ext4_writepage(page);
2009 size = i_size_read(inode);
2010 if (page->index == size >> PAGE_CACHE_SHIFT)
2011 len = size & ~PAGE_CACHE_MASK;
2012 else
2013 len = PAGE_CACHE_SIZE;
2014
2015 page_bufs = page_buffers(page);
2016 /*
2017 * We cannot do block allocation or other extent handling in this
2018 * function. If there are buffers needing that, we have to redirty
2019 * the page. But we may reach here when we do a journal commit via
2020 * journal_submit_inode_data_buffers() and in that case we must write
2021 * allocated buffers to achieve data=ordered mode guarantees.
2022 *
2023 * Also, if there is only one buffer per page (the fs block
2024 * size == the page size), if one buffer needs block
2025 * allocation or needs to modify the extent tree to clear the
2026 * unwritten flag, we know that the page can't be written at
2027 * all, so we might as well refuse the write immediately.
2028 * Unfortunately if the block size != page size, we can't as
2029 * easily detect this case using ext4_walk_page_buffers(), but
2030 * for the extremely common case, this is an optimization that
2031 * skips a useless round trip through ext4_bio_write_page().
2032 */
2033 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2034 ext4_bh_delay_or_unwritten)) {
2035 redirty_page_for_writepage(wbc, page);
2036 if ((current->flags & PF_MEMALLOC) ||
2037 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
2038 /*
2039 * For memory cleaning there's no point in writing only
2040 * some buffers. So just bail out. Warn if we came here
2041 * from direct reclaim.
2042 */
2043 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2044 == PF_MEMALLOC);
2045 unlock_page(page);
2046 return 0;
2047 }
2048 keep_towrite = true;
2049 }
2050
2051 if (PageChecked(page) && ext4_should_journal_data(inode))
2052 /*
2053 * It's mmapped pagecache. Add buffers and journal it. There
2054 * doesn't seem much point in redirtying the page here.
2055 */
2056 return __ext4_journalled_writepage(page, len);
2057
2058 ext4_io_submit_init(&io_submit, wbc);
2059 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2060 if (!io_submit.io_end) {
2061 redirty_page_for_writepage(wbc, page);
2062 unlock_page(page);
2063 return -ENOMEM;
2064 }
2065 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2066 ext4_io_submit(&io_submit);
2067 /* Drop io_end reference we got from init */
2068 ext4_put_io_end_defer(io_submit.io_end);
2069 return ret;
2070 }
2071
2072 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2073 {
2074 int len;
2075 loff_t size = i_size_read(mpd->inode);
2076 int err;
2077
2078 BUG_ON(page->index != mpd->first_page);
2079 if (page->index == size >> PAGE_CACHE_SHIFT)
2080 len = size & ~PAGE_CACHE_MASK;
2081 else
2082 len = PAGE_CACHE_SIZE;
2083 clear_page_dirty_for_io(page);
2084 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2085 if (!err)
2086 mpd->wbc->nr_to_write--;
2087 mpd->first_page++;
2088
2089 return err;
2090 }
2091
2092 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2093
2094 /*
2095 * mballoc gives us at most this number of blocks...
2096 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2097 * The rest of mballoc seems to handle chunks up to full group size.
2098 */
2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100
2101 /*
2102 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2103 *
2104 * @mpd - extent of blocks
2105 * @lblk - logical number of the block in the file
2106 * @bh - buffer head we want to add to the extent
2107 *
2108 * The function is used to collect contig. blocks in the same state. If the
2109 * buffer doesn't require mapping for writeback and we haven't started the
2110 * extent of buffers to map yet, the function returns 'true' immediately - the
2111 * caller can write the buffer right away. Otherwise the function returns true
2112 * if the block has been added to the extent, false if the block couldn't be
2113 * added.
2114 */
2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2116 struct buffer_head *bh)
2117 {
2118 struct ext4_map_blocks *map = &mpd->map;
2119
2120 /* Buffer that doesn't need mapping for writeback? */
2121 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2122 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2123 /* So far no extent to map => we write the buffer right away */
2124 if (map->m_len == 0)
2125 return true;
2126 return false;
2127 }
2128
2129 /* First block in the extent? */
2130 if (map->m_len == 0) {
2131 map->m_lblk = lblk;
2132 map->m_len = 1;
2133 map->m_flags = bh->b_state & BH_FLAGS;
2134 return true;
2135 }
2136
2137 /* Don't go larger than mballoc is willing to allocate */
2138 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139 return false;
2140
2141 /* Can we merge the block to our big extent? */
2142 if (lblk == map->m_lblk + map->m_len &&
2143 (bh->b_state & BH_FLAGS) == map->m_flags) {
2144 map->m_len++;
2145 return true;
2146 }
2147 return false;
2148 }
2149
2150 /*
2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152 *
2153 * @mpd - extent of blocks for mapping
2154 * @head - the first buffer in the page
2155 * @bh - buffer we should start processing from
2156 * @lblk - logical number of the block in the file corresponding to @bh
2157 *
2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159 * the page for IO if all buffers in this page were mapped and there's no
2160 * accumulated extent of buffers to map or add buffers in the page to the
2161 * extent of buffers to map. The function returns 1 if the caller can continue
2162 * by processing the next page, 0 if it should stop adding buffers to the
2163 * extent to map because we cannot extend it anymore. It can also return value
2164 * < 0 in case of error during IO submission.
2165 */
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167 struct buffer_head *head,
2168 struct buffer_head *bh,
2169 ext4_lblk_t lblk)
2170 {
2171 struct inode *inode = mpd->inode;
2172 int err;
2173 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2174 >> inode->i_blkbits;
2175
2176 do {
2177 BUG_ON(buffer_locked(bh));
2178
2179 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2180 /* Found extent to map? */
2181 if (mpd->map.m_len)
2182 return 0;
2183 /* Everything mapped so far and we hit EOF */
2184 break;
2185 }
2186 } while (lblk++, (bh = bh->b_this_page) != head);
2187 /* So far everything mapped? Submit the page for IO. */
2188 if (mpd->map.m_len == 0) {
2189 err = mpage_submit_page(mpd, head->b_page);
2190 if (err < 0)
2191 return err;
2192 }
2193 return lblk < blocks;
2194 }
2195
2196 /*
2197 * mpage_map_buffers - update buffers corresponding to changed extent and
2198 * submit fully mapped pages for IO
2199 *
2200 * @mpd - description of extent to map, on return next extent to map
2201 *
2202 * Scan buffers corresponding to changed extent (we expect corresponding pages
2203 * to be already locked) and update buffer state according to new extent state.
2204 * We map delalloc buffers to their physical location, clear unwritten bits,
2205 * and mark buffers as uninit when we perform writes to unwritten extents
2206 * and do extent conversion after IO is finished. If the last page is not fully
2207 * mapped, we update @map to the next extent in the last page that needs
2208 * mapping. Otherwise we submit the page for IO.
2209 */
2210 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2211 {
2212 struct pagevec pvec;
2213 int nr_pages, i;
2214 struct inode *inode = mpd->inode;
2215 struct buffer_head *head, *bh;
2216 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2217 pgoff_t start, end;
2218 ext4_lblk_t lblk;
2219 sector_t pblock;
2220 int err;
2221
2222 start = mpd->map.m_lblk >> bpp_bits;
2223 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2224 lblk = start << bpp_bits;
2225 pblock = mpd->map.m_pblk;
2226
2227 pagevec_init(&pvec, 0);
2228 while (start <= end) {
2229 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2230 PAGEVEC_SIZE);
2231 if (nr_pages == 0)
2232 break;
2233 for (i = 0; i < nr_pages; i++) {
2234 struct page *page = pvec.pages[i];
2235
2236 if (page->index > end)
2237 break;
2238 /* Up to 'end' pages must be contiguous */
2239 BUG_ON(page->index != start);
2240 bh = head = page_buffers(page);
2241 do {
2242 if (lblk < mpd->map.m_lblk)
2243 continue;
2244 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2245 /*
2246 * Buffer after end of mapped extent.
2247 * Find next buffer in the page to map.
2248 */
2249 mpd->map.m_len = 0;
2250 mpd->map.m_flags = 0;
2251 /*
2252 * FIXME: If dioread_nolock supports
2253 * blocksize < pagesize, we need to make
2254 * sure we add size mapped so far to
2255 * io_end->size as the following call
2256 * can submit the page for IO.
2257 */
2258 err = mpage_process_page_bufs(mpd, head,
2259 bh, lblk);
2260 pagevec_release(&pvec);
2261 if (err > 0)
2262 err = 0;
2263 return err;
2264 }
2265 if (buffer_delay(bh)) {
2266 clear_buffer_delay(bh);
2267 bh->b_blocknr = pblock++;
2268 }
2269 clear_buffer_unwritten(bh);
2270 } while (lblk++, (bh = bh->b_this_page) != head);
2271
2272 /*
2273 * FIXME: This is going to break if dioread_nolock
2274 * supports blocksize < pagesize as we will try to
2275 * convert potentially unmapped parts of inode.
2276 */
2277 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2278 /* Page fully mapped - let IO run! */
2279 err = mpage_submit_page(mpd, page);
2280 if (err < 0) {
2281 pagevec_release(&pvec);
2282 return err;
2283 }
2284 start++;
2285 }
2286 pagevec_release(&pvec);
2287 }
2288 /* Extent fully mapped and matches with page boundary. We are done. */
2289 mpd->map.m_len = 0;
2290 mpd->map.m_flags = 0;
2291 return 0;
2292 }
2293
2294 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2295 {
2296 struct inode *inode = mpd->inode;
2297 struct ext4_map_blocks *map = &mpd->map;
2298 int get_blocks_flags;
2299 int err, dioread_nolock;
2300
2301 trace_ext4_da_write_pages_extent(inode, map);
2302 /*
2303 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2304 * to convert an unwritten extent to be initialized (in the case
2305 * where we have written into one or more preallocated blocks). It is
2306 * possible that we're going to need more metadata blocks than
2307 * previously reserved. However we must not fail because we're in
2308 * writeback and there is nothing we can do about it so it might result
2309 * in data loss. So use reserved blocks to allocate metadata if
2310 * possible.
2311 *
2312 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2313 * the blocks in question are delalloc blocks. This indicates
2314 * that the blocks and quotas has already been checked when
2315 * the data was copied into the page cache.
2316 */
2317 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2318 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2319 dioread_nolock = ext4_should_dioread_nolock(inode);
2320 if (dioread_nolock)
2321 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2322 if (map->m_flags & (1 << BH_Delay))
2323 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2324
2325 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2326 if (err < 0)
2327 return err;
2328 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2329 if (!mpd->io_submit.io_end->handle &&
2330 ext4_handle_valid(handle)) {
2331 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2332 handle->h_rsv_handle = NULL;
2333 }
2334 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2335 }
2336
2337 BUG_ON(map->m_len == 0);
2338 if (map->m_flags & EXT4_MAP_NEW) {
2339 struct block_device *bdev = inode->i_sb->s_bdev;
2340 int i;
2341
2342 for (i = 0; i < map->m_len; i++)
2343 unmap_underlying_metadata(bdev, map->m_pblk + i);
2344 }
2345 return 0;
2346 }
2347
2348 /*
2349 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2350 * mpd->len and submit pages underlying it for IO
2351 *
2352 * @handle - handle for journal operations
2353 * @mpd - extent to map
2354 * @give_up_on_write - we set this to true iff there is a fatal error and there
2355 * is no hope of writing the data. The caller should discard
2356 * dirty pages to avoid infinite loops.
2357 *
2358 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2359 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2360 * them to initialized or split the described range from larger unwritten
2361 * extent. Note that we need not map all the described range since allocation
2362 * can return less blocks or the range is covered by more unwritten extents. We
2363 * cannot map more because we are limited by reserved transaction credits. On
2364 * the other hand we always make sure that the last touched page is fully
2365 * mapped so that it can be written out (and thus forward progress is
2366 * guaranteed). After mapping we submit all mapped pages for IO.
2367 */
2368 static int mpage_map_and_submit_extent(handle_t *handle,
2369 struct mpage_da_data *mpd,
2370 bool *give_up_on_write)
2371 {
2372 struct inode *inode = mpd->inode;
2373 struct ext4_map_blocks *map = &mpd->map;
2374 int err;
2375 loff_t disksize;
2376 int progress = 0;
2377
2378 mpd->io_submit.io_end->offset =
2379 ((loff_t)map->m_lblk) << inode->i_blkbits;
2380 do {
2381 err = mpage_map_one_extent(handle, mpd);
2382 if (err < 0) {
2383 struct super_block *sb = inode->i_sb;
2384
2385 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2386 goto invalidate_dirty_pages;
2387 /*
2388 * Let the uper layers retry transient errors.
2389 * In the case of ENOSPC, if ext4_count_free_blocks()
2390 * is non-zero, a commit should free up blocks.
2391 */
2392 if ((err == -ENOMEM) ||
2393 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2394 if (progress)
2395 goto update_disksize;
2396 return err;
2397 }
2398 ext4_msg(sb, KERN_CRIT,
2399 "Delayed block allocation failed for "
2400 "inode %lu at logical offset %llu with"
2401 " max blocks %u with error %d",
2402 inode->i_ino,
2403 (unsigned long long)map->m_lblk,
2404 (unsigned)map->m_len, -err);
2405 ext4_msg(sb, KERN_CRIT,
2406 "This should not happen!! Data will "
2407 "be lost\n");
2408 if (err == -ENOSPC)
2409 ext4_print_free_blocks(inode);
2410 invalidate_dirty_pages:
2411 *give_up_on_write = true;
2412 return err;
2413 }
2414 progress = 1;
2415 /*
2416 * Update buffer state, submit mapped pages, and get us new
2417 * extent to map
2418 */
2419 err = mpage_map_and_submit_buffers(mpd);
2420 if (err < 0)
2421 goto update_disksize;
2422 } while (map->m_len);
2423
2424 update_disksize:
2425 /*
2426 * Update on-disk size after IO is submitted. Races with
2427 * truncate are avoided by checking i_size under i_data_sem.
2428 */
2429 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2430 if (disksize > EXT4_I(inode)->i_disksize) {
2431 int err2;
2432 loff_t i_size;
2433
2434 down_write(&EXT4_I(inode)->i_data_sem);
2435 i_size = i_size_read(inode);
2436 if (disksize > i_size)
2437 disksize = i_size;
2438 if (disksize > EXT4_I(inode)->i_disksize)
2439 EXT4_I(inode)->i_disksize = disksize;
2440 err2 = ext4_mark_inode_dirty(handle, inode);
2441 up_write(&EXT4_I(inode)->i_data_sem);
2442 if (err2)
2443 ext4_error(inode->i_sb,
2444 "Failed to mark inode %lu dirty",
2445 inode->i_ino);
2446 if (!err)
2447 err = err2;
2448 }
2449 return err;
2450 }
2451
2452 /*
2453 * Calculate the total number of credits to reserve for one writepages
2454 * iteration. This is called from ext4_writepages(). We map an extent of
2455 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2456 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2457 * bpp - 1 blocks in bpp different extents.
