Restartable sequences system call (v8)
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (tick_nohz_full_cpu(cpu)) {
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
587 tick_nohz_full_kick_cpu(cpu);
588 return true;
589 }
590
591 return false;
592 }
593
594 void wake_up_nohz_cpu(int cpu)
595 {
596 if (!wake_up_full_nohz_cpu(cpu))
597 wake_up_idle_cpu(cpu);
598 }
599
600 static inline bool got_nohz_idle_kick(void)
601 {
602 int cpu = smp_processor_id();
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
616 }
617
618 #else /* CONFIG_NO_HZ_COMMON */
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 return false;
623 }
624
625 #endif /* CONFIG_NO_HZ_COMMON */
626
627 #ifdef CONFIG_NO_HZ_FULL
628 bool sched_can_stop_tick(struct rq *rq)
629 {
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
636 /*
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
639 */
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
645 }
646
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
661 return false;
662
663 return true;
664 }
665 #endif /* CONFIG_NO_HZ_FULL */
666
667 void sched_avg_update(struct rq *rq)
668 {
669 s64 period = sched_avg_period();
670
671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
681 }
682
683 #endif /* CONFIG_SMP */
684
685 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687 /*
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
692 */
693 int walk_tg_tree_from(struct task_group *from,
694 tg_visitor down, tg_visitor up, void *data)
695 {
696 struct task_group *parent, *child;
697 int ret;
698
699 parent = from;
700
701 down:
702 ret = (*down)(parent, data);
703 if (ret)
704 goto out;
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709 up:
710 continue;
711 }
712 ret = (*up)(parent, data);
713 if (ret || parent == from)
714 goto out;
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
720 out:
721 return ret;
722 }
723
724 int tg_nop(struct task_group *tg, void *data)
725 {
726 return 0;
727 }
728 #endif
729
730 static void set_load_weight(struct task_struct *p)
731 {
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
738 if (idle_policy(p->policy)) {
739 load->weight = scale_load(WEIGHT_IDLEPRIO);
740 load->inv_weight = WMULT_IDLEPRIO;
741 return;
742 }
743
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
746 }
747
748 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749 {
750 update_rq_clock(rq);
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
753 p->sched_class->enqueue_task(rq, p, flags);
754 }
755
756 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757 {
758 update_rq_clock(rq);
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
761 p->sched_class->dequeue_task(rq, p, flags);
762 }
763
764 void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 {
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
769 enqueue_task(rq, p, flags);
770 }
771
772 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
777 dequeue_task(rq, p, flags);
778 }
779
780 static void update_rq_clock_task(struct rq *rq, s64 delta)
781 {
782 /*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788 #endif
789 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
812 #endif
813 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814 if (static_key_false((&paravirt_steal_rq_enabled))) {
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
821 rq->prev_steal_time_rq += steal;
822 delta -= steal;
823 }
824 #endif
825
826 rq->clock_task += delta;
827
828 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 sched_rt_avg_update(rq, irq_delta + steal);
831 #endif
832 }
833
834 void sched_set_stop_task(int cpu, struct task_struct *stop)
835 {
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862 }
863
864 /*
865 * __normal_prio - return the priority that is based on the static prio
866 */
867 static inline int __normal_prio(struct task_struct *p)
868 {
869 return p->static_prio;
870 }
871
872 /*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
879 static inline int normal_prio(struct task_struct *p)
880 {
881 int prio;
882
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890 }
891
892 /*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
899 static int effective_prio(struct task_struct *p)
900 {
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910 }
911
912 /**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
917 */
918 inline int task_curr(const struct task_struct *p)
919 {
920 return cpu_curr(task_cpu(p)) == p;
921 }
922
923 /*
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
929 */
930 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
932 int oldprio)
933 {
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
936 prev_class->switched_from(rq, p);
937
938 p->sched_class->switched_to(rq, p);
939 } else if (oldprio != p->prio || dl_task(p))
940 p->sched_class->prio_changed(rq, p, oldprio);
941 }
942
943 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 {
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
954 resched_curr(rq);
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965 rq_clock_skip_update(rq, true);
966 }
967
968 #ifdef CONFIG_SMP
969 /*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983 /*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
988 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
989 {
990 lockdep_assert_held(&rq->lock);
991
992 p->on_rq = TASK_ON_RQ_MIGRATING;
993 dequeue_task(rq, p, 0);
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
1001 enqueue_task(rq, p, 0);
1002 p->on_rq = TASK_ON_RQ_QUEUED;
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006 }
1007
1008 struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011 };
1012
1013 /*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
1021 */
1022 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1023 {
1024 if (unlikely(!cpu_active(dest_cpu)))
1025 return rq;
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029 return rq;
1030
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
1034 }
1035
1036 /*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041 static int migration_cpu_stop(void *data)
1042 {
1043 struct migration_arg *arg = data;
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
1071 local_irq_enable();
1072 return 0;
1073 }
1074
1075 /*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1080 {
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083 }
1084
1085 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086 {
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
1090 lockdep_assert_held(&p->pi_lock);
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1101 dequeue_task(rq, p, DEQUEUE_SAVE);
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
1106 p->sched_class->set_cpus_allowed(p, new_mask);
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 }
1113
1114 /*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
1123 static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
1125 {
1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1127 unsigned int dest_cpu;
1128 struct rq_flags rf;
1129 struct rq *rq;
1130 int ret = 0;
1131
1132 rq = task_rq_lock(p, &rf);
1133
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
1178 task_rq_unlock(rq, p, &rf);
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
1188 rq = move_queued_task(rq, p, dest_cpu);
1189 lockdep_repin_lock(&rq->lock, rf.cookie);
1190 }
1191 out:
1192 task_rq_unlock(rq, p, &rf);
1193
1194 return ret;
1195 }
1196
1197 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198 {
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200 }
1201 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
1203 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1204 {
1205 #ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1211 !p->on_rq);
1212
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
1222 #ifdef CONFIG_LOCKDEP
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
1228 * see task_group().
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235 #endif
1236 #endif
1237
1238 trace_sched_migrate_task(p, new_cpu);
1239
1240 if (task_cpu(p) != new_cpu) {
1241 if (p->sched_class->migrate_task_rq)
1242 p->sched_class->migrate_task_rq(p);
1243 p->se.nr_migrations++;
1244 perf_event_task_migrate(p);
1245 }
1246
1247 __set_task_cpu(p, new_cpu);
1248 }
1249
1250 static void __migrate_swap_task(struct task_struct *p, int cpu)
1251 {
1252 if (task_on_rq_queued(p)) {
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
1258 p->on_rq = TASK_ON_RQ_MIGRATING;
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
1262 p->on_rq = TASK_ON_RQ_QUEUED;
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
1268 * previous cpu our targer instead of where it really is.
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272 }
1273
1274 struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277 };
1278
1279 static int migrate_swap_stop(void *data)
1280 {
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
1293 double_rq_lock(src_rq, dst_rq);
1294
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312 unlock:
1313 double_rq_unlock(src_rq, dst_rq);
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
1316
1317 return ret;
1318 }
1319
1320 /*
1321 * Cross migrate two tasks
1322 */
1323 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324 {
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354 out:
1355 return ret;
1356 }
1357
1358 /*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
1374 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1375 {
1376 int running, queued;
1377 struct rq_flags rf;
1378 unsigned long ncsw;
1379 struct rq *rq;
1380
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
1389
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
1404 cpu_relax();
1405 }
1406
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
1412 rq = task_rq_lock(p, &rf);
1413 trace_sched_wait_task(p);
1414 running = task_running(rq, p);
1415 queued = task_on_rq_queued(p);
1416 ncsw = 0;
1417 if (!match_state || p->state == match_state)
1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419 task_rq_unlock(rq, p, &rf);
1420
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
1437
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
1443 * So if it was still runnable (but just not actively
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
1447 if (unlikely(queued)) {
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 continue;
1453 }
1454
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
1462
1463 return ncsw;
1464 }
1465
1466 /***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
1473 * NOTE: this function doesn't have to take the runqueue lock,
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
1479 void kick_process(struct task_struct *p)
1480 {
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488 }
1489 EXPORT_SYMBOL_GPL(kick_process);
1490
1491 /*
1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
1512 */
1513 static int select_fallback_rq(int cpu, struct task_struct *p)
1514 {
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
1519
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
1535 }
1536
1537 for (;;) {
1538 /* Any allowed, online CPU? */
1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
1543 continue;
1544 goto out;
1545 }
1546
1547 /* No more Mr. Nice Guy. */
1548 switch (state) {
1549 case cpuset:
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567 out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 task_pid_nr(p), p->comm, cpu);
1577 }
1578 }
1579
1580 return dest_cpu;
1581 }
1582
1583 /*
1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585 */
1586 static inline
1587 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588 {
1589 lockdep_assert_held(&p->pi_lock);
1590
1591 if (tsk_nr_cpus_allowed(p) > 1)
1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1607 !cpu_online(cpu)))
1608 cpu = select_fallback_rq(task_cpu(p), p);
1609
1610 return cpu;
1611 }
1612
1613 static void update_avg(u64 *avg, u64 sample)
1614 {
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617 }
1618
1619 #else
1620
1621 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623 {
1624 return set_cpus_allowed_ptr(p, new_mask);
1625 }
1626
1627 #endif /* CONFIG_SMP */
1628
1629 static void
1630 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1631 {
1632 #ifdef CONFIG_SCHEDSTATS
1633 struct rq *rq = this_rq();
1634
1635 #ifdef CONFIG_SMP
1636 int this_cpu = smp_processor_id();
1637
1638 if (cpu == this_cpu) {
1639 schedstat_inc(rq, ttwu_local);
1640 schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 } else {
1642 struct sched_domain *sd;
1643
1644 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645 rcu_read_lock();
1646 for_each_domain(this_cpu, sd) {
1647 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 schedstat_inc(sd, ttwu_wake_remote);
1649 break;
1650 }
1651 }
1652 rcu_read_unlock();
1653 }
1654
1655 if (wake_flags & WF_MIGRATED)
1656 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657
1658 #endif /* CONFIG_SMP */
1659
1660 schedstat_inc(rq, ttwu_count);
1661 schedstat_inc(p, se.statistics.nr_wakeups);
1662
1663 if (wake_flags & WF_SYNC)
1664 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1665
1666 #endif /* CONFIG_SCHEDSTATS */
1667 }
1668
1669 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1670 {
1671 activate_task(rq, p, en_flags);
1672 p->on_rq = TASK_ON_RQ_QUEUED;
1673
1674 /* if a worker is waking up, notify workqueue */
1675 if (p->flags & PF_WQ_WORKER)
1676 wq_worker_waking_up(p, cpu_of(rq));
1677 }
1678
1679 /*
1680 * Mark the task runnable and perform wakeup-preemption.
1681 */
1682 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct pin_cookie cookie)
1684 {
1685 check_preempt_curr(rq, p, wake_flags);
1686 p->state = TASK_RUNNING;
1687 trace_sched_wakeup(p);
1688
1689 #ifdef CONFIG_SMP
1690 if (p->sched_class->task_woken) {
1691 /*
1692 * Our task @p is fully woken up and running; so its safe to
1693 * drop the rq->lock, hereafter rq is only used for statistics.
1694 */
1695 lockdep_unpin_lock(&rq->lock, cookie);
1696 p->sched_class->task_woken(rq, p);
1697 lockdep_repin_lock(&rq->lock, cookie);
1698 }
1699
1700 if (rq->idle_stamp) {
1701 u64 delta = rq_clock(rq) - rq->idle_stamp;
1702 u64 max = 2*rq->max_idle_balance_cost;
1703
1704 update_avg(&rq->avg_idle, delta);
1705
1706 if (rq->avg_idle > max)
1707 rq->avg_idle = max;
1708
1709 rq->idle_stamp = 0;
1710 }
1711 #endif
1712 }
1713
1714 static void
1715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 struct pin_cookie cookie)
1717 {
1718 int en_flags = ENQUEUE_WAKEUP;
1719
1720 lockdep_assert_held(&rq->lock);
1721
1722 #ifdef CONFIG_SMP
1723 if (p->sched_contributes_to_load)
1724 rq->nr_uninterruptible--;
1725
1726 if (wake_flags & WF_MIGRATED)
1727 en_flags |= ENQUEUE_MIGRATED;
1728 #endif
1729
1730 ttwu_activate(rq, p, en_flags);
1731 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 }
1733
1734 /*
1735 * Called in case the task @p isn't fully descheduled from its runqueue,
1736 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737 * since all we need to do is flip p->state to TASK_RUNNING, since
1738 * the task is still ->on_rq.
1739 */
1740 static int ttwu_remote(struct task_struct *p, int wake_flags)
1741 {
1742 struct rq_flags rf;
1743 struct rq *rq;
1744 int ret = 0;
1745
1746 rq = __task_rq_lock(p, &rf);
1747 if (task_on_rq_queued(p)) {
1748 /* check_preempt_curr() may use rq clock */
1749 update_rq_clock(rq);
1750 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 ret = 1;
1752 }
1753 __task_rq_unlock(rq, &rf);
1754
1755 return ret;
1756 }
1757
1758 #ifdef CONFIG_SMP
1759 void sched_ttwu_pending(void)
1760 {
1761 struct rq *rq = this_rq();
1762 struct llist_node *llist = llist_del_all(&rq->wake_list);
1763 struct pin_cookie cookie;
1764 struct task_struct *p;
1765 unsigned long flags;
1766
1767 if (!llist)
1768 return;
1769
1770 raw_spin_lock_irqsave(&rq->lock, flags);
1771 cookie = lockdep_pin_lock(&rq->lock);
1772
1773 while (llist) {
1774 int wake_flags = 0;
1775
1776 p = llist_entry(llist, struct task_struct, wake_entry);
1777 llist = llist_next(llist);
1778
1779 if (p->sched_remote_wakeup)
1780 wake_flags = WF_MIGRATED;
1781
1782 ttwu_do_activate(rq, p, wake_flags, cookie);
1783 }
1784
1785 lockdep_unpin_lock(&rq->lock, cookie);
1786 raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 }
1788
1789 void scheduler_ipi(void)
1790 {
1791 /*
1792 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 * this IPI.
1795 */
1796 preempt_fold_need_resched();
1797
1798 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 return;
1800
1801 /*
1802 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 * traditionally all their work was done from the interrupt return
1804 * path. Now that we actually do some work, we need to make sure
1805 * we do call them.
1806 *
1807 * Some archs already do call them, luckily irq_enter/exit nest
1808 * properly.
1809 *
1810 * Arguably we should visit all archs and update all handlers,
1811 * however a fair share of IPIs are still resched only so this would
1812 * somewhat pessimize the simple resched case.
1813 */
1814 irq_enter();
1815 sched_ttwu_pending();
1816
1817 /*
1818 * Check if someone kicked us for doing the nohz idle load balance.
1819 */
1820 if (unlikely(got_nohz_idle_kick())) {
1821 this_rq()->idle_balance = 1;
1822 raise_softirq_irqoff(SCHED_SOFTIRQ);
1823 }
1824 irq_exit();
1825 }
1826
1827 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828 {
1829 struct rq *rq = cpu_rq(cpu);
1830
1831 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832
1833 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 if (!set_nr_if_polling(rq->idle))
1835 smp_send_reschedule(cpu);
1836 else
1837 trace_sched_wake_idle_without_ipi(cpu);
1838 }
1839 }
1840
1841 void wake_up_if_idle(int cpu)
1842 {
1843 struct rq *rq = cpu_rq(cpu);
1844 unsigned long flags;
1845
1846 rcu_read_lock();
1847
1848 if (!is_idle_task(rcu_dereference(rq->curr)))
1849 goto out;
1850
1851 if (set_nr_if_polling(rq->idle)) {
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 } else {
1854 raw_spin_lock_irqsave(&rq->lock, flags);
1855 if (is_idle_task(rq->curr))
1856 smp_send_reschedule(cpu);
1857 /* Else cpu is not in idle, do nothing here */
1858 raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 }
1860
1861 out:
1862 rcu_read_unlock();
1863 }
1864
1865 bool cpus_share_cache(int this_cpu, int that_cpu)
1866 {
1867 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868 }
1869 #endif /* CONFIG_SMP */
1870
1871 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 {
1873 struct rq *rq = cpu_rq(cpu);
1874 struct pin_cookie cookie;
1875
1876 #if defined(CONFIG_SMP)
1877 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1879 ttwu_queue_remote(p, cpu, wake_flags);
1880 return;
1881 }
1882 #endif
1883
1884 raw_spin_lock(&rq->lock);
1885 cookie = lockdep_pin_lock(&rq->lock);
1886 ttwu_do_activate(rq, p, wake_flags, cookie);
1887 lockdep_unpin_lock(&rq->lock, cookie);
1888 raw_spin_unlock(&rq->lock);
1889 }
1890
1891 /*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898 * execution on its new cpu [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the cpu doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1941 * 2) smp_cond_load_acquire(!X->on_cpu)
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979 *
1980 */
1981
1982 /**
1983 * try_to_wake_up - wake up a thread
1984 * @p: the thread to be awakened
1985 * @state: the mask of task states that can be woken
1986 * @wake_flags: wake modifier flags (WF_*)
1987 *
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1993 *
1994 * Return: %true if @p was woken up, %false if it was already running.
1995 * or @state didn't match @p's state.
1996 */
1997 static int
1998 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1999 {
2000 unsigned long flags;
2001 int cpu, success = 0;
2002
2003 /*
2004 * If we are going to wake up a thread waiting for CONDITION we
2005 * need to ensure that CONDITION=1 done by the caller can not be
2006 * reordered with p->state check below. This pairs with mb() in
2007 * set_current_state() the waiting thread does.
2008 */
2009 smp_mb__before_spinlock();
2010 raw_spin_lock_irqsave(&p->pi_lock, flags);
2011 if (!(p->state & state))
2012 goto out;
2013
2014 trace_sched_waking(p);
2015
2016 success = 1; /* we're going to change ->state */
2017 cpu = task_cpu(p);
2018
2019 /*
2020 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 * in smp_cond_load_acquire() below.
2023 *
2024 * sched_ttwu_pending() try_to_wake_up()
2025 * [S] p->on_rq = 1; [L] P->state
2026 * UNLOCK rq->lock -----.
2027 * \
2028 * +--- RMB
2029 * schedule() /
2030 * LOCK rq->lock -----'
2031 * UNLOCK rq->lock
2032 *
2033 * [task p]
2034 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2035 *
2036 * Pairs with the UNLOCK+LOCK on rq->lock from the
2037 * last wakeup of our task and the schedule that got our task
2038 * current.
2039 */
2040 smp_rmb();
2041 if (p->on_rq && ttwu_remote(p, wake_flags))
2042 goto stat;
2043
2044 #ifdef CONFIG_SMP
2045 /*
2046 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2047 * possible to, falsely, observe p->on_cpu == 0.
2048 *
2049 * One must be running (->on_cpu == 1) in order to remove oneself
2050 * from the runqueue.
2051 *
2052 * [S] ->on_cpu = 1; [L] ->on_rq
2053 * UNLOCK rq->lock
2054 * RMB
2055 * LOCK rq->lock
2056 * [S] ->on_rq = 0; [L] ->on_cpu
2057 *
2058 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2059 * from the consecutive calls to schedule(); the first switching to our
2060 * task, the second putting it to sleep.
2061 */
2062 smp_rmb();
2063
2064 /*
2065 * If the owning (remote) cpu is still in the middle of schedule() with
2066 * this task as prev, wait until its done referencing the task.
2067 *
2068 * Pairs with the smp_store_release() in finish_lock_switch().
2069 *
2070 * This ensures that tasks getting woken will be fully ordered against
2071 * their previous state and preserve Program Order.
2072 */
2073 smp_cond_load_acquire(&p->on_cpu, !VAL);
2074
2075 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2076 p->state = TASK_WAKING;
2077
2078 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2079 if (task_cpu(p) != cpu) {
2080 wake_flags |= WF_MIGRATED;
2081 set_task_cpu(p, cpu);
2082 }
2083 #endif /* CONFIG_SMP */
2084
2085 ttwu_queue(p, cpu, wake_flags);
2086 stat:
2087 if (schedstat_enabled())
2088 ttwu_stat(p, cpu, wake_flags);
2089 out:
2090 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2091
2092 return success;
2093 }
2094
2095 /**
2096 * try_to_wake_up_local - try to wake up a local task with rq lock held
2097 * @p: the thread to be awakened
2098 *
2099 * Put @p on the run-queue if it's not already there. The caller must
2100 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2101 * the current task.
2102 */
2103 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2104 {
2105 struct rq *rq = task_rq(p);
2106
2107 if (WARN_ON_ONCE(rq != this_rq()) ||
2108 WARN_ON_ONCE(p == current))
2109 return;
2110
2111 lockdep_assert_held(&rq->lock);
2112
2113 if (!raw_spin_trylock(&p->pi_lock)) {
2114 /*
2115 * This is OK, because current is on_cpu, which avoids it being
2116 * picked for load-balance and preemption/IRQs are still
2117 * disabled avoiding further scheduler activity on it and we've
2118 * not yet picked a replacement task.
2119 */
2120 lockdep_unpin_lock(&rq->lock, cookie);
2121 raw_spin_unlock(&rq->lock);
2122 raw_spin_lock(&p->pi_lock);
2123 raw_spin_lock(&rq->lock);
2124 lockdep_repin_lock(&rq->lock, cookie);
2125 }
2126
2127 if (!(p->state & TASK_NORMAL))
2128 goto out;
2129
2130 trace_sched_waking(p);
2131
2132 if (!task_on_rq_queued(p))
2133 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2134
2135 ttwu_do_wakeup(rq, p, 0, cookie);
2136 if (schedstat_enabled())
2137 ttwu_stat(p, smp_processor_id(), 0);
2138 out:
2139 raw_spin_unlock(&p->pi_lock);
2140 }
2141
2142 /**
2143 * wake_up_process - Wake up a specific process
2144 * @p: The process to be woken up.
2145 *
2146 * Attempt to wake up the nominated process and move it to the set of runnable
2147 * processes.
2148 *
2149 * Return: 1 if the process was woken up, 0 if it was already running.
2150 *
2151 * It may be assumed that this function implies a write memory barrier before
2152 * changing the task state if and only if any tasks are woken up.
2153 */
2154 int wake_up_process(struct task_struct *p)
2155 {
2156 return try_to_wake_up(p, TASK_NORMAL, 0);
2157 }
2158 EXPORT_SYMBOL(wake_up_process);
2159
2160 int wake_up_state(struct task_struct *p, unsigned int state)
2161 {
2162 return try_to_wake_up(p, state, 0);
2163 }
2164
2165 /*
2166 * This function clears the sched_dl_entity static params.
2167 */
2168 void __dl_clear_params(struct task_struct *p)
2169 {
2170 struct sched_dl_entity *dl_se = &p->dl;
2171
2172 dl_se->dl_runtime = 0;
2173 dl_se->dl_deadline = 0;
2174 dl_se->dl_period = 0;
2175 dl_se->flags = 0;
2176 dl_se->dl_bw = 0;
2177
2178 dl_se->dl_throttled = 0;
2179 dl_se->dl_yielded = 0;
2180 }
2181
2182 /*
2183 * Perform scheduler related setup for a newly forked process p.
2184 * p is forked by current.
2185 *
2186 * __sched_fork() is basic setup used by init_idle() too:
2187 */
2188 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2189 {
2190 p->on_rq = 0;
2191
2192 p->se.on_rq = 0;
2193 p->se.exec_start = 0;
2194 p->se.sum_exec_runtime = 0;
2195 p->se.prev_sum_exec_runtime = 0;
2196 p->se.nr_migrations = 0;
2197 p->se.vruntime = 0;
2198 INIT_LIST_HEAD(&p->se.group_node);
2199
2200 #ifdef CONFIG_FAIR_GROUP_SCHED
2201 p->se.cfs_rq = NULL;
2202 #endif
2203
2204 #ifdef CONFIG_SCHEDSTATS
2205 /* Even if schedstat is disabled, there should not be garbage */
2206 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2207 #endif
2208
2209 RB_CLEAR_NODE(&p->dl.rb_node);
2210 init_dl_task_timer(&p->dl);
2211 __dl_clear_params(p);
2212
2213 INIT_LIST_HEAD(&p->rt.run_list);
2214 p->rt.timeout = 0;
2215 p->rt.time_slice = sched_rr_timeslice;
2216 p->rt.on_rq = 0;
2217 p->rt.on_list = 0;
2218
2219 #ifdef CONFIG_PREEMPT_NOTIFIERS
2220 INIT_HLIST_HEAD(&p->preempt_notifiers);
2221 #endif
2222
2223 #ifdef CONFIG_NUMA_BALANCING
2224 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2225 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2226 p->mm->numa_scan_seq = 0;
2227 }
2228
2229 if (clone_flags & CLONE_VM)
2230 p->numa_preferred_nid = current->numa_preferred_nid;
2231 else
2232 p->numa_preferred_nid = -1;
2233
2234 p->node_stamp = 0ULL;
2235 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2236 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2237 p->numa_work.next = &p->numa_work;
2238 p->numa_faults = NULL;
2239 p->last_task_numa_placement = 0;
2240 p->last_sum_exec_runtime = 0;
2241
2242 p->numa_group = NULL;
2243 #endif /* CONFIG_NUMA_BALANCING */
2244 }
2245
2246 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2247
2248 #ifdef CONFIG_NUMA_BALANCING
2249
2250 void set_numabalancing_state(bool enabled)
2251 {
2252 if (enabled)
2253 static_branch_enable(&sched_numa_balancing);
2254 else
2255 static_branch_disable(&sched_numa_balancing);
2256 }
2257
2258 #ifdef CONFIG_PROC_SYSCTL
2259 int sysctl_numa_balancing(struct ctl_table *table, int write,
2260 void __user *buffer, size_t *lenp, loff_t *ppos)
2261 {
2262 struct ctl_table t;
2263 int err;
2264 int state = static_branch_likely(&sched_numa_balancing);
2265
2266 if (write && !capable(CAP_SYS_ADMIN))
2267 return -EPERM;
2268
2269 t = *table;
2270 t.data = &state;
2271 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2272 if (err < 0)
2273 return err;
2274 if (write)
2275 set_numabalancing_state(state);
2276 return err;
2277 }
2278 #endif
2279 #endif
2280
2281 #ifdef CONFIG_SCHEDSTATS
2282
2283 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2284 static bool __initdata __sched_schedstats = false;
2285
2286 static void set_schedstats(bool enabled)
2287 {
2288 if (enabled)
2289 static_branch_enable(&sched_schedstats);
2290 else
2291 static_branch_disable(&sched_schedstats);
2292 }
2293
2294 void force_schedstat_enabled(void)
2295 {
2296 if (!schedstat_enabled()) {
2297 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2298 static_branch_enable(&sched_schedstats);
2299 }
2300 }
2301
2302 static int __init setup_schedstats(char *str)
2303 {
2304 int ret = 0;
2305 if (!str)
2306 goto out;
2307
2308 /*
2309 * This code is called before jump labels have been set up, so we can't
2310 * change the static branch directly just yet. Instead set a temporary
2311 * variable so init_schedstats() can do it later.
