Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
163 int node)
164 {
165 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
166 THREAD_SIZE_ORDER);
167
168 return page ? page_address(page) : NULL;
169 }
170
171 static inline void free_thread_stack(unsigned long *stack)
172 {
173 __free_pages(virt_to_page(stack), THREAD_SIZE_ORDER);
174 }
175 # else
176 static struct kmem_cache *thread_stack_cache;
177
178 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
179 int node)
180 {
181 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
182 }
183
184 static void free_thread_stack(unsigned long *stack)
185 {
186 kmem_cache_free(thread_stack_cache, stack);
187 }
188
189 void thread_stack_cache_init(void)
190 {
191 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
192 THREAD_SIZE, 0, NULL);
193 BUG_ON(thread_stack_cache == NULL);
194 }
195 # endif
196 #endif
197
198 /* SLAB cache for signal_struct structures (tsk->signal) */
199 static struct kmem_cache *signal_cachep;
200
201 /* SLAB cache for sighand_struct structures (tsk->sighand) */
202 struct kmem_cache *sighand_cachep;
203
204 /* SLAB cache for files_struct structures (tsk->files) */
205 struct kmem_cache *files_cachep;
206
207 /* SLAB cache for fs_struct structures (tsk->fs) */
208 struct kmem_cache *fs_cachep;
209
210 /* SLAB cache for vm_area_struct structures */
211 struct kmem_cache *vm_area_cachep;
212
213 /* SLAB cache for mm_struct structures (tsk->mm) */
214 static struct kmem_cache *mm_cachep;
215
216 static void account_kernel_stack(unsigned long *stack, int account)
217 {
218 /* All stack pages are in the same zone and belong to the same memcg. */
219 struct page *first_page = virt_to_page(stack);
220
221 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
222 THREAD_SIZE / 1024 * account);
223
224 memcg_kmem_update_page_stat(
225 first_page, MEMCG_KERNEL_STACK_KB,
226 account * (THREAD_SIZE / 1024));
227 }
228
229 void free_task(struct task_struct *tsk)
230 {
231 account_kernel_stack(tsk->stack, -1);
232 arch_release_thread_stack(tsk->stack);
233 free_thread_stack(tsk->stack);
234 rt_mutex_debug_task_free(tsk);
235 ftrace_graph_exit_task(tsk);
236 put_seccomp_filter(tsk);
237 arch_release_task_struct(tsk);
238 free_task_struct(tsk);
239 }
240 EXPORT_SYMBOL(free_task);
241
242 static inline void free_signal_struct(struct signal_struct *sig)
243 {
244 taskstats_tgid_free(sig);
245 sched_autogroup_exit(sig);
246 kmem_cache_free(signal_cachep, sig);
247 }
248
249 static inline void put_signal_struct(struct signal_struct *sig)
250 {
251 if (atomic_dec_and_test(&sig->sigcnt))
252 free_signal_struct(sig);
253 }
254
255 void __put_task_struct(struct task_struct *tsk)
256 {
257 WARN_ON(!tsk->exit_state);
258 WARN_ON(atomic_read(&tsk->usage));
259 WARN_ON(tsk == current);
260
261 cgroup_free(tsk);
262 task_numa_free(tsk);
263 security_task_free(tsk);
264 exit_creds(tsk);
265 delayacct_tsk_free(tsk);
266 put_signal_struct(tsk->signal);
267
268 if (!profile_handoff_task(tsk))
269 free_task(tsk);
270 }
271 EXPORT_SYMBOL_GPL(__put_task_struct);
272
273 void __init __weak arch_task_cache_init(void) { }
274
275 /*
276 * set_max_threads
277 */
278 static void set_max_threads(unsigned int max_threads_suggested)
279 {
280 u64 threads;
281
282 /*
283 * The number of threads shall be limited such that the thread
284 * structures may only consume a small part of the available memory.
285 */
286 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
287 threads = MAX_THREADS;
288 else
289 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
290 (u64) THREAD_SIZE * 8UL);
291
292 if (threads > max_threads_suggested)
293 threads = max_threads_suggested;
294
295 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
296 }
297
298 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
299 /* Initialized by the architecture: */
300 int arch_task_struct_size __read_mostly;
301 #endif
302
303 void __init fork_init(void)
304 {
305 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
306 #ifndef ARCH_MIN_TASKALIGN
307 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
308 #endif
309 /* create a slab on which task_structs can be allocated */
310 task_struct_cachep = kmem_cache_create("task_struct",
311 arch_task_struct_size, ARCH_MIN_TASKALIGN,
312 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
313 #endif
314
315 /* do the arch specific task caches init */
316 arch_task_cache_init();
317
318 set_max_threads(MAX_THREADS);
319
320 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
321 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
322 init_task.signal->rlim[RLIMIT_SIGPENDING] =
323 init_task.signal->rlim[RLIMIT_NPROC];
324 }
325
326 int __weak arch_dup_task_struct(struct task_struct *dst,
327 struct task_struct *src)
328 {
329 *dst = *src;
330 return 0;
331 }
332
333 void set_task_stack_end_magic(struct task_struct *tsk)
334 {
335 unsigned long *stackend;
336
337 stackend = end_of_stack(tsk);
338 *stackend = STACK_END_MAGIC; /* for overflow detection */
339 }
340
341 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
342 {
343 struct task_struct *tsk;
344 unsigned long *stack;
345 int err;
346
347 if (node == NUMA_NO_NODE)
348 node = tsk_fork_get_node(orig);
349 tsk = alloc_task_struct_node(node);
350 if (!tsk)
351 return NULL;
352
353 stack = alloc_thread_stack_node(tsk, node);
354 if (!stack)
355 goto free_tsk;
356
357 err = arch_dup_task_struct(tsk, orig);
358 if (err)
359 goto free_stack;
360
361 tsk->stack = stack;
362 #ifdef CONFIG_SECCOMP
363 /*
364 * We must handle setting up seccomp filters once we're under
365 * the sighand lock in case orig has changed between now and
366 * then. Until then, filter must be NULL to avoid messing up
367 * the usage counts on the error path calling free_task.
