Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 #ifdef CONFIG_SCHED_HRTICK
174 /*
175 * Use HR-timers to deliver accurate preemption points.
176 */
177
178 static void hrtick_clear(struct rq *rq)
179 {
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182 }
183
184 /*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 {
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
194 raw_spin_lock(&rq->lock);
195 update_rq_clock(rq);
196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 raw_spin_unlock(&rq->lock);
198
199 return HRTIMER_NORESTART;
200 }
201
202 #ifdef CONFIG_SMP
203
204 static void __hrtick_restart(struct rq *rq)
205 {
206 struct hrtimer *timer = &rq->hrtick_timer;
207
208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209 }
210
211 /*
212 * called from hardirq (IPI) context
213 */
214 static void __hrtick_start(void *arg)
215 {
216 struct rq *rq = arg;
217
218 raw_spin_lock(&rq->lock);
219 __hrtick_restart(rq);
220 rq->hrtick_csd_pending = 0;
221 raw_spin_unlock(&rq->lock);
222 }
223
224 /*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
229 void hrtick_start(struct rq *rq, u64 delay)
230 {
231 struct hrtimer *timer = &rq->hrtick_timer;
232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
241
242 hrtimer_set_expires(timer, time);
243
244 if (rq == this_rq()) {
245 __hrtick_restart(rq);
246 } else if (!rq->hrtick_csd_pending) {
247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 rq->hrtick_csd_pending = 1;
249 }
250 }
251
252 static int
253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 {
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
264 hrtick_clear(cpu_rq(cpu));
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269 }
270
271 static __init void init_hrtick(void)
272 {
273 hotcpu_notifier(hotplug_hrtick, 0);
274 }
275 #else
276 /*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
290 }
291
292 static inline void init_hrtick(void)
293 {
294 }
295 #endif /* CONFIG_SMP */
296
297 static void init_rq_hrtick(struct rq *rq)
298 {
299 #ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
301
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305 #endif
306
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
309 }
310 #else /* CONFIG_SCHED_HRTICK */
311 static inline void hrtick_clear(struct rq *rq)
312 {
313 }
314
315 static inline void init_rq_hrtick(struct rq *rq)
316 {
317 }
318
319 static inline void init_hrtick(void)
320 {
321 }
322 #endif /* CONFIG_SCHED_HRTICK */
323
324 /*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327 #define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340 })
341
342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343 /*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348 static bool set_nr_and_not_polling(struct task_struct *p)
349 {
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352 }
353
354 /*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360 static bool set_nr_if_polling(struct task_struct *p)
361 {
362 struct thread_info *ti = task_thread_info(p);
363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376 }
377
378 #else
379 static bool set_nr_and_not_polling(struct task_struct *p)
380 {
381 set_tsk_need_resched(p);
382 return true;
383 }
384
385 #ifdef CONFIG_SMP
386 static bool set_nr_if_polling(struct task_struct *p)
387 {
388 return false;
389 }
390 #endif
391 #endif
392
393 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394 {
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415 }
416
417 void wake_up_q(struct wake_q_head *head)
418 {
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437 }
438
439 /*
440 * resched_curr - mark rq's current task 'to be rescheduled now'.
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
446 void resched_curr(struct rq *rq)
447 {
448 struct task_struct *curr = rq->curr;
449 int cpu;
450
451 lockdep_assert_held(&rq->lock);
452
453 if (test_tsk_need_resched(curr))
454 return;
455
456 cpu = cpu_of(rq);
457
458 if (cpu == smp_processor_id()) {
459 set_tsk_need_resched(curr);
460 set_preempt_need_resched();
461 return;
462 }
463
464 if (set_nr_and_not_polling(curr))
465 smp_send_reschedule(cpu);
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
468 }
469
470 void resched_cpu(int cpu)
471 {
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 return;
477 resched_curr(rq);
478 raw_spin_unlock_irqrestore(&rq->lock, flags);
479 }
480
481 #ifdef CONFIG_SMP
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
491 int get_nohz_timer_target(void)
492 {
493 int i, cpu = smp_processor_id();
494 struct sched_domain *sd;
495
496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 return cpu;
498
499 rcu_read_lock();
500 for_each_domain(cpu, sd) {
501 for_each_cpu(i, sched_domain_span(sd)) {
502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 cpu = i;
504 goto unlock;
505 }
506 }
507 }
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
511 unlock:
512 rcu_read_unlock();
513 return cpu;
514 }
515 /*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
525 static void wake_up_idle_cpu(int cpu)
526 {
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
532 if (set_nr_and_not_polling(rq->idle))
533 smp_send_reschedule(cpu);
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
536 }
537
538 static bool wake_up_full_nohz_cpu(int cpu)
539 {
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
546 if (tick_nohz_full_cpu(cpu)) {
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
549 tick_nohz_full_kick_cpu(cpu);
550 return true;
551 }
552
553 return false;
554 }
555
556 void wake_up_nohz_cpu(int cpu)
557 {
558 if (!wake_up_full_nohz_cpu(cpu))
559 wake_up_idle_cpu(cpu);
560 }
561
562 static inline bool got_nohz_idle_kick(void)
563 {
564 int cpu = smp_processor_id();
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
578 }
579
580 #else /* CONFIG_NO_HZ_COMMON */
581
582 static inline bool got_nohz_idle_kick(void)
583 {
584 return false;
585 }
586
587 #endif /* CONFIG_NO_HZ_COMMON */
588
589 #ifdef CONFIG_NO_HZ_FULL
590 bool sched_can_stop_tick(struct rq *rq)
591 {
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
598 /*
599 * FIFO realtime policy runs the highest priority task (after DEADLINE).
600 * Other runnable tasks are of a lower priority. The scheduler tick
601 * isn't needed.
602 */
603 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
604 if (fifo_nr_running)
605 return true;
606
607 /*
608 * Round-robin realtime tasks time slice with other tasks at the same
609 * realtime priority.
610 */
611 if (rq->rt.rr_nr_running) {
612 if (rq->rt.rr_nr_running == 1)
613 return true;
614 else
615 return false;
616 }
617
618 /* Normal multitasking need periodic preemption checks */
619 if (rq->cfs.nr_running > 1)
620 return false;
621
622 return true;
623 }
624 #endif /* CONFIG_NO_HZ_FULL */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #endif /* CONFIG_SMP */
643
644 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
645 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
646 /*
647 * Iterate task_group tree rooted at *from, calling @down when first entering a
648 * node and @up when leaving it for the final time.