2312 */
2313 if (!strcmp(str, "enable")) {
2314 __sched_schedstats = true;
2315 ret = 1;
2316 } else if (!strcmp(str, "disable")) {
2317 __sched_schedstats = false;
2318 ret = 1;
2319 }
2320 out:
2321 if (!ret)
2322 pr_warn("Unable to parse schedstats=\n");
2323
2324 return ret;
2325 }
2326 __setup("schedstats=", setup_schedstats);
2327
2328 static void __init init_schedstats(void)
2329 {
2330 set_schedstats(__sched_schedstats);
2331 }
2332
2333 #ifdef CONFIG_PROC_SYSCTL
2334 int sysctl_schedstats(struct ctl_table *table, int write,
2335 void __user *buffer, size_t *lenp, loff_t *ppos)
2336 {
2337 struct ctl_table t;
2338 int err;
2339 int state = static_branch_likely(&sched_schedstats);
2340
2341 if (write && !capable(CAP_SYS_ADMIN))
2342 return -EPERM;
2343
2344 t = *table;
2345 t.data = &state;
2346 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2347 if (err < 0)
2348 return err;
2349 if (write)
2350 set_schedstats(state);
2351 return err;
2352 }
2353 #endif /* CONFIG_PROC_SYSCTL */
2354 #else /* !CONFIG_SCHEDSTATS */
2355 static inline void init_schedstats(void) {}
2356 #endif /* CONFIG_SCHEDSTATS */
2357
2358 /*
2359 * fork()/clone()-time setup:
2360 */
2361 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2362 {
2363 unsigned long flags;
2364 int cpu = get_cpu();
2365
2366 __sched_fork(clone_flags, p);
2367 /*
2368 * We mark the process as NEW here. This guarantees that
2369 * nobody will actually run it, and a signal or other external
2370 * event cannot wake it up and insert it on the runqueue either.
2371 */
2372 p->state = TASK_NEW;
2373
2374 /*
2375 * Make sure we do not leak PI boosting priority to the child.
2376 */
2377 p->prio = current->normal_prio;
2378
2379 /*
2380 * Revert to default priority/policy on fork if requested.
2381 */
2382 if (unlikely(p->sched_reset_on_fork)) {
2383 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2384 p->policy = SCHED_NORMAL;
2385 p->static_prio = NICE_TO_PRIO(0);
2386 p->rt_priority = 0;
2387 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2388 p->static_prio = NICE_TO_PRIO(0);
2389
2390 p->prio = p->normal_prio = __normal_prio(p);
2391 set_load_weight(p);
2392
2393 /*
2394 * We don't need the reset flag anymore after the fork. It has
2395 * fulfilled its duty:
2396 */
2397 p->sched_reset_on_fork = 0;
2398 }
2399
2400 if (dl_prio(p->prio)) {
2401 put_cpu();
2402 return -EAGAIN;
2403 } else if (rt_prio(p->prio)) {
2404 p->sched_class = &rt_sched_class;
2405 } else {
2406 p->sched_class = &fair_sched_class;
2407 }
2408
2409 init_entity_runnable_average(&p->se);
2410
2411 /*
2412 * The child is not yet in the pid-hash so no cgroup attach races,
2413 * and the cgroup is pinned to this child due to cgroup_fork()
2414 * is ran before sched_fork().
2415 *
2416 * Silence PROVE_RCU.
2417 */
2418 raw_spin_lock_irqsave(&p->pi_lock, flags);
2419 /*
2420 * We're setting the cpu for the first time, we don't migrate,
2421 * so use __set_task_cpu().
2422 */
2423 __set_task_cpu(p, cpu);
2424 if (p->sched_class->task_fork)
2425 p->sched_class->task_fork(p);
2426 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2427
2428 #ifdef CONFIG_SCHED_INFO
2429 if (likely(sched_info_on()))
2430 memset(&p->sched_info, 0, sizeof(p->sched_info));
2431 #endif
2432 #if defined(CONFIG_SMP)
2433 p->on_cpu = 0;
2434 #endif
2435 init_task_preempt_count(p);
2436 #ifdef CONFIG_SMP
2437 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2438 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2439 #endif
2440
2441 put_cpu();
2442 return 0;
2443 }
2444
2445 unsigned long to_ratio(u64 period, u64 runtime)
2446 {
2447 if (runtime == RUNTIME_INF)
2448 return 1ULL << 20;
2449
2450 /*
2451 * Doing this here saves a lot of checks in all
2452 * the calling paths, and returning zero seems
2453 * safe for them anyway.
2454 */
2455 if (period == 0)
2456 return 0;
2457
2458 return div64_u64(runtime << 20, period);
2459 }
2460
2461 #ifdef CONFIG_SMP
2462 inline struct dl_bw *dl_bw_of(int i)
2463 {
2464 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2465 "sched RCU must be held");
2466 return &cpu_rq(i)->rd->dl_bw;
2467 }
2468
2469 static inline int dl_bw_cpus(int i)
2470 {
2471 struct root_domain *rd = cpu_rq(i)->rd;
2472 int cpus = 0;
2473
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
2476 for_each_cpu_and(i, rd->span, cpu_active_mask)
2477 cpus++;
2478
2479 return cpus;
2480 }
2481 #else
2482 inline struct dl_bw *dl_bw_of(int i)
2483 {
2484 return &cpu_rq(i)->dl.dl_bw;
2485 }
2486
2487 static inline int dl_bw_cpus(int i)
2488 {
2489 return 1;
2490 }
2491 #endif
2492
2493 /*
2494 * We must be sure that accepting a new task (or allowing changing the
2495 * parameters of an existing one) is consistent with the bandwidth
2496 * constraints. If yes, this function also accordingly updates the currently
2497 * allocated bandwidth to reflect the new situation.
2498 *
2499 * This function is called while holding p's rq->lock.
2500 *
2501 * XXX we should delay bw change until the task's 0-lag point, see
2502 * __setparam_dl().
2503 */
2504 static int dl_overflow(struct task_struct *p, int policy,
2505 const struct sched_attr *attr)
2506 {
2507
2508 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2509 u64 period = attr->sched_period ?: attr->sched_deadline;
2510 u64 runtime = attr->sched_runtime;
2511 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2512 int cpus, err = -1;
2513
2514 /* !deadline task may carry old deadline bandwidth */
2515 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2516 return 0;
2517
2518 /*
2519 * Either if a task, enters, leave, or stays -deadline but changes
2520 * its parameters, we may need to update accordingly the total
2521 * allocated bandwidth of the container.
2522 */
2523 raw_spin_lock(&dl_b->lock);
2524 cpus = dl_bw_cpus(task_cpu(p));
2525 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2526 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2527 __dl_add(dl_b, new_bw);
2528 err = 0;
2529 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2530 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2531 __dl_clear(dl_b, p->dl.dl_bw);
2532 __dl_add(dl_b, new_bw);
2533 err = 0;
2534 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2535 __dl_clear(dl_b, p->dl.dl_bw);
2536 err = 0;
2537 }
2538 raw_spin_unlock(&dl_b->lock);
2539
2540 return err;
2541 }
2542
2543 extern void init_dl_bw(struct dl_bw *dl_b);
2544
2545 /*
2546 * wake_up_new_task - wake up a newly created task for the first time.
2547 *
2548 * This function will do some initial scheduler statistics housekeeping
2549 * that must be done for every newly created context, then puts the task
2550 * on the runqueue and wakes it.
2551 */
2552 void wake_up_new_task(struct task_struct *p)
2553 {
2554 struct rq_flags rf;
2555 struct rq *rq;
2556
2557 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2558 p->state = TASK_RUNNING;
2559 #ifdef CONFIG_SMP
2560 /*
2561 * Fork balancing, do it here and not earlier because:
2562 * - cpus_allowed can change in the fork path
2563 * - any previously selected cpu might disappear through hotplug
2564 *
2565 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2566 * as we're not fully set-up yet.
2567 */
2568 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2569 #endif
2570 rq = __task_rq_lock(p, &rf);
2571 post_init_entity_util_avg(&p->se);
2572
2573 activate_task(rq, p, 0);
2574 p->on_rq = TASK_ON_RQ_QUEUED;
2575 trace_sched_wakeup_new(p);
2576 check_preempt_curr(rq, p, WF_FORK);
2577 #ifdef CONFIG_SMP
2578 if (p->sched_class->task_woken) {
2579 /*
2580 * Nothing relies on rq->lock after this, so its fine to
2581 * drop it.
2582 */
2583 lockdep_unpin_lock(&rq->lock, rf.cookie);
2584 p->sched_class->task_woken(rq, p);
2585 lockdep_repin_lock(&rq->lock, rf.cookie);
2586 }
2587 #endif
2588 task_rq_unlock(rq, p, &rf);
2589 }
2590
2591 #ifdef CONFIG_PREEMPT_NOTIFIERS
2592
2593 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2594
2595 void preempt_notifier_inc(void)
2596 {
2597 static_key_slow_inc(&preempt_notifier_key);
2598 }
2599 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2600
2601 void preempt_notifier_dec(void)
2602 {
2603 static_key_slow_dec(&preempt_notifier_key);
2604 }
2605 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2606
2607 /**
2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2609 * @notifier: notifier struct to register
2610 */
2611 void preempt_notifier_register(struct preempt_notifier *notifier)
2612 {
2613 if (!static_key_false(&preempt_notifier_key))
2614 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2615
2616 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2617 }
2618 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619
2620 /**
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
2622 * @notifier: notifier struct to unregister
2623 *
2624 * This is *not* safe to call from within a preemption notifier.
2625 */
2626 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2627 {
2628 hlist_del(&notifier->link);
2629 }
2630 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2631
2632 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633 {
2634 struct preempt_notifier *notifier;
2635
2636 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2637 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2638 }
2639
2640 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2641 {
2642 if (static_key_false(&preempt_notifier_key))
2643 __fire_sched_in_preempt_notifiers(curr);
2644 }
2645
2646 static void
2647 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 struct task_struct *next)
2649 {
2650 struct preempt_notifier *notifier;
2651
2652 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2653 notifier->ops->sched_out(notifier, next);
2654 }
2655
2656 static __always_inline void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659 {
2660 if (static_key_false(&preempt_notifier_key))
2661 __fire_sched_out_preempt_notifiers(curr, next);
2662 }
2663
2664 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2665
2666 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2667 {
2668 }
2669
2670 static inline void
2671 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673 {
2674 }
2675
2676 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2677
2678 /**
2679 * prepare_task_switch - prepare to switch tasks
2680 * @rq: the runqueue preparing to switch
2681 * @prev: the current task that is being switched out
2682 * @next: the task we are going to switch to.
2683 *
2684 * This is called with the rq lock held and interrupts off. It must
2685 * be paired with a subsequent finish_task_switch after the context
2686 * switch.
2687 *
2688 * prepare_task_switch sets up locking and calls architecture specific
2689 * hooks.
2690 */
2691 static inline void
2692 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2693 struct task_struct *next)
2694 {
2695 sched_info_switch(rq, prev, next);
2696 perf_event_task_sched_out(prev, next);
2697 rseq_sched_out(prev);
2698 fire_sched_out_preempt_notifiers(prev, next);
2699 prepare_lock_switch(rq, next);
2700 prepare_arch_switch(next);
2701 }
2702
2703 /**
2704 * finish_task_switch - clean up after a task-switch
2705 * @prev: the thread we just switched away from.
2706 *
2707 * finish_task_switch must be called after the context switch, paired
2708 * with a prepare_task_switch call before the context switch.
2709 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2710 * and do any other architecture-specific cleanup actions.
2711 *
2712 * Note that we may have delayed dropping an mm in context_switch(). If
2713 * so, we finish that here outside of the runqueue lock. (Doing it
2714 * with the lock held can cause deadlocks; see schedule() for
2715 * details.)
2716 *
2717 * The context switch have flipped the stack from under us and restored the
2718 * local variables which were saved when this task called schedule() in the
2719 * past. prev == current is still correct but we need to recalculate this_rq
2720 * because prev may have moved to another CPU.
2721 */
2722 static struct rq *finish_task_switch(struct task_struct *prev)
2723 __releases(rq->lock)
2724 {
2725 struct rq *rq = this_rq();
2726 struct mm_struct *mm = rq->prev_mm;
2727 long prev_state;
2728
2729 /*
2730 * The previous task will have left us with a preempt_count of 2
2731 * because it left us after:
2732 *
2733 * schedule()
2734 * preempt_disable(); // 1
2735 * __schedule()
2736 * raw_spin_lock_irq(&rq->lock) // 2
2737 *
2738 * Also, see FORK_PREEMPT_COUNT.
2739 */
2740 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2741 "corrupted preempt_count: %s/%d/0x%x\n",
2742 current->comm, current->pid, preempt_count()))
2743 preempt_count_set(FORK_PREEMPT_COUNT);
2744
2745 rq->prev_mm = NULL;
2746
2747 /*
2748 * A task struct has one reference for the use as "current".
2749 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2750 * schedule one last time. The schedule call will never return, and
2751 * the scheduled task must drop that reference.
2752 *
2753 * We must observe prev->state before clearing prev->on_cpu (in
2754 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2755 * running on another CPU and we could rave with its RUNNING -> DEAD
2756 * transition, resulting in a double drop.
2757 */
2758 prev_state = prev->state;
2759 vtime_task_switch(prev);
2760 perf_event_task_sched_in(prev, current);
2761 finish_lock_switch(rq, prev);
2762 finish_arch_post_lock_switch();
2763
2764 fire_sched_in_preempt_notifiers(current);
2765 if (mm)
2766 mmdrop(mm);
2767 if (unlikely(prev_state == TASK_DEAD)) {
2768 if (prev->sched_class->task_dead)
2769 prev->sched_class->task_dead(prev);
2770
2771 /*
2772 * Remove function-return probe instances associated with this
2773 * task and put them back on the free list.
2774 */
2775 kprobe_flush_task(prev);
2776 put_task_struct(prev);
2777 }
2778
2779 tick_nohz_task_switch();
2780 return rq;
2781 }
2782
2783 #ifdef CONFIG_SMP
2784
2785 /* rq->lock is NOT held, but preemption is disabled */
2786 static void __balance_callback(struct rq *rq)
2787 {
2788 struct callback_head *head, *next;
2789 void (*func)(struct rq *rq);
2790 unsigned long flags;
2791
2792 raw_spin_lock_irqsave(&rq->lock, flags);
2793 head = rq->balance_callback;
2794 rq->balance_callback = NULL;
2795 while (head) {
2796 func = (void (*)(struct rq *))head->func;
2797 next = head->next;
2798 head->next = NULL;
2799 head = next;
2800
2801 func(rq);
2802 }
2803 raw_spin_unlock_irqrestore(&rq->lock, flags);
2804 }
2805
2806 static inline void balance_callback(struct rq *rq)
2807 {
2808 if (unlikely(rq->balance_callback))
2809 __balance_callback(rq);
2810 }
2811
2812 #else
2813
2814 static inline void balance_callback(struct rq *rq)
2815 {
2816 }
2817
2818 #endif
2819
2820 /**
2821 * schedule_tail - first thing a freshly forked thread must call.
2822 * @prev: the thread we just switched away from.
2823 */
2824 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2825 __releases(rq->lock)
2826 {
2827 struct rq *rq;
2828
2829 /*
2830 * New tasks start with FORK_PREEMPT_COUNT, see there and
2831 * finish_task_switch() for details.
2832 *
2833 * finish_task_switch() will drop rq->lock() and lower preempt_count
2834 * and the preempt_enable() will end up enabling preemption (on
2835 * PREEMPT_COUNT kernels).
2836 */
2837
2838 rq = finish_task_switch(prev);
2839 balance_callback(rq);
2840 preempt_enable();
2841
2842 if (current->set_child_tid)
2843 put_user(task_pid_vnr(current), current->set_child_tid);
2844 }
2845
2846 /*
2847 * context_switch - switch to the new MM and the new thread's register state.
2848 */
2849 static __always_inline struct rq *
2850 context_switch(struct rq *rq, struct task_struct *prev,
2851 struct task_struct *next, struct pin_cookie cookie)
2852 {
2853 struct mm_struct *mm, *oldmm;
2854
2855 prepare_task_switch(rq, prev, next);
2856
2857 mm = next->mm;
2858 oldmm = prev->active_mm;
2859 /*
2860 * For paravirt, this is coupled with an exit in switch_to to
2861 * combine the page table reload and the switch backend into
2862 * one hypercall.
2863 */
2864 arch_start_context_switch(prev);
2865
2866 if (!mm) {
2867 next->active_mm = oldmm;
2868 atomic_inc(&oldmm->mm_count);
2869 enter_lazy_tlb(oldmm, next);
2870 } else
2871 switch_mm_irqs_off(oldmm, mm, next);
2872
2873 if (!prev->mm) {
2874 prev->active_mm = NULL;
2875 rq->prev_mm = oldmm;
2876 }
2877 /*
2878 * Since the runqueue lock will be released by the next
2879 * task (which is an invalid locking op but in the case
2880 * of the scheduler it's an obvious special-case), so we
2881 * do an early lockdep release here:
2882 */
2883 lockdep_unpin_lock(&rq->lock, cookie);
2884 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2885
2886 /* Here we just switch the register state and the stack. */
2887 switch_to(prev, next, prev);
2888 barrier();
2889
2890 return finish_task_switch(prev);
2891 }
2892
2893 /*
2894 * nr_running and nr_context_switches:
2895 *
2896 * externally visible scheduler statistics: current number of runnable
2897 * threads, total number of context switches performed since bootup.
2898 */
2899 unsigned long nr_running(void)
2900 {
2901 unsigned long i, sum = 0;
2902
2903 for_each_online_cpu(i)
2904 sum += cpu_rq(i)->nr_running;
2905
2906 return sum;
2907 }
2908
2909 /*
2910 * Check if only the current task is running on the cpu.
2911 *
2912 * Caution: this function does not check that the caller has disabled
2913 * preemption, thus the result might have a time-of-check-to-time-of-use
2914 * race. The caller is responsible to use it correctly, for example:
2915 *
2916 * - from a non-preemptable section (of course)
2917 *
2918 * - from a thread that is bound to a single CPU
2919 *
2920 * - in a loop with very short iterations (e.g. a polling loop)
2921 */
2922 bool single_task_running(void)
2923 {
2924 return raw_rq()->nr_running == 1;
2925 }
2926 EXPORT_SYMBOL(single_task_running);
2927
2928 unsigned long long nr_context_switches(void)
2929 {
2930 int i;
2931 unsigned long long sum = 0;
2932
2933 for_each_possible_cpu(i)
2934 sum += cpu_rq(i)->nr_switches;
2935
2936 return sum;
2937 }
2938
2939 unsigned long nr_iowait(void)
2940 {
2941 unsigned long i, sum = 0;
2942
2943 for_each_possible_cpu(i)
2944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2945
2946 return sum;
2947 }
2948
2949 unsigned long nr_iowait_cpu(int cpu)
2950 {
2951 struct rq *this = cpu_rq(cpu);
2952 return atomic_read(&this->nr_iowait);
2953 }
2954
2955 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2956 {
2957 struct rq *rq = this_rq();
2958 *nr_waiters = atomic_read(&rq->nr_iowait);
2959 *load = rq->load.weight;
2960 }
2961
2962 #ifdef CONFIG_SMP
2963
2964 /*
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
2967 */
2968 void sched_exec(void)
2969 {
2970 struct task_struct *p = current;
2971 unsigned long flags;
2972 int dest_cpu;
2973
2974 raw_spin_lock_irqsave(&p->pi_lock, flags);
2975 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2976 if (dest_cpu == smp_processor_id())
2977 goto unlock;
2978
2979 if (likely(cpu_active(dest_cpu))) {
2980 struct migration_arg arg = { p, dest_cpu };
2981
2982 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2983 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2984 return;
2985 }
2986 unlock:
2987 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2988 }
2989
2990 #endif
2991
2992 DEFINE_PER_CPU(struct kernel_stat, kstat);
2993 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2994
2995 EXPORT_PER_CPU_SYMBOL(kstat);
2996 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2997
2998 /*
2999 * The function fair_sched_class.update_curr accesses the struct curr
3000 * and its field curr->exec_start; when called from task_sched_runtime(),
3001 * we observe a high rate of cache misses in practice.
3002 * Prefetching this data results in improved performance.
3003 */
3004 static inline void prefetch_curr_exec_start(struct task_struct *p)
3005 {
3006 #ifdef CONFIG_FAIR_GROUP_SCHED
3007 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3008 #else
3009 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3010 #endif
3011 prefetch(curr);
3012 prefetch(&curr->exec_start);
3013 }
3014
3015 /*
3016 * Return accounted runtime for the task.
3017 * In case the task is currently running, return the runtime plus current's
3018 * pending runtime that have not been accounted yet.
3019 */
3020 unsigned long long task_sched_runtime(struct task_struct *p)
3021 {
3022 struct rq_flags rf;
3023 struct rq *rq;
3024 u64 ns;
3025
3026 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3027 /*
3028 * 64-bit doesn't need locks to atomically read a 64bit value.
3029 * So we have a optimization chance when the task's delta_exec is 0.
3030 * Reading ->on_cpu is racy, but this is ok.
3031 *
3032 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3033 * If we race with it entering cpu, unaccounted time is 0. This is
3034 * indistinguishable from the read occurring a few cycles earlier.
3035 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3036 * been accounted, so we're correct here as well.
3037 */
3038 if (!p->on_cpu || !task_on_rq_queued(p))
3039 return p->se.sum_exec_runtime;
3040 #endif
3041
3042 rq = task_rq_lock(p, &rf);
3043 /*
3044 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3045 * project cycles that may never be accounted to this
3046 * thread, breaking clock_gettime().
3047 */
3048 if (task_current(rq, p) && task_on_rq_queued(p)) {
3049 prefetch_curr_exec_start(p);
3050 update_rq_clock(rq);
3051 p->sched_class->update_curr(rq);
3052 }
3053 ns = p->se.sum_exec_runtime;
3054 task_rq_unlock(rq, p, &rf);
3055
3056 return ns;
3057 }
3058
3059 /*
3060 * This function gets called by the timer code, with HZ frequency.
3061 * We call it with interrupts disabled.
3062 */
3063 void scheduler_tick(void)
3064 {
3065 int cpu = smp_processor_id();
3066 struct rq *rq = cpu_rq(cpu);
3067 struct task_struct *curr = rq->curr;
3068
3069 sched_clock_tick();
3070
3071 raw_spin_lock(&rq->lock);
3072 update_rq_clock(rq);
3073 curr->sched_class->task_tick(rq, curr, 0);
3074 cpu_load_update_active(rq);
3075 calc_global_load_tick(rq);
3076 raw_spin_unlock(&rq->lock);
3077
3078 perf_event_task_tick();
3079
3080 #ifdef CONFIG_SMP
3081 rq->idle_balance = idle_cpu(cpu);
3082 trigger_load_balance(rq);
3083 #endif
3084 rq_last_tick_reset(rq);
3085 }
3086
3087 #ifdef CONFIG_NO_HZ_FULL
3088 /**
3089 * scheduler_tick_max_deferment
3090 *
3091 * Keep at least one tick per second when a single
3092 * active task is running because the scheduler doesn't
3093 * yet completely support full dynticks environment.
3094 *
3095 * This makes sure that uptime, CFS vruntime, load
3096 * balancing, etc... continue to move forward, even
3097 * with a very low granularity.
3098 *
3099 * Return: Maximum deferment in nanoseconds.
3100 */
3101 u64 scheduler_tick_max_deferment(void)
3102 {
3103 struct rq *rq = this_rq();
3104 unsigned long next, now = READ_ONCE(jiffies);
3105
3106 next = rq->last_sched_tick + HZ;
3107
3108 if (time_before_eq(next, now))
3109 return 0;
3110
3111 return jiffies_to_nsecs(next - now);
3112 }
3113 #endif
3114
3115 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3116 defined(CONFIG_PREEMPT_TRACER))
3117 /*
3118 * If the value passed in is equal to the current preempt count
3119 * then we just disabled preemption. Start timing the latency.
3120 */
3121 static inline void preempt_latency_start(int val)
3122 {
3123 if (preempt_count() == val) {
3124 unsigned long ip = get_lock_parent_ip();
3125 #ifdef CONFIG_DEBUG_PREEMPT
3126 current->preempt_disable_ip = ip;
3127 #endif
3128 trace_preempt_off(CALLER_ADDR0, ip);
3129 }
3130 }
3131
3132 void preempt_count_add(int val)
3133 {
3134 #ifdef CONFIG_DEBUG_PREEMPT
3135 /*
3136 * Underflow?
3137 */
3138 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3139 return;
3140 #endif
3141 __preempt_count_add(val);
3142 #ifdef CONFIG_DEBUG_PREEMPT
3143 /*
3144 * Spinlock count overflowing soon?
3145 */
3146 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3147 PREEMPT_MASK - 10);
3148 #endif
3149 preempt_latency_start(val);
3150 }
3151 EXPORT_SYMBOL(preempt_count_add);
3152 NOKPROBE_SYMBOL(preempt_count_add);
3153
3154 /*
3155 * If the value passed in equals to the current preempt count
3156 * then we just enabled preemption. Stop timing the latency.
3157 */
3158 static inline void preempt_latency_stop(int val)
3159 {
3160 if (preempt_count() == val)
3161 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3162 }
3163
3164 void preempt_count_sub(int val)
3165 {
3166 #ifdef CONFIG_DEBUG_PREEMPT
3167 /*
3168 * Underflow?
3169 */
3170 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3171 return;
3172 /*
3173 * Is the spinlock portion underflowing?
3174 */
3175 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3176 !(preempt_count() & PREEMPT_MASK)))
3177 return;
3178 #endif
3179
3180 preempt_latency_stop(val);
3181 __preempt_count_sub(val);
3182 }
3183 EXPORT_SYMBOL(preempt_count_sub);
3184 NOKPROBE_SYMBOL(preempt_count_sub);
3185
3186 #else
3187 static inline void preempt_latency_start(int val) { }
3188 static inline void preempt_latency_stop(int val) { }
3189 #endif
3190
3191 /*
3192 * Print scheduling while atomic bug:
3193 */
3194 static noinline void __schedule_bug(struct task_struct *prev)
3195 {
3196 if (oops_in_progress)
3197 return;
3198
3199 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3200 prev->comm, prev->pid, preempt_count());
3201
3202 debug_show_held_locks(prev);
3203 print_modules();
3204 if (irqs_disabled())
3205 print_irqtrace_events(prev);
3206 #ifdef CONFIG_DEBUG_PREEMPT
3207 if (in_atomic_preempt_off()) {
3208 pr_err("Preemption disabled at:");
3209 print_ip_sym(current->preempt_disable_ip);
3210 pr_cont("\n");
3211 }
3212 #endif
3213 if (panic_on_warn)
3214 panic("scheduling while atomic\n");
3215
3216 dump_stack();
3217 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3218 }
3219
3220 /*
3221 * Various schedule()-time debugging checks and statistics:
3222 */
3223 static inline void schedule_debug(struct task_struct *prev)
3224 {
3225 #ifdef CONFIG_SCHED_STACK_END_CHECK
3226 if (task_stack_end_corrupted(prev))
3227 panic("corrupted stack end detected inside scheduler\n");
3228 #endif
3229
3230 if (unlikely(in_atomic_preempt_off())) {
3231 __schedule_bug(prev);
3232 preempt_count_set(PREEMPT_DISABLED);
3233 }
3234 rcu_sleep_check();
3235
3236 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3237
3238 schedstat_inc(this_rq(), sched_count);
3239 }
3240
3241 /*
3242 * Pick up the highest-prio task:
3243 */
3244 static inline struct task_struct *
3245 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3246 {
3247 const struct sched_class *class = &fair_sched_class;
3248 struct task_struct *p;
3249
3250 /*
3251 * Optimization: we know that if all tasks are in
3252 * the fair class we can call that function directly:
3253 */
3254 if (likely(prev->sched_class == class &&
3255 rq->nr_running == rq->cfs.h_nr_running)) {
3256 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3257 if (unlikely(p == RETRY_TASK))
3258 goto again;
3259
3260 /* assumes fair_sched_class->next == idle_sched_class */
3261 if (unlikely(!p))
3262 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3263
3264 return p;
3265 }
3266
3267 again:
3268 for_each_class(class) {
3269 p = class->pick_next_task(rq, prev, cookie);
3270 if (p) {
3271 if (unlikely(p == RETRY_TASK))
3272 goto again;
3273 return p;
3274 }
3275 }
3276
3277 BUG(); /* the idle class will always have a runnable task */
3278 }
3279
3280 /*
3281 * __schedule() is the main scheduler function.