368 */
369 tsk->seccomp.filter = NULL;
370 #endif
371
372 setup_thread_stack(tsk, orig);
373 clear_user_return_notifier(tsk);
374 clear_tsk_need_resched(tsk);
375 set_task_stack_end_magic(tsk);
376
377 #ifdef CONFIG_CC_STACKPROTECTOR
378 tsk->stack_canary = get_random_int();
379 #endif
380
381 /*
382 * One for us, one for whoever does the "release_task()" (usually
383 * parent)
384 */
385 atomic_set(&tsk->usage, 2);
386 #ifdef CONFIG_BLK_DEV_IO_TRACE
387 tsk->btrace_seq = 0;
388 #endif
389 tsk->splice_pipe = NULL;
390 tsk->task_frag.page = NULL;
391 tsk->wake_q.next = NULL;
392
393 account_kernel_stack(stack, 1);
394
395 kcov_task_init(tsk);
396
397 return tsk;
398
399 free_stack:
400 free_thread_stack(stack);
401 free_tsk:
402 free_task_struct(tsk);
403 return NULL;
404 }
405
406 #ifdef CONFIG_MMU
407 static __latent_entropy int dup_mmap(struct mm_struct *mm,
408 struct mm_struct *oldmm)
409 {
410 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
411 struct rb_node **rb_link, *rb_parent;
412 int retval;
413 unsigned long charge;
414
415 uprobe_start_dup_mmap();
416 if (down_write_killable(&oldmm->mmap_sem)) {
417 retval = -EINTR;
418 goto fail_uprobe_end;
419 }
420 flush_cache_dup_mm(oldmm);
421 uprobe_dup_mmap(oldmm, mm);
422 /*
423 * Not linked in yet - no deadlock potential:
424 */
425 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
426
427 /* No ordering required: file already has been exposed. */
428 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
429
430 mm->total_vm = oldmm->total_vm;
431 mm->data_vm = oldmm->data_vm;
432 mm->exec_vm = oldmm->exec_vm;
433 mm->stack_vm = oldmm->stack_vm;
434
435 rb_link = &mm->mm_rb.rb_node;
436 rb_parent = NULL;
437 pprev = &mm->mmap;
438 retval = ksm_fork(mm, oldmm);
439 if (retval)
440 goto out;
441 retval = khugepaged_fork(mm, oldmm);
442 if (retval)
443 goto out;
444
445 prev = NULL;
446 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
447 struct file *file;
448
449 if (mpnt->vm_flags & VM_DONTCOPY) {
450 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
451 continue;
452 }
453 charge = 0;
454 if (mpnt->vm_flags & VM_ACCOUNT) {
455 unsigned long len = vma_pages(mpnt);
456
457 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
458 goto fail_nomem;
459 charge = len;
460 }
461 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
462 if (!tmp)
463 goto fail_nomem;
464 *tmp = *mpnt;
465 INIT_LIST_HEAD(&tmp->anon_vma_chain);
466 retval = vma_dup_policy(mpnt, tmp);
467 if (retval)
468 goto fail_nomem_policy;
469 tmp->vm_mm = mm;
470 if (anon_vma_fork(tmp, mpnt))
471 goto fail_nomem_anon_vma_fork;
472 tmp->vm_flags &=
473 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
474 tmp->vm_next = tmp->vm_prev = NULL;
475 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
476 file = tmp->vm_file;
477 if (file) {
478 struct inode *inode = file_inode(file);
479 struct address_space *mapping = file->f_mapping;
480
481 get_file(file);
482 if (tmp->vm_flags & VM_DENYWRITE)
483 atomic_dec(&inode->i_writecount);
484 i_mmap_lock_write(mapping);
485 if (tmp->vm_flags & VM_SHARED)
486 atomic_inc(&mapping->i_mmap_writable);
487 flush_dcache_mmap_lock(mapping);
488 /* insert tmp into the share list, just after mpnt */
489 vma_interval_tree_insert_after(tmp, mpnt,
490 &mapping->i_mmap);
491 flush_dcache_mmap_unlock(mapping);
492 i_mmap_unlock_write(mapping);
493 }
494
495 /*
496 * Clear hugetlb-related page reserves for children. This only
497 * affects MAP_PRIVATE mappings. Faults generated by the child
498 * are not guaranteed to succeed, even if read-only
499 */
500 if (is_vm_hugetlb_page(tmp))
501 reset_vma_resv_huge_pages(tmp);
502
503 /*
504 * Link in the new vma and copy the page table entries.
505 */
506 *pprev = tmp;
507 pprev = &tmp->vm_next;
508 tmp->vm_prev = prev;
509 prev = tmp;
510
511 __vma_link_rb(mm, tmp, rb_link, rb_parent);
512 rb_link = &tmp->vm_rb.rb_right;
513 rb_parent = &tmp->vm_rb;
514
515 mm->map_count++;
516 retval = copy_page_range(mm, oldmm, mpnt);
517
518 if (tmp->vm_ops && tmp->vm_ops->open)
519 tmp->vm_ops->open(tmp);
520
521 if (retval)
522 goto out;
523 }
524 /* a new mm has just been created */
525 arch_dup_mmap(oldmm, mm);
526 retval = 0;
527 out:
528 up_write(&mm->mmap_sem);
529 flush_tlb_mm(oldmm);
530 up_write(&oldmm->mmap_sem);
531 fail_uprobe_end:
532 uprobe_end_dup_mmap();
533 return retval;
534 fail_nomem_anon_vma_fork:
535 mpol_put(vma_policy(tmp));
536 fail_nomem_policy:
537 kmem_cache_free(vm_area_cachep, tmp);
538 fail_nomem:
539 retval = -ENOMEM;
540 vm_unacct_memory(charge);
541 goto out;
542 }
543
544 static inline int mm_alloc_pgd(struct mm_struct *mm)
545 {
546 mm->pgd = pgd_alloc(mm);
547 if (unlikely(!mm->pgd))
548 return -ENOMEM;
549 return 0;
550 }
551
552 static inline void mm_free_pgd(struct mm_struct *mm)
553 {
554 pgd_free(mm, mm->pgd);
555 }
556 #else
557 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
558 {
559 down_write(&oldmm->mmap_sem);
560 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
561 up_write(&oldmm->mmap_sem);
562 return 0;
563 }
564 #define mm_alloc_pgd(mm) (0)
565 #define mm_free_pgd(mm)
566 #endif /* CONFIG_MMU */
567
568 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
569
570 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
571 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
572
573 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
574
575 static int __init coredump_filter_setup(char *s)
576 {
577 default_dump_filter =
578 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
579 MMF_DUMP_FILTER_MASK;
580 return 1;
581 }
582
583 __setup("coredump_filter=", coredump_filter_setup);
584
585 #include <linux/init_task.h>
586
587 static void mm_init_aio(struct mm_struct *mm)
588 {
589 #ifdef CONFIG_AIO
590 spin_lock_init(&mm->ioctx_lock);
591 mm->ioctx_table = NULL;
592 #endif
593 }
594
595 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
596 {
597 #ifdef CONFIG_MEMCG
598 mm->owner = p;
599 #endif
600 }
601
602 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
603 {
604 mm->mmap = NULL;
605 mm->mm_rb = RB_ROOT;
606 mm->vmacache_seqnum = 0;
607 atomic_set(&mm->mm_users, 1);
608 atomic_set(&mm->mm_count, 1);
609 init_rwsem(&mm->mmap_sem);
610 INIT_LIST_HEAD(&mm->mmlist);
611 mm->core_state = NULL;
612 atomic_long_set(&mm->nr_ptes, 0);
613 mm_nr_pmds_init(mm);
614 mm->map_count = 0;
615 mm->locked_vm = 0;
616 mm->pinned_vm = 0;
617 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
618 spin_lock_init(&mm->page_table_lock);
619 mm_init_cpumask(mm);
620 mm_init_aio(mm);
621 mm_init_owner(mm, p);
622 mmu_notifier_mm_init(mm);
623 clear_tlb_flush_pending(mm);
624 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
625 mm->pmd_huge_pte = NULL;
626 #endif
627
628 if (current->mm) {
629 mm->flags = current->mm->flags & MMF_INIT_MASK;
630 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
631 } else {
632 mm->flags = default_dump_filter;
633 mm->def_flags = 0;
634 }
635
636 if (mm_alloc_pgd(mm))
637 goto fail_nopgd;
638
639 if (init_new_context(p, mm))
640 goto fail_nocontext;
641
642 return mm;
643
644 fail_nocontext:
645 mm_free_pgd(mm);
646 fail_nopgd:
647 free_mm(mm);
648 return NULL;
649 }
650
651 static void check_mm(struct mm_struct *mm)
652 {
653 int i;
654
655 for (i = 0; i < NR_MM_COUNTERS; i++) {
656 long x = atomic_long_read(&mm->rss_stat.count[i]);
657
658 if (unlikely(x))
659 printk(KERN_ALERT "BUG: Bad rss-counter state "
660 "mm:%p idx:%d val:%ld\n", mm, i, x);
661 }
662
663 if (atomic_long_read(&mm->nr_ptes))
664 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
665 atomic_long_read(&mm->nr_ptes));
666 if (mm_nr_pmds(mm))
667 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
668 mm_nr_pmds(mm));
669
670 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
671 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
672 #endif
673 }
674
675 /*
676 * Allocate and initialize an mm_struct.
