85c437b0cbc0a96292e57bd5ff0e23af16f79aed
[deliverable/linux.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31
32 struct mem_cgroup;
33 struct page;
34 struct mm_struct;
35 struct kmem_cache;
36
37 /*
38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39 * These two lists should keep in accord with each other.
40 */
41 enum mem_cgroup_stat_index {
42 /*
43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 */
45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
52 MEM_CGROUP_STAT_NSTATS,
53 };
54
55 struct mem_cgroup_reclaim_cookie {
56 struct zone *zone;
57 int priority;
58 unsigned int generation;
59 };
60
61 enum mem_cgroup_events_index {
62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
66 MEM_CGROUP_EVENTS_NSTATS,
67 /* default hierarchy events */
68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 MEMCG_HIGH,
70 MEMCG_MAX,
71 MEMCG_OOM,
72 MEMCG_NR_EVENTS,
73 };
74
75 /*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81 enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86 };
87
88 struct cg_proto {
89 struct page_counter memory_allocated; /* Current allocated memory. */
90 struct percpu_counter sockets_allocated; /* Current number of sockets. */
91 int memory_pressure;
92 bool active;
93 long sysctl_mem[3];
94 /*
95 * memcg field is used to find which memcg we belong directly
96 * Each memcg struct can hold more than one cg_proto, so container_of
97 * won't really cut.
98 *
99 * The elegant solution would be having an inverse function to
100 * proto_cgroup in struct proto, but that means polluting the structure
101 * for everybody, instead of just for memcg users.
102 */
103 struct mem_cgroup *memcg;
104 };
105
106 #ifdef CONFIG_MEMCG
107 struct mem_cgroup_stat_cpu {
108 long count[MEM_CGROUP_STAT_NSTATS];
109 unsigned long events[MEMCG_NR_EVENTS];
110 unsigned long nr_page_events;
111 unsigned long targets[MEM_CGROUP_NTARGETS];
112 };
113
114 struct mem_cgroup_reclaim_iter {
115 struct mem_cgroup *position;
116 /* scan generation, increased every round-trip */
117 unsigned int generation;
118 };
119
120 /*
121 * per-zone information in memory controller.
122 */
123 struct mem_cgroup_per_zone {
124 struct lruvec lruvec;
125 unsigned long lru_size[NR_LRU_LISTS];
126
127 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
128
129 struct rb_node tree_node; /* RB tree node */
130 unsigned long usage_in_excess;/* Set to the value by which */
131 /* the soft limit is exceeded*/
132 bool on_tree;
133 struct mem_cgroup *memcg; /* Back pointer, we cannot */
134 /* use container_of */
135 };
136
137 struct mem_cgroup_per_node {
138 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
139 };
140
141 struct mem_cgroup_threshold {
142 struct eventfd_ctx *eventfd;
143 unsigned long threshold;
144 };
145
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148 /* An array index points to threshold just below or equal to usage. */
149 int current_threshold;
150 /* Size of entries[] */
151 unsigned int size;
152 /* Array of thresholds */
153 struct mem_cgroup_threshold entries[0];
154 };
155
156 struct mem_cgroup_thresholds {
157 /* Primary thresholds array */
158 struct mem_cgroup_threshold_ary *primary;
159 /*
160 * Spare threshold array.
161 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 * It must be able to store at least primary->size - 1 entries.
163 */
164 struct mem_cgroup_threshold_ary *spare;
165 };
166
167 /*
168 * The memory controller data structure. The memory controller controls both
169 * page cache and RSS per cgroup. We would eventually like to provide
170 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
171 * to help the administrator determine what knobs to tune.
172 */
173 struct mem_cgroup {
174 struct cgroup_subsys_state css;
175
176 /* Accounted resources */
177 struct page_counter memory;
178 struct page_counter memsw;
179 struct page_counter kmem;
180
181 /* Normal memory consumption range */
182 unsigned long low;
183 unsigned long high;
184
185 unsigned long soft_limit;
186
187 /* vmpressure notifications */
188 struct vmpressure vmpressure;
189
190 /* css_online() has been completed */
191 int initialized;
192
193 /*
194 * Should the accounting and control be hierarchical, per subtree?