3282 *
3283 * The main means of driving the scheduler and thus entering this function are:
3284 *
3285 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3286 *
3287 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3288 * paths. For example, see arch/x86/entry_64.S.
3289 *
3290 * To drive preemption between tasks, the scheduler sets the flag in timer
3291 * interrupt handler scheduler_tick().
3292 *
3293 * 3. Wakeups don't really cause entry into schedule(). They add a
3294 * task to the run-queue and that's it.
3295 *
3296 * Now, if the new task added to the run-queue preempts the current
3297 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3298 * called on the nearest possible occasion:
3299 *
3300 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3301 *
3302 * - in syscall or exception context, at the next outmost
3303 * preempt_enable(). (this might be as soon as the wake_up()'s
3304 * spin_unlock()!)
3305 *
3306 * - in IRQ context, return from interrupt-handler to
3307 * preemptible context
3308 *
3309 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3310 * then at the next:
3311 *
3312 * - cond_resched() call
3313 * - explicit schedule() call
3314 * - return from syscall or exception to user-space
3315 * - return from interrupt-handler to user-space
3316 *
3317 * WARNING: must be called with preemption disabled!
3318 */
3319 static void __sched notrace __schedule(bool preempt)
3320 {
3321 struct task_struct *prev, *next;
3322 unsigned long *switch_count;
3323 struct pin_cookie cookie;
3324 struct rq *rq;
3325 int cpu;
3326
3327 cpu = smp_processor_id();
3328 rq = cpu_rq(cpu);
3329 prev = rq->curr;
3330
3331 /*
3332 * do_exit() calls schedule() with preemption disabled as an exception;
3333 * however we must fix that up, otherwise the next task will see an
3334 * inconsistent (higher) preempt count.
3335 *
3336 * It also avoids the below schedule_debug() test from complaining
3337 * about this.
3338 */
3339 if (unlikely(prev->state == TASK_DEAD))
3340 preempt_enable_no_resched_notrace();
3341
3342 schedule_debug(prev);
3343
3344 if (sched_feat(HRTICK))
3345 hrtick_clear(rq);
3346
3347 local_irq_disable();
3348 rcu_note_context_switch();
3349
3350 /*
3351 * Make sure that signal_pending_state()->signal_pending() below
3352 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3353 * done by the caller to avoid the race with signal_wake_up().
3354 */
3355 smp_mb__before_spinlock();
3356 raw_spin_lock(&rq->lock);
3357 cookie = lockdep_pin_lock(&rq->lock);
3358
3359 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3360
3361 switch_count = &prev->nivcsw;
3362 if (!preempt && prev->state) {
3363 if (unlikely(signal_pending_state(prev->state, prev))) {
3364 prev->state = TASK_RUNNING;
3365 } else {
3366 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3367 prev->on_rq = 0;
3368
3369 /*
3370 * If a worker went to sleep, notify and ask workqueue
3371 * whether it wants to wake up a task to maintain
3372 * concurrency.
3373 */
3374 if (prev->flags & PF_WQ_WORKER) {
3375 struct task_struct *to_wakeup;
3376
3377 to_wakeup = wq_worker_sleeping(prev);
3378 if (to_wakeup)
3379 try_to_wake_up_local(to_wakeup, cookie);
3380 }
3381 }
3382 switch_count = &prev->nvcsw;
3383 }
3384
3385 if (task_on_rq_queued(prev))
3386 update_rq_clock(rq);
3387
3388 next = pick_next_task(rq, prev, cookie);
3389 clear_tsk_need_resched(prev);
3390 clear_preempt_need_resched();
3391 rq->clock_skip_update = 0;
3392
3393 if (likely(prev != next)) {
3394 rq->nr_switches++;
3395 rq->curr = next;
3396 ++*switch_count;
3397
3398 trace_sched_switch(preempt, prev, next);
3399 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3400 } else {
3401 lockdep_unpin_lock(&rq->lock, cookie);
3402 raw_spin_unlock_irq(&rq->lock);
3403 }
3404
3405 balance_callback(rq);
3406 }
3407 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3408
3409 static inline void sched_submit_work(struct task_struct *tsk)
3410 {
3411 if (!tsk->state || tsk_is_pi_blocked(tsk))
3412 return;
3413 /*
3414 * If we are going to sleep and we have plugged IO queued,
3415 * make sure to submit it to avoid deadlocks.
3416 */
3417 if (blk_needs_flush_plug(tsk))
3418 blk_schedule_flush_plug(tsk);
3419 }
3420
3421 asmlinkage __visible void __sched schedule(void)
3422 {
3423 struct task_struct *tsk = current;
3424
3425 sched_submit_work(tsk);
3426 do {
3427 preempt_disable();
3428 __schedule(false);
3429 sched_preempt_enable_no_resched();
3430 } while (need_resched());
3431 }
3432 EXPORT_SYMBOL(schedule);
3433
3434 #ifdef CONFIG_CONTEXT_TRACKING
3435 asmlinkage __visible void __sched schedule_user(void)
3436 {
3437 /*
3438 * If we come here after a random call to set_need_resched(),
3439 * or we have been woken up remotely but the IPI has not yet arrived,
3440 * we haven't yet exited the RCU idle mode. Do it here manually until
3441 * we find a better solution.
3442 *
3443 * NB: There are buggy callers of this function. Ideally we
3444 * should warn if prev_state != CONTEXT_USER, but that will trigger
3445 * too frequently to make sense yet.
3446 */
3447 enum ctx_state prev_state = exception_enter();
3448 schedule();
3449 exception_exit(prev_state);
3450 }
3451 #endif
3452
3453 /**
3454 * schedule_preempt_disabled - called with preemption disabled
3455 *
3456 * Returns with preemption disabled. Note: preempt_count must be 1
3457 */
3458 void __sched schedule_preempt_disabled(void)
3459 {
3460 sched_preempt_enable_no_resched();
3461 schedule();
3462 preempt_disable();
3463 }
3464
3465 static void __sched notrace preempt_schedule_common(void)
3466 {
3467 do {
3468 /*
3469 * Because the function tracer can trace preempt_count_sub()
3470 * and it also uses preempt_enable/disable_notrace(), if
3471 * NEED_RESCHED is set, the preempt_enable_notrace() called
3472 * by the function tracer will call this function again and
3473 * cause infinite recursion.
3474 *
3475 * Preemption must be disabled here before the function
3476 * tracer can trace. Break up preempt_disable() into two
3477 * calls. One to disable preemption without fear of being
3478 * traced. The other to still record the preemption latency,
3479 * which can also be traced by the function tracer.
3480 */
3481 preempt_disable_notrace();
3482 preempt_latency_start(1);
3483 __schedule(true);
3484 preempt_latency_stop(1);
3485 preempt_enable_no_resched_notrace();
3486
3487 /*
3488 * Check again in case we missed a preemption opportunity
3489 * between schedule and now.
3490 */
3491 } while (need_resched());
3492 }
3493
3494 #ifdef CONFIG_PREEMPT
3495 /*
3496 * this is the entry point to schedule() from in-kernel preemption
3497 * off of preempt_enable. Kernel preemptions off return from interrupt
3498 * occur there and call schedule directly.
3499 */
3500 asmlinkage __visible void __sched notrace preempt_schedule(void)
3501 {
3502 /*
3503 * If there is a non-zero preempt_count or interrupts are disabled,
3504 * we do not want to preempt the current task. Just return..
3505 */
3506 if (likely(!preemptible()))
3507 return;
3508
3509 preempt_schedule_common();
3510 }
3511 NOKPROBE_SYMBOL(preempt_schedule);
3512 EXPORT_SYMBOL(preempt_schedule);
3513
3514 /**
3515 * preempt_schedule_notrace - preempt_schedule called by tracing
3516 *
3517 * The tracing infrastructure uses preempt_enable_notrace to prevent
3518 * recursion and tracing preempt enabling caused by the tracing
3519 * infrastructure itself. But as tracing can happen in areas coming
3520 * from userspace or just about to enter userspace, a preempt enable
3521 * can occur before user_exit() is called. This will cause the scheduler
3522 * to be called when the system is still in usermode.
3523 *
3524 * To prevent this, the preempt_enable_notrace will use this function
3525 * instead of preempt_schedule() to exit user context if needed before
3526 * calling the scheduler.
3527 */
3528 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3529 {
3530 enum ctx_state prev_ctx;
3531
3532 if (likely(!preemptible()))
3533 return;
3534
3535 do {
3536 /*
3537 * Because the function tracer can trace preempt_count_sub()
3538 * and it also uses preempt_enable/disable_notrace(), if
3539 * NEED_RESCHED is set, the preempt_enable_notrace() called
3540 * by the function tracer will call this function again and
3541 * cause infinite recursion.
3542 *
3543 * Preemption must be disabled here before the function
3544 * tracer can trace. Break up preempt_disable() into two
3545 * calls. One to disable preemption without fear of being
3546 * traced. The other to still record the preemption latency,
3547 * which can also be traced by the function tracer.
3548 */
3549 preempt_disable_notrace();
3550 preempt_latency_start(1);
3551 /*
3552 * Needs preempt disabled in case user_exit() is traced
3553 * and the tracer calls preempt_enable_notrace() causing
3554 * an infinite recursion.
3555 */
3556 prev_ctx = exception_enter();
3557 __schedule(true);
3558 exception_exit(prev_ctx);
3559
3560 preempt_latency_stop(1);
3561 preempt_enable_no_resched_notrace();
3562 } while (need_resched());
3563 }
3564 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3565
3566 #endif /* CONFIG_PREEMPT */
3567
3568 /*
3569 * this is the entry point to schedule() from kernel preemption
3570 * off of irq context.
3571 * Note, that this is called and return with irqs disabled. This will
3572 * protect us against recursive calling from irq.
3573 */
3574 asmlinkage __visible void __sched preempt_schedule_irq(void)
3575 {
3576 enum ctx_state prev_state;
3577
3578 /* Catch callers which need to be fixed */
3579 BUG_ON(preempt_count() || !irqs_disabled());
3580
3581 prev_state = exception_enter();
3582
3583 do {
3584 preempt_disable();
3585 local_irq_enable();
3586 __schedule(true);
3587 local_irq_disable();
3588 sched_preempt_enable_no_resched();
3589 } while (need_resched());
3590
3591 exception_exit(prev_state);
3592 }
3593
3594 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3595 void *key)
3596 {
3597 return try_to_wake_up(curr->private, mode, wake_flags);
3598 }
3599 EXPORT_SYMBOL(default_wake_function);
3600
3601 #ifdef CONFIG_RT_MUTEXES
3602
3603 /*
3604 * rt_mutex_setprio - set the current priority of a task
3605 * @p: task
3606 * @prio: prio value (kernel-internal form)
3607 *
3608 * This function changes the 'effective' priority of a task. It does
3609 * not touch ->normal_prio like __setscheduler().
3610 *
3611 * Used by the rt_mutex code to implement priority inheritance
3612 * logic. Call site only calls if the priority of the task changed.
3613 */
3614 void rt_mutex_setprio(struct task_struct *p, int prio)
3615 {
3616 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3617 const struct sched_class *prev_class;
3618 struct rq_flags rf;
3619 struct rq *rq;
3620
3621 BUG_ON(prio > MAX_PRIO);
3622
3623 rq = __task_rq_lock(p, &rf);
3624
3625 /*
3626 * Idle task boosting is a nono in general. There is one
3627 * exception, when PREEMPT_RT and NOHZ is active:
3628 *
3629 * The idle task calls get_next_timer_interrupt() and holds
3630 * the timer wheel base->lock on the CPU and another CPU wants
3631 * to access the timer (probably to cancel it). We can safely
3632 * ignore the boosting request, as the idle CPU runs this code
3633 * with interrupts disabled and will complete the lock
3634 * protected section without being interrupted. So there is no
3635 * real need to boost.
3636 */
3637 if (unlikely(p == rq->idle)) {
3638 WARN_ON(p != rq->curr);
3639 WARN_ON(p->pi_blocked_on);
3640 goto out_unlock;
3641 }
3642
3643 trace_sched_pi_setprio(p, prio);
3644 oldprio = p->prio;
3645
3646 if (oldprio == prio)
3647 queue_flag &= ~DEQUEUE_MOVE;
3648
3649 prev_class = p->sched_class;
3650 queued = task_on_rq_queued(p);
3651 running = task_current(rq, p);
3652 if (queued)
3653 dequeue_task(rq, p, queue_flag);
3654 if (running)
3655 put_prev_task(rq, p);
3656
3657 /*
3658 * Boosting condition are:
3659 * 1. -rt task is running and holds mutex A
3660 * --> -dl task blocks on mutex A
3661 *
3662 * 2. -dl task is running and holds mutex A
3663 * --> -dl task blocks on mutex A and could preempt the
3664 * running task
3665 */
3666 if (dl_prio(prio)) {
3667 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3668 if (!dl_prio(p->normal_prio) ||
3669 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3670 p->dl.dl_boosted = 1;
3671 queue_flag |= ENQUEUE_REPLENISH;
3672 } else
3673 p->dl.dl_boosted = 0;
3674 p->sched_class = &dl_sched_class;
3675 } else if (rt_prio(prio)) {
3676 if (dl_prio(oldprio))
3677 p->dl.dl_boosted = 0;
3678 if (oldprio < prio)
3679 queue_flag |= ENQUEUE_HEAD;
3680 p->sched_class = &rt_sched_class;
3681 } else {
3682 if (dl_prio(oldprio))
3683 p->dl.dl_boosted = 0;
3684 if (rt_prio(oldprio))
3685 p->rt.timeout = 0;
3686 p->sched_class = &fair_sched_class;
3687 }
3688
3689 p->prio = prio;
3690
3691 if (running)
3692 p->sched_class->set_curr_task(rq);
3693 if (queued)
3694 enqueue_task(rq, p, queue_flag);
3695
3696 check_class_changed(rq, p, prev_class, oldprio);
3697 out_unlock:
3698 preempt_disable(); /* avoid rq from going away on us */
3699 __task_rq_unlock(rq, &rf);
3700
3701 balance_callback(rq);
3702 preempt_enable();
3703 }
3704 #endif
3705
3706 void set_user_nice(struct task_struct *p, long nice)
3707 {
3708 int old_prio, delta, queued;
3709 struct rq_flags rf;
3710 struct rq *rq;
3711
3712 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3713 return;
3714 /*
3715 * We have to be careful, if called from sys_setpriority(),
3716 * the task might be in the middle of scheduling on another CPU.
3717 */
3718 rq = task_rq_lock(p, &rf);
3719 /*
3720 * The RT priorities are set via sched_setscheduler(), but we still
3721 * allow the 'normal' nice value to be set - but as expected
3722 * it wont have any effect on scheduling until the task is
3723 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3724 */
3725 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3726 p->static_prio = NICE_TO_PRIO(nice);
3727 goto out_unlock;
3728 }
3729 queued = task_on_rq_queued(p);
3730 if (queued)
3731 dequeue_task(rq, p, DEQUEUE_SAVE);
3732
3733 p->static_prio = NICE_TO_PRIO(nice);
3734 set_load_weight(p);
3735 old_prio = p->prio;
3736 p->prio = effective_prio(p);
3737 delta = p->prio - old_prio;
3738
3739 if (queued) {
3740 enqueue_task(rq, p, ENQUEUE_RESTORE);
3741 /*
3742 * If the task increased its priority or is running and
3743 * lowered its priority, then reschedule its CPU:
3744 */
3745 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3746 resched_curr(rq);
3747 }
3748 out_unlock:
3749 task_rq_unlock(rq, p, &rf);
3750 }
3751 EXPORT_SYMBOL(set_user_nice);
3752
3753 /*
3754 * can_nice - check if a task can reduce its nice value
3755 * @p: task
3756 * @nice: nice value
3757 */
3758 int can_nice(const struct task_struct *p, const int nice)
3759 {
3760 /* convert nice value [19,-20] to rlimit style value [1,40] */
3761 int nice_rlim = nice_to_rlimit(nice);
3762
3763 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3764 capable(CAP_SYS_NICE));
3765 }
3766
3767 #ifdef __ARCH_WANT_SYS_NICE
3768
3769 /*
3770 * sys_nice - change the priority of the current process.
3771 * @increment: priority increment
3772 *
3773 * sys_setpriority is a more generic, but much slower function that
3774 * does similar things.
3775 */
3776 SYSCALL_DEFINE1(nice, int, increment)
3777 {
3778 long nice, retval;
3779
3780 /*
3781 * Setpriority might change our priority at the same moment.
3782 * We don't have to worry. Conceptually one call occurs first
3783 * and we have a single winner.
3784 */
3785 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3786 nice = task_nice(current) + increment;
3787
3788 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3789 if (increment < 0 && !can_nice(current, nice))
3790 return -EPERM;
3791
3792 retval = security_task_setnice(current, nice);
3793 if (retval)
3794 return retval;
3795
3796 set_user_nice(current, nice);
3797 return 0;
3798 }
3799
3800 #endif
3801
3802 /**
3803 * task_prio - return the priority value of a given task.
3804 * @p: the task in question.
3805 *
3806 * Return: The priority value as seen by users in /proc.
3807 * RT tasks are offset by -200. Normal tasks are centered
3808 * around 0, value goes from -16 to +15.
3809 */
3810 int task_prio(const struct task_struct *p)
3811 {
3812 return p->prio - MAX_RT_PRIO;
3813 }
3814
3815 /**
3816 * idle_cpu - is a given cpu idle currently?
3817 * @cpu: the processor in question.
3818 *
3819 * Return: 1 if the CPU is currently idle. 0 otherwise.
3820 */
3821 int idle_cpu(int cpu)
3822 {
3823 struct rq *rq = cpu_rq(cpu);
3824
3825 if (rq->curr != rq->idle)
3826 return 0;
3827
3828 if (rq->nr_running)
3829 return 0;
3830
3831 #ifdef CONFIG_SMP
3832 if (!llist_empty(&rq->wake_list))
3833 return 0;
3834 #endif
3835
3836 return 1;
3837 }
3838
3839 /**
3840 * idle_task - return the idle task for a given cpu.
3841 * @cpu: the processor in question.
3842 *
3843 * Return: The idle task for the cpu @cpu.
3844 */
3845 struct task_struct *idle_task(int cpu)
3846 {
3847 return cpu_rq(cpu)->idle;
3848 }
3849
3850 /**
3851 * find_process_by_pid - find a process with a matching PID value.
3852 * @pid: the pid in question.
3853 *
3854 * The task of @pid, if found. %NULL otherwise.
3855 */
3856 static struct task_struct *find_process_by_pid(pid_t pid)
3857 {
3858 return pid ? find_task_by_vpid(pid) : current;
3859 }
3860
3861 /*
3862 * This function initializes the sched_dl_entity of a newly becoming
3863 * SCHED_DEADLINE task.
3864 *
3865 * Only the static values are considered here, the actual runtime and the
3866 * absolute deadline will be properly calculated when the task is enqueued
3867 * for the first time with its new policy.
3868 */
3869 static void
3870 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3871 {
3872 struct sched_dl_entity *dl_se = &p->dl;
3873
3874 dl_se->dl_runtime = attr->sched_runtime;
3875 dl_se->dl_deadline = attr->sched_deadline;
3876 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3877 dl_se->flags = attr->sched_flags;
3878 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3879
3880 /*
3881 * Changing the parameters of a task is 'tricky' and we're not doing
3882 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3883 *
3884 * What we SHOULD do is delay the bandwidth release until the 0-lag
3885 * point. This would include retaining the task_struct until that time
3886 * and change dl_overflow() to not immediately decrement the current
3887 * amount.
3888 *
3889 * Instead we retain the current runtime/deadline and let the new
3890 * parameters take effect after the current reservation period lapses.
3891 * This is safe (albeit pessimistic) because the 0-lag point is always
3892 * before the current scheduling deadline.
3893 *
3894 * We can still have temporary overloads because we do not delay the
3895 * change in bandwidth until that time; so admission control is
3896 * not on the safe side. It does however guarantee tasks will never
3897 * consume more than promised.
3898 */
3899 }
3900
3901 /*
3902 * sched_setparam() passes in -1 for its policy, to let the functions
3903 * it calls know not to change it.
3904 */
3905 #define SETPARAM_POLICY -1
3906
3907 static void __setscheduler_params(struct task_struct *p,
3908 const struct sched_attr *attr)
3909 {
3910 int policy = attr->sched_policy;
3911
3912 if (policy == SETPARAM_POLICY)
3913 policy = p->policy;
3914
3915 p->policy = policy;
3916
3917 if (dl_policy(policy))
3918 __setparam_dl(p, attr);
3919 else if (fair_policy(policy))
3920 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3921
3922 /*
3923 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3924 * !rt_policy. Always setting this ensures that things like
3925 * getparam()/getattr() don't report silly values for !rt tasks.
3926 */
3927 p->rt_priority = attr->sched_priority;
3928 p->normal_prio = normal_prio(p);
3929 set_load_weight(p);
3930 }
3931
3932 /* Actually do priority change: must hold pi & rq lock. */
3933 static void __setscheduler(struct rq *rq, struct task_struct *p,
3934 const struct sched_attr *attr, bool keep_boost)
3935 {
3936 __setscheduler_params(p, attr);
3937
3938 /*
3939 * Keep a potential priority boosting if called from
3940 * sched_setscheduler().
3941 */
3942 if (keep_boost)
3943 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3944 else
3945 p->prio = normal_prio(p);
3946
3947 if (dl_prio(p->prio))
3948 p->sched_class = &dl_sched_class;
3949 else if (rt_prio(p->prio))
3950 p->sched_class = &rt_sched_class;
3951 else
3952 p->sched_class = &fair_sched_class;
3953 }
3954
3955 static void
3956 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3957 {
3958 struct sched_dl_entity *dl_se = &p->dl;
3959
3960 attr->sched_priority = p->rt_priority;
3961 attr->sched_runtime = dl_se->dl_runtime;
3962 attr->sched_deadline = dl_se->dl_deadline;
3963 attr->sched_period = dl_se->dl_period;
3964 attr->sched_flags = dl_se->flags;
3965 }
3966
3967 /*
3968 * This function validates the new parameters of a -deadline task.
3969 * We ask for the deadline not being zero, and greater or equal
3970 * than the runtime, as well as the period of being zero or
3971 * greater than deadline. Furthermore, we have to be sure that
3972 * user parameters are above the internal resolution of 1us (we
3973 * check sched_runtime only since it is always the smaller one) and
3974 * below 2^63 ns (we have to check both sched_deadline and
3975 * sched_period, as the latter can be zero).
3976 */
3977 static bool
3978 __checkparam_dl(const struct sched_attr *attr)
3979 {
3980 /* deadline != 0 */
3981 if (attr->sched_deadline == 0)
3982 return false;
3983
3984 /*
3985 * Since we truncate DL_SCALE bits, make sure we're at least
3986 * that big.
3987 */
3988 if (attr->sched_runtime < (1ULL << DL_SCALE))
3989 return false;
3990
3991 /*
3992 * Since we use the MSB for wrap-around and sign issues, make
3993 * sure it's not set (mind that period can be equal to zero).
3994 */
3995 if (attr->sched_deadline & (1ULL << 63) ||
3996 attr->sched_period & (1ULL << 63))
3997 return false;
3998
3999 /* runtime <= deadline <= period (if period != 0) */
4000 if ((attr->sched_period != 0 &&
4001 attr->sched_period < attr->sched_deadline) ||
4002 attr->sched_deadline < attr->sched_runtime)
4003 return false;
4004
4005 return true;
4006 }
4007
4008 /*
4009 * check the target process has a UID that matches the current process's
4010 */
4011 static bool check_same_owner(struct task_struct *p)
4012 {
4013 const struct cred *cred = current_cred(), *pcred;
4014 bool match;
4015
4016 rcu_read_lock();
4017 pcred = __task_cred(p);
4018 match = (uid_eq(cred->euid, pcred->euid) ||
4019 uid_eq(cred->euid, pcred->uid));
4020 rcu_read_unlock();
4021 return match;
4022 }
4023
4024 static bool dl_param_changed(struct task_struct *p,
4025 const struct sched_attr *attr)
4026 {
4027 struct sched_dl_entity *dl_se = &p->dl;
4028
4029 if (dl_se->dl_runtime != attr->sched_runtime ||
4030 dl_se->dl_deadline != attr->sched_deadline ||
4031 dl_se->dl_period != attr->sched_period ||
4032 dl_se->flags != attr->sched_flags)
4033 return true;
4034
4035 return false;
4036 }
4037
4038 static int __sched_setscheduler(struct task_struct *p,
4039 const struct sched_attr *attr,
4040 bool user, bool pi)
4041 {
4042 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4043 MAX_RT_PRIO - 1 - attr->sched_priority;
4044 int retval, oldprio, oldpolicy = -1, queued, running;
4045 int new_effective_prio, policy = attr->sched_policy;
4046 const struct sched_class *prev_class;
4047 struct rq_flags rf;
4048 int reset_on_fork;
4049 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4050 struct rq *rq;
4051
4052 /* may grab non-irq protected spin_locks */
4053 BUG_ON(in_interrupt());
4054 recheck:
4055 /* double check policy once rq lock held */
4056 if (policy < 0) {
4057 reset_on_fork = p->sched_reset_on_fork;
4058 policy = oldpolicy = p->policy;
4059 } else {
4060 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4061
4062 if (!valid_policy(policy))
4063 return -EINVAL;
4064 }
4065
4066 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4067 return -EINVAL;
4068
4069 /*
4070 * Valid priorities for SCHED_FIFO and SCHED_RR are
4071 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4072 * SCHED_BATCH and SCHED_IDLE is 0.