2458 */
2459 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2460 {
2461 int bpp = ext4_journal_blocks_per_page(inode);
2462
2463 return ext4_meta_trans_blocks(inode,
2464 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2465 }
2466
2467 /*
2468 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2469 * and underlying extent to map
2470 *
2471 * @mpd - where to look for pages
2472 *
2473 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2474 * IO immediately. When we find a page which isn't mapped we start accumulating
2475 * extent of buffers underlying these pages that needs mapping (formed by
2476 * either delayed or unwritten buffers). We also lock the pages containing
2477 * these buffers. The extent found is returned in @mpd structure (starting at
2478 * mpd->lblk with length mpd->len blocks).
2479 *
2480 * Note that this function can attach bios to one io_end structure which are
2481 * neither logically nor physically contiguous. Although it may seem as an
2482 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2483 * case as we need to track IO to all buffers underlying a page in one io_end.
2484 */
2485 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2486 {
2487 struct address_space *mapping = mpd->inode->i_mapping;
2488 struct pagevec pvec;
2489 unsigned int nr_pages;
2490 long left = mpd->wbc->nr_to_write;
2491 pgoff_t index = mpd->first_page;
2492 pgoff_t end = mpd->last_page;
2493 int tag;
2494 int i, err = 0;
2495 int blkbits = mpd->inode->i_blkbits;
2496 ext4_lblk_t lblk;
2497 struct buffer_head *head;
2498
2499 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2500 tag = PAGECACHE_TAG_TOWRITE;
2501 else
2502 tag = PAGECACHE_TAG_DIRTY;
2503
2504 pagevec_init(&pvec, 0);
2505 mpd->map.m_len = 0;
2506 mpd->next_page = index;
2507 while (index <= end) {
2508 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2509 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2510 if (nr_pages == 0)
2511 goto out;
2512
2513 for (i = 0; i < nr_pages; i++) {
2514 struct page *page = pvec.pages[i];
2515
2516 /*
2517 * At this point, the page may be truncated or
2518 * invalidated (changing page->mapping to NULL), or
2519 * even swizzled back from swapper_space to tmpfs file
2520 * mapping. However, page->index will not change
2521 * because we have a reference on the page.
2522 */
2523 if (page->index > end)
2524 goto out;
2525
2526 /*
2527 * Accumulated enough dirty pages? This doesn't apply
2528 * to WB_SYNC_ALL mode. For integrity sync we have to
2529 * keep going because someone may be concurrently
2530 * dirtying pages, and we might have synced a lot of
2531 * newly appeared dirty pages, but have not synced all
2532 * of the old dirty pages.
2533 */
2534 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2535 goto out;
2536
2537 /* If we can't merge this page, we are done. */
2538 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2539 goto out;
2540
2541 lock_page(page);
2542 /*
2543 * If the page is no longer dirty, or its mapping no
2544 * longer corresponds to inode we are writing (which
2545 * means it has been truncated or invalidated), or the
2546 * page is already under writeback and we are not doing
2547 * a data integrity writeback, skip the page
2548 */
2549 if (!PageDirty(page) ||
2550 (PageWriteback(page) &&
2551 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2552 unlikely(page->mapping != mapping)) {
2553 unlock_page(page);
2554 continue;
2555 }
2556
2557 wait_on_page_writeback(page);
2558 BUG_ON(PageWriteback(page));
2559
2560 if (mpd->map.m_len == 0)
2561 mpd->first_page = page->index;
2562 mpd->next_page = page->index + 1;
2563 /* Add all dirty buffers to mpd */
2564 lblk = ((ext4_lblk_t)page->index) <<
2565 (PAGE_CACHE_SHIFT - blkbits);
2566 head = page_buffers(page);
2567 err = mpage_process_page_bufs(mpd, head, head, lblk);
2568 if (err <= 0)
2569 goto out;
2570 err = 0;
2571 left--;
2572 }
2573 pagevec_release(&pvec);
2574 cond_resched();
2575 }
2576 return 0;
2577 out:
2578 pagevec_release(&pvec);
2579 return err;
2580 }
2581
2582 static int __writepage(struct page *page, struct writeback_control *wbc,
2583 void *data)
2584 {
2585 struct address_space *mapping = data;
2586 int ret = ext4_writepage(page, wbc);
2587 mapping_set_error(mapping, ret);
2588 return ret;
2589 }
2590
2591 static int ext4_writepages(struct address_space *mapping,
2592 struct writeback_control *wbc)
2593 {
2594 pgoff_t writeback_index = 0;
2595 long nr_to_write = wbc->nr_to_write;
2596 int range_whole = 0;
2597 int cycled = 1;
2598 handle_t *handle = NULL;
2599 struct mpage_da_data mpd;
2600 struct inode *inode = mapping->host;
2601 int needed_blocks, rsv_blocks = 0, ret = 0;
2602 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2603 bool done;
2604 struct blk_plug plug;
2605 bool give_up_on_write = false;
2606
2607 trace_ext4_writepages(inode, wbc);
2608
2609 if (dax_mapping(mapping))
2610 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2611 wbc);
2612
2613 /*
2614 * No pages to write? This is mainly a kludge to avoid starting
2615 * a transaction for special inodes like journal inode on last iput()
2616 * because that could violate lock ordering on umount
2617 */
2618 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2619 goto out_writepages;
2620
2621 if (ext4_should_journal_data(inode)) {
2622 struct blk_plug plug;
2623
2624 blk_start_plug(&plug);
2625 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2626 blk_finish_plug(&plug);
2627 goto out_writepages;
2628 }
2629
2630 /*
2631 * If the filesystem has aborted, it is read-only, so return
2632 * right away instead of dumping stack traces later on that
2633 * will obscure the real source of the problem. We test
2634 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2635 * the latter could be true if the filesystem is mounted
2636 * read-only, and in that case, ext4_writepages should
2637 * *never* be called, so if that ever happens, we would want
2638 * the stack trace.
2639 */
2640 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2641 ret = -EROFS;
2642 goto out_writepages;
2643 }
2644
2645 if (ext4_should_dioread_nolock(inode)) {
2646 /*
2647 * We may need to convert up to one extent per block in
2648 * the page and we may dirty the inode.
2649 */
2650 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2651 }
2652
2653 /*
2654 * If we have inline data and arrive here, it means that
2655 * we will soon create the block for the 1st page, so
2656 * we'd better clear the inline data here.
2657 */
2658 if (ext4_has_inline_data(inode)) {
2659 /* Just inode will be modified... */
2660 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2661 if (IS_ERR(handle)) {
2662 ret = PTR_ERR(handle);
2663 goto out_writepages;
2664 }
2665 BUG_ON(ext4_test_inode_state(inode,
2666 EXT4_STATE_MAY_INLINE_DATA));
2667 ext4_destroy_inline_data(handle, inode);
2668 ext4_journal_stop(handle);
2669 }
2670
2671 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2672 range_whole = 1;
2673
2674 if (wbc->range_cyclic) {
2675 writeback_index = mapping->writeback_index;
2676 if (writeback_index)
2677 cycled = 0;
2678 mpd.first_page = writeback_index;
2679 mpd.last_page = -1;
2680 } else {
2681 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2682 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2683 }
2684
2685 mpd.inode = inode;
2686 mpd.wbc = wbc;
2687 ext4_io_submit_init(&mpd.io_submit, wbc);
2688 retry:
2689 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2690 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2691 done = false;
2692 blk_start_plug(&plug);
2693 while (!done && mpd.first_page <= mpd.last_page) {
2694 /* For each extent of pages we use new io_end */
2695 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2696 if (!mpd.io_submit.io_end) {
2697 ret = -ENOMEM;
2698 break;
2699 }
2700
2701 /*
2702 * We have two constraints: We find one extent to map and we
2703 * must always write out whole page (makes a difference when
2704 * blocksize < pagesize) so that we don't block on IO when we
2705 * try to write out the rest of the page. Journalled mode is
2706 * not supported by delalloc.
2707 */
2708 BUG_ON(ext4_should_journal_data(inode));
2709 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2710
2711 /* start a new transaction */
2712 handle = ext4_journal_start_with_reserve(inode,
2713 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2714 if (IS_ERR(handle)) {
2715 ret = PTR_ERR(handle);
2716 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2717 "%ld pages, ino %lu; err %d", __func__,
2718 wbc->nr_to_write, inode->i_ino, ret);
2719 /* Release allocated io_end */
2720 ext4_put_io_end(mpd.io_submit.io_end);
2721 break;
2722 }
2723
2724 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2725 ret = mpage_prepare_extent_to_map(&mpd);
2726 if (!ret) {
2727 if (mpd.map.m_len)
2728 ret = mpage_map_and_submit_extent(handle, &mpd,
2729 &give_up_on_write);
2730 else {
2731 /*
2732 * We scanned the whole range (or exhausted
2733 * nr_to_write), submitted what was mapped and
2734 * didn't find anything needing mapping. We are
2735 * done.
2736 */
2737 done = true;
2738 }
2739 }
2740 ext4_journal_stop(handle);
2741 /* Submit prepared bio */
2742 ext4_io_submit(&mpd.io_submit);
2743 /* Unlock pages we didn't use */
2744 mpage_release_unused_pages(&mpd, give_up_on_write);
2745 /* Drop our io_end reference we got from init */
2746 ext4_put_io_end(mpd.io_submit.io_end);
2747
2748 if (ret == -ENOSPC && sbi->s_journal) {
2749 /*
2750 * Commit the transaction which would
2751 * free blocks released in the transaction
2752 * and try again
2753 */
2754 jbd2_journal_force_commit_nested(sbi->s_journal);
2755 ret = 0;
2756 continue;
2757 }
2758 /* Fatal error - ENOMEM, EIO... */
2759 if (ret)
2760 break;
2761 }
2762 blk_finish_plug(&plug);
2763 if (!ret && !cycled && wbc->nr_to_write > 0) {
2764 cycled = 1;
2765 mpd.last_page = writeback_index - 1;
2766 mpd.first_page = 0;
2767 goto retry;
2768 }
2769
2770 /* Update index */
2771 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2772 /*
2773 * Set the writeback_index so that range_cyclic
2774 * mode will write it back later
2775 */
2776 mapping->writeback_index = mpd.first_page;
2777
2778 out_writepages:
2779 trace_ext4_writepages_result(inode, wbc, ret,
2780 nr_to_write - wbc->nr_to_write);
2781 return ret;
2782 }
2783
2784 static int ext4_nonda_switch(struct super_block *sb)
2785 {
2786 s64 free_clusters, dirty_clusters;
2787 struct ext4_sb_info *sbi = EXT4_SB(sb);
2788
2789 /*
2790 * switch to non delalloc mode if we are running low
2791 * on free block. The free block accounting via percpu
2792 * counters can get slightly wrong with percpu_counter_batch getting
2793 * accumulated on each CPU without updating global counters
2794 * Delalloc need an accurate free block accounting. So switch
2795 * to non delalloc when we are near to error range.
2796 */
2797 free_clusters =
2798 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2799 dirty_clusters =
2800 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2801 /*
2802 * Start pushing delalloc when 1/2 of free blocks are dirty.
2803 */
2804 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2805 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2806
2807 if (2 * free_clusters < 3 * dirty_clusters ||
2808 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2809 /*
2810 * free block count is less than 150% of dirty blocks
2811 * or free blocks is less than watermark
2812 */
2813 return 1;
2814 }
2815 return 0;
2816 }
2817
2818 /* We always reserve for an inode update; the superblock could be there too */
2819 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2820 {
2821 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2822 return 1;
2823
2824 if (pos + len <= 0x7fffffffULL)
2825 return 1;
2826
2827 /* We might need to update the superblock to set LARGE_FILE */
2828 return 2;
2829 }
2830
2831 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2832 loff_t pos, unsigned len, unsigned flags,
2833 struct page **pagep, void **fsdata)
2834 {
2835 int ret, retries = 0;
2836 struct page *page;
2837 pgoff_t index;
2838 struct inode *inode = mapping->host;
2839 handle_t *handle;
2840
2841 index = pos >> PAGE_CACHE_SHIFT;
2842
2843 if (ext4_nonda_switch(inode->i_sb)) {
2844 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2845 return ext4_write_begin(file, mapping, pos,
2846 len, flags, pagep, fsdata);
2847 }
2848 *fsdata = (void *)0;
2849 trace_ext4_da_write_begin(inode, pos, len, flags);
2850
2851 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2852 ret = ext4_da_write_inline_data_begin(mapping, inode,
2853 pos, len, flags,
2854 pagep, fsdata);
2855 if (ret < 0)
2856 return ret;
2857 if (ret == 1)
2858 return 0;
2859 }
2860
2861 /*
2862 * grab_cache_page_write_begin() can take a long time if the
2863 * system is thrashing due to memory pressure, or if the page
2864 * is being written back. So grab it first before we start
2865 * the transaction handle. This also allows us to allocate
2866 * the page (if needed) without using GFP_NOFS.
2867 */
2868 retry_grab:
2869 page = grab_cache_page_write_begin(mapping, index, flags);
2870 if (!page)
2871 return -ENOMEM;
2872 unlock_page(page);
2873
2874 /*
2875 * With delayed allocation, we don't log the i_disksize update
2876 * if there is delayed block allocation. But we still need
2877 * to journalling the i_disksize update if writes to the end
2878 * of file which has an already mapped buffer.
2879 */
2880 retry_journal:
2881 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2882 ext4_da_write_credits(inode, pos, len));
2883 if (IS_ERR(handle)) {
2884 page_cache_release(page);
2885 return PTR_ERR(handle);
2886 }
2887
2888 lock_page(page);
2889 if (page->mapping != mapping) {
2890 /* The page got truncated from under us */
2891 unlock_page(page);
2892 page_cache_release(page);
2893 ext4_journal_stop(handle);
2894 goto retry_grab;
2895 }
2896 /* In case writeback began while the page was unlocked */
2897 wait_for_stable_page(page);
2898
2899 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2900 ret = ext4_block_write_begin(page, pos, len,
2901 ext4_da_get_block_prep);
2902 #else
2903 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2904 #endif
2905 if (ret < 0) {
2906 unlock_page(page);
2907 ext4_journal_stop(handle);
2908 /*
2909 * block_write_begin may have instantiated a few blocks
2910 * outside i_size. Trim these off again. Don't need
2911 * i_size_read because we hold i_mutex.
