mm: migrate: do not touch page->mem_cgroup of live pages
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25
26 struct mempolicy;
27 struct anon_vma;
28 struct anon_vma_chain;
29 struct file_ra_state;
30 struct user_struct;
31 struct writeback_control;
32 struct bdi_writeback;
33
34 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
35 extern unsigned long max_mapnr;
36
37 static inline void set_max_mapnr(unsigned long limit)
38 {
39 max_mapnr = limit;
40 }
41 #else
42 static inline void set_max_mapnr(unsigned long limit) { }
43 #endif
44
45 extern unsigned long totalram_pages;
46 extern void * high_memory;
47 extern int page_cluster;
48
49 #ifdef CONFIG_SYSCTL
50 extern int sysctl_legacy_va_layout;
51 #else
52 #define sysctl_legacy_va_layout 0
53 #endif
54
55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56 extern const int mmap_rnd_bits_min;
57 extern const int mmap_rnd_bits_max;
58 extern int mmap_rnd_bits __read_mostly;
59 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61 extern const int mmap_rnd_compat_bits_min;
62 extern const int mmap_rnd_compat_bits_max;
63 extern int mmap_rnd_compat_bits __read_mostly;
64 #endif
65
66 #include <asm/page.h>
67 #include <asm/pgtable.h>
68 #include <asm/processor.h>
69
70 #ifndef __pa_symbol
71 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72 #endif
73
74 /*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81 #ifndef mm_forbids_zeropage
82 #define mm_forbids_zeropage(X) (0)
83 #endif
84
85 extern unsigned long sysctl_user_reserve_kbytes;
86 extern unsigned long sysctl_admin_reserve_kbytes;
87
88 extern int sysctl_overcommit_memory;
89 extern int sysctl_overcommit_ratio;
90 extern unsigned long sysctl_overcommit_kbytes;
91
92 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
97 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
99 /* to align the pointer to the (next) page boundary */
100 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
102 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
105 /*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
114 extern struct kmem_cache *vm_area_cachep;
115
116 #ifndef CONFIG_MMU
117 extern struct rb_root nommu_region_tree;
118 extern struct rw_semaphore nommu_region_sem;
119
120 extern unsigned int kobjsize(const void *objp);
121 #endif
122
123 /*
124 * vm_flags in vm_area_struct, see mm_types.h.
125 */
126 #define VM_NONE 0x00000000
127
128 #define VM_READ 0x00000001 /* currently active flags */
129 #define VM_WRITE 0x00000002
130 #define VM_EXEC 0x00000004
131 #define VM_SHARED 0x00000008
132
133 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
134 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135 #define VM_MAYWRITE 0x00000020
136 #define VM_MAYEXEC 0x00000040
137 #define VM_MAYSHARE 0x00000080
138
139 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
140 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
141 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
142 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
143 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
144
145 #define VM_LOCKED 0x00002000
146 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
154 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
155 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
156 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
157 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
158 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
159 #define VM_ARCH_2 0x02000000
160 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
161
162 #ifdef CONFIG_MEM_SOFT_DIRTY
163 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164 #else
165 # define VM_SOFTDIRTY 0
166 #endif
167
168 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
169 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
171 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
172
173 #if defined(CONFIG_X86)
174 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
175 #elif defined(CONFIG_PPC)
176 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
177 #elif defined(CONFIG_PARISC)
178 # define VM_GROWSUP VM_ARCH_1
179 #elif defined(CONFIG_METAG)
180 # define VM_GROWSUP VM_ARCH_1
181 #elif defined(CONFIG_IA64)
182 # define VM_GROWSUP VM_ARCH_1
183 #elif !defined(CONFIG_MMU)
184 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
185 #endif
186
187 #if defined(CONFIG_X86)
188 /* MPX specific bounds table or bounds directory */
189 # define VM_MPX VM_ARCH_2
190 #endif
191
192 #ifndef VM_GROWSUP
193 # define VM_GROWSUP VM_NONE
194 #endif
195
196 /* Bits set in the VMA until the stack is in its final location */
197 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
198
199 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
200 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
201 #endif
202
203 #ifdef CONFIG_STACK_GROWSUP
204 #define VM_STACK VM_GROWSUP
205 #else
206 #define VM_STACK VM_GROWSDOWN
207 #endif
208
209 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
210
211 /*
212 * Special vmas that are non-mergable, non-mlock()able.
213 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
214 */
215 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
216
217 /* This mask defines which mm->def_flags a process can inherit its parent */
218 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
219
220 /* This mask is used to clear all the VMA flags used by mlock */
221 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
222
223 /*
224 * mapping from the currently active vm_flags protection bits (the
225 * low four bits) to a page protection mask..
226 */
227 extern pgprot_t protection_map[16];
228
229 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
230 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
231 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
232 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
233 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
234 #define FAULT_FLAG_TRIED 0x20 /* Second try */
235 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
236
237 /*
238 * vm_fault is filled by the the pagefault handler and passed to the vma's
239 * ->fault function. The vma's ->fault is responsible for returning a bitmask
240 * of VM_FAULT_xxx flags that give details about how the fault was handled.
241 *
242 * MM layer fills up gfp_mask for page allocations but fault handler might
243 * alter it if its implementation requires a different allocation context.
244 *
245 * pgoff should be used in favour of virtual_address, if possible.
246 */
247 struct vm_fault {
248 unsigned int flags; /* FAULT_FLAG_xxx flags */
249 gfp_t gfp_mask; /* gfp mask to be used for allocations */
250 pgoff_t pgoff; /* Logical page offset based on vma */
251 void __user *virtual_address; /* Faulting virtual address */
252
253 struct page *cow_page; /* Handler may choose to COW */
254 struct page *page; /* ->fault handlers should return a
255 * page here, unless VM_FAULT_NOPAGE
256 * is set (which is also implied by
257 * VM_FAULT_ERROR).
258 */
259 /* for ->map_pages() only */
260 pgoff_t max_pgoff; /* map pages for offset from pgoff till
261 * max_pgoff inclusive */
262 pte_t *pte; /* pte entry associated with ->pgoff */
263 };
264
265 /*
266 * These are the virtual MM functions - opening of an area, closing and
267 * unmapping it (needed to keep files on disk up-to-date etc), pointer
268 * to the functions called when a no-page or a wp-page exception occurs.
269 */
270 struct vm_operations_struct {
271 void (*open)(struct vm_area_struct * area);
272 void (*close)(struct vm_area_struct * area);
273 int (*mremap)(struct vm_area_struct * area);
274 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
275 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
276 pmd_t *, unsigned int flags);
277 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
278
279 /* notification that a previously read-only page is about to become
280 * writable, if an error is returned it will cause a SIGBUS */
281 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
283 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
284 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
285
286 /* called by access_process_vm when get_user_pages() fails, typically
287 * for use by special VMAs that can switch between memory and hardware
288 */
289 int (*access)(struct vm_area_struct *vma, unsigned long addr,
290 void *buf, int len, int write);
291
292 /* Called by the /proc/PID/maps code to ask the vma whether it
293 * has a special name. Returning non-NULL will also cause this
294 * vma to be dumped unconditionally. */
295 const char *(*name)(struct vm_area_struct *vma);
296
297 #ifdef CONFIG_NUMA
298 /*
299 * set_policy() op must add a reference to any non-NULL @new mempolicy
300 * to hold the policy upon return. Caller should pass NULL @new to
301 * remove a policy and fall back to surrounding context--i.e. do not
302 * install a MPOL_DEFAULT policy, nor the task or system default
303 * mempolicy.
304 */
305 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
306
307 /*
308 * get_policy() op must add reference [mpol_get()] to any policy at
309 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
310 * in mm/mempolicy.c will do this automatically.
311 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
312 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
313 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
314 * must return NULL--i.e., do not "fallback" to task or system default
315 * policy.
316 */
317 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
318 unsigned long addr);
319 #endif
320 /*
321 * Called by vm_normal_page() for special PTEs to find the
322 * page for @addr. This is useful if the default behavior
323 * (using pte_page()) would not find the correct page.
324 */
325 struct page *(*find_special_page)(struct vm_area_struct *vma,
326 unsigned long addr);
327 };
328
329 struct mmu_gather;
330 struct inode;
331
332 #define page_private(page) ((page)->private)
333 #define set_page_private(page, v) ((page)->private = (v))
334
335 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
336 static inline int pmd_devmap(pmd_t pmd)
337 {
338 return 0;
339 }
340 #endif
341
342 /*
343 * FIXME: take this include out, include page-flags.h in
344 * files which need it (119 of them)
345 */
346 #include <linux/page-flags.h>
347 #include <linux/huge_mm.h>
348
349 /*
350 * Methods to modify the page usage count.