4073 */
4074 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4075 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4076 return -EINVAL;
4077 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4078 (rt_policy(policy) != (attr->sched_priority != 0)))
4079 return -EINVAL;
4080
4081 /*
4082 * Allow unprivileged RT tasks to decrease priority:
4083 */
4084 if (user && !capable(CAP_SYS_NICE)) {
4085 if (fair_policy(policy)) {
4086 if (attr->sched_nice < task_nice(p) &&
4087 !can_nice(p, attr->sched_nice))
4088 return -EPERM;
4089 }
4090
4091 if (rt_policy(policy)) {
4092 unsigned long rlim_rtprio =
4093 task_rlimit(p, RLIMIT_RTPRIO);
4094
4095 /* can't set/change the rt policy */
4096 if (policy != p->policy && !rlim_rtprio)
4097 return -EPERM;
4098
4099 /* can't increase priority */
4100 if (attr->sched_priority > p->rt_priority &&
4101 attr->sched_priority > rlim_rtprio)
4102 return -EPERM;
4103 }
4104
4105 /*
4106 * Can't set/change SCHED_DEADLINE policy at all for now
4107 * (safest behavior); in the future we would like to allow
4108 * unprivileged DL tasks to increase their relative deadline
4109 * or reduce their runtime (both ways reducing utilization)
4110 */
4111 if (dl_policy(policy))
4112 return -EPERM;
4113
4114 /*
4115 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4116 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4117 */
4118 if (idle_policy(p->policy) && !idle_policy(policy)) {
4119 if (!can_nice(p, task_nice(p)))
4120 return -EPERM;
4121 }
4122
4123 /* can't change other user's priorities */
4124 if (!check_same_owner(p))
4125 return -EPERM;
4126
4127 /* Normal users shall not reset the sched_reset_on_fork flag */
4128 if (p->sched_reset_on_fork && !reset_on_fork)
4129 return -EPERM;
4130 }
4131
4132 if (user) {
4133 retval = security_task_setscheduler(p);
4134 if (retval)
4135 return retval;
4136 }
4137
4138 /*
4139 * make sure no PI-waiters arrive (or leave) while we are
4140 * changing the priority of the task:
4141 *
4142 * To be able to change p->policy safely, the appropriate
4143 * runqueue lock must be held.
4144 */
4145 rq = task_rq_lock(p, &rf);
4146
4147 /*
4148 * Changing the policy of the stop threads its a very bad idea
4149 */
4150 if (p == rq->stop) {
4151 task_rq_unlock(rq, p, &rf);
4152 return -EINVAL;
4153 }
4154
4155 /*
4156 * If not changing anything there's no need to proceed further,
4157 * but store a possible modification of reset_on_fork.
4158 */
4159 if (unlikely(policy == p->policy)) {
4160 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4161 goto change;
4162 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4163 goto change;
4164 if (dl_policy(policy) && dl_param_changed(p, attr))
4165 goto change;
4166
4167 p->sched_reset_on_fork = reset_on_fork;
4168 task_rq_unlock(rq, p, &rf);
4169 return 0;
4170 }
4171 change:
4172
4173 if (user) {
4174 #ifdef CONFIG_RT_GROUP_SCHED
4175 /*
4176 * Do not allow realtime tasks into groups that have no runtime
4177 * assigned.
4178 */
4179 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4180 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4181 !task_group_is_autogroup(task_group(p))) {
4182 task_rq_unlock(rq, p, &rf);
4183 return -EPERM;
4184 }
4185 #endif
4186 #ifdef CONFIG_SMP
4187 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4188 cpumask_t *span = rq->rd->span;
4189
4190 /*
4191 * Don't allow tasks with an affinity mask smaller than
4192 * the entire root_domain to become SCHED_DEADLINE. We
4193 * will also fail if there's no bandwidth available.
4194 */
4195 if (!cpumask_subset(span, &p->cpus_allowed) ||
4196 rq->rd->dl_bw.bw == 0) {
4197 task_rq_unlock(rq, p, &rf);
4198 return -EPERM;
4199 }
4200 }
4201 #endif
4202 }
4203
4204 /* recheck policy now with rq lock held */
4205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4206 policy = oldpolicy = -1;
4207 task_rq_unlock(rq, p, &rf);
4208 goto recheck;
4209 }
4210
4211 /*
4212 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4213 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4214 * is available.
4215 */
4216 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4217 task_rq_unlock(rq, p, &rf);
4218 return -EBUSY;
4219 }
4220
4221 p->sched_reset_on_fork = reset_on_fork;
4222 oldprio = p->prio;
4223
4224 if (pi) {
4225 /*
4226 * Take priority boosted tasks into account. If the new
4227 * effective priority is unchanged, we just store the new
4228 * normal parameters and do not touch the scheduler class and
4229 * the runqueue. This will be done when the task deboost
4230 * itself.
4231 */
4232 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4233 if (new_effective_prio == oldprio)
4234 queue_flags &= ~DEQUEUE_MOVE;
4235 }
4236
4237 queued = task_on_rq_queued(p);
4238 running = task_current(rq, p);
4239 if (queued)
4240 dequeue_task(rq, p, queue_flags);
4241 if (running)
4242 put_prev_task(rq, p);
4243
4244 prev_class = p->sched_class;
4245 __setscheduler(rq, p, attr, pi);
4246
4247 if (running)
4248 p->sched_class->set_curr_task(rq);
4249 if (queued) {
4250 /*
4251 * We enqueue to tail when the priority of a task is
4252 * increased (user space view).
4253 */
4254 if (oldprio < p->prio)
4255 queue_flags |= ENQUEUE_HEAD;
4256
4257 enqueue_task(rq, p, queue_flags);
4258 }
4259
4260 check_class_changed(rq, p, prev_class, oldprio);
4261 preempt_disable(); /* avoid rq from going away on us */
4262 task_rq_unlock(rq, p, &rf);
4263
4264 if (pi)
4265 rt_mutex_adjust_pi(p);
4266
4267 /*
4268 * Run balance callbacks after we've adjusted the PI chain.
4269 */
4270 balance_callback(rq);
4271 preempt_enable();
4272
4273 return 0;
4274 }
4275
4276 static int _sched_setscheduler(struct task_struct *p, int policy,
4277 const struct sched_param *param, bool check)
4278 {
4279 struct sched_attr attr = {
4280 .sched_policy = policy,
4281 .sched_priority = param->sched_priority,
4282 .sched_nice = PRIO_TO_NICE(p->static_prio),
4283 };
4284
4285 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4286 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4287 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4288 policy &= ~SCHED_RESET_ON_FORK;
4289 attr.sched_policy = policy;
4290 }
4291
4292 return __sched_setscheduler(p, &attr, check, true);
4293 }
4294 /**
4295 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4296 * @p: the task in question.
4297 * @policy: new policy.
4298 * @param: structure containing the new RT priority.
4299 *
4300 * Return: 0 on success. An error code otherwise.
4301 *
4302 * NOTE that the task may be already dead.
4303 */
4304 int sched_setscheduler(struct task_struct *p, int policy,
4305 const struct sched_param *param)
4306 {
4307 return _sched_setscheduler(p, policy, param, true);
4308 }
4309 EXPORT_SYMBOL_GPL(sched_setscheduler);
4310
4311 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4312 {
4313 return __sched_setscheduler(p, attr, true, true);
4314 }
4315 EXPORT_SYMBOL_GPL(sched_setattr);
4316
4317 /**
4318 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4319 * @p: the task in question.
4320 * @policy: new policy.
4321 * @param: structure containing the new RT priority.
4322 *
4323 * Just like sched_setscheduler, only don't bother checking if the
4324 * current context has permission. For example, this is needed in
4325 * stop_machine(): we create temporary high priority worker threads,
4326 * but our caller might not have that capability.
4327 *
4328 * Return: 0 on success. An error code otherwise.
4329 */
4330 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4331 const struct sched_param *param)
4332 {
4333 return _sched_setscheduler(p, policy, param, false);
4334 }
4335 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4336
4337 static int
4338 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4339 {
4340 struct sched_param lparam;
4341 struct task_struct *p;
4342 int retval;
4343
4344 if (!param || pid < 0)
4345 return -EINVAL;
4346 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4347 return -EFAULT;
4348
4349 rcu_read_lock();
4350 retval = -ESRCH;
4351 p = find_process_by_pid(pid);
4352 if (p != NULL)
4353 retval = sched_setscheduler(p, policy, &lparam);
4354 rcu_read_unlock();
4355
4356 return retval;
4357 }
4358
4359 /*
4360 * Mimics kernel/events/core.c perf_copy_attr().
4361 */
4362 static int sched_copy_attr(struct sched_attr __user *uattr,
4363 struct sched_attr *attr)
4364 {
4365 u32 size;
4366 int ret;
4367
4368 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4369 return -EFAULT;
4370
4371 /*
4372 * zero the full structure, so that a short copy will be nice.
4373 */
4374 memset(attr, 0, sizeof(*attr));
4375
4376 ret = get_user(size, &uattr->size);
4377 if (ret)
4378 return ret;
4379
4380 if (size > PAGE_SIZE) /* silly large */
4381 goto err_size;
4382
4383 if (!size) /* abi compat */
4384 size = SCHED_ATTR_SIZE_VER0;
4385
4386 if (size < SCHED_ATTR_SIZE_VER0)
4387 goto err_size;
4388
4389 /*
4390 * If we're handed a bigger struct than we know of,
4391 * ensure all the unknown bits are 0 - i.e. new
4392 * user-space does not rely on any kernel feature
4393 * extensions we dont know about yet.
4394 */
4395 if (size > sizeof(*attr)) {
4396 unsigned char __user *addr;
4397 unsigned char __user *end;
4398 unsigned char val;
4399
4400 addr = (void __user *)uattr + sizeof(*attr);
4401 end = (void __user *)uattr + size;
4402
4403 for (; addr < end; addr++) {
4404 ret = get_user(val, addr);
4405 if (ret)
4406 return ret;
4407 if (val)
4408 goto err_size;
4409 }
4410 size = sizeof(*attr);
4411 }
4412
4413 ret = copy_from_user(attr, uattr, size);
4414 if (ret)
4415 return -EFAULT;
4416
4417 /*
4418 * XXX: do we want to be lenient like existing syscalls; or do we want
4419 * to be strict and return an error on out-of-bounds values?
4420 */
4421 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4422
4423 return 0;
4424
4425 err_size:
4426 put_user(sizeof(*attr), &uattr->size);
4427 return -E2BIG;
4428 }
4429
4430 /**
4431 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4432 * @pid: the pid in question.
4433 * @policy: new policy.
4434 * @param: structure containing the new RT priority.
4435 *
4436 * Return: 0 on success. An error code otherwise.
4437 */
4438 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4439 struct sched_param __user *, param)
4440 {
4441 /* negative values for policy are not valid */
4442 if (policy < 0)
4443 return -EINVAL;
4444
4445 return do_sched_setscheduler(pid, policy, param);
4446 }
4447
4448 /**
4449 * sys_sched_setparam - set/change the RT priority of a thread
4450 * @pid: the pid in question.
4451 * @param: structure containing the new RT priority.
4452 *
4453 * Return: 0 on success. An error code otherwise.
4454 */
4455 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4456 {
4457 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4458 }
4459
4460 /**
4461 * sys_sched_setattr - same as above, but with extended sched_attr
4462 * @pid: the pid in question.
4463 * @uattr: structure containing the extended parameters.
4464 * @flags: for future extension.
4465 */
4466 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4467 unsigned int, flags)
4468 {
4469 struct sched_attr attr;
4470 struct task_struct *p;
4471 int retval;
4472
4473 if (!uattr || pid < 0 || flags)
4474 return -EINVAL;
4475
4476 retval = sched_copy_attr(uattr, &attr);
4477 if (retval)
4478 return retval;
4479
4480 if ((int)attr.sched_policy < 0)
4481 return -EINVAL;
4482
4483 rcu_read_lock();
4484 retval = -ESRCH;
4485 p = find_process_by_pid(pid);
4486 if (p != NULL)
4487 retval = sched_setattr(p, &attr);
4488 rcu_read_unlock();
4489
4490 return retval;
4491 }
4492
4493 /**
4494 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4495 * @pid: the pid in question.
4496 *
4497 * Return: On success, the policy of the thread. Otherwise, a negative error
4498 * code.
4499 */
4500 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4501 {
4502 struct task_struct *p;
4503 int retval;
4504
4505 if (pid < 0)
4506 return -EINVAL;
4507
4508 retval = -ESRCH;
4509 rcu_read_lock();
4510 p = find_process_by_pid(pid);
4511 if (p) {
4512 retval = security_task_getscheduler(p);
4513 if (!retval)
4514 retval = p->policy
4515 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4516 }
4517 rcu_read_unlock();
4518 return retval;
4519 }
4520
4521 /**
4522 * sys_sched_getparam - get the RT priority of a thread
4523 * @pid: the pid in question.
4524 * @param: structure containing the RT priority.
4525 *
4526 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4527 * code.
4528 */
4529 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4530 {
4531 struct sched_param lp = { .sched_priority = 0 };
4532 struct task_struct *p;
4533 int retval;
4534
4535 if (!param || pid < 0)
4536 return -EINVAL;
4537
4538 rcu_read_lock();
4539 p = find_process_by_pid(pid);
4540 retval = -ESRCH;
4541 if (!p)
4542 goto out_unlock;
4543
4544 retval = security_task_getscheduler(p);
4545 if (retval)
4546 goto out_unlock;
4547
4548 if (task_has_rt_policy(p))
4549 lp.sched_priority = p->rt_priority;
4550 rcu_read_unlock();
4551
4552 /*
4553 * This one might sleep, we cannot do it with a spinlock held ...
4554 */
4555 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4556
4557 return retval;
4558
4559 out_unlock:
4560 rcu_read_unlock();
4561 return retval;
4562 }
4563
4564 static int sched_read_attr(struct sched_attr __user *uattr,
4565 struct sched_attr *attr,
4566 unsigned int usize)
4567 {
4568 int ret;
4569
4570 if (!access_ok(VERIFY_WRITE, uattr, usize))
4571 return -EFAULT;
4572
4573 /*
4574 * If we're handed a smaller struct than we know of,
4575 * ensure all the unknown bits are 0 - i.e. old
4576 * user-space does not get uncomplete information.
4577 */
4578 if (usize < sizeof(*attr)) {
4579 unsigned char *addr;
4580 unsigned char *end;
4581
4582 addr = (void *)attr + usize;
4583 end = (void *)attr + sizeof(*attr);
4584
4585 for (; addr < end; addr++) {
4586 if (*addr)
4587 return -EFBIG;
4588 }
4589
4590 attr->size = usize;
4591 }
4592
4593 ret = copy_to_user(uattr, attr, attr->size);
4594 if (ret)
4595 return -EFAULT;
4596
4597 return 0;
4598 }
4599
4600 /**
4601 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4602 * @pid: the pid in question.
4603 * @uattr: structure containing the extended parameters.
4604 * @size: sizeof(attr) for fwd/bwd comp.
4605 * @flags: for future extension.
4606 */
4607 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4608 unsigned int, size, unsigned int, flags)
4609 {
4610 struct sched_attr attr = {
4611 .size = sizeof(struct sched_attr),
4612 };
4613 struct task_struct *p;
4614 int retval;
4615
4616 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4617 size < SCHED_ATTR_SIZE_VER0 || flags)
4618 return -EINVAL;
4619
4620 rcu_read_lock();
4621 p = find_process_by_pid(pid);
4622 retval = -ESRCH;
4623 if (!p)
4624 goto out_unlock;
4625
4626 retval = security_task_getscheduler(p);
4627 if (retval)
4628 goto out_unlock;
4629
4630 attr.sched_policy = p->policy;
4631 if (p->sched_reset_on_fork)
4632 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4633 if (task_has_dl_policy(p))
4634 __getparam_dl(p, &attr);
4635 else if (task_has_rt_policy(p))
4636 attr.sched_priority = p->rt_priority;
4637 else
4638 attr.sched_nice = task_nice(p);
4639
4640 rcu_read_unlock();
4641
4642 retval = sched_read_attr(uattr, &attr, size);
4643 return retval;
4644
4645 out_unlock:
4646 rcu_read_unlock();
4647 return retval;
4648 }
4649
4650 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4651 {
4652 cpumask_var_t cpus_allowed, new_mask;
4653 struct task_struct *p;
4654 int retval;
4655
4656 rcu_read_lock();
4657
4658 p = find_process_by_pid(pid);
4659 if (!p) {
4660 rcu_read_unlock();
4661 return -ESRCH;
4662 }
4663
4664 /* Prevent p going away */
4665 get_task_struct(p);
4666 rcu_read_unlock();
4667
4668 if (p->flags & PF_NO_SETAFFINITY) {
4669 retval = -EINVAL;
4670 goto out_put_task;
4671 }
4672 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4673 retval = -ENOMEM;
4674 goto out_put_task;
4675 }
4676 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4677 retval = -ENOMEM;
4678 goto out_free_cpus_allowed;
4679 }
4680 retval = -EPERM;
4681 if (!check_same_owner(p)) {
4682 rcu_read_lock();
4683 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4684 rcu_read_unlock();
4685 goto out_free_new_mask;
4686 }
4687 rcu_read_unlock();
4688 }
4689
4690 retval = security_task_setscheduler(p);
4691 if (retval)
4692 goto out_free_new_mask;
4693
4694
4695 cpuset_cpus_allowed(p, cpus_allowed);
4696 cpumask_and(new_mask, in_mask, cpus_allowed);
4697
4698 /*
4699 * Since bandwidth control happens on root_domain basis,
4700 * if admission test is enabled, we only admit -deadline
4701 * tasks allowed to run on all the CPUs in the task's
4702 * root_domain.
4703 */
4704 #ifdef CONFIG_SMP
4705 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4706 rcu_read_lock();
4707 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4708 retval = -EBUSY;
4709 rcu_read_unlock();
4710 goto out_free_new_mask;
4711 }
4712 rcu_read_unlock();
4713 }
4714 #endif
4715 again:
4716 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4717
4718 if (!retval) {
4719 cpuset_cpus_allowed(p, cpus_allowed);
4720 if (!cpumask_subset(new_mask, cpus_allowed)) {
4721 /*
4722 * We must have raced with a concurrent cpuset
4723 * update. Just reset the cpus_allowed to the
4724 * cpuset's cpus_allowed
4725 */
4726 cpumask_copy(new_mask, cpus_allowed);
4727 goto again;
4728 }
4729 }
4730 out_free_new_mask:
4731 free_cpumask_var(new_mask);
4732 out_free_cpus_allowed:
4733 free_cpumask_var(cpus_allowed);
4734 out_put_task:
4735 put_task_struct(p);
4736 return retval;
4737 }
4738
4739 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4740 struct cpumask *new_mask)
4741 {
4742 if (len < cpumask_size())
4743 cpumask_clear(new_mask);
4744 else if (len > cpumask_size())
4745 len = cpumask_size();
4746
4747 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4748 }
4749
4750 /**
4751 * sys_sched_setaffinity - set the cpu affinity of a process
4752 * @pid: pid of the process
4753 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4754 * @user_mask_ptr: user-space pointer to the new cpu mask
4755 *
4756 * Return: 0 on success. An error code otherwise.
4757 */
4758 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4759 unsigned long __user *, user_mask_ptr)
4760 {
4761 cpumask_var_t new_mask;
4762 int retval;
4763
4764 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4765 return -ENOMEM;
4766
4767 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4768 if (retval == 0)
4769 retval = sched_setaffinity(pid, new_mask);
4770 free_cpumask_var(new_mask);
4771 return retval;
4772 }
4773
4774 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4775 {
4776 struct task_struct *p;
4777 unsigned long flags;
4778 int retval;
4779
4780 rcu_read_lock();
4781
4782 retval = -ESRCH;
4783 p = find_process_by_pid(pid);
4784 if (!p)
4785 goto out_unlock;
4786
4787 retval = security_task_getscheduler(p);
4788 if (retval)
4789 goto out_unlock;
4790
4791 raw_spin_lock_irqsave(&p->pi_lock, flags);
4792 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4793 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4794
4795 out_unlock:
4796 rcu_read_unlock();
4797
4798 return retval;
4799 }
4800
4801 /**
4802 * sys_sched_getaffinity - get the cpu affinity of a process
4803 * @pid: pid of the process
4804 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4805 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4806 *
4807 * Return: size of CPU mask copied to user_mask_ptr on success. An
4808 * error code otherwise.
4809 */
4810 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4811 unsigned long __user *, user_mask_ptr)
4812 {
4813 int ret;
4814 cpumask_var_t mask;
4815
4816 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4817 return -EINVAL;
4818 if (len & (sizeof(unsigned long)-1))
4819 return -EINVAL;
4820
4821 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4822 return -ENOMEM;
4823
4824 ret = sched_getaffinity(pid, mask);
4825 if (ret == 0) {
4826 size_t retlen = min_t(size_t, len, cpumask_size());
4827
4828 if (copy_to_user(user_mask_ptr, mask, retlen))
4829 ret = -EFAULT;
4830 else
4831 ret = retlen;
4832 }
4833 free_cpumask_var(mask);
4834
4835 return ret;
4836 }
4837
4838 /**
4839 * sys_sched_yield - yield the current processor to other threads.
4840 *
4841 * This function yields the current CPU to other tasks. If there are no
4842 * other threads running on this CPU then this function will return.
4843 *
4844 * Return: 0.
4845 */
4846 SYSCALL_DEFINE0(sched_yield)
4847 {
4848 struct rq *rq = this_rq_lock();
4849
4850 schedstat_inc(rq, yld_count);
4851 current->sched_class->yield_task(rq);
4852
4853 /*
4854 * Since we are going to call schedule() anyway, there's
4855 * no need to preempt or enable interrupts:
4856 */
4857 __release(rq->lock);
4858 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4859 do_raw_spin_unlock(&rq->lock);
4860 sched_preempt_enable_no_resched();
4861
4862 schedule();
4863
4864 return 0;
4865 }
4866
4867 int __sched _cond_resched(void)
4868 {
4869 if (should_resched(0)) {
4870 preempt_schedule_common();
4871 return 1;
4872 }
4873 return 0;
4874 }
4875 EXPORT_SYMBOL(_cond_resched);
4876
4877 /*
4878 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4879 * call schedule, and on return reacquire the lock.
4880 *
4881 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4882 * operations here to prevent schedule() from being called twice (once via
4883 * spin_unlock(), once by hand).
4884 */
4885 int __cond_resched_lock(spinlock_t *lock)
4886 {
4887 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4888 int ret = 0;
4889
4890 lockdep_assert_held(lock);
4891
4892 if (spin_needbreak(lock) || resched) {
4893 spin_unlock(lock);
4894 if (resched)
4895 preempt_schedule_common();
4896 else
4897 cpu_relax();
4898 ret = 1;
4899 spin_lock(lock);
4900 }
4901 return ret;
4902 }
4903 EXPORT_SYMBOL(__cond_resched_lock);
4904
4905 int __sched __cond_resched_softirq(void)
4906 {
4907 BUG_ON(!in_softirq());
4908
4909 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4910 local_bh_enable();
4911 preempt_schedule_common();
4912 local_bh_disable();
4913 return 1;
4914 }
4915 return 0;
4916 }
4917 EXPORT_SYMBOL(__cond_resched_softirq);
4918
4919 /**
4920 * yield - yield the current processor to other threads.
4921 *
4922 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4923 *
4924 * The scheduler is at all times free to pick the calling task as the most
4925 * eligible task to run, if removing the yield() call from your code breaks
4926 * it, its already broken.
4927 *
4928 * Typical broken usage is:
4929 *
4930 * while (!event)
4931 * yield();
4932 *
4933 * where one assumes that yield() will let 'the other' process run that will
4934 * make event true. If the current task is a SCHED_FIFO task that will never
4935 * happen. Never use yield() as a progress guarantee!!
4936 *
4937 * If you want to use yield() to wait for something, use wait_event().
4938 * If you want to use yield() to be 'nice' for others, use cond_resched().
4939 * If you still want to use yield(), do not!
4940 */
4941 void __sched yield(void)
4942 {
4943 set_current_state(TASK_RUNNING);
4944 sys_sched_yield();
4945 }
4946 EXPORT_SYMBOL(yield);
4947
4948 /**
4949 * yield_to - yield the current processor to another thread in
4950 * your thread group, or accelerate that thread toward the
4951 * processor it's on.
4952 * @p: target task
4953 * @preempt: whether task preemption is allowed or not
4954 *
4955 * It's the caller's job to ensure that the target task struct
4956 * can't go away on us before we can do any checks.
4957 *
4958 * Return:
4959 * true (>0) if we indeed boosted the target task.
4960 * false (0) if we failed to boost the target.
4961 * -ESRCH if there's no task to yield to.
4962 */
4963 int __sched yield_to(struct task_struct *p, bool preempt)
4964 {
4965 struct task_struct *curr = current;
4966 struct rq *rq, *p_rq;
4967 unsigned long flags;
4968 int yielded = 0;
4969
4970 local_irq_save(flags);
4971 rq = this_rq();
4972
4973 again:
4974 p_rq = task_rq(p);
4975 /*
4976 * If we're the only runnable task on the rq and target rq also
4977 * has only one task, there's absolutely no point in yielding.
4978 */
4979 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4980 yielded = -ESRCH;
4981 goto out_irq;
4982 }
4983
4984 double_rq_lock(rq, p_rq);
4985 if (task_rq(p) != p_rq) {
4986 double_rq_unlock(rq, p_rq);
4987 goto again;
4988 }
4989
4990 if (!curr->sched_class->yield_to_task)
4991 goto out_unlock;
4992
4993 if (curr->sched_class != p->sched_class)
4994 goto out_unlock;
4995
4996 if (task_running(p_rq, p) || p->state)
4997 goto out_unlock;
4998
4999 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5000 if (yielded) {
5001 schedstat_inc(rq, yld_count);
5002 /*
5003 * Make p's CPU reschedule; pick_next_entity takes care of
5004 * fairness.
5005 */
5006 if (preempt && rq != p_rq)
5007 resched_curr(p_rq);
5008 }
5009
5010 out_unlock:
5011 double_rq_unlock(rq, p_rq);
5012 out_irq:
5013 local_irq_restore(flags);
5014
5015 if (yielded > 0)
5016 schedule();
5017
5018 return yielded;
5019 }
5020 EXPORT_SYMBOL_GPL(yield_to);
5021
5022 /*
5023 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5024 * that process accounting knows that this is a task in IO wait state.
5025 */
5026 long __sched io_schedule_timeout(long timeout)
5027 {
5028 int old_iowait = current->in_iowait;
5029 struct rq *rq;
5030 long ret;
5031
5032 current->in_iowait = 1;
5033 blk_schedule_flush_plug(current);
5034
5035 delayacct_blkio_start();
5036 rq = raw_rq();
5037 atomic_inc(&rq->nr_iowait);
5038 ret = schedule_timeout(timeout);
5039 current->in_iowait = old_iowait;
5040 atomic_dec(&rq->nr_iowait);
5041 delayacct_blkio_end();
5042
5043 return ret;
5044 }
5045 EXPORT_SYMBOL(io_schedule_timeout);
5046
5047 /**
5048 * sys_sched_get_priority_max - return maximum RT priority.