649 *
650 * Caller must hold rcu_lock or sufficient equivalent.
651 */
652 int walk_tg_tree_from(struct task_group *from,
653 tg_visitor down, tg_visitor up, void *data)
654 {
655 struct task_group *parent, *child;
656 int ret;
657
658 parent = from;
659
660 down:
661 ret = (*down)(parent, data);
662 if (ret)
663 goto out;
664 list_for_each_entry_rcu(child, &parent->children, siblings) {
665 parent = child;
666 goto down;
667
668 up:
669 continue;
670 }
671 ret = (*up)(parent, data);
672 if (ret || parent == from)
673 goto out;
674
675 child = parent;
676 parent = parent->parent;
677 if (parent)
678 goto up;
679 out:
680 return ret;
681 }
682
683 int tg_nop(struct task_group *tg, void *data)
684 {
685 return 0;
686 }
687 #endif
688
689 static void set_load_weight(struct task_struct *p)
690 {
691 int prio = p->static_prio - MAX_RT_PRIO;
692 struct load_weight *load = &p->se.load;
693
694 /*
695 * SCHED_IDLE tasks get minimal weight:
696 */
697 if (idle_policy(p->policy)) {
698 load->weight = scale_load(WEIGHT_IDLEPRIO);
699 load->inv_weight = WMULT_IDLEPRIO;
700 return;
701 }
702
703 load->weight = scale_load(sched_prio_to_weight[prio]);
704 load->inv_weight = sched_prio_to_wmult[prio];
705 }
706
707 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
708 {
709 update_rq_clock(rq);
710 if (!(flags & ENQUEUE_RESTORE))
711 sched_info_queued(rq, p);
712 p->sched_class->enqueue_task(rq, p, flags);
713 }
714
715 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 update_rq_clock(rq);
718 if (!(flags & DEQUEUE_SAVE))
719 sched_info_dequeued(rq, p);
720 p->sched_class->dequeue_task(rq, p, flags);
721 }
722
723 void activate_task(struct rq *rq, struct task_struct *p, int flags)
724 {
725 if (task_contributes_to_load(p))
726 rq->nr_uninterruptible--;
727
728 enqueue_task(rq, p, flags);
729 }
730
731 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
732 {
733 if (task_contributes_to_load(p))
734 rq->nr_uninterruptible++;
735
736 dequeue_task(rq, p, flags);
737 }
738
739 static void update_rq_clock_task(struct rq *rq, s64 delta)
740 {
741 /*
742 * In theory, the compile should just see 0 here, and optimize out the call
743 * to sched_rt_avg_update. But I don't trust it...
744 */
745 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
746 s64 steal = 0, irq_delta = 0;
747 #endif
748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
749 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
750
751 /*
752 * Since irq_time is only updated on {soft,}irq_exit, we might run into
753 * this case when a previous update_rq_clock() happened inside a
754 * {soft,}irq region.
755 *
756 * When this happens, we stop ->clock_task and only update the
757 * prev_irq_time stamp to account for the part that fit, so that a next
758 * update will consume the rest. This ensures ->clock_task is
759 * monotonic.
760 *
761 * It does however cause some slight miss-attribution of {soft,}irq
762 * time, a more accurate solution would be to update the irq_time using
763 * the current rq->clock timestamp, except that would require using
764 * atomic ops.
765 */
766 if (irq_delta > delta)
767 irq_delta = delta;
768
769 rq->prev_irq_time += irq_delta;
770 delta -= irq_delta;
771 #endif
772 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
773 if (static_key_false((&paravirt_steal_rq_enabled))) {
774 steal = paravirt_steal_clock(cpu_of(rq));
775 steal -= rq->prev_steal_time_rq;
776
777 if (unlikely(steal > delta))
778 steal = delta;
779
780 rq->prev_steal_time_rq += steal;
781 delta -= steal;
782 }
783 #endif
784
785 rq->clock_task += delta;
786
787 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
788 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
789 sched_rt_avg_update(rq, irq_delta + steal);
790 #endif
791 }
792
793 void sched_set_stop_task(int cpu, struct task_struct *stop)
794 {
795 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
796 struct task_struct *old_stop = cpu_rq(cpu)->stop;
797
798 if (stop) {
799 /*
800 * Make it appear like a SCHED_FIFO task, its something
801 * userspace knows about and won't get confused about.
802 *
803 * Also, it will make PI more or less work without too
804 * much confusion -- but then, stop work should not
805 * rely on PI working anyway.
806 */
807 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
808
809 stop->sched_class = &stop_sched_class;
810 }
811
812 cpu_rq(cpu)->stop = stop;
813
814 if (old_stop) {
815 /*
816 * Reset it back to a normal scheduling class so that
817 * it can die in pieces.
818 */
819 old_stop->sched_class = &rt_sched_class;
820 }
821 }
822
823 /*
824 * __normal_prio - return the priority that is based on the static prio
825 */
826 static inline int __normal_prio(struct task_struct *p)
827 {
828 return p->static_prio;
829 }
830
831 /*
832 * Calculate the expected normal priority: i.e. priority
833 * without taking RT-inheritance into account. Might be
834 * boosted by interactivity modifiers. Changes upon fork,
835 * setprio syscalls, and whenever the interactivity
836 * estimator recalculates.
837 */
838 static inline int normal_prio(struct task_struct *p)
839 {
840 int prio;
841
842 if (task_has_dl_policy(p))
843 prio = MAX_DL_PRIO-1;
844 else if (task_has_rt_policy(p))
845 prio = MAX_RT_PRIO-1 - p->rt_priority;
846 else
847 prio = __normal_prio(p);
848 return prio;
849 }
850
851 /*
852 * Calculate the current priority, i.e. the priority
853 * taken into account by the scheduler. This value might
854 * be boosted by RT tasks, or might be boosted by
855 * interactivity modifiers. Will be RT if the task got
856 * RT-boosted. If not then it returns p->normal_prio.
857 */
858 static int effective_prio(struct task_struct *p)
859 {
860 p->normal_prio = normal_prio(p);
861 /*
862 * If we are RT tasks or we were boosted to RT priority,
863 * keep the priority unchanged. Otherwise, update priority
864 * to the normal priority:
865 */
866 if (!rt_prio(p->prio))
867 return p->normal_prio;
868 return p->prio;
869 }
870
871 /**
872 * task_curr - is this task currently executing on a CPU?
873 * @p: the task in question.
874 *
875 * Return: 1 if the task is currently executing. 0 otherwise.