195 */
196 bool use_hierarchy;
197
198 /* protected by memcg_oom_lock */
199 bool oom_lock;
200 int under_oom;
201
202 int swappiness;
203 /* OOM-Killer disable */
204 int oom_kill_disable;
205
206 /* handle for "memory.events" */
207 struct cgroup_file events_file;
208
209 /* protect arrays of thresholds */
210 struct mutex thresholds_lock;
211
212 /* thresholds for memory usage. RCU-protected */
213 struct mem_cgroup_thresholds thresholds;
214
215 /* thresholds for mem+swap usage. RCU-protected */
216 struct mem_cgroup_thresholds memsw_thresholds;
217
218 /* For oom notifier event fd */
219 struct list_head oom_notify;
220
221 /*
222 * Should we move charges of a task when a task is moved into this
223 * mem_cgroup ? And what type of charges should we move ?
224 */
225 unsigned long move_charge_at_immigrate;
226 /*
227 * set > 0 if pages under this cgroup are moving to other cgroup.
228 */
229 atomic_t moving_account;
230 /* taken only while moving_account > 0 */
231 spinlock_t move_lock;
232 struct task_struct *move_lock_task;
233 unsigned long move_lock_flags;
234 /*
235 * percpu counter.
236 */
237 struct mem_cgroup_stat_cpu __percpu *stat;
238
239 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
240 struct cg_proto tcp_mem;
241 #endif
242 #if defined(CONFIG_MEMCG_KMEM)
243 /* Index in the kmem_cache->memcg_params.memcg_caches array */
244 int kmemcg_id;
245 bool kmem_acct_activated;
246 bool kmem_acct_active;
247 #endif
248
249 int last_scanned_node;
250 #if MAX_NUMNODES > 1
251 nodemask_t scan_nodes;
252 atomic_t numainfo_events;
253 atomic_t numainfo_updating;
254 #endif
255
256 #ifdef CONFIG_CGROUP_WRITEBACK
257 struct list_head cgwb_list;
258 struct wb_domain cgwb_domain;
259 #endif
260
261 /* List of events which userspace want to receive */
262 struct list_head event_list;
263 spinlock_t event_list_lock;
264
265 struct mem_cgroup_per_node *nodeinfo[0];
266 /* WARNING: nodeinfo must be the last member here */
267 };
268
269 extern struct mem_cgroup *root_mem_cgroup;
270
271 /**
272 * mem_cgroup_events - count memory events against a cgroup
273 * @memcg: the memory cgroup
274 * @idx: the event index
275 * @nr: the number of events to account for
276 */
277 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
278 enum mem_cgroup_events_index idx,
279 unsigned int nr)
280 {
281 this_cpu_add(memcg->stat->events[idx], nr);
282 cgroup_file_notify(&memcg->events_file);
283 }
284
285 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
286
287 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
288 gfp_t gfp_mask, struct mem_cgroup **memcgp);
289 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
290 bool lrucare);
291 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
292 void mem_cgroup_uncharge(struct page *page);
293 void mem_cgroup_uncharge_list(struct list_head *page_list);
294
295 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage);
296
297 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
298 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
299
300 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
301 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
302 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
303
304 static inline
305 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
306 return css ? container_of(css, struct mem_cgroup, css) : NULL;
307 }
308
309 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
310 struct mem_cgroup *,
311 struct mem_cgroup_reclaim_cookie *);
312 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
313
314 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
315 struct mem_cgroup *root)
316 {
317 if (root == memcg)
318 return true;
319 if (!root->use_hierarchy)
320 return false;
321 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
322 }
323
324 static inline bool mm_match_cgroup(struct mm_struct *mm,
325 struct mem_cgroup *memcg)
326 {
327 struct mem_cgroup *task_memcg;
328 bool match = false;
329
330 rcu_read_lock();
331 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
332 if (task_memcg)
333 match = mem_cgroup_is_descendant(task_memcg, memcg);
334 rcu_read_unlock();
335 return match;
336 }
337
338 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
339 ino_t page_cgroup_ino(struct page *page);
340
341 static inline bool mem_cgroup_disabled(void)
342 {
343 return !cgroup_subsys_enabled(memory_cgrp_subsys);
344 }
345
346 /*
347 * For memory reclaim.