351 *
352 * What counts for a page usage:
353 * - cache mapping (page->mapping)
354 * - private data (page->private)
355 * - page mapped in a task's page tables, each mapping
356 * is counted separately
357 *
358 * Also, many kernel routines increase the page count before a critical
359 * routine so they can be sure the page doesn't go away from under them.
360 */
361
362 /*
363 * Drop a ref, return true if the refcount fell to zero (the page has no users)
364 */
365 static inline int put_page_testzero(struct page *page)
366 {
367 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
368 return atomic_dec_and_test(&page->_count);
369 }
370
371 /*
372 * Try to grab a ref unless the page has a refcount of zero, return false if
373 * that is the case.
374 * This can be called when MMU is off so it must not access
375 * any of the virtual mappings.
376 */
377 static inline int get_page_unless_zero(struct page *page)
378 {
379 return atomic_inc_not_zero(&page->_count);
380 }
381
382 extern int page_is_ram(unsigned long pfn);
383
384 enum {
385 REGION_INTERSECTS,
386 REGION_DISJOINT,
387 REGION_MIXED,
388 };
389
390 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
391 unsigned long desc);
392
393 /* Support for virtually mapped pages */
394 struct page *vmalloc_to_page(const void *addr);
395 unsigned long vmalloc_to_pfn(const void *addr);
396
397 /*
398 * Determine if an address is within the vmalloc range
399 *
400 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
401 * is no special casing required.
402 */
403 static inline int is_vmalloc_addr(const void *x)
404 {
405 #ifdef CONFIG_MMU
406 unsigned long addr = (unsigned long)x;
407
408 return addr >= VMALLOC_START && addr < VMALLOC_END;
409 #else
410 return 0;
411 #endif
412 }
413 #ifdef CONFIG_MMU
414 extern int is_vmalloc_or_module_addr(const void *x);
415 #else
416 static inline int is_vmalloc_or_module_addr(const void *x)
417 {
418 return 0;
419 }
420 #endif
421
422 extern void kvfree(const void *addr);
423
424 static inline atomic_t *compound_mapcount_ptr(struct page *page)
425 {
426 return &page[1].compound_mapcount;
427 }
428
429 static inline int compound_mapcount(struct page *page)
430 {
431 if (!PageCompound(page))
432 return 0;
433 page = compound_head(page);
434 return atomic_read(compound_mapcount_ptr(page)) + 1;
435 }
436
437 /*
438 * The atomic page->_mapcount, starts from -1: so that transitions
439 * both from it and to it can be tracked, using atomic_inc_and_test
440 * and atomic_add_negative(-1).
441 */
442 static inline void page_mapcount_reset(struct page *page)
443 {
444 atomic_set(&(page)->_mapcount, -1);
445 }
446
447 int __page_mapcount(struct page *page);
448
449 static inline int page_mapcount(struct page *page)
450 {
451 VM_BUG_ON_PAGE(PageSlab(page), page);
452
453 if (unlikely(PageCompound(page)))
454 return __page_mapcount(page);
455 return atomic_read(&page->_mapcount) + 1;
456 }
457
458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
459 int total_mapcount(struct page *page);
460 #else
461 static inline int total_mapcount(struct page *page)
462 {
463 return page_mapcount(page);
464 }
465 #endif
466
467 static inline int page_count(struct page *page)
468 {
469 return atomic_read(&compound_head(page)->_count);
470 }
471
472 static inline struct page *virt_to_head_page(const void *x)
473 {
474 struct page *page = virt_to_page(x);
475
476 return compound_head(page);
477 }
478
479 /*
480 * Setup the page count before being freed into the page allocator for
481 * the first time (boot or memory hotplug)
482 */
483 static inline void init_page_count(struct page *page)
484 {
485 atomic_set(&page->_count, 1);
486 }
487
488 void __put_page(struct page *page);
489
490 void put_pages_list(struct list_head *pages);
491
492 void split_page(struct page *page, unsigned int order);
493 int split_free_page(struct page *page);
494
495 /*
496 * Compound pages have a destructor function. Provide a
497 * prototype for that function and accessor functions.
498 * These are _only_ valid on the head of a compound page.
499 */
500 typedef void compound_page_dtor(struct page *);
501
502 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
503 enum compound_dtor_id {
504 NULL_COMPOUND_DTOR,
505 COMPOUND_PAGE_DTOR,
506 #ifdef CONFIG_HUGETLB_PAGE
507 HUGETLB_PAGE_DTOR,
508 #endif
509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 TRANSHUGE_PAGE_DTOR,
511 #endif
512 NR_COMPOUND_DTORS,
513 };
514 extern compound_page_dtor * const compound_page_dtors[];
515
516 static inline void set_compound_page_dtor(struct page *page,
517 enum compound_dtor_id compound_dtor)
518 {
519 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
520 page[1].compound_dtor = compound_dtor;
521 }
522
523 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
524 {
525 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
526 return compound_page_dtors[page[1].compound_dtor];
527 }
528
529 static inline unsigned int compound_order(struct page *page)
530 {
531 if (!PageHead(page))
532 return 0;
533 return page[1].compound_order;
534 }
535
536 static inline void set_compound_order(struct page *page, unsigned int order)
537 {
538 page[1].compound_order = order;
539 }
540
541 void free_compound_page(struct page *page);
542
543 #ifdef CONFIG_MMU
544 /*
545 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
546 * servicing faults for write access. In the normal case, do always want
547 * pte_mkwrite. But get_user_pages can cause write faults for mappings
548 * that do not have writing enabled, when used by access_process_vm.
549 */
550 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
551 {
552 if (likely(vma->vm_flags & VM_WRITE))
553 pte = pte_mkwrite(pte);
554 return pte;
555 }
556
557 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
558 struct page *page, pte_t *pte, bool write, bool anon);
559 #endif
560
561 /*
562 * Multiple processes may "see" the same page. E.g. for untouched
563 * mappings of /dev/null, all processes see the same page full of
564 * zeroes, and text pages of executables and shared libraries have
565 * only one copy in memory, at most, normally.
566 *
567 * For the non-reserved pages, page_count(page) denotes a reference count.
568 * page_count() == 0 means the page is free. page->lru is then used for
569 * freelist management in the buddy allocator.
570 * page_count() > 0 means the page has been allocated.
571 *
572 * Pages are allocated by the slab allocator in order to provide memory
573 * to kmalloc and kmem_cache_alloc. In this case, the management of the
574 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
575 * unless a particular usage is carefully commented. (the responsibility of
576 * freeing the kmalloc memory is the caller's, of course).
577 *
578 * A page may be used by anyone else who does a __get_free_page().
579 * In this case, page_count still tracks the references, and should only
580 * be used through the normal accessor functions. The top bits of page->flags
581 * and page->virtual store page management information, but all other fields
582 * are unused and could be used privately, carefully. The management of this
583 * page is the responsibility of the one who allocated it, and those who have
584 * subsequently been given references to it.
585 *
586 * The other pages (we may call them "pagecache pages") are completely
587 * managed by the Linux memory manager: I/O, buffers, swapping etc.
588 * The following discussion applies only to them.
589 *
590 * A pagecache page contains an opaque `private' member, which belongs to the
591 * page's address_space. Usually, this is the address of a circular list of
592 * the page's disk buffers. PG_private must be set to tell the VM to call
593 * into the filesystem to release these pages.
594 *
595 * A page may belong to an inode's memory mapping. In this case, page->mapping
596 * is the pointer to the inode, and page->index is the file offset of the page,
597 * in units of PAGE_CACHE_SIZE.
598 *
599 * If pagecache pages are not associated with an inode, they are said to be
600 * anonymous pages. These may become associated with the swapcache, and in that
601 * case PG_swapcache is set, and page->private is an offset into the swapcache.
602 *
603 * In either case (swapcache or inode backed), the pagecache itself holds one
604 * reference to the page. Setting PG_private should also increment the
605 * refcount. The each user mapping also has a reference to the page.
606 *
607 * The pagecache pages are stored in a per-mapping radix tree, which is
608 * rooted at mapping->page_tree, and indexed by offset.
609 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
610 * lists, we instead now tag pages as dirty/writeback in the radix tree.