5049 * @policy: scheduling class.
5050 *
5051 * Return: On success, this syscall returns the maximum
5052 * rt_priority that can be used by a given scheduling class.
5053 * On failure, a negative error code is returned.
5054 */
5055 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5056 {
5057 int ret = -EINVAL;
5058
5059 switch (policy) {
5060 case SCHED_FIFO:
5061 case SCHED_RR:
5062 ret = MAX_USER_RT_PRIO-1;
5063 break;
5064 case SCHED_DEADLINE:
5065 case SCHED_NORMAL:
5066 case SCHED_BATCH:
5067 case SCHED_IDLE:
5068 ret = 0;
5069 break;
5070 }
5071 return ret;
5072 }
5073
5074 /**
5075 * sys_sched_get_priority_min - return minimum RT priority.
5076 * @policy: scheduling class.
5077 *
5078 * Return: On success, this syscall returns the minimum
5079 * rt_priority that can be used by a given scheduling class.
5080 * On failure, a negative error code is returned.
5081 */
5082 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5083 {
5084 int ret = -EINVAL;
5085
5086 switch (policy) {
5087 case SCHED_FIFO:
5088 case SCHED_RR:
5089 ret = 1;
5090 break;
5091 case SCHED_DEADLINE:
5092 case SCHED_NORMAL:
5093 case SCHED_BATCH:
5094 case SCHED_IDLE:
5095 ret = 0;
5096 }
5097 return ret;
5098 }
5099
5100 /**
5101 * sys_sched_rr_get_interval - return the default timeslice of a process.
5102 * @pid: pid of the process.
5103 * @interval: userspace pointer to the timeslice value.
5104 *
5105 * this syscall writes the default timeslice value of a given process
5106 * into the user-space timespec buffer. A value of '0' means infinity.
5107 *
5108 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5109 * an error code.
5110 */
5111 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5112 struct timespec __user *, interval)
5113 {
5114 struct task_struct *p;
5115 unsigned int time_slice;
5116 struct rq_flags rf;
5117 struct timespec t;
5118 struct rq *rq;
5119 int retval;
5120
5121 if (pid < 0)
5122 return -EINVAL;
5123
5124 retval = -ESRCH;
5125 rcu_read_lock();
5126 p = find_process_by_pid(pid);
5127 if (!p)
5128 goto out_unlock;
5129
5130 retval = security_task_getscheduler(p);
5131 if (retval)
5132 goto out_unlock;
5133
5134 rq = task_rq_lock(p, &rf);
5135 time_slice = 0;
5136 if (p->sched_class->get_rr_interval)
5137 time_slice = p->sched_class->get_rr_interval(rq, p);
5138 task_rq_unlock(rq, p, &rf);
5139
5140 rcu_read_unlock();
5141 jiffies_to_timespec(time_slice, &t);
5142 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5143 return retval;
5144
5145 out_unlock:
5146 rcu_read_unlock();
5147 return retval;
5148 }
5149
5150 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5151
5152 void sched_show_task(struct task_struct *p)
5153 {
5154 unsigned long free = 0;
5155 int ppid;
5156 unsigned long state = p->state;
5157
5158 if (state)
5159 state = __ffs(state) + 1;
5160 printk(KERN_INFO "%-15.15s %c", p->comm,
5161 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5162 #if BITS_PER_LONG == 32
5163 if (state == TASK_RUNNING)
5164 printk(KERN_CONT " running ");
5165 else
5166 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5167 #else
5168 if (state == TASK_RUNNING)
5169 printk(KERN_CONT " running task ");
5170 else
5171 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5172 #endif
5173 #ifdef CONFIG_DEBUG_STACK_USAGE
5174 free = stack_not_used(p);
5175 #endif
5176 ppid = 0;
5177 rcu_read_lock();
5178 if (pid_alive(p))
5179 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5180 rcu_read_unlock();
5181 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5182 task_pid_nr(p), ppid,
5183 (unsigned long)task_thread_info(p)->flags);
5184
5185 print_worker_info(KERN_INFO, p);
5186 show_stack(p, NULL);
5187 }
5188
5189 void show_state_filter(unsigned long state_filter)
5190 {
5191 struct task_struct *g, *p;
5192
5193 #if BITS_PER_LONG == 32
5194 printk(KERN_INFO
5195 " task PC stack pid father\n");
5196 #else
5197 printk(KERN_INFO
5198 " task PC stack pid father\n");
5199 #endif
5200 rcu_read_lock();
5201 for_each_process_thread(g, p) {
5202 /*
5203 * reset the NMI-timeout, listing all files on a slow
5204 * console might take a lot of time:
5205 * Also, reset softlockup watchdogs on all CPUs, because
5206 * another CPU might be blocked waiting for us to process
5207 * an IPI.
5208 */
5209 touch_nmi_watchdog();
5210 touch_all_softlockup_watchdogs();
5211 if (!state_filter || (p->state & state_filter))
5212 sched_show_task(p);
5213 }
5214
5215 #ifdef CONFIG_SCHED_DEBUG
5216 if (!state_filter)
5217 sysrq_sched_debug_show();
5218 #endif
5219 rcu_read_unlock();
5220 /*
5221 * Only show locks if all tasks are dumped:
5222 */
5223 if (!state_filter)
5224 debug_show_all_locks();
5225 }
5226
5227 void init_idle_bootup_task(struct task_struct *idle)
5228 {
5229 idle->sched_class = &idle_sched_class;
5230 }
5231
5232 /**
5233 * init_idle - set up an idle thread for a given CPU
5234 * @idle: task in question
5235 * @cpu: cpu the idle task belongs to
5236 *
5237 * NOTE: this function does not set the idle thread's NEED_RESCHED
5238 * flag, to make booting more robust.
5239 */
5240 void init_idle(struct task_struct *idle, int cpu)
5241 {
5242 struct rq *rq = cpu_rq(cpu);
5243 unsigned long flags;
5244
5245 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5246 raw_spin_lock(&rq->lock);
5247
5248 __sched_fork(0, idle);
5249 idle->state = TASK_RUNNING;
5250 idle->se.exec_start = sched_clock();
5251
5252 kasan_unpoison_task_stack(idle);
5253
5254 #ifdef CONFIG_SMP
5255 /*
5256 * Its possible that init_idle() gets called multiple times on a task,
5257 * in that case do_set_cpus_allowed() will not do the right thing.
5258 *
5259 * And since this is boot we can forgo the serialization.
5260 */
5261 set_cpus_allowed_common(idle, cpumask_of(cpu));
5262 #endif
5263 /*
5264 * We're having a chicken and egg problem, even though we are
5265 * holding rq->lock, the cpu isn't yet set to this cpu so the
5266 * lockdep check in task_group() will fail.
5267 *
5268 * Similar case to sched_fork(). / Alternatively we could
5269 * use task_rq_lock() here and obtain the other rq->lock.
5270 *
5271 * Silence PROVE_RCU
5272 */
5273 rcu_read_lock();
5274 __set_task_cpu(idle, cpu);
5275 rcu_read_unlock();
5276
5277 rq->curr = rq->idle = idle;
5278 idle->on_rq = TASK_ON_RQ_QUEUED;
5279 #ifdef CONFIG_SMP
5280 idle->on_cpu = 1;
5281 #endif
5282 raw_spin_unlock(&rq->lock);
5283 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5284
5285 /* Set the preempt count _outside_ the spinlocks! */
5286 init_idle_preempt_count(idle, cpu);
5287
5288 /*
5289 * The idle tasks have their own, simple scheduling class:
5290 */
5291 idle->sched_class = &idle_sched_class;
5292 ftrace_graph_init_idle_task(idle, cpu);
5293 vtime_init_idle(idle, cpu);
5294 #ifdef CONFIG_SMP
5295 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5296 #endif
5297 }
5298
5299 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5300 const struct cpumask *trial)
5301 {
5302 int ret = 1, trial_cpus;
5303 struct dl_bw *cur_dl_b;
5304 unsigned long flags;
5305
5306 if (!cpumask_weight(cur))
5307 return ret;
5308
5309 rcu_read_lock_sched();
5310 cur_dl_b = dl_bw_of(cpumask_any(cur));
5311 trial_cpus = cpumask_weight(trial);
5312
5313 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5314 if (cur_dl_b->bw != -1 &&
5315 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5316 ret = 0;
5317 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5318 rcu_read_unlock_sched();
5319
5320 return ret;
5321 }
5322
5323 int task_can_attach(struct task_struct *p,
5324 const struct cpumask *cs_cpus_allowed)
5325 {
5326 int ret = 0;
5327
5328 /*
5329 * Kthreads which disallow setaffinity shouldn't be moved
5330 * to a new cpuset; we don't want to change their cpu
5331 * affinity and isolating such threads by their set of
5332 * allowed nodes is unnecessary. Thus, cpusets are not
5333 * applicable for such threads. This prevents checking for
5334 * success of set_cpus_allowed_ptr() on all attached tasks
5335 * before cpus_allowed may be changed.
5336 */
5337 if (p->flags & PF_NO_SETAFFINITY) {
5338 ret = -EINVAL;
5339 goto out;
5340 }
5341
5342 #ifdef CONFIG_SMP
5343 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5344 cs_cpus_allowed)) {
5345 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5346 cs_cpus_allowed);
5347 struct dl_bw *dl_b;
5348 bool overflow;
5349 int cpus;
5350 unsigned long flags;
5351
5352 rcu_read_lock_sched();
5353 dl_b = dl_bw_of(dest_cpu);
5354 raw_spin_lock_irqsave(&dl_b->lock, flags);
5355 cpus = dl_bw_cpus(dest_cpu);
5356 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5357 if (overflow)
5358 ret = -EBUSY;
5359 else {
5360 /*
5361 * We reserve space for this task in the destination
5362 * root_domain, as we can't fail after this point.
5363 * We will free resources in the source root_domain
5364 * later on (see set_cpus_allowed_dl()).
5365 */
5366 __dl_add(dl_b, p->dl.dl_bw);
5367 }
5368 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5369 rcu_read_unlock_sched();
5370
5371 }
5372 #endif
5373 out:
5374 return ret;
5375 }
5376
5377 #ifdef CONFIG_SMP
5378
5379 static bool sched_smp_initialized __read_mostly;
5380
5381 #ifdef CONFIG_NUMA_BALANCING
5382 /* Migrate current task p to target_cpu */
5383 int migrate_task_to(struct task_struct *p, int target_cpu)
5384 {
5385 struct migration_arg arg = { p, target_cpu };
5386 int curr_cpu = task_cpu(p);
5387
5388 if (curr_cpu == target_cpu)
5389 return 0;
5390
5391 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5392 return -EINVAL;
5393
5394 /* TODO: This is not properly updating schedstats */
5395
5396 trace_sched_move_numa(p, curr_cpu, target_cpu);
5397 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5398 }
5399
5400 /*
5401 * Requeue a task on a given node and accurately track the number of NUMA
5402 * tasks on the runqueues
5403 */
5404 void sched_setnuma(struct task_struct *p, int nid)
5405 {
5406 bool queued, running;
5407 struct rq_flags rf;
5408 struct rq *rq;
5409
5410 rq = task_rq_lock(p, &rf);
5411 queued = task_on_rq_queued(p);
5412 running = task_current(rq, p);
5413
5414 if (queued)
5415 dequeue_task(rq, p, DEQUEUE_SAVE);
5416 if (running)
5417 put_prev_task(rq, p);
5418
5419 p->numa_preferred_nid = nid;
5420
5421 if (running)
5422 p->sched_class->set_curr_task(rq);
5423 if (queued)
5424 enqueue_task(rq, p, ENQUEUE_RESTORE);
5425 task_rq_unlock(rq, p, &rf);
5426 }
5427 #endif /* CONFIG_NUMA_BALANCING */
5428
5429 #ifdef CONFIG_HOTPLUG_CPU
5430 /*
5431 * Ensures that the idle task is using init_mm right before its cpu goes
5432 * offline.
5433 */
5434 void idle_task_exit(void)
5435 {
5436 struct mm_struct *mm = current->active_mm;
5437
5438 BUG_ON(cpu_online(smp_processor_id()));
5439
5440 if (mm != &init_mm) {
5441 switch_mm_irqs_off(mm, &init_mm, current);
5442 finish_arch_post_lock_switch();
5443 }
5444 mmdrop(mm);
5445 }
5446
5447 /*
5448 * Since this CPU is going 'away' for a while, fold any nr_active delta
5449 * we might have. Assumes we're called after migrate_tasks() so that the
5450 * nr_active count is stable. We need to take the teardown thread which
5451 * is calling this into account, so we hand in adjust = 1 to the load
5452 * calculation.
5453 *
5454 * Also see the comment "Global load-average calculations".
5455 */
5456 static void calc_load_migrate(struct rq *rq)
5457 {
5458 long delta = calc_load_fold_active(rq, 1);
5459 if (delta)
5460 atomic_long_add(delta, &calc_load_tasks);
5461 }
5462
5463 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5464 {
5465 }
5466
5467 static const struct sched_class fake_sched_class = {
5468 .put_prev_task = put_prev_task_fake,
5469 };
5470
5471 static struct task_struct fake_task = {
5472 /*
5473 * Avoid pull_{rt,dl}_task()
5474 */
5475 .prio = MAX_PRIO + 1,
5476 .sched_class = &fake_sched_class,
5477 };
5478
5479 /*
5480 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5481 * try_to_wake_up()->select_task_rq().
5482 *
5483 * Called with rq->lock held even though we'er in stop_machine() and
5484 * there's no concurrency possible, we hold the required locks anyway
5485 * because of lock validation efforts.
5486 */
5487 static void migrate_tasks(struct rq *dead_rq)
5488 {
5489 struct rq *rq = dead_rq;
5490 struct task_struct *next, *stop = rq->stop;
5491 struct pin_cookie cookie;
5492 int dest_cpu;
5493
5494 /*
5495 * Fudge the rq selection such that the below task selection loop
5496 * doesn't get stuck on the currently eligible stop task.
5497 *
5498 * We're currently inside stop_machine() and the rq is either stuck
5499 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5500 * either way we should never end up calling schedule() until we're
5501 * done here.
5502 */
5503 rq->stop = NULL;
5504
5505 /*
5506 * put_prev_task() and pick_next_task() sched
5507 * class method both need to have an up-to-date
5508 * value of rq->clock[_task]
5509 */
5510 update_rq_clock(rq);
5511
5512 for (;;) {
5513 /*
5514 * There's this thread running, bail when that's the only
5515 * remaining thread.
5516 */
5517 if (rq->nr_running == 1)
5518 break;
5519
5520 /*
5521 * pick_next_task assumes pinned rq->lock.
5522 */
5523 cookie = lockdep_pin_lock(&rq->lock);
5524 next = pick_next_task(rq, &fake_task, cookie);
5525 BUG_ON(!next);
5526 next->sched_class->put_prev_task(rq, next);
5527
5528 /*
5529 * Rules for changing task_struct::cpus_allowed are holding
5530 * both pi_lock and rq->lock, such that holding either
5531 * stabilizes the mask.
5532 *
5533 * Drop rq->lock is not quite as disastrous as it usually is
5534 * because !cpu_active at this point, which means load-balance
5535 * will not interfere. Also, stop-machine.
5536 */
5537 lockdep_unpin_lock(&rq->lock, cookie);
5538 raw_spin_unlock(&rq->lock);
5539 raw_spin_lock(&next->pi_lock);
5540 raw_spin_lock(&rq->lock);
5541
5542 /*
5543 * Since we're inside stop-machine, _nothing_ should have
5544 * changed the task, WARN if weird stuff happened, because in
5545 * that case the above rq->lock drop is a fail too.
5546 */
5547 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5548 raw_spin_unlock(&next->pi_lock);
5549 continue;
5550 }
5551
5552 /* Find suitable destination for @next, with force if needed. */
5553 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5554
5555 rq = __migrate_task(rq, next, dest_cpu);
5556 if (rq != dead_rq) {
5557 raw_spin_unlock(&rq->lock);
5558 rq = dead_rq;
5559 raw_spin_lock(&rq->lock);
5560 }
5561 raw_spin_unlock(&next->pi_lock);
5562 }
5563
5564 rq->stop = stop;
5565 }
5566 #endif /* CONFIG_HOTPLUG_CPU */
5567
5568 static void set_rq_online(struct rq *rq)
5569 {
5570 if (!rq->online) {
5571 const struct sched_class *class;
5572
5573 cpumask_set_cpu(rq->cpu, rq->rd->online);
5574 rq->online = 1;
5575
5576 for_each_class(class) {
5577 if (class->rq_online)
5578 class->rq_online(rq);
5579 }
5580 }
5581 }
5582
5583 static void set_rq_offline(struct rq *rq)
5584 {
5585 if (rq->online) {
5586 const struct sched_class *class;
5587
5588 for_each_class(class) {
5589 if (class->rq_offline)
5590 class->rq_offline(rq);
5591 }
5592
5593 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5594 rq->online = 0;
5595 }
5596 }
5597
5598 static void set_cpu_rq_start_time(unsigned int cpu)
5599 {
5600 struct rq *rq = cpu_rq(cpu);
5601
5602 rq->age_stamp = sched_clock_cpu(cpu);
5603 }
5604
5605 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5606
5607 #ifdef CONFIG_SCHED_DEBUG
5608
5609 static __read_mostly int sched_debug_enabled;
5610
5611 static int __init sched_debug_setup(char *str)
5612 {
5613 sched_debug_enabled = 1;
5614
5615 return 0;
5616 }
5617 early_param("sched_debug", sched_debug_setup);
5618
5619 static inline bool sched_debug(void)
5620 {
5621 return sched_debug_enabled;
5622 }
5623
5624 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5625 struct cpumask *groupmask)
5626 {
5627 struct sched_group *group = sd->groups;
5628
5629 cpumask_clear(groupmask);
5630
5631 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5632
5633 if (!(sd->flags & SD_LOAD_BALANCE)) {
5634 printk("does not load-balance\n");
5635 if (sd->parent)
5636 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5637 " has parent");
5638 return -1;
5639 }
5640
5641 printk(KERN_CONT "span %*pbl level %s\n",
5642 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5643
5644 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5645 printk(KERN_ERR "ERROR: domain->span does not contain "
5646 "CPU%d\n", cpu);
5647 }
5648 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5649 printk(KERN_ERR "ERROR: domain->groups does not contain"
5650 " CPU%d\n", cpu);
5651 }
5652
5653 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5654 do {
5655 if (!group) {
5656 printk("\n");
5657 printk(KERN_ERR "ERROR: group is NULL\n");
5658 break;
5659 }
5660
5661 if (!cpumask_weight(sched_group_cpus(group))) {
5662 printk(KERN_CONT "\n");
5663 printk(KERN_ERR "ERROR: empty group\n");
5664 break;
5665 }
5666
5667 if (!(sd->flags & SD_OVERLAP) &&
5668 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5669 printk(KERN_CONT "\n");
5670 printk(KERN_ERR "ERROR: repeated CPUs\n");
5671 break;
5672 }
5673
5674 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5675
5676 printk(KERN_CONT " %*pbl",
5677 cpumask_pr_args(sched_group_cpus(group)));
5678 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5679 printk(KERN_CONT " (cpu_capacity = %d)",
5680 group->sgc->capacity);
5681 }
5682
5683 group = group->next;
5684 } while (group != sd->groups);
5685 printk(KERN_CONT "\n");
5686
5687 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5688 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5689
5690 if (sd->parent &&
5691 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5692 printk(KERN_ERR "ERROR: parent span is not a superset "
5693 "of domain->span\n");
5694 return 0;
5695 }
5696
5697 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5698 {
5699 int level = 0;
5700
5701 if (!sched_debug_enabled)
5702 return;
5703
5704 if (!sd) {
5705 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5706 return;
5707 }
5708
5709 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5710
5711 for (;;) {
5712 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5713 break;
5714 level++;
5715 sd = sd->parent;
5716 if (!sd)
5717 break;
5718 }
5719 }
5720 #else /* !CONFIG_SCHED_DEBUG */
5721 # define sched_domain_debug(sd, cpu) do { } while (0)
5722 static inline bool sched_debug(void)
5723 {
5724 return false;
5725 }
5726 #endif /* CONFIG_SCHED_DEBUG */
5727
5728 static int sd_degenerate(struct sched_domain *sd)
5729 {
5730 if (cpumask_weight(sched_domain_span(sd)) == 1)
5731 return 1;
5732
5733 /* Following flags need at least 2 groups */
5734 if (sd->flags & (SD_LOAD_BALANCE |
5735 SD_BALANCE_NEWIDLE |
5736 SD_BALANCE_FORK |
5737 SD_BALANCE_EXEC |
5738 SD_SHARE_CPUCAPACITY |
5739 SD_SHARE_PKG_RESOURCES |
5740 SD_SHARE_POWERDOMAIN)) {
5741 if (sd->groups != sd->groups->next)
5742 return 0;
5743 }
5744
5745 /* Following flags don't use groups */
5746 if (sd->flags & (SD_WAKE_AFFINE))
5747 return 0;
5748
5749 return 1;
5750 }
5751
5752 static int
5753 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5754 {
5755 unsigned long cflags = sd->flags, pflags = parent->flags;
5756
5757 if (sd_degenerate(parent))
5758 return 1;
5759
5760 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5761 return 0;
5762
5763 /* Flags needing groups don't count if only 1 group in parent */
5764 if (parent->groups == parent->groups->next) {
5765 pflags &= ~(SD_LOAD_BALANCE |
5766 SD_BALANCE_NEWIDLE |
5767 SD_BALANCE_FORK |
5768 SD_BALANCE_EXEC |
5769 SD_SHARE_CPUCAPACITY |
5770 SD_SHARE_PKG_RESOURCES |
5771 SD_PREFER_SIBLING |
5772 SD_SHARE_POWERDOMAIN);
5773 if (nr_node_ids == 1)
5774 pflags &= ~SD_SERIALIZE;
5775 }
5776 if (~cflags & pflags)
5777 return 0;
5778
5779 return 1;
5780 }
5781
5782 static void free_rootdomain(struct rcu_head *rcu)
5783 {
5784 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5785
5786 cpupri_cleanup(&rd->cpupri);
5787 cpudl_cleanup(&rd->cpudl);
5788 free_cpumask_var(rd->dlo_mask);
5789 free_cpumask_var(rd->rto_mask);
5790 free_cpumask_var(rd->online);
5791 free_cpumask_var(rd->span);
5792 kfree(rd);
5793 }
5794
5795 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5796 {
5797 struct root_domain *old_rd = NULL;
5798 unsigned long flags;
5799
5800 raw_spin_lock_irqsave(&rq->lock, flags);
5801
5802 if (rq->rd) {
5803 old_rd = rq->rd;
5804
5805 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5806 set_rq_offline(rq);
5807
5808 cpumask_clear_cpu(rq->cpu, old_rd->span);
5809
5810 /*
5811 * If we dont want to free the old_rd yet then
5812 * set old_rd to NULL to skip the freeing later
5813 * in this function:
5814 */
5815 if (!atomic_dec_and_test(&old_rd->refcount))
5816 old_rd = NULL;
5817 }
5818
5819 atomic_inc(&rd->refcount);
5820 rq->rd = rd;
5821
5822 cpumask_set_cpu(rq->cpu, rd->span);
5823 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5824 set_rq_online(rq);
5825
5826 raw_spin_unlock_irqrestore(&rq->lock, flags);
5827
5828 if (old_rd)
5829 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5830 }
5831
5832 static int init_rootdomain(struct root_domain *rd)
5833 {
5834 memset(rd, 0, sizeof(*rd));
5835
5836 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5837 goto out;
5838 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5839 goto free_span;
5840 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5841 goto free_online;
5842 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5843 goto free_dlo_mask;
5844
5845 init_dl_bw(&rd->dl_bw);
5846 if (cpudl_init(&rd->cpudl) != 0)
5847 goto free_dlo_mask;
5848
5849 if (cpupri_init(&rd->cpupri) != 0)
5850 goto free_rto_mask;
5851 return 0;
5852
5853 free_rto_mask:
5854 free_cpumask_var(rd->rto_mask);
5855 free_dlo_mask:
5856 free_cpumask_var(rd->dlo_mask);
5857 free_online:
5858 free_cpumask_var(rd->online);
5859 free_span:
5860 free_cpumask_var(rd->span);
5861 out:
5862 return -ENOMEM;
5863 }
5864
5865 /*
5866 * By default the system creates a single root-domain with all cpus as
5867 * members (mimicking the global state we have today).
5868 */
5869 struct root_domain def_root_domain;
5870
5871 static void init_defrootdomain(void)
5872 {
5873 init_rootdomain(&def_root_domain);
5874
5875 atomic_set(&def_root_domain.refcount, 1);
5876 }
5877
5878 static struct root_domain *alloc_rootdomain(void)
5879 {
5880 struct root_domain *rd;
5881
5882 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5883 if (!rd)
5884 return NULL;
5885
5886 if (init_rootdomain(rd) != 0) {
5887 kfree(rd);
5888 return NULL;
5889 }
5890
5891 return rd;
5892 }
5893
5894 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5895 {
5896 struct sched_group *tmp, *first;
5897
5898 if (!sg)
5899 return;
5900
5901 first = sg;
5902 do {
5903 tmp = sg->next;
5904
5905 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5906 kfree(sg->sgc);
5907
5908 kfree(sg);
5909 sg = tmp;
5910 } while (sg != first);
5911 }
5912
5913 static void free_sched_domain(struct rcu_head *rcu)
5914 {
5915 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5916
5917 /*
5918 * If its an overlapping domain it has private groups, iterate and
5919 * nuke them all.
5920 */
5921 if (sd->flags & SD_OVERLAP) {
5922 free_sched_groups(sd->groups, 1);
5923 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5924 kfree(sd->groups->sgc);
5925 kfree(sd->groups);
5926 }
5927 kfree(sd);
5928 }
5929
5930 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5931 {
5932 call_rcu(&sd->rcu, free_sched_domain);
5933 }
5934
5935 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5936 {
5937 for (; sd; sd = sd->parent)
5938 destroy_sched_domain(sd, cpu);
5939 }
5940
5941 /*
5942 * Keep a special pointer to the highest sched_domain that has
5943 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5944 * allows us to avoid some pointer chasing select_idle_sibling().
5945 *
5946 * Also keep a unique ID per domain (we use the first cpu number in
5947 * the cpumask of the domain), this allows us to quickly tell if
5948 * two cpus are in the same cache domain, see cpus_share_cache().
5949 */
5950 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5951 DEFINE_PER_CPU(int, sd_llc_size);
5952 DEFINE_PER_CPU(int, sd_llc_id);
5953 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5954 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5955 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5956
5957 static void update_top_cache_domain(int cpu)
5958 {
5959 struct sched_domain *sd;
5960 struct sched_domain *busy_sd = NULL;
5961 int id = cpu;
5962 int size = 1;
5963
5964 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5965 if (sd) {
5966 id = cpumask_first(sched_domain_span(sd));
5967 size = cpumask_weight(sched_domain_span(sd));
5968 busy_sd = sd->parent; /* sd_busy */
5969 }
5970 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5971
5972 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5973 per_cpu(sd_llc_size, cpu) = size;
5974 per_cpu(sd_llc_id, cpu) = id;
5975
5976 sd = lowest_flag_domain(cpu, SD_NUMA);
5977 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5978
5979 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5980 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5981 }
5982
5983 /*
5984 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5985 * hold the hotplug lock.