348 */
349 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
350
351 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
352 int nr_pages);
353
354 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
355 {
356 struct mem_cgroup_per_zone *mz;
357 struct mem_cgroup *memcg;
358
359 if (mem_cgroup_disabled())
360 return true;
361
362 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
363 memcg = mz->memcg;
364
365 return !!(memcg->css.flags & CSS_ONLINE);
366 }
367
368 static inline
369 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
370 {
371 struct mem_cgroup_per_zone *mz;
372
373 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
374 return mz->lru_size[lru];
375 }
376
377 static inline bool mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
378 {
379 unsigned long inactive_ratio;
380 unsigned long inactive;
381 unsigned long active;
382 unsigned long gb;
383
384 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
385 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
386
387 gb = (inactive + active) >> (30 - PAGE_SHIFT);
388 if (gb)
389 inactive_ratio = int_sqrt(10 * gb);
390 else
391 inactive_ratio = 1;
392
393 return inactive * inactive_ratio < active;
394 }
395
396 void mem_cgroup_handle_over_high(void);
397
398 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
399 struct task_struct *p);
400
401 static inline void mem_cgroup_oom_enable(void)
402 {
403 WARN_ON(current->memcg_may_oom);
404 current->memcg_may_oom = 1;
405 }
406
407 static inline void mem_cgroup_oom_disable(void)
408 {
409 WARN_ON(!current->memcg_may_oom);
410 current->memcg_may_oom = 0;
411 }
412
413 static inline bool task_in_memcg_oom(struct task_struct *p)
414 {
415 return p->memcg_in_oom;
416 }
417
418 bool mem_cgroup_oom_synchronize(bool wait);
419
420 #ifdef CONFIG_MEMCG_SWAP
421 extern int do_swap_account;
422 #endif
423
424 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
425 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
426
427 /**
428 * mem_cgroup_update_page_stat - update page state statistics
429 * @memcg: memcg to account against
430 * @idx: page state item to account
431 * @val: number of pages (positive or negative)
432 *
433 * See mem_cgroup_begin_page_stat() for locking requirements.
434 */
435 static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
436 enum mem_cgroup_stat_index idx, int val)
437 {
438 VM_BUG_ON(!rcu_read_lock_held());
439
440 if (memcg)
441 this_cpu_add(memcg->stat->count[idx], val);
442 }
443
444 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
445 enum mem_cgroup_stat_index idx)
446 {
447 mem_cgroup_update_page_stat(memcg, idx, 1);
448 }
449
450 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
451 enum mem_cgroup_stat_index idx)
452 {
453 mem_cgroup_update_page_stat(memcg, idx, -1);
454 }
455
456 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
457 gfp_t gfp_mask,
458 unsigned long *total_scanned);
459
460 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
461 enum vm_event_item idx)
462 {
463 struct mem_cgroup *memcg;
464
465 if (mem_cgroup_disabled())
466 return;
467
468 rcu_read_lock();
469 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
470 if (unlikely(!memcg))
471 goto out;
472
473 switch (idx) {
474 case PGFAULT:
475 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
476 break;
477 case PGMAJFAULT:
478 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
479 break;
480 default:
481 BUG();
482 }
483 out:
484 rcu_read_unlock();
485 }
486 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
487 void mem_cgroup_split_huge_fixup(struct page *head);
488 #endif
489
490 #else /* CONFIG_MEMCG */
491 struct mem_cgroup;
492
493 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
494 enum mem_cgroup_events_index idx,
495 unsigned int nr)
496 {
497 }
498
499 static inline bool mem_cgroup_low(struct mem_cgroup *root,
500 struct mem_cgroup *memcg)
501 {
502 return false;
503 }
504
505 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
506 gfp_t gfp_mask,
507 struct mem_cgroup **memcgp)
508 {
509 *memcgp = NULL;
510 return 0;
511 }
512
513 static inline void mem_cgroup_commit_charge(struct page *page,
514 struct mem_cgroup *memcg,