677 */
678 struct mm_struct *mm_alloc(void)
679 {
680 struct mm_struct *mm;
681
682 mm = allocate_mm();
683 if (!mm)
684 return NULL;
685
686 memset(mm, 0, sizeof(*mm));
687 return mm_init(mm, current);
688 }
689
690 /*
691 * Called when the last reference to the mm
692 * is dropped: either by a lazy thread or by
693 * mmput. Free the page directory and the mm.
694 */
695 void __mmdrop(struct mm_struct *mm)
696 {
697 BUG_ON(mm == &init_mm);
698 mm_free_pgd(mm);
699 destroy_context(mm);
700 mmu_notifier_mm_destroy(mm);
701 check_mm(mm);
702 free_mm(mm);
703 }
704 EXPORT_SYMBOL_GPL(__mmdrop);
705
706 static inline void __mmput(struct mm_struct *mm)
707 {
708 VM_BUG_ON(atomic_read(&mm->mm_users));
709
710 uprobe_clear_state(mm);
711 exit_aio(mm);
712 ksm_exit(mm);
713 khugepaged_exit(mm); /* must run before exit_mmap */
714 exit_mmap(mm);
715 set_mm_exe_file(mm, NULL);
716 if (!list_empty(&mm->mmlist)) {
717 spin_lock(&mmlist_lock);
718 list_del(&mm->mmlist);
719 spin_unlock(&mmlist_lock);
720 }
721 if (mm->binfmt)
722 module_put(mm->binfmt->module);
723 mmdrop(mm);
724 }
725
726 /*
727 * Decrement the use count and release all resources for an mm.
728 */
729 void mmput(struct mm_struct *mm)
730 {
731 might_sleep();
732
733 if (atomic_dec_and_test(&mm->mm_users))
734 __mmput(mm);
735 }
736 EXPORT_SYMBOL_GPL(mmput);
737
738 #ifdef CONFIG_MMU
739 static void mmput_async_fn(struct work_struct *work)
740 {
741 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
742 __mmput(mm);
743 }
744
745 void mmput_async(struct mm_struct *mm)
746 {
747 if (atomic_dec_and_test(&mm->mm_users)) {
748 INIT_WORK(&mm->async_put_work, mmput_async_fn);
749 schedule_work(&mm->async_put_work);
750 }
751 }
752 #endif
753
754 /**
755 * set_mm_exe_file - change a reference to the mm's executable file
756 *
757 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
758 *
759 * Main users are mmput() and sys_execve(). Callers prevent concurrent
760 * invocations: in mmput() nobody alive left, in execve task is single
761 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
762 * mm->exe_file, but does so without using set_mm_exe_file() in order
763 * to do avoid the need for any locks.
764 */
765 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
766 {
767 struct file *old_exe_file;
768
769 /*
770 * It is safe to dereference the exe_file without RCU as
771 * this function is only called if nobody else can access
772 * this mm -- see comment above for justification.
773 */
774 old_exe_file = rcu_dereference_raw(mm->exe_file);
775
776 if (new_exe_file)
777 get_file(new_exe_file);
778 rcu_assign_pointer(mm->exe_file, new_exe_file);
779 if (old_exe_file)
780 fput(old_exe_file);
781 }
782
783 /**
784 * get_mm_exe_file - acquire a reference to the mm's executable file
785 *
786 * Returns %NULL if mm has no associated executable file.
787 * User must release file via fput().
788 */
789 struct file *get_mm_exe_file(struct mm_struct *mm)
790 {
791 struct file *exe_file;
792
793 rcu_read_lock();
794 exe_file = rcu_dereference(mm->exe_file);
795 if (exe_file && !get_file_rcu(exe_file))
796 exe_file = NULL;
797 rcu_read_unlock();
798 return exe_file;
799 }
800 EXPORT_SYMBOL(get_mm_exe_file);
801
802 /**
803 * get_task_exe_file - acquire a reference to the task's executable file
804 *
805 * Returns %NULL if task's mm (if any) has no associated executable file or
806 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
807 * User must release file via fput().
808 */
809 struct file *get_task_exe_file(struct task_struct *task)
810 {
811 struct file *exe_file = NULL;
812 struct mm_struct *mm;
813
814 task_lock(task);
815 mm = task->mm;
816 if (mm) {
817 if (!(task->flags & PF_KTHREAD))
818 exe_file = get_mm_exe_file(mm);
819 }
820 task_unlock(task);
821 return exe_file;
822 }
823 EXPORT_SYMBOL(get_task_exe_file);
824
825 /**
826 * get_task_mm - acquire a reference to the task's mm
827 *
828 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
829 * this kernel workthread has transiently adopted a user mm with use_mm,
830 * to do its AIO) is not set and if so returns a reference to it, after
831 * bumping up the use count. User must release the mm via mmput()
832 * after use. Typically used by /proc and ptrace.
833 */
834 struct mm_struct *get_task_mm(struct task_struct *task)
835 {
836 struct mm_struct *mm;
837
838 task_lock(task);
839 mm = task->mm;
840 if (mm) {
841 if (task->flags & PF_KTHREAD)
842 mm = NULL;
843 else
844 atomic_inc(&mm->mm_users);
845 }
846 task_unlock(task);
847 return mm;
848 }
849 EXPORT_SYMBOL_GPL(get_task_mm);
850
851 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
852 {
853 struct mm_struct *mm;
854 int err;
855
856 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
857 if (err)
858 return ERR_PTR(err);
859
860 mm = get_task_mm(task);
861 if (mm && mm != current->mm &&
862 !ptrace_may_access(task, mode)) {
863 mmput(mm);
864 mm = ERR_PTR(-EACCES);
865 }
866 mutex_unlock(&task->signal->cred_guard_mutex);
867
868 return mm;
869 }
870
871 static void complete_vfork_done(struct task_struct *tsk)
872 {
873 struct completion *vfork;
874
875 task_lock(tsk);
876 vfork = tsk->vfork_done;
877 if (likely(vfork)) {
878 tsk->vfork_done = NULL;
879 complete(vfork);
880 }
881 task_unlock(tsk);
882 }
883
884 static int wait_for_vfork_done(struct task_struct *child,
885 struct completion *vfork)
886 {
887 int killed;
888
889 freezer_do_not_count();
890 killed = wait_for_completion_killable(vfork);
891 freezer_count();
892
893 if (killed) {
894 task_lock(child);
895 child->vfork_done = NULL;
896 task_unlock(child);
897 }
898
899 put_task_struct(child);
900 return killed;
901 }
902
903 /* Please note the differences between mmput and mm_release.
904 * mmput is called whenever we stop holding onto a mm_struct,
905 * error success whatever.
906 *
907 * mm_release is called after a mm_struct has been removed
908 * from the current process.
909 *
910 * This difference is important for error handling, when we
911 * only half set up a mm_struct for a new process and need to restore
912 * the old one. Because we mmput the new mm_struct before
913 * restoring the old one. . .
914 * Eric Biederman 10 January 1998
915 */
916 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
917 {
918 /* Get rid of any futexes when releasing the mm */
919 #ifdef CONFIG_FUTEX
920 if (unlikely(tsk->robust_list)) {
921 exit_robust_list(tsk);
922 tsk->robust_list = NULL;
923 }
924 #ifdef CONFIG_COMPAT
925 if (unlikely(tsk->compat_robust_list)) {
926 compat_exit_robust_list(tsk);
927 tsk->compat_robust_list = NULL;
928 }
929 #endif
930 if (unlikely(!list_empty(&tsk->pi_state_list)))
931 exit_pi_state_list(tsk);
932 #endif
933
934 uprobe_free_utask(tsk);
935
936 /* Get rid of any cached register state */
937 deactivate_mm(tsk, mm);
938
939 /*
940 * Signal userspace if we're not exiting with a core dump
941 * because we want to leave the value intact for debugging
942 * purposes.