876 */
877 inline int task_curr(const struct task_struct *p)
878 {
879 return cpu_curr(task_cpu(p)) == p;
880 }
881
882 /*
883 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
884 * use the balance_callback list if you want balancing.
885 *
886 * this means any call to check_class_changed() must be followed by a call to
887 * balance_callback().
888 */
889 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 const struct sched_class *prev_class,
891 int oldprio)
892 {
893 if (prev_class != p->sched_class) {
894 if (prev_class->switched_from)
895 prev_class->switched_from(rq, p);
896
897 p->sched_class->switched_to(rq, p);
898 } else if (oldprio != p->prio || dl_task(p))
899 p->sched_class->prio_changed(rq, p, oldprio);
900 }
901
902 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
903 {
904 const struct sched_class *class;
905
906 if (p->sched_class == rq->curr->sched_class) {
907 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
908 } else {
909 for_each_class(class) {
910 if (class == rq->curr->sched_class)
911 break;
912 if (class == p->sched_class) {
913 resched_curr(rq);
914 break;
915 }
916 }
917 }
918
919 /*
920 * A queue event has occurred, and we're going to schedule. In
921 * this case, we can save a useless back to back clock update.
922 */
923 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
924 rq_clock_skip_update(rq, true);
925 }
926
927 #ifdef CONFIG_SMP
928 /*
929 * This is how migration works:
930 *
931 * 1) we invoke migration_cpu_stop() on the target CPU using
932 * stop_one_cpu().
933 * 2) stopper starts to run (implicitly forcing the migrated thread
934 * off the CPU)
935 * 3) it checks whether the migrated task is still in the wrong runqueue.
936 * 4) if it's in the wrong runqueue then the migration thread removes
937 * it and puts it into the right queue.
938 * 5) stopper completes and stop_one_cpu() returns and the migration
939 * is done.
940 */
941
942 /*
943 * move_queued_task - move a queued task to new rq.
944 *
945 * Returns (locked) new rq. Old rq's lock is released.
946 */
947 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
948 {
949 lockdep_assert_held(&rq->lock);
950
951 p->on_rq = TASK_ON_RQ_MIGRATING;
952 dequeue_task(rq, p, 0);
953 set_task_cpu(p, new_cpu);
954 raw_spin_unlock(&rq->lock);
955
956 rq = cpu_rq(new_cpu);
957
958 raw_spin_lock(&rq->lock);
959 BUG_ON(task_cpu(p) != new_cpu);
960 enqueue_task(rq, p, 0);
961 p->on_rq = TASK_ON_RQ_QUEUED;
962 check_preempt_curr(rq, p, 0);
963
964 return rq;
965 }
966
967 struct migration_arg {
968 struct task_struct *task;
969 int dest_cpu;
970 };
971
972 /*
973 * Move (not current) task off this cpu, onto dest cpu. We're doing
974 * this because either it can't run here any more (set_cpus_allowed()
975 * away from this CPU, or CPU going down), or because we're
976 * attempting to rebalance this task on exec (sched_exec).
977 *
978 * So we race with normal scheduler movements, but that's OK, as long
979 * as the task is no longer on this CPU.
980 */
981 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
982 {
983 if (unlikely(!cpu_active(dest_cpu)))
984 return rq;
985
986 /* Affinity changed (again). */
987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
988 return rq;
989
990 rq = move_queued_task(rq, p, dest_cpu);
991
992 return rq;
993 }
994
995 /*
996 * migration_cpu_stop - this will be executed by a highprio stopper thread
997 * and performs thread migration by bumping thread off CPU then
998 * 'pushing' onto another runqueue.
999 */
1000 static int migration_cpu_stop(void *data)
1001 {
1002 struct migration_arg *arg = data;
1003 struct task_struct *p = arg->task;
1004 struct rq *rq = this_rq();
1005
1006 /*
1007 * The original target cpu might have gone down and we might
1008 * be on another cpu but it doesn't matter.
1009 */
1010 local_irq_disable();
1011 /*
1012 * We need to explicitly wake pending tasks before running
1013 * __migrate_task() such that we will not miss enforcing cpus_allowed
1014 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1015 */
1016 sched_ttwu_pending();
1017
1018 raw_spin_lock(&p->pi_lock);
1019 raw_spin_lock(&rq->lock);
1020 /*
1021 * If task_rq(p) != rq, it cannot be migrated here, because we're
1022 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1023 * we're holding p->pi_lock.
1024 */
1025 if (task_rq(p) == rq && task_on_rq_queued(p))
1026 rq = __migrate_task(rq, p, arg->dest_cpu);
1027 raw_spin_unlock(&rq->lock);
1028 raw_spin_unlock(&p->pi_lock);
1029
1030 local_irq_enable();
1031 return 0;
1032 }
1033
1034 /*
1035 * sched_class::set_cpus_allowed must do the below, but is not required to
1036 * actually call this function.
1037 */
1038 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1039 {
1040 cpumask_copy(&p->cpus_allowed, new_mask);
1041 p->nr_cpus_allowed = cpumask_weight(new_mask);
1042 }
1043
1044 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1045 {
1046 struct rq *rq = task_rq(p);
1047 bool queued, running;
1048
1049 lockdep_assert_held(&p->pi_lock);
1050
1051 queued = task_on_rq_queued(p);
1052 running = task_current(rq, p);
1053
1054 if (queued) {
1055 /*
1056 * Because __kthread_bind() calls this on blocked tasks without
1057 * holding rq->lock.
1058 */
1059 lockdep_assert_held(&rq->lock);
1060 dequeue_task(rq, p, DEQUEUE_SAVE);
1061 }
1062 if (running)
1063 put_prev_task(rq, p);
1064
1065 p->sched_class->set_cpus_allowed(p, new_mask);
1066
1067 if (running)
1068 p->sched_class->set_curr_task(rq);
1069 if (queued)
1070 enqueue_task(rq, p, ENQUEUE_RESTORE);
1071 }
1072
1073 /*
1074 * Change a given task's CPU affinity. Migrate the thread to a
1075 * proper CPU and schedule it away if the CPU it's executing on
1076 * is removed from the allowed bitmask.
1077 *
1078 * NOTE: the caller must have a valid reference to the task, the
1079 * task must not exit() & deallocate itself prematurely. The
1080 * call is not atomic; no spinlocks may be held.