2912 */
2913 if (pos + len > inode->i_size)
2914 ext4_truncate_failed_write(inode);
2915
2916 if (ret == -ENOSPC &&
2917 ext4_should_retry_alloc(inode->i_sb, &retries))
2918 goto retry_journal;
2919
2920 page_cache_release(page);
2921 return ret;
2922 }
2923
2924 *pagep = page;
2925 return ret;
2926 }
2927
2928 /*
2929 * Check if we should update i_disksize
2930 * when write to the end of file but not require block allocation
2931 */
2932 static int ext4_da_should_update_i_disksize(struct page *page,
2933 unsigned long offset)
2934 {
2935 struct buffer_head *bh;
2936 struct inode *inode = page->mapping->host;
2937 unsigned int idx;
2938 int i;
2939
2940 bh = page_buffers(page);
2941 idx = offset >> inode->i_blkbits;
2942
2943 for (i = 0; i < idx; i++)
2944 bh = bh->b_this_page;
2945
2946 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2947 return 0;
2948 return 1;
2949 }
2950
2951 static int ext4_da_write_end(struct file *file,
2952 struct address_space *mapping,
2953 loff_t pos, unsigned len, unsigned copied,
2954 struct page *page, void *fsdata)
2955 {
2956 struct inode *inode = mapping->host;
2957 int ret = 0, ret2;
2958 handle_t *handle = ext4_journal_current_handle();
2959 loff_t new_i_size;
2960 unsigned long start, end;
2961 int write_mode = (int)(unsigned long)fsdata;
2962
2963 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2964 return ext4_write_end(file, mapping, pos,
2965 len, copied, page, fsdata);
2966
2967 trace_ext4_da_write_end(inode, pos, len, copied);
2968 start = pos & (PAGE_CACHE_SIZE - 1);
2969 end = start + copied - 1;
2970
2971 /*
2972 * generic_write_end() will run mark_inode_dirty() if i_size
2973 * changes. So let's piggyback the i_disksize mark_inode_dirty
2974 * into that.
2975 */
2976 new_i_size = pos + copied;
2977 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2978 if (ext4_has_inline_data(inode) ||
2979 ext4_da_should_update_i_disksize(page, end)) {
2980 ext4_update_i_disksize(inode, new_i_size);
2981 /* We need to mark inode dirty even if
2982 * new_i_size is less that inode->i_size
2983 * bu greater than i_disksize.(hint delalloc)
2984 */
2985 ext4_mark_inode_dirty(handle, inode);
2986 }
2987 }
2988
2989 if (write_mode != CONVERT_INLINE_DATA &&
2990 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2991 ext4_has_inline_data(inode))
2992 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2993 page);
2994 else
2995 ret2 = generic_write_end(file, mapping, pos, len, copied,
2996 page, fsdata);
2997
2998 copied = ret2;
2999 if (ret2 < 0)
3000 ret = ret2;
3001 ret2 = ext4_journal_stop(handle);
3002 if (!ret)
3003 ret = ret2;
3004
3005 return ret ? ret : copied;
3006 }
3007
3008 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3009 unsigned int length)
3010 {
3011 /*
3012 * Drop reserved blocks
3013 */
3014 BUG_ON(!PageLocked(page));
3015 if (!page_has_buffers(page))
3016 goto out;
3017
3018 ext4_da_page_release_reservation(page, offset, length);
3019
3020 out:
3021 ext4_invalidatepage(page, offset, length);
3022
3023 return;
3024 }
3025
3026 /*
3027 * Force all delayed allocation blocks to be allocated for a given inode.
3028 */
3029 int ext4_alloc_da_blocks(struct inode *inode)
3030 {
3031 trace_ext4_alloc_da_blocks(inode);
3032
3033 if (!EXT4_I(inode)->i_reserved_data_blocks)
3034 return 0;
3035
3036 /*
3037 * We do something simple for now. The filemap_flush() will
3038 * also start triggering a write of the data blocks, which is
3039 * not strictly speaking necessary (and for users of
3040 * laptop_mode, not even desirable). However, to do otherwise
3041 * would require replicating code paths in:
3042 *
3043 * ext4_writepages() ->
3044 * write_cache_pages() ---> (via passed in callback function)
3045 * __mpage_da_writepage() -->
3046 * mpage_add_bh_to_extent()
3047 * mpage_da_map_blocks()
3048 *
3049 * The problem is that write_cache_pages(), located in
3050 * mm/page-writeback.c, marks pages clean in preparation for
3051 * doing I/O, which is not desirable if we're not planning on
3052 * doing I/O at all.
3053 *
3054 * We could call write_cache_pages(), and then redirty all of
3055 * the pages by calling redirty_page_for_writepage() but that
3056 * would be ugly in the extreme. So instead we would need to
3057 * replicate parts of the code in the above functions,
3058 * simplifying them because we wouldn't actually intend to
3059 * write out the pages, but rather only collect contiguous
3060 * logical block extents, call the multi-block allocator, and
3061 * then update the buffer heads with the block allocations.
3062 *
3063 * For now, though, we'll cheat by calling filemap_flush(),
3064 * which will map the blocks, and start the I/O, but not
3065 * actually wait for the I/O to complete.
3066 */
3067 return filemap_flush(inode->i_mapping);
3068 }
3069
3070 /*
3071 * bmap() is special. It gets used by applications such as lilo and by
3072 * the swapper to find the on-disk block of a specific piece of data.
3073 *
3074 * Naturally, this is dangerous if the block concerned is still in the
3075 * journal. If somebody makes a swapfile on an ext4 data-journaling
3076 * filesystem and enables swap, then they may get a nasty shock when the
3077 * data getting swapped to that swapfile suddenly gets overwritten by
3078 * the original zero's written out previously to the journal and
3079 * awaiting writeback in the kernel's buffer cache.
3080 *
3081 * So, if we see any bmap calls here on a modified, data-journaled file,
3082 * take extra steps to flush any blocks which might be in the cache.
3083 */
3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3085 {
3086 struct inode *inode = mapping->host;
3087 journal_t *journal;
3088 int err;
3089
3090 /*
3091 * We can get here for an inline file via the FIBMAP ioctl
3092 */
3093 if (ext4_has_inline_data(inode))
3094 return 0;
3095
3096 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3097 test_opt(inode->i_sb, DELALLOC)) {
3098 /*
3099 * With delalloc we want to sync the file
3100 * so that we can make sure we allocate
3101 * blocks for file
3102 */
3103 filemap_write_and_wait(mapping);
3104 }
3105
3106 if (EXT4_JOURNAL(inode) &&
3107 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3108 /*
3109 * This is a REALLY heavyweight approach, but the use of
3110 * bmap on dirty files is expected to be extremely rare:
3111 * only if we run lilo or swapon on a freshly made file
3112 * do we expect this to happen.
3113 *
3114 * (bmap requires CAP_SYS_RAWIO so this does not
3115 * represent an unprivileged user DOS attack --- we'd be
3116 * in trouble if mortal users could trigger this path at
3117 * will.)
3118 *
3119 * NB. EXT4_STATE_JDATA is not set on files other than
3120 * regular files. If somebody wants to bmap a directory
3121 * or symlink and gets confused because the buffer
3122 * hasn't yet been flushed to disk, they deserve
3123 * everything they get.
3124 */
3125
3126 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3127 journal = EXT4_JOURNAL(inode);
3128 jbd2_journal_lock_updates(journal);
3129 err = jbd2_journal_flush(journal);
3130 jbd2_journal_unlock_updates(journal);
3131
3132 if (err)
3133 return 0;
3134 }
3135
3136 return generic_block_bmap(mapping, block, ext4_get_block);
3137 }
3138
3139 static int ext4_readpage(struct file *file, struct page *page)
3140 {
3141 int ret = -EAGAIN;
3142 struct inode *inode = page->mapping->host;
3143
3144 trace_ext4_readpage(page);
3145
3146 if (ext4_has_inline_data(inode))
3147 ret = ext4_readpage_inline(inode, page);
3148
3149 if (ret == -EAGAIN)
3150 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3151
3152 return ret;
3153 }
3154
3155 static int
3156 ext4_readpages(struct file *file, struct address_space *mapping,
3157 struct list_head *pages, unsigned nr_pages)
3158 {
3159 struct inode *inode = mapping->host;
3160
3161 /* If the file has inline data, no need to do readpages. */
3162 if (ext4_has_inline_data(inode))
3163 return 0;
3164
3165 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3166 }
3167
3168 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3169 unsigned int length)
3170 {
3171 trace_ext4_invalidatepage(page, offset, length);
3172
3173 /* No journalling happens on data buffers when this function is used */
3174 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3175
3176 block_invalidatepage(page, offset, length);
3177 }
3178
3179 static int __ext4_journalled_invalidatepage(struct page *page,
3180 unsigned int offset,
3181 unsigned int length)
3182 {
3183 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3184
3185 trace_ext4_journalled_invalidatepage(page, offset, length);
3186
3187 /*
3188 * If it's a full truncate we just forget about the pending dirtying
3189 */
3190 if (offset == 0 && length == PAGE_CACHE_SIZE)
3191 ClearPageChecked(page);
3192
3193 return jbd2_journal_invalidatepage(journal, page, offset, length);
3194 }
3195
3196 /* Wrapper for aops... */
3197 static void ext4_journalled_invalidatepage(struct page *page,
3198 unsigned int offset,
3199 unsigned int length)
3200 {
3201 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3202 }
3203
3204 static int ext4_releasepage(struct page *page, gfp_t wait)
3205 {
3206 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3207
3208 trace_ext4_releasepage(page);
3209
3210 /* Page has dirty journalled data -> cannot release */
3211 if (PageChecked(page))
3212 return 0;
3213 if (journal)
3214 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3215 else
3216 return try_to_free_buffers(page);
3217 }
3218
3219 #ifdef CONFIG_FS_DAX
3220 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3221 struct buffer_head *bh_result, int create)
3222 {
3223 int ret, err;
3224 int credits;
3225 struct ext4_map_blocks map;
3226 handle_t *handle = NULL;
3227 int flags = 0;
3228
3229 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3230 inode->i_ino, create);
3231 map.m_lblk = iblock;
3232 map.m_len = bh_result->b_size >> inode->i_blkbits;
3233 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3234 if (create) {
3235 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3236 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3237 if (IS_ERR(handle)) {
3238 ret = PTR_ERR(handle);
3239 return ret;
3240 }
3241 }
3242
3243 ret = ext4_map_blocks(handle, inode, &map, flags);
3244 if (create) {
3245 err = ext4_journal_stop(handle);
3246 if (ret >= 0 && err < 0)
3247 ret = err;
3248 }
3249 if (ret <= 0)
3250 goto out;
3251 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3252 int err2;
3253
3254 /*
3255 * We are protected by i_mmap_sem so we know block cannot go
3256 * away from under us even though we dropped i_data_sem.
3257 * Convert extent to written and write zeros there.
3258 *
3259 * Note: We may get here even when create == 0.
3260 */
3261 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3262 if (IS_ERR(handle)) {
3263 ret = PTR_ERR(handle);
3264 goto out;
3265 }
3266
3267 err = ext4_map_blocks(handle, inode, &map,
3268 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3269 if (err < 0)
3270 ret = err;
3271 err2 = ext4_journal_stop(handle);
3272 if (err2 < 0 && ret > 0)
3273 ret = err2;
3274 }
3275 out:
3276 WARN_ON_ONCE(ret == 0 && create);
3277 if (ret > 0) {
3278 map_bh(bh_result, inode->i_sb, map.m_pblk);
3279 /*
3280 * At least for now we have to clear BH_New so that DAX code
3281 * doesn't attempt to zero blocks again in a racy way.
3282 */
3283 map.m_flags &= ~EXT4_MAP_NEW;
3284 ext4_update_bh_state(bh_result, map.m_flags);
3285 bh_result->b_size = map.m_len << inode->i_blkbits;
3286 ret = 0;
3287 }
3288 return ret;
3289 }
3290 #endif
3291
3292 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3293 ssize_t size, void *private)
3294 {
3295 ext4_io_end_t *io_end = private;
3296
3297 /* if not async direct IO just return */
3298 if (!io_end)
3299 return 0;
3300
3301 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3302 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3303 io_end, io_end->inode->i_ino, iocb, offset, size);
3304
3305 /*
3306 * Error during AIO DIO. We cannot convert unwritten extents as the
3307 * data was not written. Just clear the unwritten flag and drop io_end.
3308 */
3309 if (size <= 0) {
3310 ext4_clear_io_unwritten_flag(io_end);
3311 size = 0;
3312 }
3313 io_end->offset = offset;
3314 io_end->size = size;
3315 ext4_put_io_end(io_end);
3316
3317 return 0;
3318 }
3319
3320 /*
3321 * For ext4 extent files, ext4 will do direct-io write to holes,
3322 * preallocated extents, and those write extend the file, no need to
3323 * fall back to buffered IO.
3324 *
3325 * For holes, we fallocate those blocks, mark them as unwritten
3326 * If those blocks were preallocated, we mark sure they are split, but
3327 * still keep the range to write as unwritten.
3328 *
3329 * The unwritten extents will be converted to written when DIO is completed.
3330 * For async direct IO, since the IO may still pending when return, we
3331 * set up an end_io call back function, which will do the conversion
3332 * when async direct IO completed.
3333 *
3334 * If the O_DIRECT write will extend the file then add this inode to the
3335 * orphan list. So recovery will truncate it back to the original size
3336 * if the machine crashes during the write.
3337 *
3338 */
3339 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3340 loff_t offset)
3341 {
3342 struct file *file = iocb->ki_filp;
3343 struct inode *inode = file->f_mapping->host;
3344 ssize_t ret;
3345 size_t count = iov_iter_count(iter);
3346 int overwrite = 0;
3347 get_block_t *get_block_func = NULL;
3348 int dio_flags = 0;
3349 loff_t final_size = offset + count;
3350
3351 /* Use the old path for reads and writes beyond i_size. */
3352 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3353 return ext4_ind_direct_IO(iocb, iter, offset);
3354
3355 BUG_ON(iocb->private == NULL);
3356
3357 /*
3358 * Make all waiters for direct IO properly wait also for extent
3359 * conversion. This also disallows race between truncate() and
3360 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3361 */
3362 if (iov_iter_rw(iter) == WRITE)
3363 inode_dio_begin(inode);
3364
3365 /* If we do a overwrite dio, i_mutex locking can be released */
3366 overwrite = *((int *)iocb->private);
3367
3368 if (overwrite)
3369 inode_unlock(inode);
3370
3371 /*
3372 * We could direct write to holes and fallocate.
3373 *
3374 * Allocated blocks to fill the hole are marked as unwritten to prevent
3375 * parallel buffered read to expose the stale data before DIO complete
3376 * the data IO.
3377 *
3378 * As to previously fallocated extents, ext4 get_block will just simply
3379 * mark the buffer mapped but still keep the extents unwritten.
3380 *
3381 * For non AIO case, we will convert those unwritten extents to written
3382 * after return back from blockdev_direct_IO. That way we save us from
3383 * allocating io_end structure and also the overhead of offloading
3384 * the extent convertion to a workqueue.