943 */
944 if (tsk->clear_child_tid) {
945 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
946 atomic_read(&mm->mm_users) > 1) {
947 /*
948 * We don't check the error code - if userspace has
949 * not set up a proper pointer then tough luck.
950 */
951 put_user(0, tsk->clear_child_tid);
952 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
953 1, NULL, NULL, 0);
954 }
955 tsk->clear_child_tid = NULL;
956 }
957
958 /*
959 * All done, finally we can wake up parent and return this mm to him.
960 * Also kthread_stop() uses this completion for synchronization.
961 */
962 if (tsk->vfork_done)
963 complete_vfork_done(tsk);
964 }
965
966 /*
967 * Allocate a new mm structure and copy contents from the
968 * mm structure of the passed in task structure.
969 */
970 static struct mm_struct *dup_mm(struct task_struct *tsk)
971 {
972 struct mm_struct *mm, *oldmm = current->mm;
973 int err;
974
975 mm = allocate_mm();
976 if (!mm)
977 goto fail_nomem;
978
979 memcpy(mm, oldmm, sizeof(*mm));
980
981 if (!mm_init(mm, tsk))
982 goto fail_nomem;
983
984 err = dup_mmap(mm, oldmm);
985 if (err)
986 goto free_pt;
987
988 mm->hiwater_rss = get_mm_rss(mm);
989 mm->hiwater_vm = mm->total_vm;
990
991 if (mm->binfmt && !try_module_get(mm->binfmt->module))
992 goto free_pt;
993
994 return mm;
995
996 free_pt:
997 /* don't put binfmt in mmput, we haven't got module yet */
998 mm->binfmt = NULL;
999 mmput(mm);
1000
1001 fail_nomem:
1002 return NULL;
1003 }
1004
1005 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1006 {
1007 struct mm_struct *mm, *oldmm;
1008 int retval;
1009
1010 tsk->min_flt = tsk->maj_flt = 0;
1011 tsk->nvcsw = tsk->nivcsw = 0;
1012 #ifdef CONFIG_DETECT_HUNG_TASK
1013 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1014 #endif
1015
1016 tsk->mm = NULL;
1017 tsk->active_mm = NULL;
1018
1019 /*
1020 * Are we cloning a kernel thread?
1021 *
1022 * We need to steal a active VM for that..
1023 */
1024 oldmm = current->mm;
1025 if (!oldmm)
1026 return 0;
1027
1028 /* initialize the new vmacache entries */
1029 vmacache_flush(tsk);
1030
1031 if (clone_flags & CLONE_VM) {
1032 atomic_inc(&oldmm->mm_users);
1033 mm = oldmm;
1034 goto good_mm;
1035 }
1036
1037 retval = -ENOMEM;
1038 mm = dup_mm(tsk);
1039 if (!mm)
1040 goto fail_nomem;
1041
1042 good_mm:
1043 tsk->mm = mm;
1044 tsk->active_mm = mm;
1045 return 0;
1046
1047 fail_nomem:
1048 return retval;
1049 }
1050
1051 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1052 {
1053 struct fs_struct *fs = current->fs;
1054 if (clone_flags & CLONE_FS) {
1055 /* tsk->fs is already what we want */
1056 spin_lock(&fs->lock);
1057 if (fs->in_exec) {
1058 spin_unlock(&fs->lock);
1059 return -EAGAIN;
1060 }
1061 fs->users++;
1062 spin_unlock(&fs->lock);
1063 return 0;
1064 }
1065 tsk->fs = copy_fs_struct(fs);
1066 if (!tsk->fs)
1067 return -ENOMEM;
1068 return 0;
1069 }
1070
1071 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1072 {
1073 struct files_struct *oldf, *newf;
1074 int error = 0;
1075
1076 /*
1077 * A background process may not have any files ...
1078 */
1079 oldf = current->files;
1080 if (!oldf)
1081 goto out;
1082
1083 if (clone_flags & CLONE_FILES) {
1084 atomic_inc(&oldf->count);
1085 goto out;
1086 }
1087
1088 newf = dup_fd(oldf, &error);
1089 if (!newf)
1090 goto out;
1091
1092 tsk->files = newf;
1093 error = 0;
1094 out:
1095 return error;
1096 }
1097
1098 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1099 {
1100 #ifdef CONFIG_BLOCK
1101 struct io_context *ioc = current->io_context;
1102 struct io_context *new_ioc;
1103
1104 if (!ioc)
1105 return 0;
1106 /*
1107 * Share io context with parent, if CLONE_IO is set
1108 */
1109 if (clone_flags & CLONE_IO) {
1110 ioc_task_link(ioc);
1111 tsk->io_context = ioc;
1112 } else if (ioprio_valid(ioc->ioprio)) {
1113 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1114 if (unlikely(!new_ioc))
1115 return -ENOMEM;
1116
1117 new_ioc->ioprio = ioc->ioprio;
1118 put_io_context(new_ioc);
1119 }
1120 #endif
1121 return 0;
1122 }
1123
1124 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1125 {
1126 struct sighand_struct *sig;
1127
1128 if (clone_flags & CLONE_SIGHAND) {
1129 atomic_inc(&current->sighand->count);
1130 return 0;
1131 }
1132 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1133 rcu_assign_pointer(tsk->sighand, sig);
1134 if (!sig)
1135 return -ENOMEM;
1136
1137 atomic_set(&sig->count, 1);
1138 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1139 return 0;
1140 }
1141
1142 void __cleanup_sighand(struct sighand_struct *sighand)
1143 {
1144 if (atomic_dec_and_test(&sighand->count)) {
1145 signalfd_cleanup(sighand);
1146 /*
1147 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1148 * without an RCU grace period, see __lock_task_sighand().
1149 */
1150 kmem_cache_free(sighand_cachep, sighand);
1151 }
1152 }
1153
1154 /*
1155 * Initialize POSIX timer handling for a thread group.
1156 */
1157 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1158 {
1159 unsigned long cpu_limit;
1160
1161 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1162 if (cpu_limit != RLIM_INFINITY) {
1163 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1164 sig->cputimer.running = true;
1165 }
1166
1167 /* The timer lists. */
1168 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1169 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1170 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1171 }
1172
1173 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1174 {
1175 struct signal_struct *sig;
1176
1177 if (clone_flags & CLONE_THREAD)
1178 return 0;
1179
1180 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1181 tsk->signal = sig;
1182 if (!sig)
1183 return -ENOMEM;
1184
1185 sig->nr_threads = 1;
1186 atomic_set(&sig->live, 1);
1187 atomic_set(&sig->sigcnt, 1);
1188
1189 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1190 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1191 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1192
1193 init_waitqueue_head(&sig->wait_chldexit);
1194 sig->curr_target = tsk;
1195 init_sigpending(&sig->shared_pending);
1196 INIT_LIST_HEAD(&sig->posix_timers);
1197 seqlock_init(&sig->stats_lock);
1198 prev_cputime_init(&sig->prev_cputime);
1199
1200 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1201 sig->real_timer.function = it_real_fn;
1202
1203 task_lock(current->group_leader);
1204 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1205 task_unlock(current->group_leader);
1206
1207 posix_cpu_timers_init_group(sig);
1208
1209 tty_audit_fork(sig);
1210 sched_autogroup_fork(sig);
1211
1212 sig->oom_score_adj = current->signal->oom_score_adj;
1213 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1214
1215 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1216 current->signal->is_child_subreaper;
1217
1218 mutex_init(&sig->cred_guard_mutex);
1219
1220 return 0;
1221 }
1222
1223 static void copy_seccomp(struct task_struct *p)
1224 {
1225 #ifdef CONFIG_SECCOMP
1226 /*
1227 * Must be called with sighand->lock held, which is common to
1228 * all threads in the group. Holding cred_guard_mutex is not
1229 * needed because this new task is not yet running and cannot
1230 * be racing exec.