5986 */
5987 static void
5988 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5989 {
5990 struct rq *rq = cpu_rq(cpu);
5991 struct sched_domain *tmp;
5992
5993 /* Remove the sched domains which do not contribute to scheduling. */
5994 for (tmp = sd; tmp; ) {
5995 struct sched_domain *parent = tmp->parent;
5996 if (!parent)
5997 break;
5998
5999 if (sd_parent_degenerate(tmp, parent)) {
6000 tmp->parent = parent->parent;
6001 if (parent->parent)
6002 parent->parent->child = tmp;
6003 /*
6004 * Transfer SD_PREFER_SIBLING down in case of a
6005 * degenerate parent; the spans match for this
6006 * so the property transfers.
6007 */
6008 if (parent->flags & SD_PREFER_SIBLING)
6009 tmp->flags |= SD_PREFER_SIBLING;
6010 destroy_sched_domain(parent, cpu);
6011 } else
6012 tmp = tmp->parent;
6013 }
6014
6015 if (sd && sd_degenerate(sd)) {
6016 tmp = sd;
6017 sd = sd->parent;
6018 destroy_sched_domain(tmp, cpu);
6019 if (sd)
6020 sd->child = NULL;
6021 }
6022
6023 sched_domain_debug(sd, cpu);
6024
6025 rq_attach_root(rq, rd);
6026 tmp = rq->sd;
6027 rcu_assign_pointer(rq->sd, sd);
6028 destroy_sched_domains(tmp, cpu);
6029
6030 update_top_cache_domain(cpu);
6031 }
6032
6033 /* Setup the mask of cpus configured for isolated domains */
6034 static int __init isolated_cpu_setup(char *str)
6035 {
6036 int ret;
6037
6038 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6039 ret = cpulist_parse(str, cpu_isolated_map);
6040 if (ret) {
6041 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6042 return 0;
6043 }
6044 return 1;
6045 }
6046 __setup("isolcpus=", isolated_cpu_setup);
6047
6048 struct s_data {
6049 struct sched_domain ** __percpu sd;
6050 struct root_domain *rd;
6051 };
6052
6053 enum s_alloc {
6054 sa_rootdomain,
6055 sa_sd,
6056 sa_sd_storage,
6057 sa_none,
6058 };
6059
6060 /*
6061 * Build an iteration mask that can exclude certain CPUs from the upwards
6062 * domain traversal.
6063 *
6064 * Asymmetric node setups can result in situations where the domain tree is of
6065 * unequal depth, make sure to skip domains that already cover the entire
6066 * range.
6067 *
6068 * In that case build_sched_domains() will have terminated the iteration early
6069 * and our sibling sd spans will be empty. Domains should always include the
6070 * cpu they're built on, so check that.
6071 *
6072 */
6073 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6074 {
6075 const struct cpumask *span = sched_domain_span(sd);
6076 struct sd_data *sdd = sd->private;
6077 struct sched_domain *sibling;
6078 int i;
6079
6080 for_each_cpu(i, span) {
6081 sibling = *per_cpu_ptr(sdd->sd, i);
6082 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6083 continue;
6084
6085 cpumask_set_cpu(i, sched_group_mask(sg));
6086 }
6087 }
6088
6089 /*
6090 * Return the canonical balance cpu for this group, this is the first cpu
6091 * of this group that's also in the iteration mask.
6092 */
6093 int group_balance_cpu(struct sched_group *sg)
6094 {
6095 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6096 }
6097
6098 static int
6099 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6100 {
6101 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6102 const struct cpumask *span = sched_domain_span(sd);
6103 struct cpumask *covered = sched_domains_tmpmask;
6104 struct sd_data *sdd = sd->private;
6105 struct sched_domain *sibling;
6106 int i;
6107
6108 cpumask_clear(covered);
6109
6110 for_each_cpu(i, span) {
6111 struct cpumask *sg_span;
6112
6113 if (cpumask_test_cpu(i, covered))
6114 continue;
6115
6116 sibling = *per_cpu_ptr(sdd->sd, i);
6117
6118 /* See the comment near build_group_mask(). */
6119 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6120 continue;
6121
6122 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6123 GFP_KERNEL, cpu_to_node(cpu));
6124
6125 if (!sg)
6126 goto fail;
6127
6128 sg_span = sched_group_cpus(sg);
6129 if (sibling->child)
6130 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6131 else
6132 cpumask_set_cpu(i, sg_span);
6133
6134 cpumask_or(covered, covered, sg_span);
6135
6136 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6137 if (atomic_inc_return(&sg->sgc->ref) == 1)
6138 build_group_mask(sd, sg);
6139
6140 /*
6141 * Initialize sgc->capacity such that even if we mess up the
6142 * domains and no possible iteration will get us here, we won't
6143 * die on a /0 trap.
6144 */
6145 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6146
6147 /*
6148 * Make sure the first group of this domain contains the
6149 * canonical balance cpu. Otherwise the sched_domain iteration
6150 * breaks. See update_sg_lb_stats().
6151 */
6152 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6153 group_balance_cpu(sg) == cpu)
6154 groups = sg;
6155
6156 if (!first)
6157 first = sg;
6158 if (last)
6159 last->next = sg;
6160 last = sg;
6161 last->next = first;
6162 }
6163 sd->groups = groups;
6164
6165 return 0;
6166
6167 fail:
6168 free_sched_groups(first, 0);
6169
6170 return -ENOMEM;
6171 }
6172
6173 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6174 {
6175 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6176 struct sched_domain *child = sd->child;
6177
6178 if (child)
6179 cpu = cpumask_first(sched_domain_span(child));
6180
6181 if (sg) {
6182 *sg = *per_cpu_ptr(sdd->sg, cpu);
6183 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6184 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6185 }
6186
6187 return cpu;
6188 }
6189
6190 /*
6191 * build_sched_groups will build a circular linked list of the groups
6192 * covered by the given span, and will set each group's ->cpumask correctly,
6193 * and ->cpu_capacity to 0.
6194 *
6195 * Assumes the sched_domain tree is fully constructed
6196 */
6197 static int
6198 build_sched_groups(struct sched_domain *sd, int cpu)
6199 {
6200 struct sched_group *first = NULL, *last = NULL;
6201 struct sd_data *sdd = sd->private;
6202 const struct cpumask *span = sched_domain_span(sd);
6203 struct cpumask *covered;
6204 int i;
6205
6206 get_group(cpu, sdd, &sd->groups);
6207 atomic_inc(&sd->groups->ref);
6208
6209 if (cpu != cpumask_first(span))
6210 return 0;
6211
6212 lockdep_assert_held(&sched_domains_mutex);
6213 covered = sched_domains_tmpmask;
6214
6215 cpumask_clear(covered);
6216
6217 for_each_cpu(i, span) {
6218 struct sched_group *sg;
6219 int group, j;
6220
6221 if (cpumask_test_cpu(i, covered))
6222 continue;
6223
6224 group = get_group(i, sdd, &sg);
6225 cpumask_setall(sched_group_mask(sg));
6226
6227 for_each_cpu(j, span) {
6228 if (get_group(j, sdd, NULL) != group)
6229 continue;
6230
6231 cpumask_set_cpu(j, covered);
6232 cpumask_set_cpu(j, sched_group_cpus(sg));
6233 }
6234
6235 if (!first)
6236 first = sg;
6237 if (last)
6238 last->next = sg;
6239 last = sg;
6240 }
6241 last->next = first;
6242
6243 return 0;
6244 }
6245
6246 /*
6247 * Initialize sched groups cpu_capacity.
6248 *
6249 * cpu_capacity indicates the capacity of sched group, which is used while
6250 * distributing the load between different sched groups in a sched domain.
6251 * Typically cpu_capacity for all the groups in a sched domain will be same
6252 * unless there are asymmetries in the topology. If there are asymmetries,
6253 * group having more cpu_capacity will pickup more load compared to the
6254 * group having less cpu_capacity.
6255 */
6256 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6257 {
6258 struct sched_group *sg = sd->groups;
6259
6260 WARN_ON(!sg);
6261
6262 do {
6263 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6264 sg = sg->next;
6265 } while (sg != sd->groups);
6266
6267 if (cpu != group_balance_cpu(sg))
6268 return;
6269
6270 update_group_capacity(sd, cpu);
6271 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6272 }
6273
6274 /*
6275 * Initializers for schedule domains
6276 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6277 */
6278
6279 static int default_relax_domain_level = -1;
6280 int sched_domain_level_max;
6281
6282 static int __init setup_relax_domain_level(char *str)
6283 {
6284 if (kstrtoint(str, 0, &default_relax_domain_level))
6285 pr_warn("Unable to set relax_domain_level\n");
6286
6287 return 1;
6288 }
6289 __setup("relax_domain_level=", setup_relax_domain_level);
6290
6291 static void set_domain_attribute(struct sched_domain *sd,
6292 struct sched_domain_attr *attr)
6293 {
6294 int request;
6295
6296 if (!attr || attr->relax_domain_level < 0) {
6297 if (default_relax_domain_level < 0)
6298 return;
6299 else
6300 request = default_relax_domain_level;
6301 } else
6302 request = attr->relax_domain_level;
6303 if (request < sd->level) {
6304 /* turn off idle balance on this domain */
6305 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6306 } else {
6307 /* turn on idle balance on this domain */
6308 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6309 }
6310 }
6311
6312 static void __sdt_free(const struct cpumask *cpu_map);
6313 static int __sdt_alloc(const struct cpumask *cpu_map);
6314
6315 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6316 const struct cpumask *cpu_map)
6317 {
6318 switch (what) {
6319 case sa_rootdomain:
6320 if (!atomic_read(&d->rd->refcount))
6321 free_rootdomain(&d->rd->rcu); /* fall through */
6322 case sa_sd:
6323 free_percpu(d->sd); /* fall through */
6324 case sa_sd_storage:
6325 __sdt_free(cpu_map); /* fall through */
6326 case sa_none:
6327 break;
6328 }
6329 }
6330
6331 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6332 const struct cpumask *cpu_map)
6333 {
6334 memset(d, 0, sizeof(*d));
6335
6336 if (__sdt_alloc(cpu_map))
6337 return sa_sd_storage;
6338 d->sd = alloc_percpu(struct sched_domain *);
6339 if (!d->sd)
6340 return sa_sd_storage;
6341 d->rd = alloc_rootdomain();
6342 if (!d->rd)
6343 return sa_sd;
6344 return sa_rootdomain;
6345 }
6346
6347 /*
6348 * NULL the sd_data elements we've used to build the sched_domain and
6349 * sched_group structure so that the subsequent __free_domain_allocs()
6350 * will not free the data we're using.
6351 */
6352 static void claim_allocations(int cpu, struct sched_domain *sd)
6353 {
6354 struct sd_data *sdd = sd->private;
6355
6356 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6357 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6358
6359 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6360 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6361
6362 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6363 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6364 }
6365
6366 #ifdef CONFIG_NUMA
6367 static int sched_domains_numa_levels;
6368 enum numa_topology_type sched_numa_topology_type;
6369 static int *sched_domains_numa_distance;
6370 int sched_max_numa_distance;
6371 static struct cpumask ***sched_domains_numa_masks;
6372 static int sched_domains_curr_level;
6373 #endif
6374
6375 /*
6376 * SD_flags allowed in topology descriptions.
6377 *
6378 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6379 * SD_SHARE_PKG_RESOURCES - describes shared caches
6380 * SD_NUMA - describes NUMA topologies
6381 * SD_SHARE_POWERDOMAIN - describes shared power domain
6382 *
6383 * Odd one out:
6384 * SD_ASYM_PACKING - describes SMT quirks
6385 */
6386 #define TOPOLOGY_SD_FLAGS \
6387 (SD_SHARE_CPUCAPACITY | \
6388 SD_SHARE_PKG_RESOURCES | \
6389 SD_NUMA | \
6390 SD_ASYM_PACKING | \
6391 SD_SHARE_POWERDOMAIN)
6392
6393 static struct sched_domain *
6394 sd_init(struct sched_domain_topology_level *tl, int cpu)
6395 {
6396 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6397 int sd_weight, sd_flags = 0;
6398
6399 #ifdef CONFIG_NUMA
6400 /*
6401 * Ugly hack to pass state to sd_numa_mask()...
6402 */
6403 sched_domains_curr_level = tl->numa_level;
6404 #endif
6405
6406 sd_weight = cpumask_weight(tl->mask(cpu));
6407
6408 if (tl->sd_flags)
6409 sd_flags = (*tl->sd_flags)();
6410 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6411 "wrong sd_flags in topology description\n"))
6412 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6413
6414 *sd = (struct sched_domain){
6415 .min_interval = sd_weight,
6416 .max_interval = 2*sd_weight,
6417 .busy_factor = 32,
6418 .imbalance_pct = 125,
6419
6420 .cache_nice_tries = 0,
6421 .busy_idx = 0,
6422 .idle_idx = 0,
6423 .newidle_idx = 0,
6424 .wake_idx = 0,
6425 .forkexec_idx = 0,
6426
6427 .flags = 1*SD_LOAD_BALANCE
6428 | 1*SD_BALANCE_NEWIDLE
6429 | 1*SD_BALANCE_EXEC
6430 | 1*SD_BALANCE_FORK
6431 | 0*SD_BALANCE_WAKE
6432 | 1*SD_WAKE_AFFINE
6433 | 0*SD_SHARE_CPUCAPACITY
6434 | 0*SD_SHARE_PKG_RESOURCES
6435 | 0*SD_SERIALIZE
6436 | 0*SD_PREFER_SIBLING
6437 | 0*SD_NUMA
6438 | sd_flags
6439 ,
6440
6441 .last_balance = jiffies,
6442 .balance_interval = sd_weight,
6443 .smt_gain = 0,
6444 .max_newidle_lb_cost = 0,
6445 .next_decay_max_lb_cost = jiffies,
6446 #ifdef CONFIG_SCHED_DEBUG
6447 .name = tl->name,
6448 #endif
6449 };
6450
6451 /*
6452 * Convert topological properties into behaviour.
6453 */
6454
6455 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6456 sd->flags |= SD_PREFER_SIBLING;
6457 sd->imbalance_pct = 110;
6458 sd->smt_gain = 1178; /* ~15% */
6459
6460 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6461 sd->imbalance_pct = 117;
6462 sd->cache_nice_tries = 1;
6463 sd->busy_idx = 2;
6464
6465 #ifdef CONFIG_NUMA
6466 } else if (sd->flags & SD_NUMA) {
6467 sd->cache_nice_tries = 2;
6468 sd->busy_idx = 3;
6469 sd->idle_idx = 2;
6470
6471 sd->flags |= SD_SERIALIZE;
6472 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6473 sd->flags &= ~(SD_BALANCE_EXEC |
6474 SD_BALANCE_FORK |
6475 SD_WAKE_AFFINE);
6476 }
6477
6478 #endif
6479 } else {
6480 sd->flags |= SD_PREFER_SIBLING;
6481 sd->cache_nice_tries = 1;
6482 sd->busy_idx = 2;
6483 sd->idle_idx = 1;
6484 }
6485
6486 sd->private = &tl->data;
6487
6488 return sd;
6489 }
6490
6491 /*
6492 * Topology list, bottom-up.
6493 */
6494 static struct sched_domain_topology_level default_topology[] = {
6495 #ifdef CONFIG_SCHED_SMT
6496 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6497 #endif
6498 #ifdef CONFIG_SCHED_MC
6499 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6500 #endif
6501 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6502 { NULL, },
6503 };
6504
6505 static struct sched_domain_topology_level *sched_domain_topology =
6506 default_topology;
6507
6508 #define for_each_sd_topology(tl) \
6509 for (tl = sched_domain_topology; tl->mask; tl++)
6510
6511 void set_sched_topology(struct sched_domain_topology_level *tl)
6512 {
6513 sched_domain_topology = tl;
6514 }
6515
6516 #ifdef CONFIG_NUMA
6517
6518 static const struct cpumask *sd_numa_mask(int cpu)
6519 {
6520 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6521 }
6522
6523 static void sched_numa_warn(const char *str)
6524 {
6525 static int done = false;
6526 int i,j;
6527
6528 if (done)
6529 return;
6530
6531 done = true;
6532
6533 printk(KERN_WARNING "ERROR: %s\n\n", str);
6534
6535 for (i = 0; i < nr_node_ids; i++) {
6536 printk(KERN_WARNING " ");
6537 for (j = 0; j < nr_node_ids; j++)
6538 printk(KERN_CONT "%02d ", node_distance(i,j));
6539 printk(KERN_CONT "\n");
6540 }
6541 printk(KERN_WARNING "\n");
6542 }
6543
6544 bool find_numa_distance(int distance)
6545 {
6546 int i;
6547
6548 if (distance == node_distance(0, 0))
6549 return true;
6550
6551 for (i = 0; i < sched_domains_numa_levels; i++) {
6552 if (sched_domains_numa_distance[i] == distance)
6553 return true;
6554 }
6555
6556 return false;
6557 }
6558
6559 /*
6560 * A system can have three types of NUMA topology:
6561 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6562 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6563 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6564 *
6565 * The difference between a glueless mesh topology and a backplane
6566 * topology lies in whether communication between not directly
6567 * connected nodes goes through intermediary nodes (where programs
6568 * could run), or through backplane controllers. This affects
6569 * placement of programs.
6570 *
6571 * The type of topology can be discerned with the following tests:
6572 * - If the maximum distance between any nodes is 1 hop, the system
6573 * is directly connected.
6574 * - If for two nodes A and B, located N > 1 hops away from each other,
6575 * there is an intermediary node C, which is < N hops away from both
6576 * nodes A and B, the system is a glueless mesh.
6577 */
6578 static void init_numa_topology_type(void)
6579 {
6580 int a, b, c, n;
6581
6582 n = sched_max_numa_distance;
6583
6584 if (sched_domains_numa_levels <= 1) {
6585 sched_numa_topology_type = NUMA_DIRECT;
6586 return;
6587 }
6588
6589 for_each_online_node(a) {
6590 for_each_online_node(b) {
6591 /* Find two nodes furthest removed from each other. */
6592 if (node_distance(a, b) < n)
6593 continue;
6594
6595 /* Is there an intermediary node between a and b? */
6596 for_each_online_node(c) {
6597 if (node_distance(a, c) < n &&
6598 node_distance(b, c) < n) {
6599 sched_numa_topology_type =
6600 NUMA_GLUELESS_MESH;
6601 return;
6602 }
6603 }
6604
6605 sched_numa_topology_type = NUMA_BACKPLANE;
6606 return;
6607 }
6608 }
6609 }
6610
6611 static void sched_init_numa(void)
6612 {
6613 int next_distance, curr_distance = node_distance(0, 0);
6614 struct sched_domain_topology_level *tl;
6615 int level = 0;
6616 int i, j, k;
6617
6618 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6619 if (!sched_domains_numa_distance)
6620 return;
6621
6622 /*
6623 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6624 * unique distances in the node_distance() table.
6625 *
6626 * Assumes node_distance(0,j) includes all distances in
6627 * node_distance(i,j) in order to avoid cubic time.
6628 */
6629 next_distance = curr_distance;
6630 for (i = 0; i < nr_node_ids; i++) {
6631 for (j = 0; j < nr_node_ids; j++) {
6632 for (k = 0; k < nr_node_ids; k++) {
6633 int distance = node_distance(i, k);
6634
6635 if (distance > curr_distance &&
6636 (distance < next_distance ||
6637 next_distance == curr_distance))
6638 next_distance = distance;
6639
6640 /*
6641 * While not a strong assumption it would be nice to know
6642 * about cases where if node A is connected to B, B is not
6643 * equally connected to A.
6644 */
6645 if (sched_debug() && node_distance(k, i) != distance)
6646 sched_numa_warn("Node-distance not symmetric");
6647
6648 if (sched_debug() && i && !find_numa_distance(distance))
6649 sched_numa_warn("Node-0 not representative");
6650 }
6651 if (next_distance != curr_distance) {
6652 sched_domains_numa_distance[level++] = next_distance;
6653 sched_domains_numa_levels = level;
6654 curr_distance = next_distance;
6655 } else break;
6656 }
6657
6658 /*
6659 * In case of sched_debug() we verify the above assumption.
6660 */
6661 if (!sched_debug())
6662 break;
6663 }
6664
6665 if (!level)
6666 return;
6667
6668 /*
6669 * 'level' contains the number of unique distances, excluding the
6670 * identity distance node_distance(i,i).
6671 *
6672 * The sched_domains_numa_distance[] array includes the actual distance
6673 * numbers.
6674 */
6675
6676 /*
6677 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6678 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6679 * the array will contain less then 'level' members. This could be
6680 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6681 * in other functions.
6682 *
6683 * We reset it to 'level' at the end of this function.
6684 */
6685 sched_domains_numa_levels = 0;
6686
6687 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6688 if (!sched_domains_numa_masks)
6689 return;
6690
6691 /*
6692 * Now for each level, construct a mask per node which contains all
6693 * cpus of nodes that are that many hops away from us.
6694 */
6695 for (i = 0; i < level; i++) {
6696 sched_domains_numa_masks[i] =
6697 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6698 if (!sched_domains_numa_masks[i])
6699 return;
6700
6701 for (j = 0; j < nr_node_ids; j++) {
6702 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6703 if (!mask)
6704 return;
6705
6706 sched_domains_numa_masks[i][j] = mask;
6707
6708 for_each_node(k) {
6709 if (node_distance(j, k) > sched_domains_numa_distance[i])
6710 continue;
6711
6712 cpumask_or(mask, mask, cpumask_of_node(k));
6713 }
6714 }
6715 }
6716
6717 /* Compute default topology size */
6718 for (i = 0; sched_domain_topology[i].mask; i++);
6719
6720 tl = kzalloc((i + level + 1) *
6721 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6722 if (!tl)
6723 return;
6724
6725 /*
6726 * Copy the default topology bits..
6727 */
6728 for (i = 0; sched_domain_topology[i].mask; i++)
6729 tl[i] = sched_domain_topology[i];
6730
6731 /*
6732 * .. and append 'j' levels of NUMA goodness.
6733 */
6734 for (j = 0; j < level; i++, j++) {
6735 tl[i] = (struct sched_domain_topology_level){
6736 .mask = sd_numa_mask,
6737 .sd_flags = cpu_numa_flags,
6738 .flags = SDTL_OVERLAP,
6739 .numa_level = j,
6740 SD_INIT_NAME(NUMA)
6741 };
6742 }
6743
6744 sched_domain_topology = tl;
6745
6746 sched_domains_numa_levels = level;
6747 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6748
6749 init_numa_topology_type();
6750 }
6751
6752 static void sched_domains_numa_masks_set(unsigned int cpu)
6753 {
6754 int node = cpu_to_node(cpu);
6755 int i, j;
6756
6757 for (i = 0; i < sched_domains_numa_levels; i++) {
6758 for (j = 0; j < nr_node_ids; j++) {
6759 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6760 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6761 }
6762 }
6763 }
6764
6765 static void sched_domains_numa_masks_clear(unsigned int cpu)
6766 {
6767 int i, j;
6768
6769 for (i = 0; i < sched_domains_numa_levels; i++) {
6770 for (j = 0; j < nr_node_ids; j++)
6771 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6772 }
6773 }
6774
6775 #else
6776 static inline void sched_init_numa(void) { }
6777 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6778 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6779 #endif /* CONFIG_NUMA */
6780
6781 static int __sdt_alloc(const struct cpumask *cpu_map)
6782 {
6783 struct sched_domain_topology_level *tl;
6784 int j;
6785
6786 for_each_sd_topology(tl) {
6787 struct sd_data *sdd = &tl->data;
6788
6789 sdd->sd = alloc_percpu(struct sched_domain *);
6790 if (!sdd->sd)
6791 return -ENOMEM;
6792
6793 sdd->sg = alloc_percpu(struct sched_group *);
6794 if (!sdd->sg)
6795 return -ENOMEM;
6796
6797 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6798 if (!sdd->sgc)
6799 return -ENOMEM;
6800
6801 for_each_cpu(j, cpu_map) {
6802 struct sched_domain *sd;
6803 struct sched_group *sg;
6804 struct sched_group_capacity *sgc;
6805
6806 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6807 GFP_KERNEL, cpu_to_node(j));
6808 if (!sd)
6809 return -ENOMEM;
6810
6811 *per_cpu_ptr(sdd->sd, j) = sd;
6812
6813 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6814 GFP_KERNEL, cpu_to_node(j));
6815 if (!sg)
6816 return -ENOMEM;
6817
6818 sg->next = sg;
6819
6820 *per_cpu_ptr(sdd->sg, j) = sg;
6821
6822 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6823 GFP_KERNEL, cpu_to_node(j));
6824 if (!sgc)
6825 return -ENOMEM;
6826
6827 *per_cpu_ptr(sdd->sgc, j) = sgc;
6828 }
6829 }
6830
6831 return 0;
6832 }
6833
6834 static void __sdt_free(const struct cpumask *cpu_map)
6835 {
6836 struct sched_domain_topology_level *tl;
6837 int j;
6838
6839 for_each_sd_topology(tl) {
6840 struct sd_data *sdd = &tl->data;
6841
6842 for_each_cpu(j, cpu_map) {
6843 struct sched_domain *sd;
6844
6845 if (sdd->sd) {
6846 sd = *per_cpu_ptr(sdd->sd, j);
6847 if (sd && (sd->flags & SD_OVERLAP))
6848 free_sched_groups(sd->groups, 0);
6849 kfree(*per_cpu_ptr(sdd->sd, j));
6850 }
6851
6852 if (sdd->sg)
6853 kfree(*per_cpu_ptr(sdd->sg, j));
6854 if (sdd->sgc)
6855 kfree(*per_cpu_ptr(sdd->sgc, j));
6856 }
6857 free_percpu(sdd->sd);
6858 sdd->sd = NULL;
6859 free_percpu(sdd->sg);
6860 sdd->sg = NULL;
6861 free_percpu(sdd->sgc);
6862 sdd->sgc = NULL;
6863 }
6864 }
6865
6866 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6867 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6868 struct sched_domain *child, int cpu)
6869 {
6870 struct sched_domain *sd = sd_init(tl, cpu);
6871 if (!sd)
6872 return child;
6873
6874 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6875 if (child) {
6876 sd->level = child->level + 1;
6877 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6878 child->parent = sd;
6879 sd->child = child;
6880
6881 if (!cpumask_subset(sched_domain_span(child),
6882 sched_domain_span(sd))) {
6883 pr_err("BUG: arch topology borken\n");
6884 #ifdef CONFIG_SCHED_DEBUG
6885 pr_err(" the %s domain not a subset of the %s domain\n",
6886 child->name, sd->name);
6887 #endif
6888 /* Fixup, ensure @sd has at least @child cpus. */
6889 cpumask_or(sched_domain_span(sd),
6890 sched_domain_span(sd),
6891 sched_domain_span(child));
6892 }
6893
6894 }
6895 set_domain_attribute(sd, attr);
6896
6897 return sd;
6898 }
6899
6900 /*
6901 * Build sched domains for a given set of cpus and attach the sched domains
6902 * to the individual cpus
6903 */
6904 static int build_sched_domains(const struct cpumask *cpu_map,
6905 struct sched_domain_attr *attr)
6906 {
6907 enum s_alloc alloc_state;
6908 struct sched_domain *sd;
6909 struct s_data d;
6910 int i, ret = -ENOMEM;
6911
6912 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6913 if (alloc_state != sa_rootdomain)
6914 goto error;
6915
6916 /* Set up domains for cpus specified by the cpu_map. */
6917 for_each_cpu(i, cpu_map) {
6918 struct sched_domain_topology_level *tl;
6919
6920 sd = NULL;
6921 for_each_sd_topology(tl) {
6922 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6923 if (tl == sched_domain_topology)
6924 *per_cpu_ptr(d.sd, i) = sd;
6925 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6926 sd->flags |= SD_OVERLAP;
6927 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6928 break;
6929 }
6930 }
6931
6932 /* Build the groups for the domains */
6933 for_each_cpu(i, cpu_map) {
6934 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6935 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6936 if (sd->flags & SD_OVERLAP) {
6937 if (build_overlap_sched_groups(sd, i))
6938 goto error;
6939 } else {
6940 if (build_sched_groups(sd, i))
6941 goto error;
6942 }
6943 }
6944 }
6945
6946 /* Calculate CPU capacity for physical packages and nodes */
6947 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6948 if (!cpumask_test_cpu(i, cpu_map))
6949 continue;
6950
6951 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6952 claim_allocations(i, sd);
6953 init_sched_groups_capacity(i, sd);
6954 }
6955 }
6956
6957 /* Attach the domains */
6958 rcu_read_lock();
6959 for_each_cpu(i, cpu_map) {
6960 sd = *per_cpu_ptr(d.sd, i);
6961 cpu_attach_domain(sd, d.rd, i);
6962 }
6963 rcu_read_unlock();
6964
6965 ret = 0;
6966 error:
6967 __free_domain_allocs(&d, alloc_state, cpu_map);
6968 return ret;
6969 }
6970
6971 static cpumask_var_t *doms_cur; /* current sched domains */
6972 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6973 static struct sched_domain_attr *dattr_cur;
6974 /* attribues of custom domains in 'doms_cur' */
6975
6976 /*
6977 * Special case: If a kmalloc of a doms_cur partition (array of
6978 * cpumask) fails, then fallback to a single sched domain,
6979 * as determined by the single cpumask fallback_doms.