611 *
612 * All pagecache pages may be subject to I/O:
613 * - inode pages may need to be read from disk,
614 * - inode pages which have been modified and are MAP_SHARED may need
615 * to be written back to the inode on disk,
616 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
617 * modified may need to be swapped out to swap space and (later) to be read
618 * back into memory.
619 */
620
621 /*
622 * The zone field is never updated after free_area_init_core()
623 * sets it, so none of the operations on it need to be atomic.
624 */
625
626 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
627 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
628 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
629 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
630 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
631
632 /*
633 * Define the bit shifts to access each section. For non-existent
634 * sections we define the shift as 0; that plus a 0 mask ensures
635 * the compiler will optimise away reference to them.
636 */
637 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
638 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
639 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
640 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
641
642 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
643 #ifdef NODE_NOT_IN_PAGE_FLAGS
644 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
645 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
646 SECTIONS_PGOFF : ZONES_PGOFF)
647 #else
648 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
649 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
650 NODES_PGOFF : ZONES_PGOFF)
651 #endif
652
653 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
654
655 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
656 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
657 #endif
658
659 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
660 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
661 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
662 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
663 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
664
665 static inline enum zone_type page_zonenum(const struct page *page)
666 {
667 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
668 }
669
670 #ifdef CONFIG_ZONE_DEVICE
671 void get_zone_device_page(struct page *page);
672 void put_zone_device_page(struct page *page);
673 static inline bool is_zone_device_page(const struct page *page)
674 {
675 return page_zonenum(page) == ZONE_DEVICE;
676 }
677 #else
678 static inline void get_zone_device_page(struct page *page)
679 {
680 }
681 static inline void put_zone_device_page(struct page *page)
682 {
683 }
684 static inline bool is_zone_device_page(const struct page *page)
685 {
686 return false;
687 }
688 #endif
689
690 static inline void get_page(struct page *page)
691 {
692 page = compound_head(page);
693 /*
694 * Getting a normal page or the head of a compound page
695 * requires to already have an elevated page->_count.
696 */
697 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
698 atomic_inc(&page->_count);
699
700 if (unlikely(is_zone_device_page(page)))
701 get_zone_device_page(page);
702 }
703
704 static inline void put_page(struct page *page)
705 {
706 page = compound_head(page);
707
708 if (put_page_testzero(page))
709 __put_page(page);
710
711 if (unlikely(is_zone_device_page(page)))
712 put_zone_device_page(page);
713 }
714
715 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
716 #define SECTION_IN_PAGE_FLAGS
717 #endif
718
719 /*
720 * The identification function is mainly used by the buddy allocator for
721 * determining if two pages could be buddies. We are not really identifying
722 * the zone since we could be using the section number id if we do not have
723 * node id available in page flags.
724 * We only guarantee that it will return the same value for two combinable
725 * pages in a zone.
726 */
727 static inline int page_zone_id(struct page *page)
728 {
729 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
730 }
731
732 static inline int zone_to_nid(struct zone *zone)
733 {
734 #ifdef CONFIG_NUMA
735 return zone->node;
736 #else
737 return 0;
738 #endif
739 }
740
741 #ifdef NODE_NOT_IN_PAGE_FLAGS
742 extern int page_to_nid(const struct page *page);
743 #else
744 static inline int page_to_nid(const struct page *page)
745 {
746 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
747 }
748 #endif
749
750 #ifdef CONFIG_NUMA_BALANCING
751 static inline int cpu_pid_to_cpupid(int cpu, int pid)
752 {
753 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
754 }
755
756 static inline int cpupid_to_pid(int cpupid)
757 {
758 return cpupid & LAST__PID_MASK;
759 }
760
761 static inline int cpupid_to_cpu(int cpupid)
762 {
763 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
764 }
765
766 static inline int cpupid_to_nid(int cpupid)
767 {
768 return cpu_to_node(cpupid_to_cpu(cpupid));
769 }
770
771 static inline bool cpupid_pid_unset(int cpupid)
772 {
773 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
774 }
775
776 static inline bool cpupid_cpu_unset(int cpupid)
777 {
778 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
779 }
780
781 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
782 {
783 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
784 }
785
786 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
787 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
788 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
789 {
790 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
791 }
792
793 static inline int page_cpupid_last(struct page *page)
794 {
795 return page->_last_cpupid;
796 }
797 static inline void page_cpupid_reset_last(struct page *page)
798 {
799 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
800 }
801 #else
802 static inline int page_cpupid_last(struct page *page)
803 {
804 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
805 }
806
807 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
808
809 static inline void page_cpupid_reset_last(struct page *page)
810 {
811 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
812
813 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
814 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
815 }
816 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
817 #else /* !CONFIG_NUMA_BALANCING */
818 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
819 {
820 return page_to_nid(page); /* XXX */
821 }
822
823 static inline int page_cpupid_last(struct page *page)
824 {
825 return page_to_nid(page); /* XXX */
826 }
827
828 static inline int cpupid_to_nid(int cpupid)
829 {
830 return -1;
831 }
832
833 static inline int cpupid_to_pid(int cpupid)
834 {
835 return -1;
836 }
837
838 static inline int cpupid_to_cpu(int cpupid)
839 {
840 return -1;
841 }
842
843 static inline int cpu_pid_to_cpupid(int nid, int pid)
844 {
845 return -1;
846 }
847
848 static inline bool cpupid_pid_unset(int cpupid)
849 {
850 return 1;
851 }
852
853 static inline void page_cpupid_reset_last(struct page *page)
854 {
855 }
856
857 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
858 {
859 return false;
860 }
861 #endif /* CONFIG_NUMA_BALANCING */
862
863 static inline struct zone *page_zone(const struct page *page)
864 {
865 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
866 }
867
868 #ifdef SECTION_IN_PAGE_FLAGS
869 static inline void set_page_section(struct page *page, unsigned long section)
870 {
871 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
872 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
873 }
874
875 static inline unsigned long page_to_section(const struct page *page)
876 {
877 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
878 }
879 #endif
880
881 static inline void set_page_zone(struct page *page, enum zone_type zone)
882 {
883 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
884 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
885 }
886
887 static inline void set_page_node(struct page *page, unsigned long node)
888 {
889 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
890 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
891 }
892
893 static inline void set_page_links(struct page *page, enum zone_type zone,
894 unsigned long node, unsigned long pfn)
895 {
896 set_page_zone(page, zone);
897 set_page_node(page, node);
898 #ifdef SECTION_IN_PAGE_FLAGS
899 set_page_section(page, pfn_to_section_nr(pfn));
900 #endif
901 }
902
903 #ifdef CONFIG_MEMCG
904 static inline struct mem_cgroup *page_memcg(struct page *page)
905 {
906 return page->mem_cgroup;
907 }
908 #else
909 static inline struct mem_cgroup *page_memcg(struct page *page)
910 {
911 return NULL;
912 }
913 #endif
914
915 /*
916 * Some inline functions in vmstat.h depend on page_zone()
917 */
918 #include <linux/vmstat.h>
919
920 static __always_inline void *lowmem_page_address(const struct page *page)
921 {
922 return __va(PFN_PHYS(page_to_pfn(page)));
923 }
924
925 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
926 #define HASHED_PAGE_VIRTUAL
927 #endif
928
929 #if defined(WANT_PAGE_VIRTUAL)
930 static inline void *page_address(const struct page *page)
931 {
932 return page->virtual;
933 }
934 static inline void set_page_address(struct page *page, void *address)
935 {
936 page->virtual = address;
937 }
938 #define page_address_init() do { } while(0)
939 #endif
940
941 #if defined(HASHED_PAGE_VIRTUAL)
942 void *page_address(const struct page *page);
943 void set_page_address(struct page *page, void *virtual);
944 void page_address_init(void);
945 #endif
946
947 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
948 #define page_address(page) lowmem_page_address(page)
949 #define set_page_address(page, address) do { } while(0)
950 #define page_address_init() do { } while(0)
951 #endif
952
953 extern void *page_rmapping(struct page *page);
954 extern struct anon_vma *page_anon_vma(struct page *page);
955 extern struct address_space *page_mapping(struct page *page);
956
957 extern struct address_space *__page_file_mapping(struct page *);
958
959 static inline
960 struct address_space *page_file_mapping(struct page *page)
961 {
962 if (unlikely(PageSwapCache(page)))
963 return __page_file_mapping(page);
964
965 return page->mapping;
966 }
967
968 /*
969 * Return the pagecache index of the passed page. Regular pagecache pages
970 * use ->index whereas swapcache pages use ->private
971 */
972 static inline pgoff_t page_index(struct page *page)
973 {
974 if (unlikely(PageSwapCache(page)))
975 return page_private(page);
976 return page->index;
977 }
978
979 extern pgoff_t __page_file_index(struct page *page);
980
981 /*
982 * Return the file index of the page. Regular pagecache pages use ->index
983 * whereas swapcache pages use swp_offset(->private)
984 */
985 static inline pgoff_t page_file_index(struct page *page)
986 {
987 if (unlikely(PageSwapCache(page)))
988 return __page_file_index(page);
989
990 return page->index;
991 }
992
993 /*
994 * Return true if this page is mapped into pagetables.