1231 */
1232 assert_spin_locked(&current->sighand->siglock);
1233
1234 /* Ref-count the new filter user, and assign it. */
1235 get_seccomp_filter(current);
1236 p->seccomp = current->seccomp;
1237
1238 /*
1239 * Explicitly enable no_new_privs here in case it got set
1240 * between the task_struct being duplicated and holding the
1241 * sighand lock. The seccomp state and nnp must be in sync.
1242 */
1243 if (task_no_new_privs(current))
1244 task_set_no_new_privs(p);
1245
1246 /*
1247 * If the parent gained a seccomp mode after copying thread
1248 * flags and between before we held the sighand lock, we have
1249 * to manually enable the seccomp thread flag here.
1250 */
1251 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1252 set_tsk_thread_flag(p, TIF_SECCOMP);
1253 #endif
1254 }
1255
1256 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1257 {
1258 current->clear_child_tid = tidptr;
1259
1260 return task_pid_vnr(current);
1261 }
1262
1263 static void rt_mutex_init_task(struct task_struct *p)
1264 {
1265 raw_spin_lock_init(&p->pi_lock);
1266 #ifdef CONFIG_RT_MUTEXES
1267 p->pi_waiters = RB_ROOT;
1268 p->pi_waiters_leftmost = NULL;
1269 p->pi_blocked_on = NULL;
1270 #endif
1271 }
1272
1273 /*
1274 * Initialize POSIX timer handling for a single task.
1275 */
1276 static void posix_cpu_timers_init(struct task_struct *tsk)
1277 {
1278 tsk->cputime_expires.prof_exp = 0;
1279 tsk->cputime_expires.virt_exp = 0;
1280 tsk->cputime_expires.sched_exp = 0;
1281 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1282 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1283 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1284 }
1285
1286 static inline void
1287 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1288 {
1289 task->pids[type].pid = pid;
1290 }
1291
1292 /*
1293 * This creates a new process as a copy of the old one,
1294 * but does not actually start it yet.
1295 *
1296 * It copies the registers, and all the appropriate
1297 * parts of the process environment (as per the clone
1298 * flags). The actual kick-off is left to the caller.
1299 */
1300 static __latent_entropy struct task_struct *copy_process(
1301 unsigned long clone_flags,
1302 unsigned long stack_start,
1303 unsigned long stack_size,
1304 int __user *child_tidptr,
1305 struct pid *pid,
1306 int trace,
1307 unsigned long tls,
1308 int node)
1309 {
1310 int retval;
1311 struct task_struct *p;
1312
1313 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1314 return ERR_PTR(-EINVAL);
1315
1316 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1317 return ERR_PTR(-EINVAL);
1318
1319 /*
1320 * Thread groups must share signals as well, and detached threads
1321 * can only be started up within the thread group.
1322 */
1323 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1324 return ERR_PTR(-EINVAL);
1325
1326 /*
1327 * Shared signal handlers imply shared VM. By way of the above,
1328 * thread groups also imply shared VM. Blocking this case allows
1329 * for various simplifications in other code.
1330 */
1331 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1332 return ERR_PTR(-EINVAL);
1333
1334 /*
1335 * Siblings of global init remain as zombies on exit since they are
1336 * not reaped by their parent (swapper). To solve this and to avoid
1337 * multi-rooted process trees, prevent global and container-inits
1338 * from creating siblings.
1339 */
1340 if ((clone_flags & CLONE_PARENT) &&
1341 current->signal->flags & SIGNAL_UNKILLABLE)
1342 return ERR_PTR(-EINVAL);
1343
1344 /*
1345 * If the new process will be in a different pid or user namespace
1346 * do not allow it to share a thread group with the forking task.
1347 */
1348 if (clone_flags & CLONE_THREAD) {
1349 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1350 (task_active_pid_ns(current) !=
1351 current->nsproxy->pid_ns_for_children))
1352 return ERR_PTR(-EINVAL);
1353 }
1354
1355 retval = security_task_create(clone_flags);
1356 if (retval)
1357 goto fork_out;
1358
1359 retval = -ENOMEM;
1360 p = dup_task_struct(current, node);
1361 if (!p)
1362 goto fork_out;
1363
1364 ftrace_graph_init_task(p);
1365
1366 rt_mutex_init_task(p);
1367
1368 #ifdef CONFIG_PROVE_LOCKING
1369 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1370 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1371 #endif
1372 retval = -EAGAIN;
1373 if (atomic_read(&p->real_cred->user->processes) >=
1374 task_rlimit(p, RLIMIT_NPROC)) {
1375 if (p->real_cred->user != INIT_USER &&
1376 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1377 goto bad_fork_free;
1378 }
1379 current->flags &= ~PF_NPROC_EXCEEDED;
1380
1381 retval = copy_creds(p, clone_flags);
1382 if (retval < 0)
1383 goto bad_fork_free;
1384
1385 /*
1386 * If multiple threads are within copy_process(), then this check
1387 * triggers too late. This doesn't hurt, the check is only there
1388 * to stop root fork bombs.
1389 */
1390 retval = -EAGAIN;
1391 if (nr_threads >= max_threads)
1392 goto bad_fork_cleanup_count;
1393
1394 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1395 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1396 p->flags |= PF_FORKNOEXEC;
1397 INIT_LIST_HEAD(&p->children);
1398 INIT_LIST_HEAD(&p->sibling);
1399 rcu_copy_process(p);
1400 p->vfork_done = NULL;
1401 spin_lock_init(&p->alloc_lock);
1402
1403 init_sigpending(&p->pending);
1404
1405 p->utime = p->stime = p->gtime = 0;
1406 p->utimescaled = p->stimescaled = 0;
1407 prev_cputime_init(&p->prev_cputime);
1408
1409 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1410 seqcount_init(&p->vtime_seqcount);
1411 p->vtime_snap = 0;
1412 p->vtime_snap_whence = VTIME_INACTIVE;
1413 #endif
1414
1415 #if defined(SPLIT_RSS_COUNTING)
1416 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1417 #endif
1418
1419 p->default_timer_slack_ns = current->timer_slack_ns;
1420
1421 task_io_accounting_init(&p->ioac);
1422 acct_clear_integrals(p);
1423
1424 posix_cpu_timers_init(p);
1425