6980 */
6981 static cpumask_var_t fallback_doms;
6982
6983 /*
6984 * arch_update_cpu_topology lets virtualized architectures update the
6985 * cpu core maps. It is supposed to return 1 if the topology changed
6986 * or 0 if it stayed the same.
6987 */
6988 int __weak arch_update_cpu_topology(void)
6989 {
6990 return 0;
6991 }
6992
6993 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6994 {
6995 int i;
6996 cpumask_var_t *doms;
6997
6998 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6999 if (!doms)
7000 return NULL;
7001 for (i = 0; i < ndoms; i++) {
7002 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7003 free_sched_domains(doms, i);
7004 return NULL;
7005 }
7006 }
7007 return doms;
7008 }
7009
7010 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7011 {
7012 unsigned int i;
7013 for (i = 0; i < ndoms; i++)
7014 free_cpumask_var(doms[i]);
7015 kfree(doms);
7016 }
7017
7018 /*
7019 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7020 * For now this just excludes isolated cpus, but could be used to
7021 * exclude other special cases in the future.
7022 */
7023 static int init_sched_domains(const struct cpumask *cpu_map)
7024 {
7025 int err;
7026
7027 arch_update_cpu_topology();
7028 ndoms_cur = 1;
7029 doms_cur = alloc_sched_domains(ndoms_cur);
7030 if (!doms_cur)
7031 doms_cur = &fallback_doms;
7032 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7033 err = build_sched_domains(doms_cur[0], NULL);
7034 register_sched_domain_sysctl();
7035
7036 return err;
7037 }
7038
7039 /*
7040 * Detach sched domains from a group of cpus specified in cpu_map
7041 * These cpus will now be attached to the NULL domain
7042 */
7043 static void detach_destroy_domains(const struct cpumask *cpu_map)
7044 {
7045 int i;
7046
7047 rcu_read_lock();
7048 for_each_cpu(i, cpu_map)
7049 cpu_attach_domain(NULL, &def_root_domain, i);
7050 rcu_read_unlock();
7051 }
7052
7053 /* handle null as "default" */
7054 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7055 struct sched_domain_attr *new, int idx_new)
7056 {
7057 struct sched_domain_attr tmp;
7058
7059 /* fast path */
7060 if (!new && !cur)
7061 return 1;
7062
7063 tmp = SD_ATTR_INIT;
7064 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7065 new ? (new + idx_new) : &tmp,
7066 sizeof(struct sched_domain_attr));
7067 }
7068
7069 /*
7070 * Partition sched domains as specified by the 'ndoms_new'
7071 * cpumasks in the array doms_new[] of cpumasks. This compares
7072 * doms_new[] to the current sched domain partitioning, doms_cur[].
7073 * It destroys each deleted domain and builds each new domain.
7074 *
7075 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7076 * The masks don't intersect (don't overlap.) We should setup one
7077 * sched domain for each mask. CPUs not in any of the cpumasks will
7078 * not be load balanced. If the same cpumask appears both in the
7079 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7080 * it as it is.
7081 *
7082 * The passed in 'doms_new' should be allocated using
7083 * alloc_sched_domains. This routine takes ownership of it and will
7084 * free_sched_domains it when done with it. If the caller failed the
7085 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7086 * and partition_sched_domains() will fallback to the single partition
7087 * 'fallback_doms', it also forces the domains to be rebuilt.
7088 *
7089 * If doms_new == NULL it will be replaced with cpu_online_mask.
7090 * ndoms_new == 0 is a special case for destroying existing domains,
7091 * and it will not create the default domain.
7092 *
7093 * Call with hotplug lock held
7094 */
7095 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7096 struct sched_domain_attr *dattr_new)
7097 {
7098 int i, j, n;
7099 int new_topology;
7100
7101 mutex_lock(&sched_domains_mutex);
7102
7103 /* always unregister in case we don't destroy any domains */
7104 unregister_sched_domain_sysctl();
7105
7106 /* Let architecture update cpu core mappings. */
7107 new_topology = arch_update_cpu_topology();
7108
7109 n = doms_new ? ndoms_new : 0;
7110
7111 /* Destroy deleted domains */
7112 for (i = 0; i < ndoms_cur; i++) {
7113 for (j = 0; j < n && !new_topology; j++) {
7114 if (cpumask_equal(doms_cur[i], doms_new[j])
7115 && dattrs_equal(dattr_cur, i, dattr_new, j))
7116 goto match1;
7117 }
7118 /* no match - a current sched domain not in new doms_new[] */
7119 detach_destroy_domains(doms_cur[i]);
7120 match1:
7121 ;
7122 }
7123
7124 n = ndoms_cur;
7125 if (doms_new == NULL) {
7126 n = 0;
7127 doms_new = &fallback_doms;
7128 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7129 WARN_ON_ONCE(dattr_new);
7130 }
7131
7132 /* Build new domains */
7133 for (i = 0; i < ndoms_new; i++) {
7134 for (j = 0; j < n && !new_topology; j++) {
7135 if (cpumask_equal(doms_new[i], doms_cur[j])
7136 && dattrs_equal(dattr_new, i, dattr_cur, j))
7137 goto match2;
7138 }
7139 /* no match - add a new doms_new */
7140 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7141 match2:
7142 ;
7143 }
7144
7145 /* Remember the new sched domains */
7146 if (doms_cur != &fallback_doms)
7147 free_sched_domains(doms_cur, ndoms_cur);
7148 kfree(dattr_cur); /* kfree(NULL) is safe */
7149 doms_cur = doms_new;
7150 dattr_cur = dattr_new;
7151 ndoms_cur = ndoms_new;
7152
7153 register_sched_domain_sysctl();
7154
7155 mutex_unlock(&sched_domains_mutex);
7156 }
7157
7158 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7159
7160 /*
7161 * Update cpusets according to cpu_active mask. If cpusets are
7162 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7163 * around partition_sched_domains().
7164 *
7165 * If we come here as part of a suspend/resume, don't touch cpusets because we
7166 * want to restore it back to its original state upon resume anyway.
7167 */
7168 static void cpuset_cpu_active(void)
7169 {
7170 if (cpuhp_tasks_frozen) {
7171 /*
7172 * num_cpus_frozen tracks how many CPUs are involved in suspend
7173 * resume sequence. As long as this is not the last online
7174 * operation in the resume sequence, just build a single sched
7175 * domain, ignoring cpusets.
7176 */
7177 num_cpus_frozen--;
7178 if (likely(num_cpus_frozen)) {
7179 partition_sched_domains(1, NULL, NULL);
7180 return;
7181 }
7182 /*
7183 * This is the last CPU online operation. So fall through and
7184 * restore the original sched domains by considering the
7185 * cpuset configurations.
7186 */
7187 }
7188 cpuset_update_active_cpus(true);
7189 }
7190
7191 static int cpuset_cpu_inactive(unsigned int cpu)
7192 {
7193 unsigned long flags;
7194 struct dl_bw *dl_b;
7195 bool overflow;
7196 int cpus;
7197
7198 if (!cpuhp_tasks_frozen) {
7199 rcu_read_lock_sched();
7200 dl_b = dl_bw_of(cpu);
7201
7202 raw_spin_lock_irqsave(&dl_b->lock, flags);
7203 cpus = dl_bw_cpus(cpu);
7204 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7205 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7206
7207 rcu_read_unlock_sched();
7208
7209 if (overflow)
7210 return -EBUSY;
7211 cpuset_update_active_cpus(false);
7212 } else {
7213 num_cpus_frozen++;
7214 partition_sched_domains(1, NULL, NULL);
7215 }
7216 return 0;
7217 }
7218
7219 int sched_cpu_activate(unsigned int cpu)
7220 {
7221 struct rq *rq = cpu_rq(cpu);
7222 unsigned long flags;
7223
7224 set_cpu_active(cpu, true);
7225
7226 if (sched_smp_initialized) {
7227 sched_domains_numa_masks_set(cpu);
7228 cpuset_cpu_active();
7229 }
7230
7231 /*
7232 * Put the rq online, if not already. This happens:
7233 *
7234 * 1) In the early boot process, because we build the real domains
7235 * after all cpus have been brought up.
7236 *
7237 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7238 * domains.
7239 */
7240 raw_spin_lock_irqsave(&rq->lock, flags);
7241 if (rq->rd) {
7242 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7243 set_rq_online(rq);
7244 }
7245 raw_spin_unlock_irqrestore(&rq->lock, flags);
7246
7247 update_max_interval();
7248
7249 return 0;
7250 }
7251
7252 int sched_cpu_deactivate(unsigned int cpu)
7253 {
7254 int ret;
7255
7256 set_cpu_active(cpu, false);
7257 /*
7258 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7259 * users of this state to go away such that all new such users will
7260 * observe it.
7261 *
7262 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7263 * not imply sync_sched(), so wait for both.
7264 *
7265 * Do sync before park smpboot threads to take care the rcu boost case.
7266 */
7267 if (IS_ENABLED(CONFIG_PREEMPT))
7268 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7269 else
7270 synchronize_rcu();
7271
7272 if (!sched_smp_initialized)
7273 return 0;
7274
7275 ret = cpuset_cpu_inactive(cpu);
7276 if (ret) {
7277 set_cpu_active(cpu, true);
7278 return ret;
7279 }
7280 sched_domains_numa_masks_clear(cpu);
7281 return 0;
7282 }
7283
7284 static void sched_rq_cpu_starting(unsigned int cpu)
7285 {
7286 struct rq *rq = cpu_rq(cpu);
7287
7288 rq->calc_load_update = calc_load_update;
7289 update_max_interval();
7290 }
7291
7292 int sched_cpu_starting(unsigned int cpu)
7293 {
7294 set_cpu_rq_start_time(cpu);
7295 sched_rq_cpu_starting(cpu);
7296 return 0;
7297 }
7298
7299 #ifdef CONFIG_HOTPLUG_CPU
7300 int sched_cpu_dying(unsigned int cpu)
7301 {
7302 struct rq *rq = cpu_rq(cpu);
7303 unsigned long flags;
7304
7305 /* Handle pending wakeups and then migrate everything off */
7306 sched_ttwu_pending();
7307 raw_spin_lock_irqsave(&rq->lock, flags);
7308 if (rq->rd) {
7309 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7310 set_rq_offline(rq);
7311 }
7312 migrate_tasks(rq);
7313 BUG_ON(rq->nr_running != 1);
7314 raw_spin_unlock_irqrestore(&rq->lock, flags);
7315 calc_load_migrate(rq);
7316 update_max_interval();
7317 nohz_balance_exit_idle(cpu);
7318 hrtick_clear(rq);
7319 return 0;
7320 }
7321 #endif
7322
7323 void __init sched_init_smp(void)
7324 {
7325 cpumask_var_t non_isolated_cpus;
7326
7327 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7328 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7329
7330 sched_init_numa();
7331
7332 /*
7333 * There's no userspace yet to cause hotplug operations; hence all the
7334 * cpu masks are stable and all blatant races in the below code cannot
7335 * happen.
7336 */
7337 mutex_lock(&sched_domains_mutex);
7338 init_sched_domains(cpu_active_mask);
7339 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7340 if (cpumask_empty(non_isolated_cpus))
7341 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7342 mutex_unlock(&sched_domains_mutex);
7343
7344 /* Move init over to a non-isolated CPU */
7345 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7346 BUG();
7347 sched_init_granularity();
7348 free_cpumask_var(non_isolated_cpus);
7349
7350 init_sched_rt_class();
7351 init_sched_dl_class();
7352 sched_smp_initialized = true;
7353 }
7354
7355 static int __init migration_init(void)
7356 {
7357 sched_rq_cpu_starting(smp_processor_id());
7358 return 0;
7359 }
7360 early_initcall(migration_init);
7361
7362 #else
7363 void __init sched_init_smp(void)
7364 {
7365 sched_init_granularity();
7366 }
7367 #endif /* CONFIG_SMP */
7368
7369 int in_sched_functions(unsigned long addr)
7370 {
7371 return in_lock_functions(addr) ||
7372 (addr >= (unsigned long)__sched_text_start
7373 && addr < (unsigned long)__sched_text_end);
7374 }
7375
7376 #ifdef CONFIG_CGROUP_SCHED
7377 /*
7378 * Default task group.
7379 * Every task in system belongs to this group at bootup.
7380 */
7381 struct task_group root_task_group;
7382 LIST_HEAD(task_groups);
7383
7384 /* Cacheline aligned slab cache for task_group */
7385 static struct kmem_cache *task_group_cache __read_mostly;
7386 #endif
7387
7388 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7389
7390 void __init sched_init(void)
7391 {
7392 int i, j;
7393 unsigned long alloc_size = 0, ptr;
7394
7395 #ifdef CONFIG_FAIR_GROUP_SCHED
7396 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7397 #endif
7398 #ifdef CONFIG_RT_GROUP_SCHED
7399 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7400 #endif
7401 if (alloc_size) {
7402 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7403
7404 #ifdef CONFIG_FAIR_GROUP_SCHED
7405 root_task_group.se = (struct sched_entity **)ptr;
7406 ptr += nr_cpu_ids * sizeof(void **);
7407
7408 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7409 ptr += nr_cpu_ids * sizeof(void **);
7410
7411 #endif /* CONFIG_FAIR_GROUP_SCHED */
7412 #ifdef CONFIG_RT_GROUP_SCHED
7413 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7414 ptr += nr_cpu_ids * sizeof(void **);
7415
7416 root_task_group.rt_rq = (struct rt_rq **)ptr;
7417 ptr += nr_cpu_ids * sizeof(void **);
7418
7419 #endif /* CONFIG_RT_GROUP_SCHED */
7420 }
7421 #ifdef CONFIG_CPUMASK_OFFSTACK
7422 for_each_possible_cpu(i) {
7423 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7424 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7425 }
7426 #endif /* CONFIG_CPUMASK_OFFSTACK */
7427
7428 init_rt_bandwidth(&def_rt_bandwidth,
7429 global_rt_period(), global_rt_runtime());
7430 init_dl_bandwidth(&def_dl_bandwidth,
7431 global_rt_period(), global_rt_runtime());
7432
7433 #ifdef CONFIG_SMP
7434 init_defrootdomain();
7435 #endif
7436
7437 #ifdef CONFIG_RT_GROUP_SCHED
7438 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7439 global_rt_period(), global_rt_runtime());
7440 #endif /* CONFIG_RT_GROUP_SCHED */
7441
7442 #ifdef CONFIG_CGROUP_SCHED
7443 task_group_cache = KMEM_CACHE(task_group, 0);
7444
7445 list_add(&root_task_group.list, &task_groups);
7446 INIT_LIST_HEAD(&root_task_group.children);
7447 INIT_LIST_HEAD(&root_task_group.siblings);
7448 autogroup_init(&init_task);
7449 #endif /* CONFIG_CGROUP_SCHED */
7450
7451 for_each_possible_cpu(i) {
7452 struct rq *rq;
7453
7454 rq = cpu_rq(i);
7455 raw_spin_lock_init(&rq->lock);
7456 rq->nr_running = 0;
7457 rq->calc_load_active = 0;
7458 rq->calc_load_update = jiffies + LOAD_FREQ;
7459 init_cfs_rq(&rq->cfs);
7460 init_rt_rq(&rq->rt);
7461 init_dl_rq(&rq->dl);
7462 #ifdef CONFIG_FAIR_GROUP_SCHED
7463 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7464 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7465 /*
7466 * How much cpu bandwidth does root_task_group get?
7467 *
7468 * In case of task-groups formed thr' the cgroup filesystem, it
7469 * gets 100% of the cpu resources in the system. This overall
7470 * system cpu resource is divided among the tasks of
7471 * root_task_group and its child task-groups in a fair manner,
7472 * based on each entity's (task or task-group's) weight
7473 * (se->load.weight).
7474 *
7475 * In other words, if root_task_group has 10 tasks of weight
7476 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7477 * then A0's share of the cpu resource is:
7478 *
7479 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7480 *
7481 * We achieve this by letting root_task_group's tasks sit
7482 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7483 */
7484 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7485 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7486 #endif /* CONFIG_FAIR_GROUP_SCHED */
7487
7488 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7489 #ifdef CONFIG_RT_GROUP_SCHED
7490 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7491 #endif
7492
7493 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7494 rq->cpu_load[j] = 0;
7495
7496 #ifdef CONFIG_SMP
7497 rq->sd = NULL;
7498 rq->rd = NULL;
7499 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7500 rq->balance_callback = NULL;
7501 rq->active_balance = 0;
7502 rq->next_balance = jiffies;
7503 rq->push_cpu = 0;
7504 rq->cpu = i;
7505 rq->online = 0;
7506 rq->idle_stamp = 0;
7507 rq->avg_idle = 2*sysctl_sched_migration_cost;
7508 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7509
7510 INIT_LIST_HEAD(&rq->cfs_tasks);
7511
7512 rq_attach_root(rq, &def_root_domain);
7513 #ifdef CONFIG_NO_HZ_COMMON
7514 rq->last_load_update_tick = jiffies;
7515 rq->nohz_flags = 0;
7516 #endif
7517 #ifdef CONFIG_NO_HZ_FULL
7518 rq->last_sched_tick = 0;
7519 #endif
7520 #endif /* CONFIG_SMP */
7521 init_rq_hrtick(rq);
7522 atomic_set(&rq->nr_iowait, 0);
7523 }
7524
7525 set_load_weight(&init_task);
7526
7527 #ifdef CONFIG_PREEMPT_NOTIFIERS
7528 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7529 #endif
7530
7531 /*
7532 * The boot idle thread does lazy MMU switching as well:
7533 */
7534 atomic_inc(&init_mm.mm_count);
7535 enter_lazy_tlb(&init_mm, current);
7536
7537 /*
7538 * During early bootup we pretend to be a normal task:
7539 */
7540 current->sched_class = &fair_sched_class;
7541
7542 /*
7543 * Make us the idle thread. Technically, schedule() should not be
7544 * called from this thread, however somewhere below it might be,
7545 * but because we are the idle thread, we just pick up running again
7546 * when this runqueue becomes "idle".
7547 */
7548 init_idle(current, smp_processor_id());
7549
7550 calc_load_update = jiffies + LOAD_FREQ;
7551
7552 #ifdef CONFIG_SMP
7553 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7554 /* May be allocated at isolcpus cmdline parse time */
7555 if (cpu_isolated_map == NULL)
7556 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7557 idle_thread_set_boot_cpu();
7558 set_cpu_rq_start_time(smp_processor_id());
7559 #endif
7560 init_sched_fair_class();
7561
7562 init_schedstats();
7563
7564 scheduler_running = 1;
7565 }
7566
7567 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7568 static inline int preempt_count_equals(int preempt_offset)
7569 {
7570 int nested = preempt_count() + rcu_preempt_depth();
7571
7572 return (nested == preempt_offset);
7573 }
7574
7575 void __might_sleep(const char *file, int line, int preempt_offset)
7576 {
7577 /*
7578 * Blocking primitives will set (and therefore destroy) current->state,
7579 * since we will exit with TASK_RUNNING make sure we enter with it,
7580 * otherwise we will destroy state.
7581 */
7582 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7583 "do not call blocking ops when !TASK_RUNNING; "
7584 "state=%lx set at [<%p>] %pS\n",
7585 current->state,
7586 (void *)current->task_state_change,
7587 (void *)current->task_state_change);
7588
7589 ___might_sleep(file, line, preempt_offset);
7590 }
7591 EXPORT_SYMBOL(__might_sleep);
7592
7593 void ___might_sleep(const char *file, int line, int preempt_offset)
7594 {
7595 static unsigned long prev_jiffy; /* ratelimiting */
7596
7597 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7598 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7599 !is_idle_task(current)) ||
7600 system_state != SYSTEM_RUNNING || oops_in_progress)
7601 return;
7602 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7603 return;
7604 prev_jiffy = jiffies;
7605
7606 printk(KERN_ERR
7607 "BUG: sleeping function called from invalid context at %s:%d\n",
7608 file, line);
7609 printk(KERN_ERR
7610 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7611 in_atomic(), irqs_disabled(),
7612 current->pid, current->comm);
7613
7614 if (task_stack_end_corrupted(current))
7615 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7616
7617 debug_show_held_locks(current);
7618 if (irqs_disabled())
7619 print_irqtrace_events(current);
7620 #ifdef CONFIG_DEBUG_PREEMPT
7621 if (!preempt_count_equals(preempt_offset)) {
7622 pr_err("Preemption disabled at:");
7623 print_ip_sym(current->preempt_disable_ip);
7624 pr_cont("\n");
7625 }
7626 #endif
7627 dump_stack();
7628 }
7629 EXPORT_SYMBOL(___might_sleep);
7630 #endif
7631
7632 #ifdef CONFIG_MAGIC_SYSRQ
7633 void normalize_rt_tasks(void)
7634 {
7635 struct task_struct *g, *p;
7636 struct sched_attr attr = {
7637 .sched_policy = SCHED_NORMAL,
7638 };
7639
7640 read_lock(&tasklist_lock);
7641 for_each_process_thread(g, p) {
7642 /*
7643 * Only normalize user tasks:
7644 */
7645 if (p->flags & PF_KTHREAD)
7646 continue;
7647
7648 p->se.exec_start = 0;
7649 #ifdef CONFIG_SCHEDSTATS
7650 p->se.statistics.wait_start = 0;
7651 p->se.statistics.sleep_start = 0;
7652 p->se.statistics.block_start = 0;
7653 #endif
7654
7655 if (!dl_task(p) && !rt_task(p)) {
7656 /*
7657 * Renice negative nice level userspace
7658 * tasks back to 0:
7659 */
7660 if (task_nice(p) < 0)
7661 set_user_nice(p, 0);
7662 continue;
7663 }
7664
7665 __sched_setscheduler(p, &attr, false, false);
7666 }
7667 read_unlock(&tasklist_lock);
7668 }
7669
7670 #endif /* CONFIG_MAGIC_SYSRQ */
7671
7672 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7673 /*
7674 * These functions are only useful for the IA64 MCA handling, or kdb.
7675 *
7676 * They can only be called when the whole system has been
7677 * stopped - every CPU needs to be quiescent, and no scheduling
7678 * activity can take place. Using them for anything else would
7679 * be a serious bug, and as a result, they aren't even visible
7680 * under any other configuration.
7681 */
7682
7683 /**
7684 * curr_task - return the current task for a given cpu.
7685 * @cpu: the processor in question.
7686 *
7687 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7688 *
7689 * Return: The current task for @cpu.
7690 */
7691 struct task_struct *curr_task(int cpu)
7692 {
7693 return cpu_curr(cpu);
7694 }
7695
7696 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7697
7698 #ifdef CONFIG_IA64
7699 /**
7700 * set_curr_task - set the current task for a given cpu.
7701 * @cpu: the processor in question.
7702 * @p: the task pointer to set.
7703 *
7704 * Description: This function must only be used when non-maskable interrupts
7705 * are serviced on a separate stack. It allows the architecture to switch the
7706 * notion of the current task on a cpu in a non-blocking manner. This function
7707 * must be called with all CPU's synchronized, and interrupts disabled, the
7708 * and caller must save the original value of the current task (see
7709 * curr_task() above) and restore that value before reenabling interrupts and
7710 * re-starting the system.