3385 *
3386 * For async DIO, the conversion needs to be deferred when the
3387 * IO is completed. The ext4 end_io callback function will be
3388 * called to take care of the conversion work. Here for async
3389 * case, we allocate an io_end structure to hook to the iocb.
3390 */
3391 iocb->private = NULL;
3392 if (overwrite)
3393 get_block_func = ext4_dio_get_block_overwrite;
3394 else if (is_sync_kiocb(iocb)) {
3395 get_block_func = ext4_dio_get_block_unwritten_sync;
3396 dio_flags = DIO_LOCKING;
3397 } else {
3398 get_block_func = ext4_dio_get_block_unwritten_async;
3399 dio_flags = DIO_LOCKING;
3400 }
3401 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3402 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3403 #endif
3404 if (IS_DAX(inode))
3405 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3406 ext4_end_io_dio, dio_flags);
3407 else
3408 ret = __blockdev_direct_IO(iocb, inode,
3409 inode->i_sb->s_bdev, iter, offset,
3410 get_block_func,
3411 ext4_end_io_dio, NULL, dio_flags);
3412
3413 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3414 EXT4_STATE_DIO_UNWRITTEN)) {
3415 int err;
3416 /*
3417 * for non AIO case, since the IO is already
3418 * completed, we could do the conversion right here
3419 */
3420 err = ext4_convert_unwritten_extents(NULL, inode,
3421 offset, ret);
3422 if (err < 0)
3423 ret = err;
3424 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3425 }
3426
3427 if (iov_iter_rw(iter) == WRITE)
3428 inode_dio_end(inode);
3429 /* take i_mutex locking again if we do a ovewrite dio */
3430 if (overwrite)
3431 inode_lock(inode);
3432
3433 return ret;
3434 }
3435
3436 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3437 loff_t offset)
3438 {
3439 struct file *file = iocb->ki_filp;
3440 struct inode *inode = file->f_mapping->host;
3441 size_t count = iov_iter_count(iter);
3442 ssize_t ret;
3443
3444 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3445 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3446 return 0;
3447 #endif
3448
3449 /*
3450 * If we are doing data journalling we don't support O_DIRECT
3451 */
3452 if (ext4_should_journal_data(inode))
3453 return 0;
3454
3455 /* Let buffer I/O handle the inline data case. */
3456 if (ext4_has_inline_data(inode))
3457 return 0;
3458
3459 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3460 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3461 ret = ext4_ext_direct_IO(iocb, iter, offset);
3462 else
3463 ret = ext4_ind_direct_IO(iocb, iter, offset);
3464 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3465 return ret;
3466 }
3467
3468 /*
3469 * Pages can be marked dirty completely asynchronously from ext4's journalling
3470 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3471 * much here because ->set_page_dirty is called under VFS locks. The page is
3472 * not necessarily locked.
3473 *
3474 * We cannot just dirty the page and leave attached buffers clean, because the
3475 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3476 * or jbddirty because all the journalling code will explode.
3477 *
3478 * So what we do is to mark the page "pending dirty" and next time writepage
3479 * is called, propagate that into the buffers appropriately.
3480 */
3481 static int ext4_journalled_set_page_dirty(struct page *page)
3482 {
3483 SetPageChecked(page);
3484 return __set_page_dirty_nobuffers(page);
3485 }
3486
3487 static const struct address_space_operations ext4_aops = {
3488 .readpage = ext4_readpage,
3489 .readpages = ext4_readpages,
3490 .writepage = ext4_writepage,
3491 .writepages = ext4_writepages,
3492 .write_begin = ext4_write_begin,
3493 .write_end = ext4_write_end,
3494 .bmap = ext4_bmap,
3495 .invalidatepage = ext4_invalidatepage,
3496 .releasepage = ext4_releasepage,
3497 .direct_IO = ext4_direct_IO,
3498 .migratepage = buffer_migrate_page,
3499 .is_partially_uptodate = block_is_partially_uptodate,
3500 .error_remove_page = generic_error_remove_page,
3501 };
3502
3503 static const struct address_space_operations ext4_journalled_aops = {
3504 .readpage = ext4_readpage,
3505 .readpages = ext4_readpages,
3506 .writepage = ext4_writepage,
3507 .writepages = ext4_writepages,
3508 .write_begin = ext4_write_begin,
3509 .write_end = ext4_journalled_write_end,
3510 .set_page_dirty = ext4_journalled_set_page_dirty,
3511 .bmap = ext4_bmap,
3512 .invalidatepage = ext4_journalled_invalidatepage,
3513 .releasepage = ext4_releasepage,
3514 .direct_IO = ext4_direct_IO,
3515 .is_partially_uptodate = block_is_partially_uptodate,
3516 .error_remove_page = generic_error_remove_page,
3517 };
3518
3519 static const struct address_space_operations ext4_da_aops = {
3520 .readpage = ext4_readpage,
3521 .readpages = ext4_readpages,
3522 .writepage = ext4_writepage,
3523 .writepages = ext4_writepages,
3524 .write_begin = ext4_da_write_begin,
3525 .write_end = ext4_da_write_end,
3526 .bmap = ext4_bmap,
3527 .invalidatepage = ext4_da_invalidatepage,
3528 .releasepage = ext4_releasepage,
3529 .direct_IO = ext4_direct_IO,
3530 .migratepage = buffer_migrate_page,
3531 .is_partially_uptodate = block_is_partially_uptodate,
3532 .error_remove_page = generic_error_remove_page,
3533 };
3534
3535 void ext4_set_aops(struct inode *inode)
3536 {
3537 switch (ext4_inode_journal_mode(inode)) {
3538 case EXT4_INODE_ORDERED_DATA_MODE:
3539 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3540 break;
3541 case EXT4_INODE_WRITEBACK_DATA_MODE:
3542 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3543 break;
3544 case EXT4_INODE_JOURNAL_DATA_MODE:
3545 inode->i_mapping->a_ops = &ext4_journalled_aops;
3546 return;
3547 default:
3548 BUG();
3549 }
3550 if (test_opt(inode->i_sb, DELALLOC))
3551 inode->i_mapping->a_ops = &ext4_da_aops;
3552 else
3553 inode->i_mapping->a_ops = &ext4_aops;
3554 }
3555
3556 static int __ext4_block_zero_page_range(handle_t *handle,
3557 struct address_space *mapping, loff_t from, loff_t length)
3558 {
3559 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3560 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3561 unsigned blocksize, pos;
3562 ext4_lblk_t iblock;
3563 struct inode *inode = mapping->host;
3564 struct buffer_head *bh;
3565 struct page *page;
3566 int err = 0;
3567
3568 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3569 mapping_gfp_constraint(mapping, ~__GFP_FS));
3570 if (!page)
3571 return -ENOMEM;
3572
3573 blocksize = inode->i_sb->s_blocksize;
3574
3575 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3576
3577 if (!page_has_buffers(page))
3578 create_empty_buffers(page, blocksize, 0);
3579
3580 /* Find the buffer that contains "offset" */
3581 bh = page_buffers(page);
3582 pos = blocksize;
3583 while (offset >= pos) {
3584 bh = bh->b_this_page;
3585 iblock++;
3586 pos += blocksize;
3587 }
3588 if (buffer_freed(bh)) {
3589 BUFFER_TRACE(bh, "freed: skip");
3590 goto unlock;
3591 }
3592 if (!buffer_mapped(bh)) {
3593 BUFFER_TRACE(bh, "unmapped");
3594 ext4_get_block(inode, iblock, bh, 0);
3595 /* unmapped? It's a hole - nothing to do */
3596 if (!buffer_mapped(bh)) {
3597 BUFFER_TRACE(bh, "still unmapped");
3598 goto unlock;
3599 }
3600 }
3601
3602 /* Ok, it's mapped. Make sure it's up-to-date */
3603 if (PageUptodate(page))
3604 set_buffer_uptodate(bh);
3605
3606 if (!buffer_uptodate(bh)) {
3607 err = -EIO;
3608 ll_rw_block(READ, 1, &bh);
3609 wait_on_buffer(bh);
3610 /* Uhhuh. Read error. Complain and punt. */
3611 if (!buffer_uptodate(bh))
3612 goto unlock;
3613 if (S_ISREG(inode->i_mode) &&
3614 ext4_encrypted_inode(inode)) {
3615 /* We expect the key to be set. */
3616 BUG_ON(!ext4_has_encryption_key(inode));
3617 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3618 WARN_ON_ONCE(ext4_decrypt(page));
3619 }
3620 }
3621 if (ext4_should_journal_data(inode)) {
3622 BUFFER_TRACE(bh, "get write access");
3623 err = ext4_journal_get_write_access(handle, bh);
3624 if (err)
3625 goto unlock;
3626 }
3627 zero_user(page, offset, length);
3628 BUFFER_TRACE(bh, "zeroed end of block");
3629
3630 if (ext4_should_journal_data(inode)) {
3631 err = ext4_handle_dirty_metadata(handle, inode, bh);
3632 } else {
3633 err = 0;
3634 mark_buffer_dirty(bh);
3635 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3636 err = ext4_jbd2_file_inode(handle, inode);
3637 }
3638
3639 unlock:
3640 unlock_page(page);
3641 page_cache_release(page);
3642 return err;
3643 }
3644
3645 /*
3646 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3647 * starting from file offset 'from'. The range to be zero'd must
3648 * be contained with in one block. If the specified range exceeds
3649 * the end of the block it will be shortened to end of the block
3650 * that cooresponds to 'from'
3651 */
3652 static int ext4_block_zero_page_range(handle_t *handle,
3653 struct address_space *mapping, loff_t from, loff_t length)
3654 {
3655 struct inode *inode = mapping->host;
3656 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3657 unsigned blocksize = inode->i_sb->s_blocksize;
3658 unsigned max = blocksize - (offset & (blocksize - 1));
3659
3660 /*
3661 * correct length if it does not fall between
3662 * 'from' and the end of the block
3663 */
3664 if (length > max || length < 0)
3665 length = max;
3666
3667 if (IS_DAX(inode))
3668 return dax_zero_page_range(inode, from, length, ext4_get_block);
3669 return __ext4_block_zero_page_range(handle, mapping, from, length);
3670 }
3671
3672 /*
3673 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3674 * up to the end of the block which corresponds to `from'.
3675 * This required during truncate. We need to physically zero the tail end
3676 * of that block so it doesn't yield old data if the file is later grown.
3677 */
3678 static int ext4_block_truncate_page(handle_t *handle,
3679 struct address_space *mapping, loff_t from)
3680 {
3681 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3682 unsigned length;
3683 unsigned blocksize;
3684 struct inode *inode = mapping->host;
3685
3686 blocksize = inode->i_sb->s_blocksize;
3687 length = blocksize - (offset & (blocksize - 1));
3688
3689 return ext4_block_zero_page_range(handle, mapping, from, length);
3690 }
3691
3692 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3693 loff_t lstart, loff_t length)
3694 {
3695 struct super_block *sb = inode->i_sb;
3696 struct address_space *mapping = inode->i_mapping;
3697 unsigned partial_start, partial_end;
3698 ext4_fsblk_t start, end;
3699 loff_t byte_end = (lstart + length - 1);
3700 int err = 0;
3701
3702 partial_start = lstart & (sb->s_blocksize - 1);
3703 partial_end = byte_end & (sb->s_blocksize - 1);
3704
3705 start = lstart >> sb->s_blocksize_bits;
3706 end = byte_end >> sb->s_blocksize_bits;
3707
3708 /* Handle partial zero within the single block */
3709 if (start == end &&
3710 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3711 err = ext4_block_zero_page_range(handle, mapping,
3712 lstart, length);
3713 return err;
3714 }
3715 /* Handle partial zero out on the start of the range */
3716 if (partial_start) {
3717 err = ext4_block_zero_page_range(handle, mapping,
3718 lstart, sb->s_blocksize);
3719 if (err)
3720 return err;
3721 }
3722 /* Handle partial zero out on the end of the range */
3723 if (partial_end != sb->s_blocksize - 1)
3724 err = ext4_block_zero_page_range(handle, mapping,
3725 byte_end - partial_end,
3726 partial_end + 1);
3727 return err;
3728 }
3729
3730 int ext4_can_truncate(struct inode *inode)
3731 {
3732 if (S_ISREG(inode->i_mode))
3733 return 1;
3734 if (S_ISDIR(inode->i_mode))
3735 return 1;
3736 if (S_ISLNK(inode->i_mode))
3737 return !ext4_inode_is_fast_symlink(inode);
3738 return 0;
3739 }
3740
3741 /*
3742 * We have to make sure i_disksize gets properly updated before we truncate
3743 * page cache due to hole punching or zero range. Otherwise i_disksize update
3744 * can get lost as it may have been postponed to submission of writeback but
3745 * that will never happen after we truncate page cache.
3746 */
3747 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3748 loff_t len)
3749 {
3750 handle_t *handle;
3751 loff_t size = i_size_read(inode);
3752
3753 WARN_ON(!inode_is_locked(inode));
3754 if (offset > size || offset + len < size)
3755 return 0;
3756
3757 if (EXT4_I(inode)->i_disksize >= size)
3758 return 0;
3759
3760 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3761 if (IS_ERR(handle))
3762 return PTR_ERR(handle);
3763 ext4_update_i_disksize(inode, size);
3764 ext4_mark_inode_dirty(handle, inode);
3765 ext4_journal_stop(handle);
3766
3767 return 0;
3768 }
3769
3770 /*
3771 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3772 * associated with the given offset and length
3773 *
3774 * @inode: File inode
3775 * @offset: The offset where the hole will begin
3776 * @len: The length of the hole
3777 *
3778 * Returns: 0 on success or negative on failure
3779 */
3780
3781 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3782 {
3783 struct super_block *sb = inode->i_sb;
3784 ext4_lblk_t first_block, stop_block;
3785 struct address_space *mapping = inode->i_mapping;
3786 loff_t first_block_offset, last_block_offset;
3787 handle_t *handle;
3788 unsigned int credits;
3789 int ret = 0;
3790
3791 if (!S_ISREG(inode->i_mode))
3792 return -EOPNOTSUPP;
3793
3794 trace_ext4_punch_hole(inode, offset, length, 0);
3795
3796 /*
3797 * Write out all dirty pages to avoid race conditions
3798 * Then release them.