1426 p->start_time = ktime_get_ns();
1427 p->real_start_time = ktime_get_boot_ns();
1428 p->io_context = NULL;
1429 p->audit_context = NULL;
1430 cgroup_fork(p);
1431 #ifdef CONFIG_NUMA
1432 p->mempolicy = mpol_dup(p->mempolicy);
1433 if (IS_ERR(p->mempolicy)) {
1434 retval = PTR_ERR(p->mempolicy);
1435 p->mempolicy = NULL;
1436 goto bad_fork_cleanup_threadgroup_lock;
1437 }
1438 #endif
1439 #ifdef CONFIG_CPUSETS
1440 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1441 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1442 seqcount_init(&p->mems_allowed_seq);
1443 #endif
1444 #ifdef CONFIG_TRACE_IRQFLAGS
1445 p->irq_events = 0;
1446 p->hardirqs_enabled = 0;
1447 p->hardirq_enable_ip = 0;
1448 p->hardirq_enable_event = 0;
1449 p->hardirq_disable_ip = _THIS_IP_;
1450 p->hardirq_disable_event = 0;
1451 p->softirqs_enabled = 1;
1452 p->softirq_enable_ip = _THIS_IP_;
1453 p->softirq_enable_event = 0;
1454 p->softirq_disable_ip = 0;
1455 p->softirq_disable_event = 0;
1456 p->hardirq_context = 0;
1457 p->softirq_context = 0;
1458 #endif
1459
1460 p->pagefault_disabled = 0;
1461
1462 #ifdef CONFIG_LOCKDEP
1463 p->lockdep_depth = 0; /* no locks held yet */
1464 p->curr_chain_key = 0;
1465 p->lockdep_recursion = 0;
1466 #endif
1467
1468 #ifdef CONFIG_DEBUG_MUTEXES
1469 p->blocked_on = NULL; /* not blocked yet */
1470 #endif
1471 #ifdef CONFIG_BCACHE
1472 p->sequential_io = 0;
1473 p->sequential_io_avg = 0;
1474 #endif
1475
1476 /* Perform scheduler related setup. Assign this task to a CPU. */
1477 retval = sched_fork(clone_flags, p);
1478 if (retval)
1479 goto bad_fork_cleanup_policy;
1480
1481 retval = perf_event_init_task(p);
1482 if (retval)
1483 goto bad_fork_cleanup_policy;
1484 retval = audit_alloc(p);
1485 if (retval)
1486 goto bad_fork_cleanup_perf;
1487 /* copy all the process information */
1488 shm_init_task(p);
1489 retval = copy_semundo(clone_flags, p);
1490 if (retval)
1491 goto bad_fork_cleanup_audit;
1492 retval = copy_files(clone_flags, p);
1493 if (retval)
1494 goto bad_fork_cleanup_semundo;
1495 retval = copy_fs(clone_flags, p);
1496 if (retval)
1497 goto bad_fork_cleanup_files;
1498 retval = copy_sighand(clone_flags, p);
1499 if (retval)
1500 goto bad_fork_cleanup_fs;
1501 retval = copy_signal(clone_flags, p);
1502 if (retval)
1503 goto bad_fork_cleanup_sighand;
1504 retval = copy_mm(clone_flags, p);
1505 if (retval)
1506 goto bad_fork_cleanup_signal;
1507 retval = copy_namespaces(clone_flags, p);
1508 if (retval)
1509 goto bad_fork_cleanup_mm;
1510 retval = copy_io(clone_flags, p);
1511 if (retval)
1512 goto bad_fork_cleanup_namespaces;
1513 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1514 if (retval)
1515 goto bad_fork_cleanup_io;
1516
1517 if (pid != &init_struct_pid) {
1518 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1519 if (IS_ERR(pid)) {
1520 retval = PTR_ERR(pid);
1521 goto bad_fork_cleanup_thread;
1522 }
1523 }
1524
1525 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1526 /*
1527 * Clear TID on mm_release()?
1528 */
1529 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1530 #ifdef CONFIG_BLOCK
1531 p->plug = NULL;
1532 #endif
1533 #ifdef CONFIG_FUTEX
1534 p->robust_list = NULL;
1535 #ifdef CONFIG_COMPAT
1536 p->compat_robust_list = NULL;
1537 #endif
1538 INIT_LIST_HEAD(&p->pi_state_list);
1539 p->pi_state_cache = NULL;
1540 #endif
1541 /*
1542 * sigaltstack should be cleared when sharing the same VM
1543 */
1544 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1545 sas_ss_reset(p);
1546
1547 /*
1548 * Syscall tracing and stepping should be turned off in the
1549 * child regardless of CLONE_PTRACE.
1550 */
1551 user_disable_single_step(p);
1552 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1553 #ifdef TIF_SYSCALL_EMU
1554 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1555 #endif
1556 clear_all_latency_tracing(p);
1557
1558 /* ok, now we should be set up.. */
1559 p->pid = pid_nr(pid);
1560 if (clone_flags & CLONE_THREAD) {
1561 p->exit_signal = -1;
1562 p->group_leader = current->group_leader;
1563 p->tgid = current->tgid;
1564 } else {
1565 if (clone_flags & CLONE_PARENT)
1566 p->exit_signal = current->group_leader->exit_signal;
1567 else
1568 p->exit_signal = (clone_flags & CSIGNAL);
1569 p->group_leader = p;
1570 p->tgid = p->pid;
1571 }
1572
1573 p->nr_dirtied = 0;
1574 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1575 p->dirty_paused_when = 0;
1576
1577 p->pdeath_signal = 0;
1578 INIT_LIST_HEAD(&p->thread_group);
1579 p->task_works = NULL;
1580
1581 threadgroup_change_begin(current);
1582 /*
1583 * Ensure that the cgroup subsystem policies allow the new process to be
1584 * forked. It should be noted the the new process's css_set can be changed
1585 * between here and cgroup_post_fork() if an organisation operation is in
1586 * progress.
1587 */
1588 retval = cgroup_can_fork(p);
1589 if (retval)
1590 goto bad_fork_free_pid;
1591
1592 /*
1593 * Make it visible to the rest of the system, but dont wake it up yet.
1594 * Need tasklist lock for parent etc handling!
1595 */
1596 write_lock_irq(&tasklist_lock);
1597
1598 /* CLONE_PARENT re-uses the old parent */
1599 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1600 p->real_parent = current->real_parent;
1601 p->parent_exec_id = current->parent_exec_id;
1602 } else {
1603 p->real_parent = current;
1604 p->parent_exec_id = current->self_exec_id;
1605 }
1606
1607 spin_lock(&current->sighand->siglock);
1608
1609 /*
1610 * Copy seccomp details explicitly here, in case they were changed
1611 * before holding sighand lock.
1612 */
1613 copy_seccomp(p);
1614
1615 /*
1616 * Process group and session signals need to be delivered to just the
1617 * parent before the fork or both the parent and the child after the
1618 * fork. Restart if a signal comes in before we add the new process to
1619 * it's process group.
1620 * A fatal signal pending means that current will exit, so the new
1621 * thread can't slip out of an OOM kill (or normal SIGKILL).