995 * For compound page it returns true if any subpage of compound page is mapped.
996 */
997 static inline bool page_mapped(struct page *page)
998 {
999 int i;
1000 if (likely(!PageCompound(page)))
1001 return atomic_read(&page->_mapcount) >= 0;
1002 page = compound_head(page);
1003 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1004 return true;
1005 for (i = 0; i < hpage_nr_pages(page); i++) {
1006 if (atomic_read(&page[i]._mapcount) >= 0)
1007 return true;
1008 }
1009 return false;
1010 }
1011
1012 /*
1013 * Return true only if the page has been allocated with
1014 * ALLOC_NO_WATERMARKS and the low watermark was not
1015 * met implying that the system is under some pressure.
1016 */
1017 static inline bool page_is_pfmemalloc(struct page *page)
1018 {
1019 /*
1020 * Page index cannot be this large so this must be
1021 * a pfmemalloc page.
1022 */
1023 return page->index == -1UL;
1024 }
1025
1026 /*
1027 * Only to be called by the page allocator on a freshly allocated
1028 * page.
1029 */
1030 static inline void set_page_pfmemalloc(struct page *page)
1031 {
1032 page->index = -1UL;
1033 }
1034
1035 static inline void clear_page_pfmemalloc(struct page *page)
1036 {
1037 page->index = 0;
1038 }
1039
1040 /*
1041 * Different kinds of faults, as returned by handle_mm_fault().
1042 * Used to decide whether a process gets delivered SIGBUS or
1043 * just gets major/minor fault counters bumped up.
1044 */
1045
1046 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1047
1048 #define VM_FAULT_OOM 0x0001
1049 #define VM_FAULT_SIGBUS 0x0002
1050 #define VM_FAULT_MAJOR 0x0004
1051 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1052 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1053 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1054 #define VM_FAULT_SIGSEGV 0x0040
1055
1056 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1057 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1058 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1059 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1060
1061 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1062
1063 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1064 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1065 VM_FAULT_FALLBACK)
1066
1067 /* Encode hstate index for a hwpoisoned large page */
1068 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1069 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1070
1071 /*
1072 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1073 */
1074 extern void pagefault_out_of_memory(void);
1075
1076 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1077
1078 /*
1079 * Flags passed to show_mem() and show_free_areas() to suppress output in
1080 * various contexts.
1081 */
1082 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1083
1084 extern void show_free_areas(unsigned int flags);
1085 extern bool skip_free_areas_node(unsigned int flags, int nid);
1086
1087 int shmem_zero_setup(struct vm_area_struct *);
1088 #ifdef CONFIG_SHMEM
1089 bool shmem_mapping(struct address_space *mapping);
1090 #else
1091 static inline bool shmem_mapping(struct address_space *mapping)
1092 {
1093 return false;
1094 }
1095 #endif
1096
1097 extern bool can_do_mlock(void);
1098 extern int user_shm_lock(size_t, struct user_struct *);
1099 extern void user_shm_unlock(size_t, struct user_struct *);
1100
1101 /*
1102 * Parameter block passed down to zap_pte_range in exceptional cases.
1103 */
1104 struct zap_details {
1105 struct address_space *check_mapping; /* Check page->mapping if set */
1106 pgoff_t first_index; /* Lowest page->index to unmap */
1107 pgoff_t last_index; /* Highest page->index to unmap */
1108 };
1109
1110 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1111 pte_t pte);
1112
1113 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1114 unsigned long size);
1115 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1116 unsigned long size, struct zap_details *);
1117 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1118 unsigned long start, unsigned long end);
1119
1120 /**
1121 * mm_walk - callbacks for walk_page_range
1122 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1123 * this handler is required to be able to handle
1124 * pmd_trans_huge() pmds. They may simply choose to
1125 * split_huge_page() instead of handling it explicitly.
1126 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1127 * @pte_hole: if set, called for each hole at all levels
1128 * @hugetlb_entry: if set, called for each hugetlb entry
1129 * @test_walk: caller specific callback function to determine whether
1130 * we walk over the current vma or not. A positive returned
1131 * value means "do page table walk over the current vma,"
1132 * and a negative one means "abort current page table walk
1133 * right now." 0 means "skip the current vma."
1134 * @mm: mm_struct representing the target process of page table walk
1135 * @vma: vma currently walked (NULL if walking outside vmas)
1136 * @private: private data for callbacks' usage
1137 *
1138 * (see the comment on walk_page_range() for more details)
1139 */
1140 struct mm_walk {
1141 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1142 unsigned long next, struct mm_walk *walk);
1143 int (*pte_entry)(pte_t *pte, unsigned long addr,
1144 unsigned long next, struct mm_walk *walk);
1145 int (*pte_hole)(unsigned long addr, unsigned long next,
1146 struct mm_walk *walk);
1147 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1148 unsigned long addr, unsigned long next,
1149 struct mm_walk *walk);
1150 int (*test_walk)(unsigned long addr, unsigned long next,
1151 struct mm_walk *walk);
1152 struct mm_struct *mm;
1153 struct vm_area_struct *vma;
1154 void *private;
1155 };
1156
1157 int walk_page_range(unsigned long addr, unsigned long end,
1158 struct mm_walk *walk);
1159 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1160 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1161 unsigned long end, unsigned long floor, unsigned long ceiling);
1162 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1163 struct vm_area_struct *vma);
1164 void unmap_mapping_range(struct address_space *mapping,
1165 loff_t const holebegin, loff_t const holelen, int even_cows);
1166 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1167 unsigned long *pfn);
1168 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1169 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1170 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1171 void *buf, int len, int write);
1172
1173 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1174 loff_t const holebegin, loff_t const holelen)
1175 {
1176 unmap_mapping_range(mapping, holebegin, holelen, 0);
1177 }
1178
1179 extern void truncate_pagecache(struct inode *inode, loff_t new);
1180 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1181 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1182 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1183 int truncate_inode_page(struct address_space *mapping, struct page *page);
1184 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1185 int invalidate_inode_page(struct page *page);
1186
1187 #ifdef CONFIG_MMU
1188 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1189 unsigned long address, unsigned int flags);
1190 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1191 unsigned long address, unsigned int fault_flags,
1192 bool *unlocked);
1193 #else
1194 static inline int handle_mm_fault(struct mm_struct *mm,
1195 struct vm_area_struct *vma, unsigned long address,
1196 unsigned int flags)
1197 {
1198 /* should never happen if there's no MMU */
1199 BUG();
1200 return VM_FAULT_SIGBUS;
1201 }
1202 static inline int fixup_user_fault(struct task_struct *tsk,
1203 struct mm_struct *mm, unsigned long address,
1204 unsigned int fault_flags, bool *unlocked)
1205 {
1206 /* should never happen if there's no MMU */
1207 BUG();
1208 return -EFAULT;
1209 }
1210 #endif
1211
1212 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1213 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1214 void *buf, int len, int write);
1215
1216 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1217 unsigned long start, unsigned long nr_pages,
1218 unsigned int foll_flags, struct page **pages,
1219 struct vm_area_struct **vmas, int *nonblocking);
1220 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1221 unsigned long start, unsigned long nr_pages,
1222 int write, int force, struct page **pages,
1223 struct vm_area_struct **vmas);
1224 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1225 unsigned long start, unsigned long nr_pages,
1226 int write, int force, struct page **pages,
1227 int *locked);
1228 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1229 unsigned long start, unsigned long nr_pages,
1230 int write, int force, struct page **pages,
1231 unsigned int gup_flags);
1232 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1233 unsigned long start, unsigned long nr_pages,