7711 *
7712 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7713 */
7714 void set_curr_task(int cpu, struct task_struct *p)
7715 {
7716 cpu_curr(cpu) = p;
7717 }
7718
7719 #endif
7720
7721 #ifdef CONFIG_CGROUP_SCHED
7722 /* task_group_lock serializes the addition/removal of task groups */
7723 static DEFINE_SPINLOCK(task_group_lock);
7724
7725 static void sched_free_group(struct task_group *tg)
7726 {
7727 free_fair_sched_group(tg);
7728 free_rt_sched_group(tg);
7729 autogroup_free(tg);
7730 kmem_cache_free(task_group_cache, tg);
7731 }
7732
7733 /* allocate runqueue etc for a new task group */
7734 struct task_group *sched_create_group(struct task_group *parent)
7735 {
7736 struct task_group *tg;
7737
7738 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7739 if (!tg)
7740 return ERR_PTR(-ENOMEM);
7741
7742 if (!alloc_fair_sched_group(tg, parent))
7743 goto err;
7744
7745 if (!alloc_rt_sched_group(tg, parent))
7746 goto err;
7747
7748 return tg;
7749
7750 err:
7751 sched_free_group(tg);
7752 return ERR_PTR(-ENOMEM);
7753 }
7754
7755 void sched_online_group(struct task_group *tg, struct task_group *parent)
7756 {
7757 unsigned long flags;
7758
7759 spin_lock_irqsave(&task_group_lock, flags);
7760 list_add_rcu(&tg->list, &task_groups);
7761
7762 WARN_ON(!parent); /* root should already exist */
7763
7764 tg->parent = parent;
7765 INIT_LIST_HEAD(&tg->children);
7766 list_add_rcu(&tg->siblings, &parent->children);
7767 spin_unlock_irqrestore(&task_group_lock, flags);
7768
7769 online_fair_sched_group(tg);
7770 }
7771
7772 /* rcu callback to free various structures associated with a task group */
7773 static void sched_free_group_rcu(struct rcu_head *rhp)
7774 {
7775 /* now it should be safe to free those cfs_rqs */
7776 sched_free_group(container_of(rhp, struct task_group, rcu));
7777 }
7778
7779 void sched_destroy_group(struct task_group *tg)
7780 {
7781 /* wait for possible concurrent references to cfs_rqs complete */
7782 call_rcu(&tg->rcu, sched_free_group_rcu);
7783 }
7784
7785 void sched_offline_group(struct task_group *tg)
7786 {
7787 unsigned long flags;
7788
7789 /* end participation in shares distribution */
7790 unregister_fair_sched_group(tg);
7791
7792 spin_lock_irqsave(&task_group_lock, flags);
7793 list_del_rcu(&tg->list);
7794 list_del_rcu(&tg->siblings);
7795 spin_unlock_irqrestore(&task_group_lock, flags);
7796 }
7797
7798 static void sched_change_group(struct task_struct *tsk, int type)
7799 {
7800 struct task_group *tg;
7801
7802 /*
7803 * All callers are synchronized by task_rq_lock(); we do not use RCU
7804 * which is pointless here. Thus, we pass "true" to task_css_check()
7805 * to prevent lockdep warnings.
7806 */
7807 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7808 struct task_group, css);
7809 tg = autogroup_task_group(tsk, tg);
7810 tsk->sched_task_group = tg;
7811
7812 #ifdef CONFIG_FAIR_GROUP_SCHED
7813 if (tsk->sched_class->task_change_group)
7814 tsk->sched_class->task_change_group(tsk, type);
7815 else
7816 #endif
7817 set_task_rq(tsk, task_cpu(tsk));
7818 }
7819
7820 /*
7821 * Change task's runqueue when it moves between groups.
7822 *
7823 * The caller of this function should have put the task in its new group by
7824 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7825 * its new group.
7826 */
7827 void sched_move_task(struct task_struct *tsk)
7828 {
7829 int queued, running;
7830 struct rq_flags rf;
7831 struct rq *rq;
7832
7833 rq = task_rq_lock(tsk, &rf);
7834
7835 running = task_current(rq, tsk);
7836 queued = task_on_rq_queued(tsk);
7837
7838 if (queued)
7839 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7840 if (unlikely(running))
7841 put_prev_task(rq, tsk);
7842
7843 sched_change_group(tsk, TASK_MOVE_GROUP);
7844
7845 if (unlikely(running))
7846 tsk->sched_class->set_curr_task(rq);
7847 if (queued)
7848 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7849
7850 task_rq_unlock(rq, tsk, &rf);
7851 }
7852 #endif /* CONFIG_CGROUP_SCHED */
7853
7854 #ifdef CONFIG_RT_GROUP_SCHED
7855 /*
7856 * Ensure that the real time constraints are schedulable.
7857 */
7858 static DEFINE_MUTEX(rt_constraints_mutex);
7859
7860 /* Must be called with tasklist_lock held */
7861 static inline int tg_has_rt_tasks(struct task_group *tg)
7862 {
7863 struct task_struct *g, *p;
7864
7865 /*
7866 * Autogroups do not have RT tasks; see autogroup_create().
7867 */
7868 if (task_group_is_autogroup(tg))
7869 return 0;
7870
7871 for_each_process_thread(g, p) {
7872 if (rt_task(p) && task_group(p) == tg)
7873 return 1;
7874 }
7875
7876 return 0;
7877 }
7878
7879 struct rt_schedulable_data {
7880 struct task_group *tg;
7881 u64 rt_period;
7882 u64 rt_runtime;
7883 };
7884
7885 static int tg_rt_schedulable(struct task_group *tg, void *data)
7886 {
7887 struct rt_schedulable_data *d = data;
7888 struct task_group *child;
7889 unsigned long total, sum = 0;
7890 u64 period, runtime;
7891
7892 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7893 runtime = tg->rt_bandwidth.rt_runtime;
7894
7895 if (tg == d->tg) {
7896 period = d->rt_period;
7897 runtime = d->rt_runtime;
7898 }
7899
7900 /*
7901 * Cannot have more runtime than the period.
7902 */
7903 if (runtime > period && runtime != RUNTIME_INF)
7904 return -EINVAL;
7905
7906 /*
7907 * Ensure we don't starve existing RT tasks.
7908 */
7909 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7910 return -EBUSY;
7911
7912 total = to_ratio(period, runtime);
7913
7914 /*
7915 * Nobody can have more than the global setting allows.
7916 */
7917 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7918 return -EINVAL;
7919
7920 /*
7921 * The sum of our children's runtime should not exceed our own.
7922 */
7923 list_for_each_entry_rcu(child, &tg->children, siblings) {
7924 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7925 runtime = child->rt_bandwidth.rt_runtime;
7926
7927 if (child == d->tg) {
7928 period = d->rt_period;
7929 runtime = d->rt_runtime;
7930 }
7931
7932 sum += to_ratio(period, runtime);
7933 }
7934
7935 if (sum > total)
7936 return -EINVAL;
7937
7938 return 0;
7939 }
7940
7941 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7942 {
7943 int ret;
7944
7945 struct rt_schedulable_data data = {
7946 .tg = tg,
7947 .rt_period = period,
7948 .rt_runtime = runtime,
7949 };
7950
7951 rcu_read_lock();
7952 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7953 rcu_read_unlock();
7954
7955 return ret;
7956 }
7957
7958 static int tg_set_rt_bandwidth(struct task_group *tg,
7959 u64 rt_period, u64 rt_runtime)
7960 {
7961 int i, err = 0;
7962
7963 /*
7964 * Disallowing the root group RT runtime is BAD, it would disallow the
7965 * kernel creating (and or operating) RT threads.
7966 */
7967 if (tg == &root_task_group && rt_runtime == 0)
7968 return -EINVAL;
7969
7970 /* No period doesn't make any sense. */
7971 if (rt_period == 0)
7972 return -EINVAL;
7973
7974 mutex_lock(&rt_constraints_mutex);
7975 read_lock(&tasklist_lock);
7976 err = __rt_schedulable(tg, rt_period, rt_runtime);
7977 if (err)
7978 goto unlock;
7979
7980 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7981 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7982 tg->rt_bandwidth.rt_runtime = rt_runtime;
7983
7984 for_each_possible_cpu(i) {
7985 struct rt_rq *rt_rq = tg->rt_rq[i];
7986
7987 raw_spin_lock(&rt_rq->rt_runtime_lock);
7988 rt_rq->rt_runtime = rt_runtime;
7989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7990 }
7991 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7992 unlock:
7993 read_unlock(&tasklist_lock);
7994 mutex_unlock(&rt_constraints_mutex);
7995
7996 return err;
7997 }
7998
7999 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8000 {
8001 u64 rt_runtime, rt_period;
8002
8003 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8004 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8005 if (rt_runtime_us < 0)
8006 rt_runtime = RUNTIME_INF;
8007
8008 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8009 }
8010
8011 static long sched_group_rt_runtime(struct task_group *tg)
8012 {
8013 u64 rt_runtime_us;
8014
8015 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8016 return -1;
8017
8018 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8019 do_div(rt_runtime_us, NSEC_PER_USEC);
8020 return rt_runtime_us;
8021 }
8022
8023 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8024 {
8025 u64 rt_runtime, rt_period;
8026
8027 rt_period = rt_period_us * NSEC_PER_USEC;
8028 rt_runtime = tg->rt_bandwidth.rt_runtime;
8029
8030 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8031 }
8032
8033 static long sched_group_rt_period(struct task_group *tg)
8034 {
8035 u64 rt_period_us;
8036
8037 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8038 do_div(rt_period_us, NSEC_PER_USEC);
8039 return rt_period_us;
8040 }
8041 #endif /* CONFIG_RT_GROUP_SCHED */
8042
8043 #ifdef CONFIG_RT_GROUP_SCHED
8044 static int sched_rt_global_constraints(void)
8045 {
8046 int ret = 0;
8047
8048 mutex_lock(&rt_constraints_mutex);
8049 read_lock(&tasklist_lock);
8050 ret = __rt_schedulable(NULL, 0, 0);
8051 read_unlock(&tasklist_lock);
8052 mutex_unlock(&rt_constraints_mutex);
8053
8054 return ret;
8055 }
8056
8057 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8058 {
8059 /* Don't accept realtime tasks when there is no way for them to run */
8060 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8061 return 0;
8062
8063 return 1;
8064 }
8065
8066 #else /* !CONFIG_RT_GROUP_SCHED */
8067 static int sched_rt_global_constraints(void)
8068 {
8069 unsigned long flags;
8070 int i;
8071
8072 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8073 for_each_possible_cpu(i) {
8074 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8075
8076 raw_spin_lock(&rt_rq->rt_runtime_lock);
8077 rt_rq->rt_runtime = global_rt_runtime();
8078 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8079 }
8080 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8081
8082 return 0;
8083 }
8084 #endif /* CONFIG_RT_GROUP_SCHED */
8085
8086 static int sched_dl_global_validate(void)
8087 {
8088 u64 runtime = global_rt_runtime();
8089 u64 period = global_rt_period();
8090 u64 new_bw = to_ratio(period, runtime);
8091 struct dl_bw *dl_b;
8092 int cpu, ret = 0;
8093 unsigned long flags;
8094
8095 /*
8096 * Here we want to check the bandwidth not being set to some
8097 * value smaller than the currently allocated bandwidth in
8098 * any of the root_domains.
8099 *
8100 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8101 * cycling on root_domains... Discussion on different/better
8102 * solutions is welcome!
8103 */
8104 for_each_possible_cpu(cpu) {
8105 rcu_read_lock_sched();
8106 dl_b = dl_bw_of(cpu);
8107
8108 raw_spin_lock_irqsave(&dl_b->lock, flags);
8109 if (new_bw < dl_b->total_bw)
8110 ret = -EBUSY;
8111 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8112
8113 rcu_read_unlock_sched();
8114
8115 if (ret)
8116 break;
8117 }
8118
8119 return ret;
8120 }
8121
8122 static void sched_dl_do_global(void)
8123 {
8124 u64 new_bw = -1;
8125 struct dl_bw *dl_b;
8126 int cpu;
8127 unsigned long flags;
8128
8129 def_dl_bandwidth.dl_period = global_rt_period();
8130 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8131
8132 if (global_rt_runtime() != RUNTIME_INF)
8133 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8134
8135 /*
8136 * FIXME: As above...
8137 */
8138 for_each_possible_cpu(cpu) {
8139 rcu_read_lock_sched();
8140 dl_b = dl_bw_of(cpu);
8141
8142 raw_spin_lock_irqsave(&dl_b->lock, flags);
8143 dl_b->bw = new_bw;
8144 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8145
8146 rcu_read_unlock_sched();
8147 }
8148 }
8149
8150 static int sched_rt_global_validate(void)
8151 {
8152 if (sysctl_sched_rt_period <= 0)
8153 return -EINVAL;
8154
8155 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8156 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8157 return -EINVAL;
8158
8159 return 0;
8160 }
8161
8162 static void sched_rt_do_global(void)
8163 {
8164 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8165 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8166 }
8167
8168 int sched_rt_handler(struct ctl_table *table, int write,
8169 void __user *buffer, size_t *lenp,
8170 loff_t *ppos)
8171 {
8172 int old_period, old_runtime;
8173 static DEFINE_MUTEX(mutex);
8174 int ret;
8175
8176 mutex_lock(&mutex);
8177 old_period = sysctl_sched_rt_period;
8178 old_runtime = sysctl_sched_rt_runtime;
8179
8180 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8181
8182 if (!ret && write) {
8183 ret = sched_rt_global_validate();
8184 if (ret)
8185 goto undo;
8186
8187 ret = sched_dl_global_validate();
8188 if (ret)
8189 goto undo;
8190
8191 ret = sched_rt_global_constraints();
8192 if (ret)
8193 goto undo;
8194
8195 sched_rt_do_global();
8196 sched_dl_do_global();
8197 }
8198 if (0) {
8199 undo:
8200 sysctl_sched_rt_period = old_period;
8201 sysctl_sched_rt_runtime = old_runtime;
8202 }
8203 mutex_unlock(&mutex);
8204
8205 return ret;
8206 }
8207
8208 int sched_rr_handler(struct ctl_table *table, int write,
8209 void __user *buffer, size_t *lenp,
8210 loff_t *ppos)
8211 {
8212 int ret;
8213 static DEFINE_MUTEX(mutex);
8214
8215 mutex_lock(&mutex);
8216 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8217 /* make sure that internally we keep jiffies */
8218 /* also, writing zero resets timeslice to default */
8219 if (!ret && write) {
8220 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8221 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8222 }
8223 mutex_unlock(&mutex);
8224 return ret;
8225 }
8226
8227 #ifdef CONFIG_CGROUP_SCHED
8228
8229 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8230 {
8231 return css ? container_of(css, struct task_group, css) : NULL;
8232 }
8233
8234 static struct cgroup_subsys_state *
8235 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8236 {
8237 struct task_group *parent = css_tg(parent_css);
8238 struct task_group *tg;
8239
8240 if (!parent) {
8241 /* This is early initialization for the top cgroup */
8242 return &root_task_group.css;
8243 }
8244
8245 tg = sched_create_group(parent);
8246 if (IS_ERR(tg))
8247 return ERR_PTR(-ENOMEM);
8248
8249 sched_online_group(tg, parent);
8250
8251 return &tg->css;
8252 }
8253
8254 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8255 {
8256 struct task_group *tg = css_tg(css);
8257
8258 sched_offline_group(tg);
8259 }
8260
8261 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8262 {
8263 struct task_group *tg = css_tg(css);
8264
8265 /*
8266 * Relies on the RCU grace period between css_released() and this.
8267 */
8268 sched_free_group(tg);
8269 }
8270
8271 /*
8272 * This is called before wake_up_new_task(), therefore we really only
8273 * have to set its group bits, all the other stuff does not apply.
8274 */
8275 static void cpu_cgroup_fork(struct task_struct *task)
8276 {
8277 struct rq_flags rf;
8278 struct rq *rq;
8279
8280 rq = task_rq_lock(task, &rf);
8281
8282 sched_change_group(task, TASK_SET_GROUP);
8283
8284 task_rq_unlock(rq, task, &rf);
8285 }
8286
8287 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8288 {
8289 struct task_struct *task;
8290 struct cgroup_subsys_state *css;
8291 int ret = 0;
8292
8293 cgroup_taskset_for_each(task, css, tset) {
8294 #ifdef CONFIG_RT_GROUP_SCHED
8295 if (!sched_rt_can_attach(css_tg(css), task))
8296 return -EINVAL;
8297 #else
8298 /* We don't support RT-tasks being in separate groups */
8299 if (task->sched_class != &fair_sched_class)
8300 return -EINVAL;
8301 #endif
8302 /*
8303 * Serialize against wake_up_new_task() such that if its
8304 * running, we're sure to observe its full state.
8305 */
8306 raw_spin_lock_irq(&task->pi_lock);
8307 /*
8308 * Avoid calling sched_move_task() before wake_up_new_task()
8309 * has happened. This would lead to problems with PELT, due to
8310 * move wanting to detach+attach while we're not attached yet.
8311 */
8312 if (task->state == TASK_NEW)
8313 ret = -EINVAL;
8314 raw_spin_unlock_irq(&task->pi_lock);
8315
8316 if (ret)
8317 break;
8318 }
8319 return ret;
8320 }
8321
8322 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8323 {
8324 struct task_struct *task;
8325 struct cgroup_subsys_state *css;
8326
8327 cgroup_taskset_for_each(task, css, tset)
8328 sched_move_task(task);
8329 }
8330
8331 #ifdef CONFIG_FAIR_GROUP_SCHED
8332 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8333 struct cftype *cftype, u64 shareval)
8334 {
8335 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8336 }
8337
8338 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8339 struct cftype *cft)
8340 {
8341 struct task_group *tg = css_tg(css);
8342
8343 return (u64) scale_load_down(tg->shares);
8344 }
8345
8346 #ifdef CONFIG_CFS_BANDWIDTH
8347 static DEFINE_MUTEX(cfs_constraints_mutex);
8348
8349 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8350 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8351
8352 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8353
8354 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8355 {
8356 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8357 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8358
8359 if (tg == &root_task_group)
8360 return -EINVAL;
8361
8362 /*
8363 * Ensure we have at some amount of bandwidth every period. This is
8364 * to prevent reaching a state of large arrears when throttled via
8365 * entity_tick() resulting in prolonged exit starvation.
8366 */
8367 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8368 return -EINVAL;
8369
8370 /*
8371 * Likewise, bound things on the otherside by preventing insane quota
8372 * periods. This also allows us to normalize in computing quota
8373 * feasibility.
8374 */
8375 if (period > max_cfs_quota_period)
8376 return -EINVAL;
8377
8378 /*
8379 * Prevent race between setting of cfs_rq->runtime_enabled and
8380 * unthrottle_offline_cfs_rqs().
8381 */
8382 get_online_cpus();
8383 mutex_lock(&cfs_constraints_mutex);
8384 ret = __cfs_schedulable(tg, period, quota);
8385 if (ret)
8386 goto out_unlock;
8387
8388 runtime_enabled = quota != RUNTIME_INF;
8389 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8390 /*
8391 * If we need to toggle cfs_bandwidth_used, off->on must occur
8392 * before making related changes, and on->off must occur afterwards
8393 */
8394 if (runtime_enabled && !runtime_was_enabled)
8395 cfs_bandwidth_usage_inc();
8396 raw_spin_lock_irq(&cfs_b->lock);
8397 cfs_b->period = ns_to_ktime(period);
8398 cfs_b->quota = quota;
8399
8400 __refill_cfs_bandwidth_runtime(cfs_b);
8401 /* restart the period timer (if active) to handle new period expiry */
8402 if (runtime_enabled)
8403 start_cfs_bandwidth(cfs_b);
8404 raw_spin_unlock_irq(&cfs_b->lock);
8405
8406 for_each_online_cpu(i) {
8407 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8408 struct rq *rq = cfs_rq->rq;
8409
8410 raw_spin_lock_irq(&rq->lock);
8411 cfs_rq->runtime_enabled = runtime_enabled;
8412 cfs_rq->runtime_remaining = 0;
8413
8414 if (cfs_rq->throttled)
8415 unthrottle_cfs_rq(cfs_rq);
8416 raw_spin_unlock_irq(&rq->lock);
8417 }
8418 if (runtime_was_enabled && !runtime_enabled)
8419 cfs_bandwidth_usage_dec();
8420 out_unlock:
8421 mutex_unlock(&cfs_constraints_mutex);
8422 put_online_cpus();
8423
8424 return ret;
8425 }
8426
8427 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8428 {
8429 u64 quota, period;
8430
8431 period = ktime_to_ns(tg->cfs_bandwidth.period);
8432 if (cfs_quota_us < 0)
8433 quota = RUNTIME_INF;
8434 else
8435 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8436
8437 return tg_set_cfs_bandwidth(tg, period, quota);
8438 }
8439
8440 long tg_get_cfs_quota(struct task_group *tg)
8441 {
8442 u64 quota_us;
8443
8444 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8445 return -1;
8446
8447 quota_us = tg->cfs_bandwidth.quota;
8448 do_div(quota_us, NSEC_PER_USEC);
8449
8450 return quota_us;
8451 }
8452
8453 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8454 {
8455 u64 quota, period;
8456
8457 period = (u64)cfs_period_us * NSEC_PER_USEC;
8458 quota = tg->cfs_bandwidth.quota;
8459
8460 return tg_set_cfs_bandwidth(tg, period, quota);
8461 }
8462
8463 long tg_get_cfs_period(struct task_group *tg)
8464 {
8465 u64 cfs_period_us;
8466
8467 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8468 do_div(cfs_period_us, NSEC_PER_USEC);
8469
8470 return cfs_period_us;
8471 }
8472
8473 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8474 struct cftype *cft)
8475 {
8476 return tg_get_cfs_quota(css_tg(css));
8477 }
8478
8479 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8480 struct cftype *cftype, s64 cfs_quota_us)
8481 {
8482 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8483 }
8484
8485 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8486 struct cftype *cft)
8487 {
8488 return tg_get_cfs_period(css_tg(css));
8489 }
8490
8491 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8492 struct cftype *cftype, u64 cfs_period_us)
8493 {
8494 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8495 }
8496
8497 struct cfs_schedulable_data {
8498 struct task_group *tg;
8499 u64 period, quota;
8500 };
8501
8502 /*
8503 * normalize group quota/period to be quota/max_period
8504 * note: units are usecs
8505 */
8506 static u64 normalize_cfs_quota(struct task_group *tg,
8507 struct cfs_schedulable_data *d)
8508 {
8509 u64 quota, period;
8510
8511 if (tg == d->tg) {
8512 period = d->period;
8513 quota = d->quota;
8514 } else {
8515 period = tg_get_cfs_period(tg);
8516 quota = tg_get_cfs_quota(tg);
8517 }
8518
8519 /* note: these should typically be equivalent */
8520 if (quota == RUNTIME_INF || quota == -1)
8521 return RUNTIME_INF;
8522
8523 return to_ratio(period, quota);
8524 }
8525
8526 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8527 {
8528 struct cfs_schedulable_data *d = data;
8529 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8530 s64 quota = 0, parent_quota = -1;
8531
8532 if (!tg->parent) {
8533 quota = RUNTIME_INF;
8534 } else {
8535 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8536
8537 quota = normalize_cfs_quota(tg, d);
8538 parent_quota = parent_b->hierarchical_quota;
8539
8540 /*
8541 * ensure max(child_quota) <= parent_quota, inherit when no
8542 * limit is set
8543 */
8544 if (quota == RUNTIME_INF)
8545 quota = parent_quota;
8546 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8547 return -EINVAL;
8548 }
8549 cfs_b->hierarchical_quota = quota;
8550
8551 return 0;
8552 }
8553
8554 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8555 {
8556 int ret;
8557 struct cfs_schedulable_data data = {
8558 .tg = tg,
8559 .period = period,
8560 .quota = quota,
8561 };
8562
8563 if (quota != RUNTIME_INF) {
8564 do_div(data.period, NSEC_PER_USEC);
8565 do_div(data.quota, NSEC_PER_USEC);
8566 }
8567
8568 rcu_read_lock();
8569 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8570 rcu_read_unlock();
8571
8572 return ret;
8573 }
8574
8575 static int cpu_stats_show(struct seq_file *sf, void *v)
8576 {
8577 struct task_group *tg = css_tg(seq_css(sf));
8578 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8579
8580 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8581 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8582 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8583
8584 return 0;
8585 }
8586 #endif /* CONFIG_CFS_BANDWIDTH */
8587 #endif /* CONFIG_FAIR_GROUP_SCHED */
8588
8589 #ifdef CONFIG_RT_GROUP_SCHED
8590 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8591 struct cftype *cft, s64 val)
8592 {
8593 return sched_group_set_rt_runtime(css_tg(css), val);
8594 }
8595
8596 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8597 struct cftype *cft)
8598 {
8599 return sched_group_rt_runtime(css_tg(css));
8600 }
8601
8602 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8603 struct cftype *cftype, u64 rt_period_us)
8604 {
8605 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8606 }
8607
8608 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8609 struct cftype *cft)
8610 {
8611 return sched_group_rt_period(css_tg(css));
8612 }
8613 #endif /* CONFIG_RT_GROUP_SCHED */
8614
8615 static struct cftype cpu_files[] = {
8616 #ifdef CONFIG_FAIR_GROUP_SCHED
8617 {
8618 .name = "shares",
8619 .read_u64 = cpu_shares_read_u64,
8620 .write_u64 = cpu_shares_write_u64,
8621 },
8622 #endif
8623 #ifdef CONFIG_CFS_BANDWIDTH
8624 {
8625 .name = "cfs_quota_us",
8626 .read_s64 = cpu_cfs_quota_read_s64,
8627 .write_s64 = cpu_cfs_quota_write_s64,
8628 },
8629 {
8630 .name = "cfs_period_us",
8631 .read_u64 = cpu_cfs_period_read_u64,
8632 .write_u64 = cpu_cfs_period_write_u64,
8633 },
8634 {
8635 .name = "stat",
8636 .seq_show = cpu_stats_show,
8637 },
8638 #endif
8639 #ifdef CONFIG_RT_GROUP_SCHED
8640 {
8641 .name = "rt_runtime_us",
8642 .read_s64 = cpu_rt_runtime_read,
8643 .write_s64 = cpu_rt_runtime_write,
8644 },
8645 {
8646 .name = "rt_period_us",
8647 .read_u64 = cpu_rt_period_read_uint,
8648 .write_u64 = cpu_rt_period_write_uint,
8649 },
8650 #endif
8651 { } /* terminate */
8652 };
8653
8654 struct cgroup_subsys cpu_cgrp_subsys = {
8655 .css_alloc = cpu_cgroup_css_alloc,
8656 .css_released = cpu_cgroup_css_released,
8657 .css_free = cpu_cgroup_css_free,
8658 .fork = cpu_cgroup_fork,
8659 .can_attach = cpu_cgroup_can_attach,
8660 .attach = cpu_cgroup_attach,
8661 .legacy_cftypes = cpu_files,
8662 .early_init = true,
8663 };
8664
8665 #endif /* CONFIG_CGROUP_SCHED */
8666
8667 void dump_cpu_task(int cpu)
8668 {
8669 pr_info("Task dump for CPU %d:\n", cpu);
8670 sched_show_task(cpu_curr(cpu));
8671 }
8672
8673 /*
8674 * Nice levels are multiplicative, with a gentle 10% change for every
8675 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8676 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8677 * that remained on nice 0.
8678 *
8679 * The "10% effect" is relative and cumulative: from _any_ nice level,
8680 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8681 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8682 * If a task goes up by ~10% and another task goes down by ~10% then
8683 * the relative distance between them is ~25%.)
8684 */
8685 const int sched_prio_to_weight[40] = {
8686 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8687 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8688 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8689 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8690 /* 0 */ 1024, 820, 655, 526, 423,
8691 /* 5 */ 335, 272, 215, 172, 137,
8692 /* 10 */ 110, 87, 70, 56, 45,
8693 /* 15 */ 36, 29, 23, 18, 15,
8694 };
8695
8696 /*
8697 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8698 *
8699 * In cases where the weight does not change often, we can use the
8700 * precalculated inverse to speed up arithmetics by turning divisions
8701 * into multiplications:
8702 */
8703 const u32 sched_prio_to_wmult[40] = {
8704 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8705 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8706 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8707 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8708 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8709 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8710 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8711 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8712 };
This page took 0.233793 seconds and 5 git commands to generate.