1622 */
1623 recalc_sigpending();
1624 if (signal_pending(current)) {
1625 spin_unlock(&current->sighand->siglock);
1626 write_unlock_irq(&tasklist_lock);
1627 retval = -ERESTARTNOINTR;
1628 goto bad_fork_cancel_cgroup;
1629 }
1630
1631 if (likely(p->pid)) {
1632 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1633
1634 init_task_pid(p, PIDTYPE_PID, pid);
1635 if (thread_group_leader(p)) {
1636 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1637 init_task_pid(p, PIDTYPE_SID, task_session(current));
1638
1639 if (is_child_reaper(pid)) {
1640 ns_of_pid(pid)->child_reaper = p;
1641 p->signal->flags |= SIGNAL_UNKILLABLE;
1642 }
1643
1644 p->signal->leader_pid = pid;
1645 p->signal->tty = tty_kref_get(current->signal->tty);
1646 list_add_tail(&p->sibling, &p->real_parent->children);
1647 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1648 attach_pid(p, PIDTYPE_PGID);
1649 attach_pid(p, PIDTYPE_SID);
1650 __this_cpu_inc(process_counts);
1651 } else {
1652 current->signal->nr_threads++;
1653 atomic_inc(&current->signal->live);
1654 atomic_inc(&current->signal->sigcnt);
1655 list_add_tail_rcu(&p->thread_group,
1656 &p->group_leader->thread_group);
1657 list_add_tail_rcu(&p->thread_node,
1658 &p->signal->thread_head);
1659 }
1660 attach_pid(p, PIDTYPE_PID);
1661 nr_threads++;
1662 }
1663
1664 total_forks++;
1665 spin_unlock(&current->sighand->siglock);
1666 syscall_tracepoint_update(p);
1667 write_unlock_irq(&tasklist_lock);
1668
1669 proc_fork_connector(p);
1670 cgroup_post_fork(p);
1671 threadgroup_change_end(current);
1672 perf_event_fork(p);
1673
1674 trace_task_newtask(p, clone_flags);
1675 uprobe_copy_process(p, clone_flags);
1676
1677 return p;
1678
1679 bad_fork_cancel_cgroup:
1680 cgroup_cancel_fork(p);
1681 bad_fork_free_pid:
1682 threadgroup_change_end(current);
1683 if (pid != &init_struct_pid)
1684 free_pid(pid);
1685 bad_fork_cleanup_thread:
1686 exit_thread(p);
1687 bad_fork_cleanup_io:
1688 if (p->io_context)
1689 exit_io_context(p);
1690 bad_fork_cleanup_namespaces:
1691 exit_task_namespaces(p);
1692 bad_fork_cleanup_mm:
1693 if (p->mm)
1694 mmput(p->mm);
1695 bad_fork_cleanup_signal:
1696 if (!(clone_flags & CLONE_THREAD))
1697 free_signal_struct(p->signal);
1698 bad_fork_cleanup_sighand:
1699 __cleanup_sighand(p->sighand);
1700 bad_fork_cleanup_fs:
1701 exit_fs(p); /* blocking */
1702 bad_fork_cleanup_files:
1703 exit_files(p); /* blocking */
1704 bad_fork_cleanup_semundo:
1705 exit_sem(p);
1706 bad_fork_cleanup_audit:
1707 audit_free(p);
1708 bad_fork_cleanup_perf:
1709 perf_event_free_task(p);
1710 bad_fork_cleanup_policy:
1711 #ifdef CONFIG_NUMA
1712 mpol_put(p->mempolicy);
1713 bad_fork_cleanup_threadgroup_lock:
1714 #endif
1715 delayacct_tsk_free(p);
1716 bad_fork_cleanup_count:
1717 atomic_dec(&p->cred->user->processes);
1718 exit_creds(p);
1719 bad_fork_free:
1720 free_task(p);
1721 fork_out:
1722 return ERR_PTR(retval);
1723 }
1724
1725 static inline void init_idle_pids(struct pid_link *links)
1726 {
1727 enum pid_type type;
1728
1729 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1730 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1731 links[type].pid = &init_struct_pid;
1732 }
1733 }
1734
1735 struct task_struct *fork_idle(int cpu)
1736 {
1737 struct task_struct *task;
1738 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1739 cpu_to_node(cpu));
1740 if (!IS_ERR(task)) {
1741 init_idle_pids(task->pids);
1742 init_idle(task, cpu);
1743 }
1744
1745 return task;
1746 }
1747
1748 /*
1749 * Ok, this is the main fork-routine.
1750 *
1751 * It copies the process, and if successful kick-starts
1752 * it and waits for it to finish using the VM if required.
1753 */
1754 long _do_fork(unsigned long clone_flags,
1755 unsigned long stack_start,
1756 unsigned long stack_size,
1757 int __user *parent_tidptr,
1758 int __user *child_tidptr,
1759 unsigned long tls)
1760 {
1761 struct task_struct *p;
1762 int trace = 0;
1763 long nr;
1764
1765 /*
1766 * Determine whether and which event to report to ptracer. When
1767 * called from kernel_thread or CLONE_UNTRACED is explicitly
1768 * requested, no event is reported; otherwise, report if the event
1769 * for the type of forking is enabled.
1770 */
1771 if (!(clone_flags & CLONE_UNTRACED)) {
1772 if (clone_flags & CLONE_VFORK)
1773 trace = PTRACE_EVENT_VFORK;
1774 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1775 trace = PTRACE_EVENT_CLONE;
1776 else
1777 trace = PTRACE_EVENT_FORK;
1778
1779 if (likely(!ptrace_event_enabled(current, trace)))
1780 trace = 0;
1781 }
1782
1783 p = copy_process(clone_flags, stack_start, stack_size,
1784 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1785 add_latent_entropy();
1786 /*
1787 * Do this prior waking up the new thread - the thread pointer
1788 * might get invalid after that point, if the thread exits quickly.
1789 */
1790 if (!IS_ERR(p)) {
1791 struct completion vfork;
1792 struct pid *pid;
1793
1794 trace_sched_process_fork(current, p);
1795
1796 pid = get_task_pid(p, PIDTYPE_PID);
1797 nr = pid_vnr(pid);
1798
1799 if (clone_flags & CLONE_PARENT_SETTID)
1800 put_user(nr, parent_tidptr);
1801
1802 if (clone_flags & CLONE_VFORK) {
1803 p->vfork_done = &vfork;
1804 init_completion(&vfork);
1805 get_task_struct(p);
1806 }
1807
1808 wake_up_new_task(p);
1809
1810 /* forking complete and child started to run, tell ptracer */
1811 if (unlikely(trace))
1812 ptrace_event_pid(trace, pid);
1813
1814 if (clone_flags & CLONE_VFORK) {
1815 if (!wait_for_vfork_done(p, &vfork))
1816 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1817 }
1818
1819 put_pid(pid);
1820 } else {
1821 nr = PTR_ERR(p);
1822 }
1823 return nr;
1824 }
1825
1826 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1827 /* For compatibility with architectures that call do_fork directly rather than
1828 * using the syscall entry points below. */
1829 long do_fork(unsigned long clone_flags,
1830 unsigned long stack_start,
1831 unsigned long stack_size,
1832 int __user *parent_tidptr,
1833 int __user *child_tidptr)
1834 {
1835 return _do_fork(clone_flags, stack_start, stack_size,
1836 parent_tidptr, child_tidptr, 0);
1837 }
1838 #endif
1839
1840 /*
1841 * Create a kernel thread.
1842 */
1843 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1844 {
1845 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1846 (unsigned long)arg, NULL, NULL, 0);
1847 }
1848
1849 #ifdef __ARCH_WANT_SYS_FORK
1850 SYSCALL_DEFINE0(fork)
1851 {
1852 #ifdef CONFIG_MMU
1853 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1854 #else
1855 /* can not support in nommu mode */
1856 return -EINVAL;
1857 #endif
1858 }
1859 #endif
1860
1861 #ifdef __ARCH_WANT_SYS_VFORK
1862 SYSCALL_DEFINE0(vfork)
1863 {
1864 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1865 0, NULL, NULL, 0);
1866 }
1867 #endif
1868
1869 #ifdef __ARCH_WANT_SYS_CLONE
1870 #ifdef CONFIG_CLONE_BACKWARDS
1871 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1872 int __user *, parent_tidptr,
1873 unsigned long, tls,
1874 int __user *, child_tidptr)
1875 #elif defined(CONFIG_CLONE_BACKWARDS2)
1876 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1877 int __user *, parent_tidptr,
1878 int __user *, child_tidptr,
1879 unsigned long, tls)
1880 #elif defined(CONFIG_CLONE_BACKWARDS3)
1881 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1882 int, stack_size,
1883 int __user *, parent_tidptr,
1884 int __user *, child_tidptr,
1885 unsigned long, tls)
1886 #else
1887 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1888 int __user *, parent_tidptr,
1889 int __user *, child_tidptr,
1890 unsigned long, tls)
1891 #endif
1892 {
1893 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1894 }
1895 #endif
1896
1897 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1898 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1899 #endif
1900
1901 static void sighand_ctor(void *data)
1902 {
1903 struct sighand_struct *sighand = data;
1904
1905 spin_lock_init(&sighand->siglock);
1906 init_waitqueue_head(&sighand->signalfd_wqh);
1907 }
1908
1909 void __init proc_caches_init(void)
1910 {
1911 sighand_cachep = kmem_cache_create("sighand_cache",
1912 sizeof(struct sighand_struct), 0,
1913 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1914 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1915 signal_cachep = kmem_cache_create("signal_cache",
1916 sizeof(struct signal_struct), 0,
1917 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1918 NULL);
1919 files_cachep = kmem_cache_create("files_cache",
1920 sizeof(struct files_struct), 0,
1921 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1922 NULL);
1923 fs_cachep = kmem_cache_create("fs_cache",
1924 sizeof(struct fs_struct), 0,
1925 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1926 NULL);
1927 /*
1928 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1929 * whole struct cpumask for the OFFSTACK case. We could change
1930 * this to *only* allocate as much of it as required by the
1931 * maximum number of CPU's we can ever have. The cpumask_allocation
1932 * is at the end of the structure, exactly for that reason.