515 bool lrucare)
516 {
517 }
518
519 static inline void mem_cgroup_cancel_charge(struct page *page,
520 struct mem_cgroup *memcg)
521 {
522 }
523
524 static inline void mem_cgroup_uncharge(struct page *page)
525 {
526 }
527
528 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
529 {
530 }
531
532 static inline void mem_cgroup_replace_page(struct page *old, struct page *new)
533 {
534 }
535
536 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
537 struct mem_cgroup *memcg)
538 {
539 return &zone->lruvec;
540 }
541
542 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
543 struct zone *zone)
544 {
545 return &zone->lruvec;
546 }
547
548 static inline bool mm_match_cgroup(struct mm_struct *mm,
549 struct mem_cgroup *memcg)
550 {
551 return true;
552 }
553
554 static inline bool task_in_mem_cgroup(struct task_struct *task,
555 const struct mem_cgroup *memcg)
556 {
557 return true;
558 }
559
560 static inline struct mem_cgroup *
561 mem_cgroup_iter(struct mem_cgroup *root,
562 struct mem_cgroup *prev,
563 struct mem_cgroup_reclaim_cookie *reclaim)
564 {
565 return NULL;
566 }
567
568 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
569 struct mem_cgroup *prev)
570 {
571 }
572
573 static inline bool mem_cgroup_disabled(void)
574 {
575 return true;
576 }
577
578 static inline bool
579 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
580 {
581 return true;
582 }
583
584 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
585 {
586 return true;
587 }
588
589 static inline unsigned long
590 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
591 {
592 return 0;
593 }
594
595 static inline void
596 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
597 int increment)
598 {
599 }
600
601 static inline void
602 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
603 {
604 }
605
606 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
607 {
608 return NULL;
609 }
610
611 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
612 {
613 }
614
615 static inline void mem_cgroup_handle_over_high(void)
616 {
617 }
618
619 static inline void mem_cgroup_oom_enable(void)
620 {
621 }
622
623 static inline void mem_cgroup_oom_disable(void)
624 {
625 }
626
627 static inline bool task_in_memcg_oom(struct task_struct *p)
628 {
629 return false;
630 }
631
632 static inline bool mem_cgroup_oom_synchronize(bool wait)
633 {
634 return false;
635 }
636
637 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
638 enum mem_cgroup_stat_index idx)
639 {
640 }
641
642 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
643 enum mem_cgroup_stat_index idx)
644 {
645 }
646
647 static inline
648 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
649 gfp_t gfp_mask,
650 unsigned long *total_scanned)
651 {
652 return 0;
653 }
654
655 static inline void mem_cgroup_split_huge_fixup(struct page *head)
656 {
657 }
658
659 static inline
660 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
661 {
662 }
663 #endif /* CONFIG_MEMCG */
664
665 enum {
666 UNDER_LIMIT,
667 SOFT_LIMIT,
668 OVER_LIMIT,
669 };
670
671 #ifdef CONFIG_CGROUP_WRITEBACK
672
673 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
674 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
675 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
676 unsigned long *pheadroom, unsigned long *pdirty,
677 unsigned long *pwriteback);
678
679 #else /* CONFIG_CGROUP_WRITEBACK */
680
681 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
682 {
683 return NULL;
684 }
685
686 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
687 unsigned long *pfilepages,
688 unsigned long *pheadroom,
689 unsigned long *pdirty,
690 unsigned long *pwriteback)
691 {
692 }
693
694 #endif /* CONFIG_CGROUP_WRITEBACK */
695
696 struct sock;
697 void sock_update_memcg(struct sock *sk);
698 void sock_release_memcg(struct sock *sk);
699
700 #ifdef CONFIG_MEMCG_KMEM
701 extern struct static_key memcg_kmem_enabled_key;
702
703 extern int memcg_nr_cache_ids;
704 void memcg_get_cache_ids(void);
705 void memcg_put_cache_ids(void);
706
707 /*
708 * Helper macro to loop through all memcg-specific caches. Callers must still
709 * check if the cache is valid (it is either valid or NULL).