1234 int write, int force, struct page **pages);
1235 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1236 struct page **pages);
1237
1238 /* Container for pinned pfns / pages */
1239 struct frame_vector {
1240 unsigned int nr_allocated; /* Number of frames we have space for */
1241 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1242 bool got_ref; /* Did we pin pages by getting page ref? */
1243 bool is_pfns; /* Does array contain pages or pfns? */
1244 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1245 * pfns_vector_pages() or pfns_vector_pfns()
1246 * for access */
1247 };
1248
1249 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1250 void frame_vector_destroy(struct frame_vector *vec);
1251 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1252 bool write, bool force, struct frame_vector *vec);
1253 void put_vaddr_frames(struct frame_vector *vec);
1254 int frame_vector_to_pages(struct frame_vector *vec);
1255 void frame_vector_to_pfns(struct frame_vector *vec);
1256
1257 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1258 {
1259 return vec->nr_frames;
1260 }
1261
1262 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1263 {
1264 if (vec->is_pfns) {
1265 int err = frame_vector_to_pages(vec);
1266
1267 if (err)
1268 return ERR_PTR(err);
1269 }
1270 return (struct page **)(vec->ptrs);
1271 }
1272
1273 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1274 {
1275 if (!vec->is_pfns)
1276 frame_vector_to_pfns(vec);
1277 return (unsigned long *)(vec->ptrs);
1278 }
1279
1280 struct kvec;
1281 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1282 struct page **pages);
1283 int get_kernel_page(unsigned long start, int write, struct page **pages);
1284 struct page *get_dump_page(unsigned long addr);
1285
1286 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1287 extern void do_invalidatepage(struct page *page, unsigned int offset,
1288 unsigned int length);
1289
1290 int __set_page_dirty_nobuffers(struct page *page);
1291 int __set_page_dirty_no_writeback(struct page *page);
1292 int redirty_page_for_writepage(struct writeback_control *wbc,
1293 struct page *page);
1294 void account_page_dirtied(struct page *page, struct address_space *mapping,
1295 struct mem_cgroup *memcg);
1296 void account_page_cleaned(struct page *page, struct address_space *mapping,
1297 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1298 int set_page_dirty(struct page *page);
1299 int set_page_dirty_lock(struct page *page);
1300 void cancel_dirty_page(struct page *page);
1301 int clear_page_dirty_for_io(struct page *page);
1302
1303 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1304
1305 /* Is the vma a continuation of the stack vma above it? */
1306 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1307 {
1308 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1309 }
1310
1311 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1312 {
1313 return !vma->vm_ops;
1314 }
1315
1316 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1317 unsigned long addr)
1318 {
1319 return (vma->vm_flags & VM_GROWSDOWN) &&
1320 (vma->vm_start == addr) &&
1321 !vma_growsdown(vma->vm_prev, addr);
1322 }
1323
1324 /* Is the vma a continuation of the stack vma below it? */
1325 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1326 {
1327 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1328 }
1329
1330 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1331 unsigned long addr)
1332 {
1333 return (vma->vm_flags & VM_GROWSUP) &&
1334 (vma->vm_end == addr) &&
1335 !vma_growsup(vma->vm_next, addr);
1336 }
1337
1338 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1339
1340 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1341 unsigned long old_addr, struct vm_area_struct *new_vma,
1342 unsigned long new_addr, unsigned long len,
1343 bool need_rmap_locks);
1344 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1345 unsigned long end, pgprot_t newprot,
1346 int dirty_accountable, int prot_numa);
1347 extern int mprotect_fixup(struct vm_area_struct *vma,
1348 struct vm_area_struct **pprev, unsigned long start,
1349 unsigned long end, unsigned long newflags);
1350
1351 /*
1352 * doesn't attempt to fault and will return short.
1353 */
1354 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1355 struct page **pages);
1356 /*
1357 * per-process(per-mm_struct) statistics.
1358 */
1359 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1360 {
1361 long val = atomic_long_read(&mm->rss_stat.count[member]);
1362
1363 #ifdef SPLIT_RSS_COUNTING
1364 /*
1365 * counter is updated in asynchronous manner and may go to minus.
1366 * But it's never be expected number for users.
1367 */
1368 if (val < 0)
1369 val = 0;
1370 #endif
1371 return (unsigned long)val;
1372 }
1373
1374 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1375 {
1376 atomic_long_add(value, &mm->rss_stat.count[member]);
1377 }
1378
1379 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1380 {
1381 atomic_long_inc(&mm->rss_stat.count[member]);
1382 }
1383
1384 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1385 {
1386 atomic_long_dec(&mm->rss_stat.count[member]);
1387 }
1388
1389 /* Optimized variant when page is already known not to be PageAnon */
1390 static inline int mm_counter_file(struct page *page)
1391 {
1392 if (PageSwapBacked(page))
1393 return MM_SHMEMPAGES;
1394 return MM_FILEPAGES;
1395 }
1396
1397 static inline int mm_counter(struct page *page)
1398 {
1399 if (PageAnon(page))
1400 return MM_ANONPAGES;
1401 return mm_counter_file(page);
1402 }
1403
1404 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1405 {
1406 return get_mm_counter(mm, MM_FILEPAGES) +
1407 get_mm_counter(mm, MM_ANONPAGES) +
1408 get_mm_counter(mm, MM_SHMEMPAGES);
1409 }
1410
1411 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1412 {
1413 return max(mm->hiwater_rss, get_mm_rss(mm));
1414 }
1415
1416 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1417 {
1418 return max(mm->hiwater_vm, mm->total_vm);
1419 }
1420
1421 static inline void update_hiwater_rss(struct mm_struct *mm)
1422 {
1423 unsigned long _rss = get_mm_rss(mm);
1424
1425 if ((mm)->hiwater_rss < _rss)
1426 (mm)->hiwater_rss = _rss;
1427 }
1428
1429 static inline void update_hiwater_vm(struct mm_struct *mm)
1430 {
1431 if (mm->hiwater_vm < mm->total_vm)
1432 mm->hiwater_vm = mm->total_vm;
1433 }
1434
1435 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1436 {
1437 mm->hiwater_rss = get_mm_rss(mm);
1438 }
1439
1440 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1441 struct mm_struct *mm)
1442 {
1443 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1444
1445 if (*maxrss < hiwater_rss)
1446 *maxrss = hiwater_rss;
1447 }
1448
1449 #if defined(SPLIT_RSS_COUNTING)
1450 void sync_mm_rss(struct mm_struct *mm);
1451 #else
1452 static inline void sync_mm_rss(struct mm_struct *mm)
1453 {
1454 }
1455 #endif
1456
1457 #ifndef __HAVE_ARCH_PTE_DEVMAP
1458 static inline int pte_devmap(pte_t pte)
1459 {
1460 return 0;
1461 }
1462 #endif
1463
1464 int vma_wants_writenotify(struct vm_area_struct *vma);
1465
1466 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1467 spinlock_t **ptl);
1468 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1469 spinlock_t **ptl)
1470 {
1471 pte_t *ptep;
1472 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1473 return ptep;
1474 }
1475
1476 #ifdef __PAGETABLE_PUD_FOLDED
1477 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1478 unsigned long address)
1479 {
1480 return 0;
1481 }
1482 #else
1483 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1484 #endif
1485
1486 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1487 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1488 unsigned long address)
1489 {
1490 return 0;
1491 }
1492
1493 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1494
1495 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1496 {
1497 return 0;
1498 }
1499
1500 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1501 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1502
1503 #else
1504 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1505
1506 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1507 {
1508 atomic_long_set(&mm->nr_pmds, 0);
1509 }
1510
1511 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1512 {
1513 return atomic_long_read(&mm->nr_pmds);
1514 }
1515
1516 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1517 {
1518 atomic_long_inc(&mm->nr_pmds);
1519 }
1520
1521 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1522 {
1523 atomic_long_dec(&mm->nr_pmds);
1524 }
1525 #endif
1526
1527 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1528 pmd_t *pmd, unsigned long address);
1529 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1530
1531 /*
1532 * The following ifdef needed to get the 4level-fixup.h header to work.
1533 * Remove it when 4level-fixup.h has been removed.