1933 */
1934 mm_cachep = kmem_cache_create("mm_struct",
1935 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1936 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1937 NULL);
1938 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1939 mmap_init();
1940 nsproxy_cache_init();
1941 }
1942
1943 /*
1944 * Check constraints on flags passed to the unshare system call.
1945 */
1946 static int check_unshare_flags(unsigned long unshare_flags)
1947 {
1948 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1949 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1950 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1951 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1952 return -EINVAL;
1953 /*
1954 * Not implemented, but pretend it works if there is nothing
1955 * to unshare. Note that unsharing the address space or the
1956 * signal handlers also need to unshare the signal queues (aka
1957 * CLONE_THREAD).
1958 */
1959 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1960 if (!thread_group_empty(current))
1961 return -EINVAL;
1962 }
1963 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1964 if (atomic_read(&current->sighand->count) > 1)
1965 return -EINVAL;
1966 }
1967 if (unshare_flags & CLONE_VM) {
1968 if (!current_is_single_threaded())
1969 return -EINVAL;
1970 }
1971
1972 return 0;
1973 }
1974
1975 /*
1976 * Unshare the filesystem structure if it is being shared
1977 */
1978 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1979 {
1980 struct fs_struct *fs = current->fs;
1981
1982 if (!(unshare_flags & CLONE_FS) || !fs)
1983 return 0;
1984
1985 /* don't need lock here; in the worst case we'll do useless copy */
1986 if (fs->users == 1)
1987 return 0;
1988
1989 *new_fsp = copy_fs_struct(fs);
1990 if (!*new_fsp)
1991 return -ENOMEM;
1992
1993 return 0;
1994 }
1995
1996 /*
1997 * Unshare file descriptor table if it is being shared
1998 */
1999 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2000 {
2001 struct files_struct *fd = current->files;
2002 int error = 0;
2003
2004 if ((unshare_flags & CLONE_FILES) &&
2005 (fd && atomic_read(&fd->count) > 1)) {
2006 *new_fdp = dup_fd(fd, &error);
2007 if (!*new_fdp)
2008 return error;
2009 }
2010
2011 return 0;
2012 }
2013
2014 /*
2015 * unshare allows a process to 'unshare' part of the process
2016 * context which was originally shared using clone. copy_*
2017 * functions used by do_fork() cannot be used here directly
2018 * because they modify an inactive task_struct that is being
2019 * constructed. Here we are modifying the current, active,
2020 * task_struct.
2021 */
2022 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2023 {
2024 struct fs_struct *fs, *new_fs = NULL;
2025 struct files_struct *fd, *new_fd = NULL;
2026 struct cred *new_cred = NULL;
2027 struct nsproxy *new_nsproxy = NULL;
2028 int do_sysvsem = 0;
2029 int err;
2030
2031 /*
2032 * If unsharing a user namespace must also unshare the thread group
2033 * and unshare the filesystem root and working directories.
2034 */
2035 if (unshare_flags & CLONE_NEWUSER)
2036 unshare_flags |= CLONE_THREAD | CLONE_FS;
2037 /*
2038 * If unsharing vm, must also unshare signal handlers.
2039 */
2040 if (unshare_flags & CLONE_VM)
2041 unshare_flags |= CLONE_SIGHAND;
2042 /*
2043 * If unsharing a signal handlers, must also unshare the signal queues.
2044 */
2045 if (unshare_flags & CLONE_SIGHAND)
2046 unshare_flags |= CLONE_THREAD;
2047 /*
2048 * If unsharing namespace, must also unshare filesystem information.
2049 */
2050 if (unshare_flags & CLONE_NEWNS)
2051 unshare_flags |= CLONE_FS;
2052
2053 err = check_unshare_flags(unshare_flags);
2054 if (err)
2055 goto bad_unshare_out;
2056 /*
2057 * CLONE_NEWIPC must also detach from the undolist: after switching
2058 * to a new ipc namespace, the semaphore arrays from the old
2059 * namespace are unreachable.
2060 */
2061 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2062 do_sysvsem = 1;
2063 err = unshare_fs(unshare_flags, &new_fs);
2064 if (err)
2065 goto bad_unshare_out;
2066 err = unshare_fd(unshare_flags, &new_fd);
2067 if (err)
2068 goto bad_unshare_cleanup_fs;
2069 err = unshare_userns(unshare_flags, &new_cred);
2070 if (err)
2071 goto bad_unshare_cleanup_fd;
2072 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2073 new_cred, new_fs);
2074 if (err)
2075 goto bad_unshare_cleanup_cred;
2076
2077 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2078 if (do_sysvsem) {
2079 /*
2080 * CLONE_SYSVSEM is equivalent to sys_exit().
2081 */
2082 exit_sem(current);
2083 }
2084 if (unshare_flags & CLONE_NEWIPC) {
2085 /* Orphan segments in old ns (see sem above). */
2086 exit_shm(current);
2087 shm_init_task(current);
2088 }
2089
2090 if (new_nsproxy)
2091 switch_task_namespaces(current, new_nsproxy);
2092
2093 task_lock(current);
2094
2095 if (new_fs) {
2096 fs = current->fs;
2097 spin_lock(&fs->lock);
2098 current->fs = new_fs;
2099 if (--fs->users)
2100 new_fs = NULL;
2101 else
2102 new_fs = fs;
2103 spin_unlock(&fs->lock);
2104 }
2105
2106 if (new_fd) {
2107 fd = current->files;
2108 current->files = new_fd;
2109 new_fd = fd;
2110 }
2111
2112 task_unlock(current);
2113
2114 if (new_cred) {
2115 /* Install the new user namespace */
2116 commit_creds(new_cred);
2117 new_cred = NULL;
2118 }
2119 }
2120
2121 bad_unshare_cleanup_cred:
2122 if (new_cred)
2123 put_cred(new_cred);
2124 bad_unshare_cleanup_fd:
2125 if (new_fd)
2126 put_files_struct(new_fd);
2127
2128 bad_unshare_cleanup_fs:
2129 if (new_fs)
2130 free_fs_struct(new_fs);
2131
2132 bad_unshare_out:
2133 return err;
2134 }
2135
2136 /*
2137 * Helper to unshare the files of the current task.
2138 * We don't want to expose copy_files internals to
2139 * the exec layer of the kernel.
2140 */
2141
2142 int unshare_files(struct files_struct **displaced)
2143 {
2144 struct task_struct *task = current;
2145 struct files_struct *copy = NULL;
2146 int error;
2147
2148 error = unshare_fd(CLONE_FILES, &copy);
2149 if (error || !copy) {
2150 *displaced = NULL;
2151 return error;
2152 }
2153 *displaced = task->files;
2154 task_lock(task);
2155 task->files = copy;
2156 task_unlock(task);
2157 return 0;
2158 }
2159
2160 int sysctl_max_threads(struct ctl_table *table, int write,
2161 void __user *buffer, size_t *lenp, loff_t *ppos)
2162 {
2163 struct ctl_table t;
2164 int ret;
2165 int threads = max_threads;
2166 int min = MIN_THREADS;
2167 int max = MAX_THREADS;
2168
2169 t = *table;
2170 t.data = &threads;
2171 t.extra1 = &min;
2172 t.extra2 = &max;
2173
2174 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2175 if (ret || !write)
2176 return ret;
2177
2178 set_max_threads(threads);
2179
2180 return 0;
2181 }
This page took 0.089749 seconds and 5 git commands to generate.