1081 */
1082 static int __set_cpus_allowed_ptr(struct task_struct *p,
1083 const struct cpumask *new_mask, bool check)
1084 {
1085 unsigned long flags;
1086 struct rq *rq;
1087 unsigned int dest_cpu;
1088 int ret = 0;
1089
1090 rq = task_rq_lock(p, &flags);
1091
1092 /*
1093 * Must re-check here, to close a race against __kthread_bind(),
1094 * sched_setaffinity() is not guaranteed to observe the flag.
1095 */
1096 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1097 ret = -EINVAL;
1098 goto out;
1099 }
1100
1101 if (cpumask_equal(&p->cpus_allowed, new_mask))
1102 goto out;
1103
1104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
1109 do_set_cpus_allowed(p, new_mask);
1110
1111 /* Can the task run on the task's current CPU? If so, we're done */
1112 if (cpumask_test_cpu(task_cpu(p), new_mask))
1113 goto out;
1114
1115 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1116 if (task_running(rq, p) || p->state == TASK_WAKING) {
1117 struct migration_arg arg = { p, dest_cpu };
1118 /* Need help from migration thread: drop lock and wait. */
1119 task_rq_unlock(rq, p, &flags);
1120 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1121 tlb_migrate_finish(p->mm);
1122 return 0;
1123 } else if (task_on_rq_queued(p)) {
1124 /*
1125 * OK, since we're going to drop the lock immediately
1126 * afterwards anyway.
1127 */
1128 lockdep_unpin_lock(&rq->lock);
1129 rq = move_queued_task(rq, p, dest_cpu);
1130 lockdep_pin_lock(&rq->lock);
1131 }
1132 out:
1133 task_rq_unlock(rq, p, &flags);
1134
1135 return ret;
1136 }
1137
1138 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1139 {
1140 return __set_cpus_allowed_ptr(p, new_mask, false);
1141 }
1142 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1143
1144 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1145 {
1146 #ifdef CONFIG_SCHED_DEBUG
1147 /*
1148 * We should never call set_task_cpu() on a blocked task,
1149 * ttwu() will sort out the placement.
1150 */
1151 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1152 !p->on_rq);
1153
1154 /*
1155 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1156 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1157 * time relying on p->on_rq.
1158 */
1159 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1160 p->sched_class == &fair_sched_class &&
1161 (p->on_rq && !task_on_rq_migrating(p)));
1162
1163 #ifdef CONFIG_LOCKDEP
1164 /*
1165 * The caller should hold either p->pi_lock or rq->lock, when changing
1166 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1167 *
1168 * sched_move_task() holds both and thus holding either pins the cgroup,
1169 * see task_group().
1170 *
1171 * Furthermore, all task_rq users should acquire both locks, see
1172 * task_rq_lock().
1173 */
1174 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1175 lockdep_is_held(&task_rq(p)->lock)));
1176 #endif
1177 #endif
1178
1179 trace_sched_migrate_task(p, new_cpu);
1180
1181 if (task_cpu(p) != new_cpu) {
1182 if (p->sched_class->migrate_task_rq)
1183 p->sched_class->migrate_task_rq(p);
1184 p->se.nr_migrations++;
1185 perf_event_task_migrate(p);
1186 }
1187
1188 __set_task_cpu(p, new_cpu);
1189 }
1190
1191 static void __migrate_swap_task(struct task_struct *p, int cpu)
1192 {
1193 if (task_on_rq_queued(p)) {
1194 struct rq *src_rq, *dst_rq;
1195
1196 src_rq = task_rq(p);
1197 dst_rq = cpu_rq(cpu);
1198
1199 p->on_rq = TASK_ON_RQ_MIGRATING;
1200 deactivate_task(src_rq, p, 0);
1201 set_task_cpu(p, cpu);
1202 activate_task(dst_rq, p, 0);
1203 p->on_rq = TASK_ON_RQ_QUEUED;
1204 check_preempt_curr(dst_rq, p, 0);
1205 } else {
1206 /*
1207 * Task isn't running anymore; make it appear like we migrated
1208 * it before it went to sleep. This means on wakeup we make the
1209 * previous cpu our targer instead of where it really is.
1210 */
1211 p->wake_cpu = cpu;
1212 }
1213 }
1214
1215 struct migration_swap_arg {
1216 struct task_struct *src_task, *dst_task;
1217 int src_cpu, dst_cpu;
1218 };
1219
1220 static int migrate_swap_stop(void *data)
1221 {
1222 struct migration_swap_arg *arg = data;
1223 struct rq *src_rq, *dst_rq;
1224 int ret = -EAGAIN;
1225
1226 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1227 return -EAGAIN;
1228
1229 src_rq = cpu_rq(arg->src_cpu);
1230 dst_rq = cpu_rq(arg->dst_cpu);
1231
1232 double_raw_lock(&arg->src_task->pi_lock,
1233 &arg->dst_task->pi_lock);
1234 double_rq_lock(src_rq, dst_rq);
1235
1236 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1237 goto unlock;
1238
1239 if (task_cpu(arg->src_task) != arg->src_cpu)
1240 goto unlock;
1241
1242 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1246 goto unlock;
1247
1248 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1249 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1250
1251 ret = 0;
1252
1253 unlock:
1254 double_rq_unlock(src_rq, dst_rq);
1255 raw_spin_unlock(&arg->dst_task->pi_lock);
1256 raw_spin_unlock(&arg->src_task->pi_lock);
1257
1258 return ret;
1259 }
1260
1261 /*
1262 * Cross migrate two tasks
1263 */
1264 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1265 {
1266 struct migration_swap_arg arg;
1267 int ret = -EINVAL;
1268
1269 arg = (struct migration_swap_arg){
1270 .src_task = cur,
1271 .src_cpu = task_cpu(cur),
1272 .dst_task = p,
1273 .dst_cpu = task_cpu(p),
1274 };
1275
1276 if (arg.src_cpu == arg.dst_cpu)
1277 goto out;
1278
1279 /*
1280 * These three tests are all lockless; this is OK since all of them
1281 * will be re-checked with proper locks held further down the line.
1282 */
1283 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1284 goto out;
1285
1286 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1290 goto out;
1291
1292 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1293 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1294
1295 out:
1296 return ret;
1297 }
1298
1299 /*
1300 * wait_task_inactive - wait for a thread to unschedule.
1301 *
1302 * If @match_state is nonzero, it's the @p->state value just checked and
1303 * not expected to change. If it changes, i.e. @p might have woken up,
1304 * then return zero. When we succeed in waiting for @p to be off its CPU,
1305 * we return a positive number (its total switch count). If a second call
1306 * a short while later returns the same number, the caller can be sure that
1307 * @p has remained unscheduled the whole time.