1534 */
1535 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1536 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1537 {
1538 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1539 NULL: pud_offset(pgd, address);
1540 }
1541
1542 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1543 {
1544 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1545 NULL: pmd_offset(pud, address);
1546 }
1547 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1548
1549 #if USE_SPLIT_PTE_PTLOCKS
1550 #if ALLOC_SPLIT_PTLOCKS
1551 void __init ptlock_cache_init(void);
1552 extern bool ptlock_alloc(struct page *page);
1553 extern void ptlock_free(struct page *page);
1554
1555 static inline spinlock_t *ptlock_ptr(struct page *page)
1556 {
1557 return page->ptl;
1558 }
1559 #else /* ALLOC_SPLIT_PTLOCKS */
1560 static inline void ptlock_cache_init(void)
1561 {
1562 }
1563
1564 static inline bool ptlock_alloc(struct page *page)
1565 {
1566 return true;
1567 }
1568
1569 static inline void ptlock_free(struct page *page)
1570 {
1571 }
1572
1573 static inline spinlock_t *ptlock_ptr(struct page *page)
1574 {
1575 return &page->ptl;
1576 }
1577 #endif /* ALLOC_SPLIT_PTLOCKS */
1578
1579 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1580 {
1581 return ptlock_ptr(pmd_page(*pmd));
1582 }
1583
1584 static inline bool ptlock_init(struct page *page)
1585 {
1586 /*
1587 * prep_new_page() initialize page->private (and therefore page->ptl)
1588 * with 0. Make sure nobody took it in use in between.
1589 *
1590 * It can happen if arch try to use slab for page table allocation:
1591 * slab code uses page->slab_cache, which share storage with page->ptl.
1592 */
1593 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1594 if (!ptlock_alloc(page))
1595 return false;
1596 spin_lock_init(ptlock_ptr(page));
1597 return true;
1598 }
1599
1600 /* Reset page->mapping so free_pages_check won't complain. */
1601 static inline void pte_lock_deinit(struct page *page)
1602 {
1603 page->mapping = NULL;
1604 ptlock_free(page);
1605 }
1606
1607 #else /* !USE_SPLIT_PTE_PTLOCKS */
1608 /*
1609 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1610 */
1611 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1612 {
1613 return &mm->page_table_lock;
1614 }
1615 static inline void ptlock_cache_init(void) {}
1616 static inline bool ptlock_init(struct page *page) { return true; }
1617 static inline void pte_lock_deinit(struct page *page) {}
1618 #endif /* USE_SPLIT_PTE_PTLOCKS */
1619
1620 static inline void pgtable_init(void)
1621 {
1622 ptlock_cache_init();
1623 pgtable_cache_init();
1624 }
1625
1626 static inline bool pgtable_page_ctor(struct page *page)
1627 {
1628 if (!ptlock_init(page))
1629 return false;
1630 inc_zone_page_state(page, NR_PAGETABLE);
1631 return true;
1632 }
1633
1634 static inline void pgtable_page_dtor(struct page *page)
1635 {
1636 pte_lock_deinit(page);
1637 dec_zone_page_state(page, NR_PAGETABLE);
1638 }
1639
1640 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1641 ({ \
1642 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1643 pte_t *__pte = pte_offset_map(pmd, address); \
1644 *(ptlp) = __ptl; \
1645 spin_lock(__ptl); \
1646 __pte; \
1647 })
1648
1649 #define pte_unmap_unlock(pte, ptl) do { \
1650 spin_unlock(ptl); \
1651 pte_unmap(pte); \
1652 } while (0)
1653
1654 #define pte_alloc_map(mm, vma, pmd, address) \
1655 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1656 pmd, address))? \
1657 NULL: pte_offset_map(pmd, address))
1658
1659 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1660 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1661 pmd, address))? \
1662 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1663
1664 #define pte_alloc_kernel(pmd, address) \
1665 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1666 NULL: pte_offset_kernel(pmd, address))
1667
1668 #if USE_SPLIT_PMD_PTLOCKS
1669
1670 static struct page *pmd_to_page(pmd_t *pmd)
1671 {
1672 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1673 return virt_to_page((void *)((unsigned long) pmd & mask));
1674 }
1675
1676 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1677 {
1678 return ptlock_ptr(pmd_to_page(pmd));
1679 }
1680
1681 static inline bool pgtable_pmd_page_ctor(struct page *page)
1682 {
1683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1684 page->pmd_huge_pte = NULL;
1685 #endif
1686 return ptlock_init(page);
1687 }
1688
1689 static inline void pgtable_pmd_page_dtor(struct page *page)
1690 {
1691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1692 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1693 #endif
1694 ptlock_free(page);
1695 }
1696
1697 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1698
1699 #else
1700
1701 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1702 {
1703 return &mm->page_table_lock;
1704 }
1705
1706 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1707 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1708
1709 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1710
1711 #endif
1712
1713 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1714 {
1715 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1716 spin_lock(ptl);
1717 return ptl;
1718 }
1719
1720 extern void free_area_init(unsigned long * zones_size);
1721 extern void free_area_init_node(int nid, unsigned long * zones_size,
1722 unsigned long zone_start_pfn, unsigned long *zholes_size);
1723 extern void free_initmem(void);
1724
1725 /*
1726 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1727 * into the buddy system. The freed pages will be poisoned with pattern
1728 * "poison" if it's within range [0, UCHAR_MAX].
1729 * Return pages freed into the buddy system.
1730 */
1731 extern unsigned long free_reserved_area(void *start, void *end,
1732 int poison, char *s);
1733
1734 #ifdef CONFIG_HIGHMEM
1735 /*
1736 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1737 * and totalram_pages.
1738 */
1739 extern void free_highmem_page(struct page *page);
1740 #endif
1741
1742 extern void adjust_managed_page_count(struct page *page, long count);
1743 extern void mem_init_print_info(const char *str);
1744
1745 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1746
1747 /* Free the reserved page into the buddy system, so it gets managed. */
1748 static inline void __free_reserved_page(struct page *page)
1749 {
1750 ClearPageReserved(page);
1751 init_page_count(page);
1752 __free_page(page);
1753 }
1754
1755 static inline void free_reserved_page(struct page *page)
1756 {
1757 __free_reserved_page(page);
1758 adjust_managed_page_count(page, 1);
1759 }
1760
1761 static inline void mark_page_reserved(struct page *page)
1762 {
1763 SetPageReserved(page);
1764 adjust_managed_page_count(page, -1);
1765 }
1766
1767 /*
1768 * Default method to free all the __init memory into the buddy system.
1769 * The freed pages will be poisoned with pattern "poison" if it's within
1770 * range [0, UCHAR_MAX].
1771 * Return pages freed into the buddy system.
1772 */
1773 static inline unsigned long free_initmem_default(int poison)
1774 {
1775 extern char __init_begin[], __init_end[];
1776
1777 return free_reserved_area(&__init_begin, &__init_end,
1778 poison, "unused kernel");
1779 }
1780
1781 static inline unsigned long get_num_physpages(void)
1782 {
1783 int nid;
1784 unsigned long phys_pages = 0;
1785
1786 for_each_online_node(nid)
1787 phys_pages += node_present_pages(nid);
1788
1789 return phys_pages;
1790 }
1791
1792 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1793 /*
1794 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1795 * zones, allocate the backing mem_map and account for memory holes in a more
1796 * architecture independent manner. This is a substitute for creating the
1797 * zone_sizes[] and zholes_size[] arrays and passing them to
1798 * free_area_init_node()
1799 *
1800 * An architecture is expected to register range of page frames backed by
1801 * physical memory with memblock_add[_node]() before calling
1802 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1803 * usage, an architecture is expected to do something like
1804 *
1805 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1806 * max_highmem_pfn};
1807 * for_each_valid_physical_page_range()
1808 * memblock_add_node(base, size, nid)
1809 * free_area_init_nodes(max_zone_pfns);
1810 *
1811 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1812 * registered physical page range. Similarly
1813 * sparse_memory_present_with_active_regions() calls memory_present() for
1814 * each range when SPARSEMEM is enabled.