3799 */
3800 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3801 ret = filemap_write_and_wait_range(mapping, offset,
3802 offset + length - 1);
3803 if (ret)
3804 return ret;
3805 }
3806
3807 inode_lock(inode);
3808
3809 /* No need to punch hole beyond i_size */
3810 if (offset >= inode->i_size)
3811 goto out_mutex;
3812
3813 /*
3814 * If the hole extends beyond i_size, set the hole
3815 * to end after the page that contains i_size
3816 */
3817 if (offset + length > inode->i_size) {
3818 length = inode->i_size +
3819 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3820 offset;
3821 }
3822
3823 if (offset & (sb->s_blocksize - 1) ||
3824 (offset + length) & (sb->s_blocksize - 1)) {
3825 /*
3826 * Attach jinode to inode for jbd2 if we do any zeroing of
3827 * partial block
3828 */
3829 ret = ext4_inode_attach_jinode(inode);
3830 if (ret < 0)
3831 goto out_mutex;
3832
3833 }
3834
3835 /* Wait all existing dio workers, newcomers will block on i_mutex */
3836 ext4_inode_block_unlocked_dio(inode);
3837 inode_dio_wait(inode);
3838
3839 /*
3840 * Prevent page faults from reinstantiating pages we have released from
3841 * page cache.
3842 */
3843 down_write(&EXT4_I(inode)->i_mmap_sem);
3844 first_block_offset = round_up(offset, sb->s_blocksize);
3845 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3846
3847 /* Now release the pages and zero block aligned part of pages*/
3848 if (last_block_offset > first_block_offset) {
3849 ret = ext4_update_disksize_before_punch(inode, offset, length);
3850 if (ret)
3851 goto out_dio;
3852 truncate_pagecache_range(inode, first_block_offset,
3853 last_block_offset);
3854 }
3855
3856 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3857 credits = ext4_writepage_trans_blocks(inode);
3858 else
3859 credits = ext4_blocks_for_truncate(inode);
3860 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3861 if (IS_ERR(handle)) {
3862 ret = PTR_ERR(handle);
3863 ext4_std_error(sb, ret);
3864 goto out_dio;
3865 }
3866
3867 ret = ext4_zero_partial_blocks(handle, inode, offset,
3868 length);
3869 if (ret)
3870 goto out_stop;
3871
3872 first_block = (offset + sb->s_blocksize - 1) >>
3873 EXT4_BLOCK_SIZE_BITS(sb);
3874 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3875
3876 /* If there are no blocks to remove, return now */
3877 if (first_block >= stop_block)
3878 goto out_stop;
3879
3880 down_write(&EXT4_I(inode)->i_data_sem);
3881 ext4_discard_preallocations(inode);
3882
3883 ret = ext4_es_remove_extent(inode, first_block,
3884 stop_block - first_block);
3885 if (ret) {
3886 up_write(&EXT4_I(inode)->i_data_sem);
3887 goto out_stop;
3888 }
3889
3890 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3891 ret = ext4_ext_remove_space(inode, first_block,
3892 stop_block - 1);
3893 else
3894 ret = ext4_ind_remove_space(handle, inode, first_block,
3895 stop_block);
3896
3897 up_write(&EXT4_I(inode)->i_data_sem);
3898 if (IS_SYNC(inode))
3899 ext4_handle_sync(handle);
3900
3901 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3902 ext4_mark_inode_dirty(handle, inode);
3903 out_stop:
3904 ext4_journal_stop(handle);
3905 out_dio:
3906 up_write(&EXT4_I(inode)->i_mmap_sem);
3907 ext4_inode_resume_unlocked_dio(inode);
3908 out_mutex:
3909 inode_unlock(inode);
3910 return ret;
3911 }
3912
3913 int ext4_inode_attach_jinode(struct inode *inode)
3914 {
3915 struct ext4_inode_info *ei = EXT4_I(inode);
3916 struct jbd2_inode *jinode;
3917
3918 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3919 return 0;
3920
3921 jinode = jbd2_alloc_inode(GFP_KERNEL);
3922 spin_lock(&inode->i_lock);
3923 if (!ei->jinode) {
3924 if (!jinode) {
3925 spin_unlock(&inode->i_lock);
3926 return -ENOMEM;
3927 }
3928 ei->jinode = jinode;
3929 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3930 jinode = NULL;
3931 }
3932 spin_unlock(&inode->i_lock);
3933 if (unlikely(jinode != NULL))
3934 jbd2_free_inode(jinode);
3935 return 0;
3936 }
3937
3938 /*
3939 * ext4_truncate()
3940 *
3941 * We block out ext4_get_block() block instantiations across the entire
3942 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3943 * simultaneously on behalf of the same inode.
3944 *
3945 * As we work through the truncate and commit bits of it to the journal there
3946 * is one core, guiding principle: the file's tree must always be consistent on
3947 * disk. We must be able to restart the truncate after a crash.
3948 *
3949 * The file's tree may be transiently inconsistent in memory (although it
3950 * probably isn't), but whenever we close off and commit a journal transaction,
3951 * the contents of (the filesystem + the journal) must be consistent and
3952 * restartable. It's pretty simple, really: bottom up, right to left (although
3953 * left-to-right works OK too).
3954 *
3955 * Note that at recovery time, journal replay occurs *before* the restart of
3956 * truncate against the orphan inode list.
3957 *
3958 * The committed inode has the new, desired i_size (which is the same as
3959 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3960 * that this inode's truncate did not complete and it will again call
3961 * ext4_truncate() to have another go. So there will be instantiated blocks
3962 * to the right of the truncation point in a crashed ext4 filesystem. But
3963 * that's fine - as long as they are linked from the inode, the post-crash
3964 * ext4_truncate() run will find them and release them.
3965 */
3966 void ext4_truncate(struct inode *inode)
3967 {
3968 struct ext4_inode_info *ei = EXT4_I(inode);
3969 unsigned int credits;
3970 handle_t *handle;
3971 struct address_space *mapping = inode->i_mapping;
3972
3973 /*
3974 * There is a possibility that we're either freeing the inode
3975 * or it's a completely new inode. In those cases we might not
3976 * have i_mutex locked because it's not necessary.
3977 */
3978 if (!(inode->i_state & (I_NEW|I_FREEING)))
3979 WARN_ON(!inode_is_locked(inode));
3980 trace_ext4_truncate_enter(inode);
3981
3982 if (!ext4_can_truncate(inode))
3983 return;
3984
3985 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3986
3987 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3988 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3989
3990 if (ext4_has_inline_data(inode)) {
3991 int has_inline = 1;
3992
3993 ext4_inline_data_truncate(inode, &has_inline);
3994 if (has_inline)
3995 return;
3996 }
3997
3998 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3999 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4000 if (ext4_inode_attach_jinode(inode) < 0)
4001 return;
4002 }
4003
4004 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4005 credits = ext4_writepage_trans_blocks(inode);
4006 else
4007 credits = ext4_blocks_for_truncate(inode);
4008
4009 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4010 if (IS_ERR(handle)) {
4011 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4012 return;
4013 }
4014
4015 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4016 ext4_block_truncate_page(handle, mapping, inode->i_size);
4017
4018 /*
4019 * We add the inode to the orphan list, so that if this
4020 * truncate spans multiple transactions, and we crash, we will
4021 * resume the truncate when the filesystem recovers. It also
4022 * marks the inode dirty, to catch the new size.
4023 *
4024 * Implication: the file must always be in a sane, consistent
4025 * truncatable state while each transaction commits.
4026 */
4027 if (ext4_orphan_add(handle, inode))
4028 goto out_stop;
4029
4030 down_write(&EXT4_I(inode)->i_data_sem);
4031
4032 ext4_discard_preallocations(inode);
4033
4034 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035 ext4_ext_truncate(handle, inode);
4036 else
4037 ext4_ind_truncate(handle, inode);
4038
4039 up_write(&ei->i_data_sem);
4040
4041 if (IS_SYNC(inode))
4042 ext4_handle_sync(handle);
4043
4044 out_stop:
4045 /*
4046 * If this was a simple ftruncate() and the file will remain alive,
4047 * then we need to clear up the orphan record which we created above.
4048 * However, if this was a real unlink then we were called by
4049 * ext4_evict_inode(), and we allow that function to clean up the
4050 * orphan info for us.
4051 */
4052 if (inode->i_nlink)
4053 ext4_orphan_del(handle, inode);
4054
4055 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4056 ext4_mark_inode_dirty(handle, inode);
4057 ext4_journal_stop(handle);
4058
4059 trace_ext4_truncate_exit(inode);
4060 }
4061
4062 /*
4063 * ext4_get_inode_loc returns with an extra refcount against the inode's
4064 * underlying buffer_head on success. If 'in_mem' is true, we have all
4065 * data in memory that is needed to recreate the on-disk version of this
4066 * inode.
4067 */
4068 static int __ext4_get_inode_loc(struct inode *inode,
4069 struct ext4_iloc *iloc, int in_mem)
4070 {
4071 struct ext4_group_desc *gdp;
4072 struct buffer_head *bh;
4073 struct super_block *sb = inode->i_sb;
4074 ext4_fsblk_t block;
4075 int inodes_per_block, inode_offset;
4076
4077 iloc->bh = NULL;
4078 if (!ext4_valid_inum(sb, inode->i_ino))
4079 return -EFSCORRUPTED;
4080
4081 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4082 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4083 if (!gdp)
4084 return -EIO;
4085
4086 /*
4087 * Figure out the offset within the block group inode table
4088 */
4089 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4090 inode_offset = ((inode->i_ino - 1) %
4091 EXT4_INODES_PER_GROUP(sb));
4092 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4093 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4094
4095 bh = sb_getblk(sb, block);
4096 if (unlikely(!bh))
4097 return -ENOMEM;
4098 if (!buffer_uptodate(bh)) {
4099 lock_buffer(bh);
4100
4101 /*
4102 * If the buffer has the write error flag, we have failed
4103 * to write out another inode in the same block. In this
4104 * case, we don't have to read the block because we may
4105 * read the old inode data successfully.
4106 */
4107 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4108 set_buffer_uptodate(bh);
4109
4110 if (buffer_uptodate(bh)) {
4111 /* someone brought it uptodate while we waited */
4112 unlock_buffer(bh);
4113 goto has_buffer;
4114 }
4115
4116 /*
4117 * If we have all information of the inode in memory and this
4118 * is the only valid inode in the block, we need not read the
4119 * block.
4120 */
4121 if (in_mem) {
4122 struct buffer_head *bitmap_bh;
4123 int i, start;
4124
4125 start = inode_offset & ~(inodes_per_block - 1);
4126
4127 /* Is the inode bitmap in cache? */
4128 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4129 if (unlikely(!bitmap_bh))
4130 goto make_io;
4131
4132 /*
4133 * If the inode bitmap isn't in cache then the
4134 * optimisation may end up performing two reads instead
4135 * of one, so skip it.
4136 */
4137 if (!buffer_uptodate(bitmap_bh)) {
4138 brelse(bitmap_bh);
4139 goto make_io;
4140 }
4141 for (i = start; i < start + inodes_per_block; i++) {
4142 if (i == inode_offset)
4143 continue;
4144 if (ext4_test_bit(i, bitmap_bh->b_data))
4145 break;
4146 }
4147 brelse(bitmap_bh);
4148 if (i == start + inodes_per_block) {
4149 /* all other inodes are free, so skip I/O */
4150 memset(bh->b_data, 0, bh->b_size);
4151 set_buffer_uptodate(bh);
4152 unlock_buffer(bh);
4153 goto has_buffer;
4154 }
4155 }
4156
4157 make_io:
4158 /*
4159 * If we need to do any I/O, try to pre-readahead extra
4160 * blocks from the inode table.
4161 */
4162 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4163 ext4_fsblk_t b, end, table;
4164 unsigned num;
4165 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4166
4167 table = ext4_inode_table(sb, gdp);
4168 /* s_inode_readahead_blks is always a power of 2 */
4169 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4170 if (table > b)
4171 b = table;
4172 end = b + ra_blks;
4173 num = EXT4_INODES_PER_GROUP(sb);
4174 if (ext4_has_group_desc_csum(sb))
4175 num -= ext4_itable_unused_count(sb, gdp);
4176 table += num / inodes_per_block;
4177 if (end > table)
4178 end = table;
4179 while (b <= end)
4180 sb_breadahead(sb, b++);
4181 }
4182
4183 /*
4184 * There are other valid inodes in the buffer, this inode
4185 * has in-inode xattrs, or we don't have this inode in memory.
4186 * Read the block from disk.