1308 *
1309 * The caller must ensure that the task *will* unschedule sometime soon,
1310 * else this function might spin for a *long* time. This function can't
1311 * be called with interrupts off, or it may introduce deadlock with
1312 * smp_call_function() if an IPI is sent by the same process we are
1313 * waiting to become inactive.
1314 */
1315 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1316 {
1317 unsigned long flags;
1318 int running, queued;
1319 unsigned long ncsw;
1320 struct rq *rq;
1321
1322 for (;;) {
1323 /*
1324 * We do the initial early heuristics without holding
1325 * any task-queue locks at all. We'll only try to get
1326 * the runqueue lock when things look like they will
1327 * work out!
1328 */
1329 rq = task_rq(p);
1330
1331 /*
1332 * If the task is actively running on another CPU
1333 * still, just relax and busy-wait without holding
1334 * any locks.
1335 *
1336 * NOTE! Since we don't hold any locks, it's not
1337 * even sure that "rq" stays as the right runqueue!
1338 * But we don't care, since "task_running()" will
1339 * return false if the runqueue has changed and p
1340 * is actually now running somewhere else!
1341 */
1342 while (task_running(rq, p)) {
1343 if (match_state && unlikely(p->state != match_state))
1344 return 0;
1345 cpu_relax();
1346 }
1347
1348 /*
1349 * Ok, time to look more closely! We need the rq
1350 * lock now, to be *sure*. If we're wrong, we'll
1351 * just go back and repeat.
1352 */
1353 rq = task_rq_lock(p, &flags);
1354 trace_sched_wait_task(p);
1355 running = task_running(rq, p);
1356 queued = task_on_rq_queued(p);
1357 ncsw = 0;
1358 if (!match_state || p->state == match_state)
1359 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1360 task_rq_unlock(rq, p, &flags);
1361
1362 /*
1363 * If it changed from the expected state, bail out now.
1364 */
1365 if (unlikely(!ncsw))
1366 break;
1367
1368 /*
1369 * Was it really running after all now that we
1370 * checked with the proper locks actually held?
1371 *
1372 * Oops. Go back and try again..
1373 */
1374 if (unlikely(running)) {
1375 cpu_relax();
1376 continue;
1377 }
1378
1379 /*
1380 * It's not enough that it's not actively running,
1381 * it must be off the runqueue _entirely_, and not
1382 * preempted!
1383 *
1384 * So if it was still runnable (but just not actively
1385 * running right now), it's preempted, and we should
1386 * yield - it could be a while.
1387 */
1388 if (unlikely(queued)) {
1389 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1390
1391 set_current_state(TASK_UNINTERRUPTIBLE);
1392 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1393 continue;
1394 }
1395
1396 /*
1397 * Ahh, all good. It wasn't running, and it wasn't
1398 * runnable, which means that it will never become
1399 * running in the future either. We're all done!
1400 */
1401 break;
1402 }
1403
1404 return ncsw;
1405 }
1406
1407 /***
1408 * kick_process - kick a running thread to enter/exit the kernel
1409 * @p: the to-be-kicked thread
1410 *
1411 * Cause a process which is running on another CPU to enter
1412 * kernel-mode, without any delay. (to get signals handled.)
1413 *
1414 * NOTE: this function doesn't have to take the runqueue lock,
1415 * because all it wants to ensure is that the remote task enters
1416 * the kernel. If the IPI races and the task has been migrated
1417 * to another CPU then no harm is done and the purpose has been
1418 * achieved as well.
1419 */
1420 void kick_process(struct task_struct *p)
1421 {
1422 int cpu;
1423
1424 preempt_disable();
1425 cpu = task_cpu(p);
1426 if ((cpu != smp_processor_id()) && task_curr(p))
1427 smp_send_reschedule(cpu);
1428 preempt_enable();
1429 }
1430 EXPORT_SYMBOL_GPL(kick_process);
1431
1432 /*
1433 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1434 */
1435 static int select_fallback_rq(int cpu, struct task_struct *p)
1436 {
1437 int nid = cpu_to_node(cpu);
1438 const struct cpumask *nodemask = NULL;
1439 enum { cpuset, possible, fail } state = cpuset;
1440 int dest_cpu;
1441
1442 /*
1443 * If the node that the cpu is on has been offlined, cpu_to_node()
1444 * will return -1. There is no cpu on the node, and we should
1445 * select the cpu on the other node.
1446 */
1447 if (nid != -1) {
1448 nodemask = cpumask_of_node(nid);
1449
1450 /* Look for allowed, online CPU in same node. */
1451 for_each_cpu(dest_cpu, nodemask) {
1452 if (!cpu_online(dest_cpu))
1453 continue;
1454 if (!cpu_active(dest_cpu))
1455 continue;
1456 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1457 return dest_cpu;
1458 }
1459 }
1460
1461 for (;;) {
1462 /* Any allowed, online CPU? */
1463 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1464 if (!cpu_online(dest_cpu))
1465 continue;
1466 if (!cpu_active(dest_cpu))
1467 continue;
1468 goto out;
1469 }
1470
1471 /* No more Mr. Nice Guy. */
1472 switch (state) {
1473 case cpuset:
1474 if (IS_ENABLED(CONFIG_CPUSETS)) {
1475 cpuset_cpus_allowed_fallback(p);
1476 state = possible;
1477 break;
1478 }
1479 /* fall-through */
1480 case possible:
1481 do_set_cpus_allowed(p, cpu_possible_mask);
1482 state = fail;
1483 break;
1484
1485 case fail:
1486 BUG();
1487 break;
1488 }
1489 }
1490
1491 out:
1492 if (state != cpuset) {
1493 /*
1494 * Don't tell them about moving exiting tasks or
1495 * kernel threads (both mm NULL), since they never
1496 * leave kernel.
1497 */
1498 if (p->mm && printk_ratelimit()) {
1499 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1500 task_pid_nr(p), p->comm, cpu);
1501 }
1502 }
1503
1504 return dest_cpu;
1505 }
1506
1507 /*
1508 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1509 */
1510 static inline
1511 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1512 {
1513 lockdep_assert_held(&p->pi_lock);
1514
1515 if (p->nr_cpus_allowed > 1)
1516 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1517
1518 /*
1519 * In order not to call set_task_cpu() on a blocking task we need
1520 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1521 * cpu.
1522 *
1523 * Since this is common to all placement strategies, this lives here.