710 * the slab_mutex must be held when looping through those caches
711 */
712 #define for_each_memcg_cache_index(_idx) \
713 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
714
715 static inline bool memcg_kmem_enabled(void)
716 {
717 return static_key_false(&memcg_kmem_enabled_key);
718 }
719
720 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
721 {
722 return memcg->kmem_acct_active;
723 }
724
725 /*
726 * In general, we'll do everything in our power to not incur in any overhead
727 * for non-memcg users for the kmem functions. Not even a function call, if we
728 * can avoid it.
729 *
730 * Therefore, we'll inline all those functions so that in the best case, we'll
731 * see that kmemcg is off for everybody and proceed quickly. If it is on,
732 * we'll still do most of the flag checking inline. We check a lot of
733 * conditions, but because they are pretty simple, they are expected to be
734 * fast.
735 */
736 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
737 struct mem_cgroup *memcg);
738 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
739 void __memcg_kmem_uncharge(struct page *page, int order);
740
741 /*
742 * helper for acessing a memcg's index. It will be used as an index in the
743 * child cache array in kmem_cache, and also to derive its name. This function
744 * will return -1 when this is not a kmem-limited memcg.
745 */
746 static inline int memcg_cache_id(struct mem_cgroup *memcg)
747 {
748 return memcg ? memcg->kmemcg_id : -1;
749 }
750
751 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
752 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
753
754 static inline bool __memcg_kmem_bypass(void)
755 {
756 if (!memcg_kmem_enabled())
757 return true;
758 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
759 return true;
760 return false;
761 }
762
763 /**
764 * memcg_kmem_charge: charge a kmem page
765 * @page: page to charge
766 * @gfp: reclaim mode
767 * @order: allocation order
768 *
769 * Returns 0 on success, an error code on failure.
770 */
771 static __always_inline int memcg_kmem_charge(struct page *page,
772 gfp_t gfp, int order)
773 {
774 if (__memcg_kmem_bypass())
775 return 0;
776 if (!(gfp & __GFP_ACCOUNT))
777 return 0;
778 return __memcg_kmem_charge(page, gfp, order);
779 }
780
781 /**
782 * memcg_kmem_uncharge: uncharge a kmem page
783 * @page: page to uncharge
784 * @order: allocation order
785 */
786 static __always_inline void memcg_kmem_uncharge(struct page *page, int order)
787 {
788 if (memcg_kmem_enabled())
789 __memcg_kmem_uncharge(page, order);
790 }
791
792 /**
793 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
794 * @cachep: the original global kmem cache
795 *
796 * All memory allocated from a per-memcg cache is charged to the owner memcg.
797 */
798 static __always_inline struct kmem_cache *
799 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
800 {
801 if (__memcg_kmem_bypass())
802 return cachep;
803 return __memcg_kmem_get_cache(cachep, gfp);
804 }
805
806 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
807 {
808 if (memcg_kmem_enabled())
809 __memcg_kmem_put_cache(cachep);
810 }
811 #else
812 #define for_each_memcg_cache_index(_idx) \
813 for (; NULL; )
814
815 static inline bool memcg_kmem_enabled(void)
816 {
817 return false;
818 }
819
820 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
821 {
822 return false;
823 }
824
825 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
826 {
827 return 0;
828 }
829
830 static inline void memcg_kmem_uncharge(struct page *page, int order)
831 {
832 }
833
834 static inline int memcg_cache_id(struct mem_cgroup *memcg)
835 {
836 return -1;
837 }
838
839 static inline void memcg_get_cache_ids(void)
840 {
841 }
842
843 static inline void memcg_put_cache_ids(void)
844 {
845 }
846
847 static inline struct kmem_cache *
848 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
849 {
850 return cachep;
851 }
852
853 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
854 {
855 }
856 #endif /* CONFIG_MEMCG_KMEM */
857 #endif /* _LINUX_MEMCONTROL_H */
This page took 0.047902 seconds and 4 git commands to generate.