4187 */
4188 trace_ext4_load_inode(inode);
4189 get_bh(bh);
4190 bh->b_end_io = end_buffer_read_sync;
4191 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4192 wait_on_buffer(bh);
4193 if (!buffer_uptodate(bh)) {
4194 EXT4_ERROR_INODE_BLOCK(inode, block,
4195 "unable to read itable block");
4196 brelse(bh);
4197 return -EIO;
4198 }
4199 }
4200 has_buffer:
4201 iloc->bh = bh;
4202 return 0;
4203 }
4204
4205 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4206 {
4207 /* We have all inode data except xattrs in memory here. */
4208 return __ext4_get_inode_loc(inode, iloc,
4209 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4210 }
4211
4212 void ext4_set_inode_flags(struct inode *inode)
4213 {
4214 unsigned int flags = EXT4_I(inode)->i_flags;
4215 unsigned int new_fl = 0;
4216
4217 if (flags & EXT4_SYNC_FL)
4218 new_fl |= S_SYNC;
4219 if (flags & EXT4_APPEND_FL)
4220 new_fl |= S_APPEND;
4221 if (flags & EXT4_IMMUTABLE_FL)
4222 new_fl |= S_IMMUTABLE;
4223 if (flags & EXT4_NOATIME_FL)
4224 new_fl |= S_NOATIME;
4225 if (flags & EXT4_DIRSYNC_FL)
4226 new_fl |= S_DIRSYNC;
4227 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4228 new_fl |= S_DAX;
4229 inode_set_flags(inode, new_fl,
4230 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4231 }
4232
4233 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4234 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4235 {
4236 unsigned int vfs_fl;
4237 unsigned long old_fl, new_fl;
4238
4239 do {
4240 vfs_fl = ei->vfs_inode.i_flags;
4241 old_fl = ei->i_flags;
4242 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4243 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4244 EXT4_DIRSYNC_FL);
4245 if (vfs_fl & S_SYNC)
4246 new_fl |= EXT4_SYNC_FL;
4247 if (vfs_fl & S_APPEND)
4248 new_fl |= EXT4_APPEND_FL;
4249 if (vfs_fl & S_IMMUTABLE)
4250 new_fl |= EXT4_IMMUTABLE_FL;
4251 if (vfs_fl & S_NOATIME)
4252 new_fl |= EXT4_NOATIME_FL;
4253 if (vfs_fl & S_DIRSYNC)
4254 new_fl |= EXT4_DIRSYNC_FL;
4255 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4256 }
4257
4258 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4259 struct ext4_inode_info *ei)
4260 {
4261 blkcnt_t i_blocks ;
4262 struct inode *inode = &(ei->vfs_inode);
4263 struct super_block *sb = inode->i_sb;
4264
4265 if (ext4_has_feature_huge_file(sb)) {
4266 /* we are using combined 48 bit field */
4267 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4268 le32_to_cpu(raw_inode->i_blocks_lo);
4269 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4270 /* i_blocks represent file system block size */
4271 return i_blocks << (inode->i_blkbits - 9);
4272 } else {
4273 return i_blocks;
4274 }
4275 } else {
4276 return le32_to_cpu(raw_inode->i_blocks_lo);
4277 }
4278 }
4279
4280 static inline void ext4_iget_extra_inode(struct inode *inode,
4281 struct ext4_inode *raw_inode,
4282 struct ext4_inode_info *ei)
4283 {
4284 __le32 *magic = (void *)raw_inode +
4285 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4286 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4287 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4288 ext4_find_inline_data_nolock(inode);
4289 } else
4290 EXT4_I(inode)->i_inline_off = 0;
4291 }
4292
4293 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4294 {
4295 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4296 return -EOPNOTSUPP;
4297 *projid = EXT4_I(inode)->i_projid;
4298 return 0;
4299 }
4300
4301 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4302 {
4303 struct ext4_iloc iloc;
4304 struct ext4_inode *raw_inode;
4305 struct ext4_inode_info *ei;
4306 struct inode *inode;
4307 journal_t *journal = EXT4_SB(sb)->s_journal;
4308 long ret;
4309 int block;
4310 uid_t i_uid;
4311 gid_t i_gid;
4312 projid_t i_projid;
4313
4314 inode = iget_locked(sb, ino);
4315 if (!inode)
4316 return ERR_PTR(-ENOMEM);
4317 if (!(inode->i_state & I_NEW))
4318 return inode;
4319
4320 ei = EXT4_I(inode);
4321 iloc.bh = NULL;
4322
4323 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4324 if (ret < 0)
4325 goto bad_inode;
4326 raw_inode = ext4_raw_inode(&iloc);
4327
4328 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4329 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4330 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4331 EXT4_INODE_SIZE(inode->i_sb)) {
4332 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4333 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4334 EXT4_INODE_SIZE(inode->i_sb));
4335 ret = -EFSCORRUPTED;
4336 goto bad_inode;
4337 }
4338 } else
4339 ei->i_extra_isize = 0;
4340
4341 /* Precompute checksum seed for inode metadata */
4342 if (ext4_has_metadata_csum(sb)) {
4343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4344 __u32 csum;
4345 __le32 inum = cpu_to_le32(inode->i_ino);
4346 __le32 gen = raw_inode->i_generation;
4347 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4348 sizeof(inum));
4349 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4350 sizeof(gen));
4351 }
4352
4353 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4354 EXT4_ERROR_INODE(inode, "checksum invalid");
4355 ret = -EFSBADCRC;
4356 goto bad_inode;
4357 }
4358
4359 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4360 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4361 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4362 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4363 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4364 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4365 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4366 else
4367 i_projid = EXT4_DEF_PROJID;
4368
4369 if (!(test_opt(inode->i_sb, NO_UID32))) {
4370 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4371 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4372 }
4373 i_uid_write(inode, i_uid);
4374 i_gid_write(inode, i_gid);
4375 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4376 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4377
4378 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4379 ei->i_inline_off = 0;
4380 ei->i_dir_start_lookup = 0;
4381 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4382 /* We now have enough fields to check if the inode was active or not.
4383 * This is needed because nfsd might try to access dead inodes
4384 * the test is that same one that e2fsck uses
4385 * NeilBrown 1999oct15
4386 */
4387 if (inode->i_nlink == 0) {
4388 if ((inode->i_mode == 0 ||
4389 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4390 ino != EXT4_BOOT_LOADER_INO) {
4391 /* this inode is deleted */
4392 ret = -ESTALE;
4393 goto bad_inode;
4394 }
4395 /* The only unlinked inodes we let through here have
4396 * valid i_mode and are being read by the orphan
4397 * recovery code: that's fine, we're about to complete
4398 * the process of deleting those.
4399 * OR it is the EXT4_BOOT_LOADER_INO which is
4400 * not initialized on a new filesystem. */
4401 }
4402 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4403 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4404 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4405 if (ext4_has_feature_64bit(sb))
4406 ei->i_file_acl |=
4407 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4408 inode->i_size = ext4_isize(raw_inode);
4409 ei->i_disksize = inode->i_size;
4410 #ifdef CONFIG_QUOTA
4411 ei->i_reserved_quota = 0;
4412 #endif
4413 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4414 ei->i_block_group = iloc.block_group;
4415 ei->i_last_alloc_group = ~0;
4416 /*
4417 * NOTE! The in-memory inode i_data array is in little-endian order
4418 * even on big-endian machines: we do NOT byteswap the block numbers!
4419 */
4420 for (block = 0; block < EXT4_N_BLOCKS; block++)
4421 ei->i_data[block] = raw_inode->i_block[block];
4422 INIT_LIST_HEAD(&ei->i_orphan);
4423
4424 /*
4425 * Set transaction id's of transactions that have to be committed
4426 * to finish f[data]sync. We set them to currently running transaction
4427 * as we cannot be sure that the inode or some of its metadata isn't
4428 * part of the transaction - the inode could have been reclaimed and
4429 * now it is reread from disk.
4430 */
4431 if (journal) {
4432 transaction_t *transaction;
4433 tid_t tid;
4434
4435 read_lock(&journal->j_state_lock);
4436 if (journal->j_running_transaction)
4437 transaction = journal->j_running_transaction;
4438 else
4439 transaction = journal->j_committing_transaction;
4440 if (transaction)
4441 tid = transaction->t_tid;
4442 else
4443 tid = journal->j_commit_sequence;
4444 read_unlock(&journal->j_state_lock);
4445 ei->i_sync_tid = tid;
4446 ei->i_datasync_tid = tid;
4447 }
4448
4449 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4450 if (ei->i_extra_isize == 0) {
4451 /* The extra space is currently unused. Use it. */
4452 ei->i_extra_isize = sizeof(struct ext4_inode) -
4453 EXT4_GOOD_OLD_INODE_SIZE;
4454 } else {
4455 ext4_iget_extra_inode(inode, raw_inode, ei);
4456 }
4457 }
4458
4459 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4460 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4461 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4462 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4463
4464 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4465 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4466 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4467 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4468 inode->i_version |=
4469 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4470 }
4471 }
4472
4473 ret = 0;
4474 if (ei->i_file_acl &&
4475 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4476 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4477 ei->i_file_acl);
4478 ret = -EFSCORRUPTED;
4479 goto bad_inode;
4480 } else if (!ext4_has_inline_data(inode)) {
4481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4482 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4483 (S_ISLNK(inode->i_mode) &&
4484 !ext4_inode_is_fast_symlink(inode))))
4485 /* Validate extent which is part of inode */
4486 ret = ext4_ext_check_inode(inode);
4487 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4488 (S_ISLNK(inode->i_mode) &&
4489 !ext4_inode_is_fast_symlink(inode))) {
4490 /* Validate block references which are part of inode */
4491 ret = ext4_ind_check_inode(inode);
4492 }
4493 }
4494 if (ret)
4495 goto bad_inode;
4496
4497 if (S_ISREG(inode->i_mode)) {
4498 inode->i_op = &ext4_file_inode_operations;
4499 inode->i_fop = &ext4_file_operations;
4500 ext4_set_aops(inode);
4501 } else if (S_ISDIR(inode->i_mode)) {
4502 inode->i_op = &ext4_dir_inode_operations;
4503 inode->i_fop = &ext4_dir_operations;
4504 } else if (S_ISLNK(inode->i_mode)) {
4505 if (ext4_encrypted_inode(inode)) {
4506 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4507 ext4_set_aops(inode);
4508 } else if (ext4_inode_is_fast_symlink(inode)) {
4509 inode->i_link = (char *)ei->i_data;
4510 inode->i_op = &ext4_fast_symlink_inode_operations;
4511 nd_terminate_link(ei->i_data, inode->i_size,
4512 sizeof(ei->i_data) - 1);
4513 } else {
4514 inode->i_op = &ext4_symlink_inode_operations;
4515 ext4_set_aops(inode);
4516 }
4517 inode_nohighmem(inode);
4518 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4519 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4520 inode->i_op = &ext4_special_inode_operations;
4521 if (raw_inode->i_block[0])
4522 init_special_inode(inode, inode->i_mode,
4523 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4524 else
4525 init_special_inode(inode, inode->i_mode,
4526 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4527 } else if (ino == EXT4_BOOT_LOADER_INO) {
4528 make_bad_inode(inode);
4529 } else {
4530 ret = -EFSCORRUPTED;
4531 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4532 goto bad_inode;
4533 }
4534 brelse(iloc.bh);
4535 ext4_set_inode_flags(inode);
4536 unlock_new_inode(inode);
4537 return inode;
4538
4539 bad_inode:
4540 brelse(iloc.bh);
4541 iget_failed(inode);
4542 return ERR_PTR(ret);
4543 }
4544
4545 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4546 {
4547 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4548 return ERR_PTR(-EFSCORRUPTED);
4549 return ext4_iget(sb, ino);
4550 }
4551
4552 static int ext4_inode_blocks_set(handle_t *handle,
4553 struct ext4_inode *raw_inode,
4554 struct ext4_inode_info *ei)
4555 {
4556 struct inode *inode = &(ei->vfs_inode);
4557 u64 i_blocks = inode->i_blocks;
4558 struct super_block *sb = inode->i_sb;
4559
4560 if (i_blocks <= ~0U) {
4561 /*
4562 * i_blocks can be represented in a 32 bit variable
4563 * as multiple of 512 bytes
4564 */
4565 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4566 raw_inode->i_blocks_high = 0;
4567 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4568 return 0;
4569 }
4570 if (!ext4_has_feature_huge_file(sb))
4571 return -EFBIG;
4572
4573 if (i_blocks <= 0xffffffffffffULL) {
4574 /*
4575 * i_blocks can be represented in a 48 bit variable
4576 * as multiple of 512 bytes
4577 */
4578 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4579 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4580 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581 } else {
4582 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4583 /* i_block is stored in file system block size */
4584 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4585 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4586 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4587 }
4588 return 0;
4589 }
4590
4591 struct other_inode {
4592 unsigned long orig_ino;
4593 struct ext4_inode *raw_inode;
4594 };
4595
4596 static int other_inode_match(struct inode * inode, unsigned long ino,
4597 void *data)
4598 {
4599 struct other_inode *oi = (struct other_inode *) data;
4600
4601 if ((inode->i_ino != ino) ||
4602 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4603 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4604 ((inode->i_state & I_DIRTY_TIME) == 0))
4605 return 0;
4606 spin_lock(&inode->i_lock);
4607 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4608 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4609 (inode->i_state & I_DIRTY_TIME)) {
4610 struct ext4_inode_info *ei = EXT4_I(inode);
4611
4612 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4613 spin_unlock(&inode->i_lock);
4614
4615 spin_lock(&ei->i_raw_lock);
4616 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4617 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4618 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4619 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4620 spin_unlock(&ei->i_raw_lock);
4621 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4622 return -1;
4623 }
4624 spin_unlock(&inode->i_lock);
4625 return -1;
4626 }
4627
4628 /*
4629 * Opportunistically update the other time fields for other inodes in
4630 * the same inode table block.
4631 */
4632 static void ext4_update_other_inodes_time(struct super_block *sb,
4633 unsigned long orig_ino, char *buf)
4634 {
4635 struct other_inode oi;
4636 unsigned long ino;
4637 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4638 int inode_size = EXT4_INODE_SIZE(sb);
4639
4640 oi.orig_ino = orig_ino;
4641 /*
4642 * Calculate the first inode in the inode table block. Inode
4643 * numbers are one-based. That is, the first inode in a block
4644 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4645 */
4646 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4647 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4648 if (ino == orig_ino)
4649 continue;
4650 oi.raw_inode = (struct ext4_inode *) buf;
4651 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4652 }
4653 }
4654
4655 /*
4656 * Post the struct inode info into an on-disk inode location in the
4657 * buffer-cache. This gobbles the caller's reference to the
4658 * buffer_head in the inode location struct.
4659 *
4660 * The caller must have write access to iloc->bh.
4661 */
4662 static int ext4_do_update_inode(handle_t *handle,
4663 struct inode *inode,
4664 struct ext4_iloc *iloc)
4665 {
4666 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4667 struct ext4_inode_info *ei = EXT4_I(inode);
4668 struct buffer_head *bh = iloc->bh;
4669 struct super_block *sb = inode->i_sb;
4670 int err = 0, rc, block;
4671 int need_datasync = 0, set_large_file = 0;
4672 uid_t i_uid;
4673 gid_t i_gid;
4674 projid_t i_projid;
4675
4676 spin_lock(&ei->i_raw_lock);
4677
4678 /* For fields not tracked in the in-memory inode,
4679 * initialise them to zero for new inodes. */
4680 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4681 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4682
4683 ext4_get_inode_flags(ei);
4684 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4685 i_uid = i_uid_read(inode);
4686 i_gid = i_gid_read(inode);
4687 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4688 if (!(test_opt(inode->i_sb, NO_UID32))) {
4689 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4690 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4691 /*
4692 * Fix up interoperability with old kernels. Otherwise, old inodes get
4693 * re-used with the upper 16 bits of the uid/gid intact
4694 */
4695 if (!ei->i_dtime) {
4696 raw_inode->i_uid_high =
4697 cpu_to_le16(high_16_bits(i_uid));
4698 raw_inode->i_gid_high =
4699 cpu_to_le16(high_16_bits(i_gid));
4700 } else {
4701 raw_inode->i_uid_high = 0;
4702 raw_inode->i_gid_high = 0;
4703 }
4704 } else {
4705 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4706 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4707 raw_inode->i_uid_high = 0;
4708 raw_inode->i_gid_high = 0;
4709 }
4710 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4711
4712 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4713 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4714 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4715 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4716
4717 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4718 if (err) {
4719 spin_unlock(&ei->i_raw_lock);
4720 goto out_brelse;
4721 }
4722 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4723 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4724 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4725 raw_inode->i_file_acl_high =
4726 cpu_to_le16(ei->i_file_acl >> 32);
4727 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4728 if (ei->i_disksize != ext4_isize(raw_inode)) {
4729 ext4_isize_set(raw_inode, ei->i_disksize);
4730 need_datasync = 1;
4731 }
4732 if (ei->i_disksize > 0x7fffffffULL) {
4733 if (!ext4_has_feature_large_file(sb) ||
4734 EXT4_SB(sb)->s_es->s_rev_level ==
4735 cpu_to_le32(EXT4_GOOD_OLD_REV))
4736 set_large_file = 1;
4737 }
4738 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4739 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4740 if (old_valid_dev(inode->i_rdev)) {
4741 raw_inode->i_block[0] =
4742 cpu_to_le32(old_encode_dev(inode->i_rdev));
4743 raw_inode->i_block[1] = 0;
4744 } else {
4745 raw_inode->i_block[0] = 0;
4746 raw_inode->i_block[1] =
4747 cpu_to_le32(new_encode_dev(inode->i_rdev));
4748 raw_inode->i_block[2] = 0;
4749 }
4750 } else if (!ext4_has_inline_data(inode)) {
4751 for (block = 0; block < EXT4_N_BLOCKS; block++)
4752 raw_inode->i_block[block] = ei->i_data[block];
4753 }
4754
4755 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4756 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4757 if (ei->i_extra_isize) {
4758 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4759 raw_inode->i_version_hi =
4760 cpu_to_le32(inode->i_version >> 32);
4761 raw_inode->i_extra_isize =
4762 cpu_to_le16(ei->i_extra_isize);
4763 }
4764 }
4765
4766 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4767 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4768 i_projid != EXT4_DEF_PROJID);
4769
4770 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4771 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4772 raw_inode->i_projid = cpu_to_le32(i_projid);
4773
4774 ext4_inode_csum_set(inode, raw_inode, ei);
4775 spin_unlock(&ei->i_raw_lock);
4776 if (inode->i_sb->s_flags & MS_LAZYTIME)
4777 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4778 bh->b_data);
4779
4780 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4781 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4782 if (!err)
4783 err = rc;
4784 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4785 if (set_large_file) {
4786 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4787 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4788 if (err)
4789 goto out_brelse;
4790 ext4_update_dynamic_rev(sb);
4791 ext4_set_feature_large_file(sb);
4792 ext4_handle_sync(handle);
4793 err = ext4_handle_dirty_super(handle, sb);
4794 }
4795 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4796 out_brelse:
4797 brelse(bh);
4798 ext4_std_error(inode->i_sb, err);
4799 return err;
4800 }
4801
4802 /*
4803 * ext4_write_inode()
4804 *
4805 * We are called from a few places:
4806 *
4807 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4808 * Here, there will be no transaction running. We wait for any running
4809 * transaction to commit.