1524 *
1525 * [ this allows ->select_task() to simply return task_cpu(p) and
1526 * not worry about this generic constraint ]
1527 */
1528 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1529 !cpu_online(cpu)))
1530 cpu = select_fallback_rq(task_cpu(p), p);
1531
1532 return cpu;
1533 }
1534
1535 static void update_avg(u64 *avg, u64 sample)
1536 {
1537 s64 diff = sample - *avg;
1538 *avg += diff >> 3;
1539 }
1540
1541 #else
1542
1543 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1544 const struct cpumask *new_mask, bool check)
1545 {
1546 return set_cpus_allowed_ptr(p, new_mask);
1547 }
1548
1549 #endif /* CONFIG_SMP */
1550
1551 static void
1552 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1553 {
1554 #ifdef CONFIG_SCHEDSTATS
1555 struct rq *rq = this_rq();
1556
1557 #ifdef CONFIG_SMP
1558 int this_cpu = smp_processor_id();
1559
1560 if (cpu == this_cpu) {
1561 schedstat_inc(rq, ttwu_local);
1562 schedstat_inc(p, se.statistics.nr_wakeups_local);
1563 } else {
1564 struct sched_domain *sd;
1565
1566 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1567 rcu_read_lock();
1568 for_each_domain(this_cpu, sd) {
1569 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1570 schedstat_inc(sd, ttwu_wake_remote);
1571 break;
1572 }
1573 }
1574 rcu_read_unlock();
1575 }
1576
1577 if (wake_flags & WF_MIGRATED)
1578 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1579
1580 #endif /* CONFIG_SMP */
1581
1582 schedstat_inc(rq, ttwu_count);
1583 schedstat_inc(p, se.statistics.nr_wakeups);
1584
1585 if (wake_flags & WF_SYNC)
1586 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1587
1588 #endif /* CONFIG_SCHEDSTATS */
1589 }
1590
1591 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1592 {
1593 activate_task(rq, p, en_flags);
1594 p->on_rq = TASK_ON_RQ_QUEUED;
1595
1596 /* if a worker is waking up, notify workqueue */
1597 if (p->flags & PF_WQ_WORKER)
1598 wq_worker_waking_up(p, cpu_of(rq));
1599 }
1600
1601 /*
1602 * Mark the task runnable and perform wakeup-preemption.
1603 */
1604 static void
1605 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1606 {
1607 check_preempt_curr(rq, p, wake_flags);
1608 p->state = TASK_RUNNING;
1609 trace_sched_wakeup(p);
1610
1611 #ifdef CONFIG_SMP
1612 if (p->sched_class->task_woken) {
1613 /*
1614 * Our task @p is fully woken up and running; so its safe to
1615 * drop the rq->lock, hereafter rq is only used for statistics.
1616 */
1617 lockdep_unpin_lock(&rq->lock);
1618 p->sched_class->task_woken(rq, p);
1619 lockdep_pin_lock(&rq->lock);
1620 }
1621
1622 if (rq->idle_stamp) {
1623 u64 delta = rq_clock(rq) - rq->idle_stamp;
1624 u64 max = 2*rq->max_idle_balance_cost;
1625
1626 update_avg(&rq->avg_idle, delta);
1627
1628 if (rq->avg_idle > max)
1629 rq->avg_idle = max;
1630
1631 rq->idle_stamp = 0;
1632 }
1633 #endif
1634 }
1635
1636 static void
1637 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1638 {
1639 lockdep_assert_held(&rq->lock);
1640
1641 #ifdef CONFIG_SMP
1642 if (p->sched_contributes_to_load)
1643 rq->nr_uninterruptible--;
1644 #endif
1645
1646 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1647 ttwu_do_wakeup(rq, p, wake_flags);
1648 }
1649
1650 /*
1651 * Called in case the task @p isn't fully descheduled from its runqueue,
1652 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1653 * since all we need to do is flip p->state to TASK_RUNNING, since
1654 * the task is still ->on_rq.
1655 */
1656 static int ttwu_remote(struct task_struct *p, int wake_flags)
1657 {
1658 struct rq *rq;
1659 int ret = 0;
1660
1661 rq = __task_rq_lock(p);
1662 if (task_on_rq_queued(p)) {
1663 /* check_preempt_curr() may use rq clock */
1664 update_rq_clock(rq);
1665 ttwu_do_wakeup(rq, p, wake_flags);
1666 ret = 1;
1667 }
1668 __task_rq_unlock(rq);
1669
1670 return ret;
1671 }
1672
1673 #ifdef CONFIG_SMP
1674 void sched_ttwu_pending(void)
1675 {
1676 struct rq *rq = this_rq();
1677 struct llist_node *llist = llist_del_all(&rq->wake_list);
1678 struct task_struct *p;
1679 unsigned long flags;
1680
1681 if (!llist)
1682 return;
1683
1684 raw_spin_lock_irqsave(&rq->lock, flags);
1685 lockdep_pin_lock(&rq->lock);
1686
1687 while (llist) {
1688 p = llist_entry(llist, struct task_struct, wake_entry);
1689 llist = llist_next(llist);
1690 ttwu_do_activate(rq, p, 0);
1691 }
1692
1693 lockdep_unpin_lock(&rq->lock);
1694 raw_spin_unlock_irqrestore(&rq->lock, flags);
1695 }
1696
1697 void scheduler_ipi(void)
1698 {
1699 /*
1700 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1701 * TIF_NEED_RESCHED remotely (for the first time) will also send
1702 * this IPI.
1703 */
1704 preempt_fold_need_resched();
1705
1706 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1707 return;
1708
1709 /*
1710 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1711 * traditionally all their work was done from the interrupt return
1712 * path. Now that we actually do some work, we need to make sure
1713 * we do call them.
1714 *
1715 * Some archs already do call them, luckily irq_enter/exit nest
1716 * properly.
1717 *
1718 * Arguably we should visit all archs and update all handlers,
1719 * however a fair share of IPIs are still resched only so this would
1720 * somewhat pessimize the simple resched case.
1721 */
1722 irq_enter();
1723 sched_ttwu_pending();
1724
1725 /*
1726 * Check if someone kicked us for doing the nohz idle load balance.