1815 *
1816 * See mm/page_alloc.c for more information on each function exposed by
1817 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1818 */
1819 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1820 unsigned long node_map_pfn_alignment(void);
1821 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1822 unsigned long end_pfn);
1823 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1824 unsigned long end_pfn);
1825 extern void get_pfn_range_for_nid(unsigned int nid,
1826 unsigned long *start_pfn, unsigned long *end_pfn);
1827 extern unsigned long find_min_pfn_with_active_regions(void);
1828 extern void free_bootmem_with_active_regions(int nid,
1829 unsigned long max_low_pfn);
1830 extern void sparse_memory_present_with_active_regions(int nid);
1831
1832 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1833
1834 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1835 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1836 static inline int __early_pfn_to_nid(unsigned long pfn,
1837 struct mminit_pfnnid_cache *state)
1838 {
1839 return 0;
1840 }
1841 #else
1842 /* please see mm/page_alloc.c */
1843 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1844 /* there is a per-arch backend function. */
1845 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1846 struct mminit_pfnnid_cache *state);
1847 #endif
1848
1849 extern void set_dma_reserve(unsigned long new_dma_reserve);
1850 extern void memmap_init_zone(unsigned long, int, unsigned long,
1851 unsigned long, enum memmap_context);
1852 extern void setup_per_zone_wmarks(void);
1853 extern int __meminit init_per_zone_wmark_min(void);
1854 extern void mem_init(void);
1855 extern void __init mmap_init(void);
1856 extern void show_mem(unsigned int flags);
1857 extern void si_meminfo(struct sysinfo * val);
1858 extern void si_meminfo_node(struct sysinfo *val, int nid);
1859
1860 extern __printf(3, 4)
1861 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1862 const char *fmt, ...);
1863
1864 extern void setup_per_cpu_pageset(void);
1865
1866 extern void zone_pcp_update(struct zone *zone);
1867 extern void zone_pcp_reset(struct zone *zone);
1868
1869 /* page_alloc.c */
1870 extern int min_free_kbytes;
1871
1872 /* nommu.c */
1873 extern atomic_long_t mmap_pages_allocated;
1874 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1875
1876 /* interval_tree.c */
1877 void vma_interval_tree_insert(struct vm_area_struct *node,
1878 struct rb_root *root);
1879 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1880 struct vm_area_struct *prev,
1881 struct rb_root *root);
1882 void vma_interval_tree_remove(struct vm_area_struct *node,
1883 struct rb_root *root);
1884 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1885 unsigned long start, unsigned long last);
1886 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1887 unsigned long start, unsigned long last);
1888
1889 #define vma_interval_tree_foreach(vma, root, start, last) \
1890 for (vma = vma_interval_tree_iter_first(root, start, last); \
1891 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1892
1893 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1894 struct rb_root *root);
1895 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1896 struct rb_root *root);
1897 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1898 struct rb_root *root, unsigned long start, unsigned long last);
1899 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1900 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1901 #ifdef CONFIG_DEBUG_VM_RB
1902 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1903 #endif
1904
1905 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1906 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1907 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1908
1909 /* mmap.c */
1910 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1911 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1912 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1913 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1914 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1915 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1916 struct mempolicy *, struct vm_userfaultfd_ctx);
1917 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1918 extern int split_vma(struct mm_struct *,
1919 struct vm_area_struct *, unsigned long addr, int new_below);
1920 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1921 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1922 struct rb_node **, struct rb_node *);
1923 extern void unlink_file_vma(struct vm_area_struct *);
1924 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1925 unsigned long addr, unsigned long len, pgoff_t pgoff,
1926 bool *need_rmap_locks);
1927 extern void exit_mmap(struct mm_struct *);
1928
1929 static inline int check_data_rlimit(unsigned long rlim,
1930 unsigned long new,
1931 unsigned long start,
1932 unsigned long end_data,
1933 unsigned long start_data)
1934 {
1935 if (rlim < RLIM_INFINITY) {
1936 if (((new - start) + (end_data - start_data)) > rlim)
1937 return -ENOSPC;
1938 }
1939
1940 return 0;
1941 }
1942
1943 extern int mm_take_all_locks(struct mm_struct *mm);
1944 extern void mm_drop_all_locks(struct mm_struct *mm);
1945
1946 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1947 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1948
1949 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1950 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1951
1952 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1953 unsigned long addr, unsigned long len,
1954 unsigned long flags,
1955 const struct vm_special_mapping *spec);
1956 /* This is an obsolete alternative to _install_special_mapping. */
1957 extern int install_special_mapping(struct mm_struct *mm,
1958 unsigned long addr, unsigned long len,
1959 unsigned long flags, struct page **pages);
1960
1961 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1962
1963 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1964 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1965 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1966 unsigned long len, unsigned long prot, unsigned long flags,
1967 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1968 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1969
1970 static inline unsigned long
1971 do_mmap_pgoff(struct file *file, unsigned long addr,
1972 unsigned long len, unsigned long prot, unsigned long flags,
1973 unsigned long pgoff, unsigned long *populate)
1974 {
1975 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1976 }
1977
1978 #ifdef CONFIG_MMU
1979 extern int __mm_populate(unsigned long addr, unsigned long len,
1980 int ignore_errors);
1981 static inline void mm_populate(unsigned long addr, unsigned long len)
1982 {
1983 /* Ignore errors */
1984 (void) __mm_populate(addr, len, 1);
1985 }
1986 #else
1987 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1988 #endif
1989
1990 /* These take the mm semaphore themselves */
1991 extern unsigned long vm_brk(unsigned long, unsigned long);
1992 extern int vm_munmap(unsigned long, size_t);
1993 extern unsigned long vm_mmap(struct file *, unsigned long,
1994 unsigned long, unsigned long,
1995 unsigned long, unsigned long);
1996
1997 struct vm_unmapped_area_info {
1998 #define VM_UNMAPPED_AREA_TOPDOWN 1
1999 unsigned long flags;
2000 unsigned long length;
2001 unsigned long low_limit;
2002 unsigned long high_limit;
2003 unsigned long align_mask;
2004 unsigned long align_offset;
2005 };
2006
2007 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2008 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2009
2010 /*
2011 * Search for an unmapped address range.
2012 *
2013 * We are looking for a range that:
2014 * - does not intersect with any VMA;
2015 * - is contained within the [low_limit, high_limit) interval;
2016 * - is at least the desired size.
2017 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2018 */
2019 static inline unsigned long
2020 vm_unmapped_area(struct vm_unmapped_area_info *info)
2021 {
2022 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2023 return unmapped_area_topdown(info);
2024 else
2025 return unmapped_area(info);
2026 }
2027
2028 /* truncate.c */
2029 extern void truncate_inode_pages(struct address_space *, loff_t);
2030 extern void truncate_inode_pages_range(struct address_space *,
2031 loff_t lstart, loff_t lend);
2032 extern void truncate_inode_pages_final(struct address_space *);
2033
2034 /* generic vm_area_ops exported for stackable file systems */
2035 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2036 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2037 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2038
2039 /* mm/page-writeback.c */
2040 int write_one_page(struct page *page, int wait);
2041 void task_dirty_inc(struct task_struct *tsk);
2042
2043 /* readahead.c */
2044 #define VM_MAX_READAHEAD 128 /* kbytes */
2045 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2046
2047 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2048 pgoff_t offset, unsigned long nr_to_read);
2049
2050 void page_cache_sync_readahead(struct address_space *mapping,
2051 struct file_ra_state *ra,
2052 struct file *filp,
2053 pgoff_t offset,
2054 unsigned long size);
2055
2056 void page_cache_async_readahead(struct address_space *mapping,
2057 struct file_ra_state *ra,
2058 struct file *filp,
2059 struct page *pg,
2060 pgoff_t offset,
2061 unsigned long size);
2062
2063 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2064 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2065
2066 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2067 extern int expand_downwards(struct vm_area_struct *vma,
2068 unsigned long address);
2069 #if VM_GROWSUP
2070 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2071 #else
2072 #define expand_upwards(vma, address) (0)
2073 #endif
2074
2075 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2076 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2077 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2078 struct vm_area_struct **pprev);
2079