4810 *
4811 * - Within flush work (sys_sync(), kupdate and such).
4812 * We wait on commit, if told to.
4813 *
4814 * - Within iput_final() -> write_inode_now()
4815 * We wait on commit, if told to.
4816 *
4817 * In all cases it is actually safe for us to return without doing anything,
4818 * because the inode has been copied into a raw inode buffer in
4819 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4820 * writeback.
4821 *
4822 * Note that we are absolutely dependent upon all inode dirtiers doing the
4823 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4824 * which we are interested.
4825 *
4826 * It would be a bug for them to not do this. The code:
4827 *
4828 * mark_inode_dirty(inode)
4829 * stuff();
4830 * inode->i_size = expr;
4831 *
4832 * is in error because write_inode() could occur while `stuff()' is running,
4833 * and the new i_size will be lost. Plus the inode will no longer be on the
4834 * superblock's dirty inode list.
4835 */
4836 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4837 {
4838 int err;
4839
4840 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4841 return 0;
4842
4843 if (EXT4_SB(inode->i_sb)->s_journal) {
4844 if (ext4_journal_current_handle()) {
4845 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4846 dump_stack();
4847 return -EIO;
4848 }
4849
4850 /*
4851 * No need to force transaction in WB_SYNC_NONE mode. Also
4852 * ext4_sync_fs() will force the commit after everything is
4853 * written.
4854 */
4855 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4856 return 0;
4857
4858 err = ext4_force_commit(inode->i_sb);
4859 } else {
4860 struct ext4_iloc iloc;
4861
4862 err = __ext4_get_inode_loc(inode, &iloc, 0);
4863 if (err)
4864 return err;
4865 /*
4866 * sync(2) will flush the whole buffer cache. No need to do
4867 * it here separately for each inode.
4868 */
4869 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4870 sync_dirty_buffer(iloc.bh);
4871 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4872 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4873 "IO error syncing inode");
4874 err = -EIO;
4875 }
4876 brelse(iloc.bh);
4877 }
4878 return err;
4879 }
4880
4881 /*
4882 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4883 * buffers that are attached to a page stradding i_size and are undergoing
4884 * commit. In that case we have to wait for commit to finish and try again.
4885 */
4886 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4887 {
4888 struct page *page;
4889 unsigned offset;
4890 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4891 tid_t commit_tid = 0;
4892 int ret;
4893
4894 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4895 /*
4896 * All buffers in the last page remain valid? Then there's nothing to
4897 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4898 * blocksize case
4899 */
4900 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4901 return;
4902 while (1) {
4903 page = find_lock_page(inode->i_mapping,
4904 inode->i_size >> PAGE_CACHE_SHIFT);
4905 if (!page)
4906 return;
4907 ret = __ext4_journalled_invalidatepage(page, offset,
4908 PAGE_CACHE_SIZE - offset);
4909 unlock_page(page);
4910 page_cache_release(page);
4911 if (ret != -EBUSY)
4912 return;
4913 commit_tid = 0;
4914 read_lock(&journal->j_state_lock);
4915 if (journal->j_committing_transaction)
4916 commit_tid = journal->j_committing_transaction->t_tid;
4917 read_unlock(&journal->j_state_lock);
4918 if (commit_tid)
4919 jbd2_log_wait_commit(journal, commit_tid);
4920 }
4921 }
4922
4923 /*
4924 * ext4_setattr()
4925 *
4926 * Called from notify_change.
4927 *
4928 * We want to trap VFS attempts to truncate the file as soon as
4929 * possible. In particular, we want to make sure that when the VFS
4930 * shrinks i_size, we put the inode on the orphan list and modify
4931 * i_disksize immediately, so that during the subsequent flushing of
4932 * dirty pages and freeing of disk blocks, we can guarantee that any
4933 * commit will leave the blocks being flushed in an unused state on
4934 * disk. (On recovery, the inode will get truncated and the blocks will
4935 * be freed, so we have a strong guarantee that no future commit will
4936 * leave these blocks visible to the user.)
4937 *
4938 * Another thing we have to assure is that if we are in ordered mode
4939 * and inode is still attached to the committing transaction, we must
4940 * we start writeout of all the dirty pages which are being truncated.
4941 * This way we are sure that all the data written in the previous
4942 * transaction are already on disk (truncate waits for pages under
4943 * writeback).
4944 *
4945 * Called with inode->i_mutex down.
4946 */
4947 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4948 {
4949 struct inode *inode = d_inode(dentry);
4950 int error, rc = 0;
4951 int orphan = 0;
4952 const unsigned int ia_valid = attr->ia_valid;
4953
4954 error = inode_change_ok(inode, attr);
4955 if (error)
4956 return error;
4957
4958 if (is_quota_modification(inode, attr)) {
4959 error = dquot_initialize(inode);
4960 if (error)
4961 return error;
4962 }
4963 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4964 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4965 handle_t *handle;
4966
4967 /* (user+group)*(old+new) structure, inode write (sb,
4968 * inode block, ? - but truncate inode update has it) */
4969 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4970 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4971 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4972 if (IS_ERR(handle)) {
4973 error = PTR_ERR(handle);
4974 goto err_out;
4975 }
4976 error = dquot_transfer(inode, attr);
4977 if (error) {
4978 ext4_journal_stop(handle);
4979 return error;
4980 }
4981 /* Update corresponding info in inode so that everything is in
4982 * one transaction */
4983 if (attr->ia_valid & ATTR_UID)
4984 inode->i_uid = attr->ia_uid;
4985 if (attr->ia_valid & ATTR_GID)
4986 inode->i_gid = attr->ia_gid;
4987 error = ext4_mark_inode_dirty(handle, inode);
4988 ext4_journal_stop(handle);
4989 }
4990
4991 if (attr->ia_valid & ATTR_SIZE) {
4992 handle_t *handle;
4993 loff_t oldsize = inode->i_size;
4994 int shrink = (attr->ia_size <= inode->i_size);
4995
4996 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4997 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4998
4999 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5000 return -EFBIG;
5001 }
5002 if (!S_ISREG(inode->i_mode))
5003 return -EINVAL;
5004
5005 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5006 inode_inc_iversion(inode);
5007
5008 if (ext4_should_order_data(inode) &&
5009 (attr->ia_size < inode->i_size)) {
5010 error = ext4_begin_ordered_truncate(inode,
5011 attr->ia_size);
5012 if (error)
5013 goto err_out;
5014 }
5015 if (attr->ia_size != inode->i_size) {
5016 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5017 if (IS_ERR(handle)) {
5018 error = PTR_ERR(handle);
5019 goto err_out;
5020 }
5021 if (ext4_handle_valid(handle) && shrink) {
5022 error = ext4_orphan_add(handle, inode);
5023 orphan = 1;
5024 }
5025 /*
5026 * Update c/mtime on truncate up, ext4_truncate() will
5027 * update c/mtime in shrink case below
5028 */
5029 if (!shrink) {
5030 inode->i_mtime = ext4_current_time(inode);
5031 inode->i_ctime = inode->i_mtime;
5032 }
5033 down_write(&EXT4_I(inode)->i_data_sem);
5034 EXT4_I(inode)->i_disksize = attr->ia_size;
5035 rc = ext4_mark_inode_dirty(handle, inode);
5036 if (!error)
5037 error = rc;
5038 /*
5039 * We have to update i_size under i_data_sem together
5040 * with i_disksize to avoid races with writeback code
5041 * running ext4_wb_update_i_disksize().
5042 */
5043 if (!error)
5044 i_size_write(inode, attr->ia_size);
5045 up_write(&EXT4_I(inode)->i_data_sem);
5046 ext4_journal_stop(handle);
5047 if (error) {
5048 if (orphan)
5049 ext4_orphan_del(NULL, inode);
5050 goto err_out;
5051 }
5052 }
5053 if (!shrink)
5054 pagecache_isize_extended(inode, oldsize, inode->i_size);
5055
5056 /*
5057 * Blocks are going to be removed from the inode. Wait
5058 * for dio in flight. Temporarily disable
5059 * dioread_nolock to prevent livelock.
5060 */
5061 if (orphan) {
5062 if (!ext4_should_journal_data(inode)) {
5063 ext4_inode_block_unlocked_dio(inode);
5064 inode_dio_wait(inode);
5065 ext4_inode_resume_unlocked_dio(inode);
5066 } else
5067 ext4_wait_for_tail_page_commit(inode);
5068 }
5069 down_write(&EXT4_I(inode)->i_mmap_sem);
5070 /*
5071 * Truncate pagecache after we've waited for commit
5072 * in data=journal mode to make pages freeable.
5073 */
5074 truncate_pagecache(inode, inode->i_size);
5075 if (shrink)
5076 ext4_truncate(inode);
5077 up_write(&EXT4_I(inode)->i_mmap_sem);
5078 }
5079
5080 if (!rc) {
5081 setattr_copy(inode, attr);
5082 mark_inode_dirty(inode);
5083 }
5084
5085 /*
5086 * If the call to ext4_truncate failed to get a transaction handle at
5087 * all, we need to clean up the in-core orphan list manually.
5088 */
5089 if (orphan && inode->i_nlink)
5090 ext4_orphan_del(NULL, inode);
5091
5092 if (!rc && (ia_valid & ATTR_MODE))
5093 rc = posix_acl_chmod(inode, inode->i_mode);
5094
5095 err_out:
5096 ext4_std_error(inode->i_sb, error);
5097 if (!error)
5098 error = rc;
5099 return error;
5100 }
5101
5102 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5103 struct kstat *stat)
5104 {
5105 struct inode *inode;
5106 unsigned long long delalloc_blocks;
5107
5108 inode = d_inode(dentry);
5109 generic_fillattr(inode, stat);
5110
5111 /*
5112 * If there is inline data in the inode, the inode will normally not
5113 * have data blocks allocated (it may have an external xattr block).
5114 * Report at least one sector for such files, so tools like tar, rsync,
5115 * others doen't incorrectly think the file is completely sparse.
5116 */
5117 if (unlikely(ext4_has_inline_data(inode)))
5118 stat->blocks += (stat->size + 511) >> 9;
5119
5120 /*
5121 * We can't update i_blocks if the block allocation is delayed
5122 * otherwise in the case of system crash before the real block
5123 * allocation is done, we will have i_blocks inconsistent with
5124 * on-disk file blocks.
5125 * We always keep i_blocks updated together with real
5126 * allocation. But to not confuse with user, stat
5127 * will return the blocks that include the delayed allocation
5128 * blocks for this file.
5129 */
5130 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5131 EXT4_I(inode)->i_reserved_data_blocks);
5132 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5133 return 0;
5134 }
5135
5136 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5137 int pextents)
5138 {
5139 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5140 return ext4_ind_trans_blocks(inode, lblocks);
5141 return ext4_ext_index_trans_blocks(inode, pextents);
5142 }
5143
5144 /*
5145 * Account for index blocks, block groups bitmaps and block group
5146 * descriptor blocks if modify datablocks and index blocks
5147 * worse case, the indexs blocks spread over different block groups
5148 *
5149 * If datablocks are discontiguous, they are possible to spread over
5150 * different block groups too. If they are contiguous, with flexbg,
5151 * they could still across block group boundary.
5152 *
5153 * Also account for superblock, inode, quota and xattr blocks
5154 */
5155 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5156 int pextents)
5157 {
5158 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5159 int gdpblocks;
5160 int idxblocks;
5161 int ret = 0;
5162
5163 /*
5164 * How many index blocks need to touch to map @lblocks logical blocks
5165 * to @pextents physical extents?
5166 */
5167 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5168
5169 ret = idxblocks;
5170
5171 /*
5172 * Now let's see how many group bitmaps and group descriptors need
5173 * to account
5174 */
5175 groups = idxblocks + pextents;
5176 gdpblocks = groups;
5177 if (groups > ngroups)
5178 groups = ngroups;
5179 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5180 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5181
5182 /* bitmaps and block group descriptor blocks */
5183 ret += groups + gdpblocks;
5184
5185 /* Blocks for super block, inode, quota and xattr blocks */
5186 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5187
5188 return ret;
5189 }
5190
5191 /*
5192 * Calculate the total number of credits to reserve to fit
5193 * the modification of a single pages into a single transaction,
5194 * which may include multiple chunks of block allocations.
5195 *
5196 * This could be called via ext4_write_begin()
5197 *
5198 * We need to consider the worse case, when
5199 * one new block per extent.
5200 */
5201 int ext4_writepage_trans_blocks(struct inode *inode)
5202 {
5203 int bpp = ext4_journal_blocks_per_page(inode);
5204 int ret;
5205
5206 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5207
5208 /* Account for data blocks for journalled mode */
5209 if (ext4_should_journal_data(inode))
5210 ret += bpp;
5211 return ret;
5212 }
5213
5214 /*
5215 * Calculate the journal credits for a chunk of data modification.
5216 *
5217 * This is called from DIO, fallocate or whoever calling
5218 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5219 *
5220 * journal buffers for data blocks are not included here, as DIO
5221 * and fallocate do no need to journal data buffers.