1727 */
1728 if (unlikely(got_nohz_idle_kick())) {
1729 this_rq()->idle_balance = 1;
1730 raise_softirq_irqoff(SCHED_SOFTIRQ);
1731 }
1732 irq_exit();
1733 }
1734
1735 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1736 {
1737 struct rq *rq = cpu_rq(cpu);
1738
1739 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1740 if (!set_nr_if_polling(rq->idle))
1741 smp_send_reschedule(cpu);
1742 else
1743 trace_sched_wake_idle_without_ipi(cpu);
1744 }
1745 }
1746
1747 void wake_up_if_idle(int cpu)
1748 {
1749 struct rq *rq = cpu_rq(cpu);
1750 unsigned long flags;
1751
1752 rcu_read_lock();
1753
1754 if (!is_idle_task(rcu_dereference(rq->curr)))
1755 goto out;
1756
1757 if (set_nr_if_polling(rq->idle)) {
1758 trace_sched_wake_idle_without_ipi(cpu);
1759 } else {
1760 raw_spin_lock_irqsave(&rq->lock, flags);
1761 if (is_idle_task(rq->curr))
1762 smp_send_reschedule(cpu);
1763 /* Else cpu is not in idle, do nothing here */
1764 raw_spin_unlock_irqrestore(&rq->lock, flags);
1765 }
1766
1767 out:
1768 rcu_read_unlock();
1769 }
1770
1771 bool cpus_share_cache(int this_cpu, int that_cpu)
1772 {
1773 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1774 }
1775 #endif /* CONFIG_SMP */
1776
1777 static void ttwu_queue(struct task_struct *p, int cpu)
1778 {
1779 struct rq *rq = cpu_rq(cpu);
1780
1781 #if defined(CONFIG_SMP)
1782 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1783 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1784 ttwu_queue_remote(p, cpu);
1785 return;
1786 }
1787 #endif
1788
1789 raw_spin_lock(&rq->lock);
1790 lockdep_pin_lock(&rq->lock);
1791 ttwu_do_activate(rq, p, 0);
1792 lockdep_unpin_lock(&rq->lock);
1793 raw_spin_unlock(&rq->lock);
1794 }
1795
1796 /*
1797 * Notes on Program-Order guarantees on SMP systems.
1798 *
1799 * MIGRATION
1800 *
1801 * The basic program-order guarantee on SMP systems is that when a task [t]
1802 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1803 * execution on its new cpu [c1].
1804 *
1805 * For migration (of runnable tasks) this is provided by the following means:
1806 *
1807 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1808 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1809 * rq(c1)->lock (if not at the same time, then in that order).
1810 * C) LOCK of the rq(c1)->lock scheduling in task
1811 *
1812 * Transitivity guarantees that B happens after A and C after B.
1813 * Note: we only require RCpc transitivity.
1814 * Note: the cpu doing B need not be c0 or c1
1815 *
1816 * Example:
1817 *
1818 * CPU0 CPU1 CPU2
1819 *
1820 * LOCK rq(0)->lock
1821 * sched-out X
1822 * sched-in Y
1823 * UNLOCK rq(0)->lock
1824 *
1825 * LOCK rq(0)->lock // orders against CPU0
1826 * dequeue X
1827 * UNLOCK rq(0)->lock
1828 *
1829 * LOCK rq(1)->lock
1830 * enqueue X
1831 * UNLOCK rq(1)->lock
1832 *
1833 * LOCK rq(1)->lock // orders against CPU2
1834 * sched-out Z
1835 * sched-in X
1836 * UNLOCK rq(1)->lock
1837 *
1838 *
1839 * BLOCKING -- aka. SLEEP + WAKEUP
1840 *
1841 * For blocking we (obviously) need to provide the same guarantee as for
1842 * migration. However the means are completely different as there is no lock
1843 * chain to provide order. Instead we do:
1844 *
1845 * 1) smp_store_release(X->on_cpu, 0)
1846 * 2) smp_cond_acquire(!X->on_cpu)
1847 *
1848 * Example:
1849 *
1850 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1851 *
1852 * LOCK rq(0)->lock LOCK X->pi_lock
1853 * dequeue X
1854 * sched-out X
1855 * smp_store_release(X->on_cpu, 0);
1856 *
1857 * smp_cond_acquire(!X->on_cpu);
1858 * X->state = WAKING
1859 * set_task_cpu(X,2)
1860 *
1861 * LOCK rq(2)->lock
1862 * enqueue X
1863 * X->state = RUNNING
1864 * UNLOCK rq(2)->lock
1865 *
1866 * LOCK rq(2)->lock // orders against CPU1
1867 * sched-out Z
1868 * sched-in X
1869 * UNLOCK rq(2)->lock
1870 *
1871 * UNLOCK X->pi_lock
1872 * UNLOCK rq(0)->lock
1873 *
1874 *
1875 * However; for wakeups there is a second guarantee we must provide, namely we
1876 * must observe the state that lead to our wakeup. That is, not only must our
1877 * task observe its own prior state, it must also observe the stores prior to
1878 * its wakeup.
1879 *
1880 * This means that any means of doing remote wakeups must order the CPU doing
1881 * the wakeup against the CPU the task is going to end up running on. This,
1882 * however, is already required for the regular Program-Order guarantee above,
1883 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1884 *
1885 */
1886
1887 /**
1888 * try_to_wake_up - wake up a thread
1889 * @p: the thread to be awakened
1890 * @state: the mask of task states that can be woken
1891 * @wake_flags: wake modifier flags (WF_*)
1892 *
1893 * Put it on the run-queue if it's not already there. The "current"
1894 * thread is always on the run-queue (except when the actual
1895 * re-schedule is in progress), and as such you're allowed to do
1896 * the simpler "current->state = TASK_RUNNING" to mark yourself
1897 * runnable without the overhead of this.
1898 *
1899 * Return: %true if @p was woken up, %false if it was already running.
1900 * or @state didn't match @p's state.
1901 */
1902 static int
1903 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1904 {
1905 unsigned long flags;
1906 int cpu, success = 0;
1907
1908 /*
1909 * If we are going to wake up a thread waiting for CONDITION we
1910 * need to ensure that CONDITION=1 done by the caller can not be
1911 * reordered with p->state check below. This pairs with mb() in
1912 * set_current_state() the waiting thread does.
1913 */
1914 smp_mb__before_spinlock();
1915 raw_spin_lock_irqsave(&p->pi_lock, flags);
1916 if (!(p->state & state))
1917 goto out;
1918
1919 trace_sched_waking(p);
1920
1921 success = 1; /* we're going to change ->state */
1922 cpu = task_cpu(p);
1923
1924 if (p->on_rq && ttwu_remote(p, wake_flags))
1925 goto stat;
1926
1927 #ifdef CONFIG_SMP
1928 /*
1929 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1930 * possible to, falsely, observe p->on_cpu == 0.