2080 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2081 NULL if none. Assume start_addr < end_addr. */
2082 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2083 {
2084 struct vm_area_struct * vma = find_vma(mm,start_addr);
2085
2086 if (vma && end_addr <= vma->vm_start)
2087 vma = NULL;
2088 return vma;
2089 }
2090
2091 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2092 {
2093 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2094 }
2095
2096 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2097 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2098 unsigned long vm_start, unsigned long vm_end)
2099 {
2100 struct vm_area_struct *vma = find_vma(mm, vm_start);
2101
2102 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2103 vma = NULL;
2104
2105 return vma;
2106 }
2107
2108 #ifdef CONFIG_MMU
2109 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2110 void vma_set_page_prot(struct vm_area_struct *vma);
2111 #else
2112 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2113 {
2114 return __pgprot(0);
2115 }
2116 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2117 {
2118 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2119 }
2120 #endif
2121
2122 #ifdef CONFIG_NUMA_BALANCING
2123 unsigned long change_prot_numa(struct vm_area_struct *vma,
2124 unsigned long start, unsigned long end);
2125 #endif
2126
2127 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2128 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2129 unsigned long pfn, unsigned long size, pgprot_t);
2130 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2131 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2132 unsigned long pfn);
2133 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2134 pfn_t pfn);
2135 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2136
2137
2138 struct page *follow_page_mask(struct vm_area_struct *vma,
2139 unsigned long address, unsigned int foll_flags,
2140 unsigned int *page_mask);
2141
2142 static inline struct page *follow_page(struct vm_area_struct *vma,
2143 unsigned long address, unsigned int foll_flags)
2144 {
2145 unsigned int unused_page_mask;
2146 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2147 }
2148
2149 #define FOLL_WRITE 0x01 /* check pte is writable */
2150 #define FOLL_TOUCH 0x02 /* mark page accessed */
2151 #define FOLL_GET 0x04 /* do get_page on page */
2152 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2153 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2154 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2155 * and return without waiting upon it */
2156 #define FOLL_POPULATE 0x40 /* fault in page */
2157 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2158 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2159 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2160 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2161 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2162 #define FOLL_MLOCK 0x1000 /* lock present pages */
2163
2164 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2165 void *data);
2166 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2167 unsigned long size, pte_fn_t fn, void *data);
2168
2169
2170 #ifdef CONFIG_PAGE_POISONING
2171 extern bool page_poisoning_enabled(void);
2172 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2173 extern bool page_is_poisoned(struct page *page);
2174 #else
2175 static inline bool page_poisoning_enabled(void) { return false; }
2176 static inline void kernel_poison_pages(struct page *page, int numpages,
2177 int enable) { }
2178 static inline bool page_is_poisoned(struct page *page) { return false; }
2179 #endif
2180
2181 #ifdef CONFIG_DEBUG_PAGEALLOC
2182 extern bool _debug_pagealloc_enabled;
2183 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2184
2185 static inline bool debug_pagealloc_enabled(void)
2186 {
2187 return _debug_pagealloc_enabled;
2188 }
2189
2190 static inline void
2191 kernel_map_pages(struct page *page, int numpages, int enable)
2192 {
2193 if (!debug_pagealloc_enabled())
2194 return;
2195
2196 __kernel_map_pages(page, numpages, enable);
2197 }
2198 #ifdef CONFIG_HIBERNATION
2199 extern bool kernel_page_present(struct page *page);
2200 #endif /* CONFIG_HIBERNATION */
2201 #else /* CONFIG_DEBUG_PAGEALLOC */
2202 static inline void
2203 kernel_map_pages(struct page *page, int numpages, int enable) {}
2204 #ifdef CONFIG_HIBERNATION
2205 static inline bool kernel_page_present(struct page *page) { return true; }
2206 #endif /* CONFIG_HIBERNATION */
2207 static inline bool debug_pagealloc_enabled(void)
2208 {
2209 return false;
2210 }
2211 #endif /* CONFIG_DEBUG_PAGEALLOC */
2212
2213 #ifdef __HAVE_ARCH_GATE_AREA
2214 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2215 extern int in_gate_area_no_mm(unsigned long addr);
2216 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2217 #else
2218 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2219 {
2220 return NULL;
2221 }
2222 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2223 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2224 {
2225 return 0;
2226 }
2227 #endif /* __HAVE_ARCH_GATE_AREA */
2228
2229 #ifdef CONFIG_SYSCTL
2230 extern int sysctl_drop_caches;
2231 int drop_caches_sysctl_handler(struct ctl_table *, int,
2232 void __user *, size_t *, loff_t *);
2233 #endif
2234
2235 void drop_slab(void);
2236 void drop_slab_node(int nid);
2237
2238 #ifndef CONFIG_MMU
2239 #define randomize_va_space 0
2240 #else
2241 extern int randomize_va_space;
2242 #endif
2243
2244 const char * arch_vma_name(struct vm_area_struct *vma);
2245 void print_vma_addr(char *prefix, unsigned long rip);
2246
2247 void sparse_mem_maps_populate_node(struct page **map_map,
2248 unsigned long pnum_begin,
2249 unsigned long pnum_end,
2250 unsigned long map_count,
2251 int nodeid);
2252
2253 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2254 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2255 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2256 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2257 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2258 void *vmemmap_alloc_block(unsigned long size, int node);
2259 struct vmem_altmap;
2260 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2261 struct vmem_altmap *altmap);
2262 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2263 {
2264 return __vmemmap_alloc_block_buf(size, node, NULL);
2265 }
2266
2267 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2268 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2269 int node);
2270 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2271 void vmemmap_populate_print_last(void);
2272 #ifdef CONFIG_MEMORY_HOTPLUG
2273 void vmemmap_free(unsigned long start, unsigned long end);
2274 #endif
2275 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2276 unsigned long size);
2277
2278 enum mf_flags {
2279 MF_COUNT_INCREASED = 1 << 0,
2280 MF_ACTION_REQUIRED = 1 << 1,
2281 MF_MUST_KILL = 1 << 2,
2282 MF_SOFT_OFFLINE = 1 << 3,
2283 };
2284 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2285 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2286 extern int unpoison_memory(unsigned long pfn);
2287 extern int get_hwpoison_page(struct page *page);
2288 #define put_hwpoison_page(page) put_page(page)
2289 extern int sysctl_memory_failure_early_kill;
2290 extern int sysctl_memory_failure_recovery;
2291 extern void shake_page(struct page *p, int access);
2292 extern atomic_long_t num_poisoned_pages;
2293 extern int soft_offline_page(struct page *page, int flags);
2294
2295
2296 /*
2297 * Error handlers for various types of pages.
2298 */
2299 enum mf_result {
2300 MF_IGNORED, /* Error: cannot be handled */
2301 MF_FAILED, /* Error: handling failed */
2302 MF_DELAYED, /* Will be handled later */
2303 MF_RECOVERED, /* Successfully recovered */
2304 };
2305
2306 enum mf_action_page_type {
2307 MF_MSG_KERNEL,
2308 MF_MSG_KERNEL_HIGH_ORDER,
2309 MF_MSG_SLAB,
2310 MF_MSG_DIFFERENT_COMPOUND,
2311 MF_MSG_POISONED_HUGE,
2312 MF_MSG_HUGE,
2313 MF_MSG_FREE_HUGE,
2314 MF_MSG_UNMAP_FAILED,
2315 MF_MSG_DIRTY_SWAPCACHE,
2316 MF_MSG_CLEAN_SWAPCACHE,
2317 MF_MSG_DIRTY_MLOCKED_LRU,
2318 MF_MSG_CLEAN_MLOCKED_LRU,
2319 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2320 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2321 MF_MSG_DIRTY_LRU,
2322 MF_MSG_CLEAN_LRU,
2323 MF_MSG_TRUNCATED_LRU,
2324 MF_MSG_BUDDY,
2325 MF_MSG_BUDDY_2ND,
2326 MF_MSG_UNKNOWN,
2327 };
2328
2329 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2330 extern void clear_huge_page(struct page *page,
2331 unsigned long addr,
2332 unsigned int pages_per_huge_page);
2333 extern void copy_user_huge_page(struct page *dst, struct page *src,
2334 unsigned long addr, struct vm_area_struct *vma,
2335 unsigned int pages_per_huge_page);
2336 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2337
2338 extern struct page_ext_operations debug_guardpage_ops;
2339 extern struct page_ext_operations page_poisoning_ops;
2340
2341 #ifdef CONFIG_DEBUG_PAGEALLOC
2342 extern unsigned int _debug_guardpage_minorder;
2343 extern bool _debug_guardpage_enabled;
2344
2345 static inline unsigned int debug_guardpage_minorder(void)
2346 {
2347 return _debug_guardpage_minorder;
2348 }
2349
2350 static inline bool debug_guardpage_enabled(void)
2351 {
2352 return _debug_guardpage_enabled;
2353 }
2354
2355 static inline bool page_is_guard(struct page *page)
2356 {
2357 struct page_ext *page_ext;
2358
2359 if (!debug_guardpage_enabled())
2360 return false;
2361
2362 page_ext = lookup_page_ext(page);
2363 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2364 }
2365 #else
2366 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2367 static inline bool debug_guardpage_enabled(void) { return false; }
2368 static inline bool page_is_guard(struct page *page) { return false; }
2369 #endif /* CONFIG_DEBUG_PAGEALLOC */
2370
2371 #if MAX_NUMNODES > 1
2372 void __init setup_nr_node_ids(void);
2373 #else
2374 static inline void setup_nr_node_ids(void) {}
2375 #endif
2376
2377 #endif /* __KERNEL__ */
2378 #endif /* _LINUX_MM_H */
This page took 0.08439 seconds and 5 git commands to generate.