5222 */
5223 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5224 {
5225 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5226 }
5227
5228 /*
5229 * The caller must have previously called ext4_reserve_inode_write().
5230 * Give this, we know that the caller already has write access to iloc->bh.
5231 */
5232 int ext4_mark_iloc_dirty(handle_t *handle,
5233 struct inode *inode, struct ext4_iloc *iloc)
5234 {
5235 int err = 0;
5236
5237 if (IS_I_VERSION(inode))
5238 inode_inc_iversion(inode);
5239
5240 /* the do_update_inode consumes one bh->b_count */
5241 get_bh(iloc->bh);
5242
5243 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5244 err = ext4_do_update_inode(handle, inode, iloc);
5245 put_bh(iloc->bh);
5246 return err;
5247 }
5248
5249 /*
5250 * On success, We end up with an outstanding reference count against
5251 * iloc->bh. This _must_ be cleaned up later.
5252 */
5253
5254 int
5255 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5256 struct ext4_iloc *iloc)
5257 {
5258 int err;
5259
5260 err = ext4_get_inode_loc(inode, iloc);
5261 if (!err) {
5262 BUFFER_TRACE(iloc->bh, "get_write_access");
5263 err = ext4_journal_get_write_access(handle, iloc->bh);
5264 if (err) {
5265 brelse(iloc->bh);
5266 iloc->bh = NULL;
5267 }
5268 }
5269 ext4_std_error(inode->i_sb, err);
5270 return err;
5271 }
5272
5273 /*
5274 * Expand an inode by new_extra_isize bytes.
5275 * Returns 0 on success or negative error number on failure.
5276 */
5277 static int ext4_expand_extra_isize(struct inode *inode,
5278 unsigned int new_extra_isize,
5279 struct ext4_iloc iloc,
5280 handle_t *handle)
5281 {
5282 struct ext4_inode *raw_inode;
5283 struct ext4_xattr_ibody_header *header;
5284
5285 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5286 return 0;
5287
5288 raw_inode = ext4_raw_inode(&iloc);
5289
5290 header = IHDR(inode, raw_inode);
5291
5292 /* No extended attributes present */
5293 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5294 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5295 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5296 new_extra_isize);
5297 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5298 return 0;
5299 }
5300
5301 /* try to expand with EAs present */
5302 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5303 raw_inode, handle);
5304 }
5305
5306 /*
5307 * What we do here is to mark the in-core inode as clean with respect to inode
5308 * dirtiness (it may still be data-dirty).
5309 * This means that the in-core inode may be reaped by prune_icache
5310 * without having to perform any I/O. This is a very good thing,
5311 * because *any* task may call prune_icache - even ones which
5312 * have a transaction open against a different journal.
5313 *
5314 * Is this cheating? Not really. Sure, we haven't written the
5315 * inode out, but prune_icache isn't a user-visible syncing function.
5316 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5317 * we start and wait on commits.
5318 */
5319 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5320 {
5321 struct ext4_iloc iloc;
5322 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5323 static unsigned int mnt_count;
5324 int err, ret;
5325
5326 might_sleep();
5327 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5328 err = ext4_reserve_inode_write(handle, inode, &iloc);
5329 if (err)
5330 return err;
5331 if (ext4_handle_valid(handle) &&
5332 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5333 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5334 /*
5335 * We need extra buffer credits since we may write into EA block
5336 * with this same handle. If journal_extend fails, then it will
5337 * only result in a minor loss of functionality for that inode.
5338 * If this is felt to be critical, then e2fsck should be run to
5339 * force a large enough s_min_extra_isize.
5340 */
5341 if ((jbd2_journal_extend(handle,
5342 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5343 ret = ext4_expand_extra_isize(inode,
5344 sbi->s_want_extra_isize,
5345 iloc, handle);
5346 if (ret) {
5347 ext4_set_inode_state(inode,
5348 EXT4_STATE_NO_EXPAND);
5349 if (mnt_count !=
5350 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5351 ext4_warning(inode->i_sb,
5352 "Unable to expand inode %lu. Delete"
5353 " some EAs or run e2fsck.",
5354 inode->i_ino);
5355 mnt_count =
5356 le16_to_cpu(sbi->s_es->s_mnt_count);
5357 }
5358 }
5359 }
5360 }
5361 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5362 }
5363
5364 /*
5365 * ext4_dirty_inode() is called from __mark_inode_dirty()
5366 *
5367 * We're really interested in the case where a file is being extended.
5368 * i_size has been changed by generic_commit_write() and we thus need
5369 * to include the updated inode in the current transaction.
5370 *
5371 * Also, dquot_alloc_block() will always dirty the inode when blocks
5372 * are allocated to the file.
5373 *
5374 * If the inode is marked synchronous, we don't honour that here - doing
5375 * so would cause a commit on atime updates, which we don't bother doing.
5376 * We handle synchronous inodes at the highest possible level.
5377 *
5378 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5379 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5380 * to copy into the on-disk inode structure are the timestamp files.
5381 */
5382 void ext4_dirty_inode(struct inode *inode, int flags)
5383 {
5384 handle_t *handle;
5385
5386 if (flags == I_DIRTY_TIME)
5387 return;
5388 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5389 if (IS_ERR(handle))
5390 goto out;
5391
5392 ext4_mark_inode_dirty(handle, inode);
5393
5394 ext4_journal_stop(handle);
5395 out:
5396 return;
5397 }
5398
5399 #if 0
5400 /*
5401 * Bind an inode's backing buffer_head into this transaction, to prevent
5402 * it from being flushed to disk early. Unlike
5403 * ext4_reserve_inode_write, this leaves behind no bh reference and
5404 * returns no iloc structure, so the caller needs to repeat the iloc
5405 * lookup to mark the inode dirty later.
5406 */
5407 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5408 {
5409 struct ext4_iloc iloc;
5410
5411 int err = 0;
5412 if (handle) {
5413 err = ext4_get_inode_loc(inode, &iloc);
5414 if (!err) {
5415 BUFFER_TRACE(iloc.bh, "get_write_access");
5416 err = jbd2_journal_get_write_access(handle, iloc.bh);
5417 if (!err)
5418 err = ext4_handle_dirty_metadata(handle,
5419 NULL,
5420 iloc.bh);
5421 brelse(iloc.bh);
5422 }
5423 }
5424 ext4_std_error(inode->i_sb, err);
5425 return err;
5426 }
5427 #endif
5428
5429 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5430 {
5431 journal_t *journal;
5432 handle_t *handle;
5433 int err;
5434
5435 /*
5436 * We have to be very careful here: changing a data block's
5437 * journaling status dynamically is dangerous. If we write a
5438 * data block to the journal, change the status and then delete
5439 * that block, we risk forgetting to revoke the old log record
5440 * from the journal and so a subsequent replay can corrupt data.
5441 * So, first we make sure that the journal is empty and that
5442 * nobody is changing anything.
5443 */
5444
5445 journal = EXT4_JOURNAL(inode);
5446 if (!journal)
5447 return 0;
5448 if (is_journal_aborted(journal))
5449 return -EROFS;
5450 /* We have to allocate physical blocks for delalloc blocks
5451 * before flushing journal. otherwise delalloc blocks can not
5452 * be allocated any more. even more truncate on delalloc blocks
5453 * could trigger BUG by flushing delalloc blocks in journal.
5454 * There is no delalloc block in non-journal data mode.
5455 */
5456 if (val && test_opt(inode->i_sb, DELALLOC)) {
5457 err = ext4_alloc_da_blocks(inode);
5458 if (err < 0)
5459 return err;
5460 }
5461
5462 /* Wait for all existing dio workers */
5463 ext4_inode_block_unlocked_dio(inode);
5464 inode_dio_wait(inode);
5465
5466 jbd2_journal_lock_updates(journal);
5467
5468 /*
5469 * OK, there are no updates running now, and all cached data is
5470 * synced to disk. We are now in a completely consistent state
5471 * which doesn't have anything in the journal, and we know that
5472 * no filesystem updates are running, so it is safe to modify
5473 * the inode's in-core data-journaling state flag now.
5474 */
5475
5476 if (val)
5477 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5478 else {
5479 err = jbd2_journal_flush(journal);
5480 if (err < 0) {
5481 jbd2_journal_unlock_updates(journal);
5482 ext4_inode_resume_unlocked_dio(inode);
5483 return err;
5484 }
5485 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5486 }
5487 ext4_set_aops(inode);
5488
5489 jbd2_journal_unlock_updates(journal);
5490 ext4_inode_resume_unlocked_dio(inode);
5491
5492 /* Finally we can mark the inode as dirty. */
5493
5494 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5495 if (IS_ERR(handle))
5496 return PTR_ERR(handle);
5497
5498 err = ext4_mark_inode_dirty(handle, inode);
5499 ext4_handle_sync(handle);
5500 ext4_journal_stop(handle);
5501 ext4_std_error(inode->i_sb, err);
5502
5503 return err;
5504 }
5505
5506 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5507 {
5508 return !buffer_mapped(bh);
5509 }
5510
5511 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5512 {
5513 struct page *page = vmf->page;
5514 loff_t size;
5515 unsigned long len;
5516 int ret;
5517 struct file *file = vma->vm_file;
5518 struct inode *inode = file_inode(file);
5519 struct address_space *mapping = inode->i_mapping;
5520 handle_t *handle;
5521 get_block_t *get_block;
5522 int retries = 0;
5523
5524 sb_start_pagefault(inode->i_sb);
5525 file_update_time(vma->vm_file);
5526
5527 down_read(&EXT4_I(inode)->i_mmap_sem);
5528 /* Delalloc case is easy... */
5529 if (test_opt(inode->i_sb, DELALLOC) &&
5530 !ext4_should_journal_data(inode) &&
5531 !ext4_nonda_switch(inode->i_sb)) {
5532 do {
5533 ret = block_page_mkwrite(vma, vmf,
5534 ext4_da_get_block_prep);
5535 } while (ret == -ENOSPC &&
5536 ext4_should_retry_alloc(inode->i_sb, &retries));
5537 goto out_ret;
5538 }
5539
5540 lock_page(page);
5541 size = i_size_read(inode);
5542 /* Page got truncated from under us? */
5543 if (page->mapping != mapping || page_offset(page) > size) {
5544 unlock_page(page);
5545 ret = VM_FAULT_NOPAGE;
5546 goto out;
5547 }
5548
5549 if (page->index == size >> PAGE_CACHE_SHIFT)
5550 len = size & ~PAGE_CACHE_MASK;
5551 else
5552 len = PAGE_CACHE_SIZE;
5553 /*
5554 * Return if we have all the buffers mapped. This avoids the need to do
5555 * journal_start/journal_stop which can block and take a long time
5556 */
5557 if (page_has_buffers(page)) {
5558 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5559 0, len, NULL,
5560 ext4_bh_unmapped)) {
5561 /* Wait so that we don't change page under IO */
5562 wait_for_stable_page(page);
5563 ret = VM_FAULT_LOCKED;
5564 goto out;
5565 }
5566 }
5567 unlock_page(page);
5568 /* OK, we need to fill the hole... */
5569 if (ext4_should_dioread_nolock(inode))
5570 get_block = ext4_get_block_unwritten;
5571 else
5572 get_block = ext4_get_block;
5573 retry_alloc:
5574 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5575 ext4_writepage_trans_blocks(inode));
5576 if (IS_ERR(handle)) {
5577 ret = VM_FAULT_SIGBUS;
5578 goto out;
5579 }
5580 ret = block_page_mkwrite(vma, vmf, get_block);
5581 if (!ret && ext4_should_journal_data(inode)) {
5582 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5583 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5584 unlock_page(page);
5585 ret = VM_FAULT_SIGBUS;
5586 ext4_journal_stop(handle);
5587 goto out;
5588 }
5589 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5590 }
5591 ext4_journal_stop(handle);
5592 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5593 goto retry_alloc;
5594 out_ret:
5595 ret = block_page_mkwrite_return(ret);
5596 out:
5597 up_read(&EXT4_I(inode)->i_mmap_sem);
5598 sb_end_pagefault(inode->i_sb);
5599 return ret;
5600 }
5601
5602 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5603 {
5604 struct inode *inode = file_inode(vma->vm_file);
5605 int err;
5606
5607 down_read(&EXT4_I(inode)->i_mmap_sem);
5608 err = filemap_fault(vma, vmf);
5609 up_read(&EXT4_I(inode)->i_mmap_sem);
5610
5611 return err;
5612 }
5613
5614 /*
5615 * Find the first extent at or after @lblk in an inode that is not a hole.
5616 * Search for @map_len blocks at most. The extent is returned in @result.
5617 *
5618 * The function returns 1 if we found an extent. The function returns 0 in
5619 * case there is no extent at or after @lblk and in that case also sets
5620 * @result->es_len to 0. In case of error, the error code is returned.
5621 */
5622 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5623 unsigned int map_len, struct extent_status *result)
5624 {
5625 struct ext4_map_blocks map;
5626 struct extent_status es = {};
5627 int ret;
5628
5629 map.m_lblk = lblk;
5630 map.m_len = map_len;
5631
5632 /*
5633 * For non-extent based files this loop may iterate several times since
5634 * we do not determine full hole size.
5635 */
5636 while (map.m_len > 0) {
5637 ret = ext4_map_blocks(NULL, inode, &map, 0);
5638 if (ret < 0)
5639 return ret;
5640 /* There's extent covering m_lblk? Just return it. */
5641 if (ret > 0) {
5642 int status;
5643
5644 ext4_es_store_pblock(result, map.m_pblk);
5645 result->es_lblk = map.m_lblk;
5646 result->es_len = map.m_len;
5647 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5648 status = EXTENT_STATUS_UNWRITTEN;
5649 else
5650 status = EXTENT_STATUS_WRITTEN;
5651 ext4_es_store_status(result, status);
5652 return 1;
5653 }
5654 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5655 map.m_lblk + map.m_len - 1,
5656 &es);
5657 /* Is delalloc data before next block in extent tree? */
5658 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5659 ext4_lblk_t offset = 0;
5660
5661 if (es.es_lblk < lblk)
5662 offset = lblk - es.es_lblk;
5663 result->es_lblk = es.es_lblk + offset;
5664 ext4_es_store_pblock(result,
5665 ext4_es_pblock(&es) + offset);
5666 result->es_len = es.es_len - offset;
5667 ext4_es_store_status(result, ext4_es_status(&es));
5668
5669 return 1;
5670 }
5671 /* There's a hole at m_lblk, advance us after it */
5672 map.m_lblk += map.m_len;
5673 map_len -= map.m_len;
5674 map.m_len = map_len;
5675 cond_resched();
5676 }
5677 result->es_len = 0;
5678 return 0;
5679 }
This page took 0.17114 seconds and 5 git commands to generate.