1931 *
1932 * One must be running (->on_cpu == 1) in order to remove oneself
1933 * from the runqueue.
1934 *
1935 * [S] ->on_cpu = 1; [L] ->on_rq
1936 * UNLOCK rq->lock
1937 * RMB
1938 * LOCK rq->lock
1939 * [S] ->on_rq = 0; [L] ->on_cpu
1940 *
1941 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1942 * from the consecutive calls to schedule(); the first switching to our
1943 * task, the second putting it to sleep.
1944 */
1945 smp_rmb();
1946
1947 /*
1948 * If the owning (remote) cpu is still in the middle of schedule() with
1949 * this task as prev, wait until its done referencing the task.
1950 *
1951 * Pairs with the smp_store_release() in finish_lock_switch().
1952 *
1953 * This ensures that tasks getting woken will be fully ordered against
1954 * their previous state and preserve Program Order.
1955 */
1956 smp_cond_acquire(!p->on_cpu);
1957
1958 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1959 p->state = TASK_WAKING;
1960
1961 if (p->sched_class->task_waking)
1962 p->sched_class->task_waking(p);
1963
1964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1965 if (task_cpu(p) != cpu) {
1966 wake_flags |= WF_MIGRATED;
1967 set_task_cpu(p, cpu);
1968 }
1969 #endif /* CONFIG_SMP */
1970
1971 ttwu_queue(p, cpu);
1972 stat:
1973 if (schedstat_enabled())
1974 ttwu_stat(p, cpu, wake_flags);
1975 out:
1976 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1977
1978 return success;
1979 }
1980
1981 /**
1982 * try_to_wake_up_local - try to wake up a local task with rq lock held
1983 * @p: the thread to be awakened
1984 *
1985 * Put @p on the run-queue if it's not already there. The caller must
1986 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1987 * the current task.
1988 */
1989 static void try_to_wake_up_local(struct task_struct *p)
1990 {
1991 struct rq *rq = task_rq(p);
1992
1993 if (WARN_ON_ONCE(rq != this_rq()) ||
1994 WARN_ON_ONCE(p == current))
1995 return;
1996
1997 lockdep_assert_held(&rq->lock);
1998
1999 if (!raw_spin_trylock(&p->pi_lock)) {
2000 /*
2001 * This is OK, because current is on_cpu, which avoids it being
2002 * picked for load-balance and preemption/IRQs are still
2003 * disabled avoiding further scheduler activity on it and we've
2004 * not yet picked a replacement task.
2005 */
2006 lockdep_unpin_lock(&rq->lock);
2007 raw_spin_unlock(&rq->lock);
2008 raw_spin_lock(&p->pi_lock);
2009 raw_spin_lock(&rq->lock);
2010 lockdep_pin_lock(&rq->lock);
2011 }
2012
2013 if (!(p->state & TASK_NORMAL))
2014 goto out;
2015
2016 trace_sched_waking(p);
2017
2018 if (!task_on_rq_queued(p))
2019 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2020
2021 ttwu_do_wakeup(rq, p, 0);
2022 if (schedstat_enabled())
2023 ttwu_stat(p, smp_processor_id(), 0);
2024 out:
2025 raw_spin_unlock(&p->pi_lock);
2026 }
2027
2028 /**
2029 * wake_up_process - Wake up a specific process
2030 * @p: The process to be woken up.
2031 *
2032 * Attempt to wake up the nominated process and move it to the set of runnable
2033 * processes.
2034 *
2035 * Return: 1 if the process was woken up, 0 if it was already running.
2036 *
2037 * It may be assumed that this function implies a write memory barrier before
2038 * changing the task state if and only if any tasks are woken up.
2039 */
2040 int wake_up_process(struct task_struct *p)
2041 {
2042 return try_to_wake_up(p, TASK_NORMAL, 0);
2043 }
2044 EXPORT_SYMBOL(wake_up_process);
2045
2046 int wake_up_state(struct task_struct *p, unsigned int state)
2047 {
2048 return try_to_wake_up(p, state, 0);
2049 }
2050
2051 /*
2052 * This function clears the sched_dl_entity static params.
2053 */
2054 void __dl_clear_params(struct task_struct *p)
2055 {
2056 struct sched_dl_entity *dl_se = &p->dl;
2057
2058 dl_se->dl_runtime = 0;
2059 dl_se->dl_deadline = 0;
2060 dl_se->dl_period = 0;
2061 dl_se->flags = 0;
2062 dl_se->dl_bw = 0;
2063
2064 dl_se->dl_throttled = 0;
2065 dl_se->dl_yielded = 0;
2066 }
2067
2068 /*
2069 * Perform scheduler related setup for a newly forked process p.
2070 * p is forked by current.
2071 *
2072 * __sched_fork() is basic setup used by init_idle() too:
2073 */
2074 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2075 {
2076 p->on_rq = 0;
2077
2078 p->se.on_rq = 0;
2079 p->se.exec_start = 0;
2080 p->se.sum_exec_runtime = 0;
2081 p->se.prev_sum_exec_runtime = 0;
2082 p->se.nr_migrations = 0;
2083 p->se.vruntime = 0;
2084 INIT_LIST_HEAD(&p->se.group_node);
2085
2086 #ifdef CONFIG_FAIR_GROUP_SCHED
2087 p->se.cfs_rq = NULL;
2088 #endif
2089
2090 #ifdef CONFIG_SCHEDSTATS
2091 /* Even if schedstat is disabled, there should not be garbage */
2092 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2093 #endif
2094
2095 RB_CLEAR_NODE(&p->dl.rb_node);
2096 init_dl_task_timer(&p->dl);
2097 __dl_clear_params(p);
2098
2099 INIT_LIST_HEAD(&p->rt.run_list);
2100 p->rt.timeout = 0;
2101 p->rt.time_slice = sched_rr_timeslice;
2102 p->rt.on_rq = 0;
2103 p->rt.on_list = 0;
2104
2105 #ifdef CONFIG_PREEMPT_NOTIFIERS
2106 INIT_HLIST_HEAD(&p->preempt_notifiers);
2107 #endif
2108
2109 #ifdef CONFIG_NUMA_BALANCING
2110 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2111 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2112 p->mm->numa_scan_seq = 0;
2113 }
2114
2115 if (clone_flags & CLONE_VM)
2116 p->numa_preferred_nid = current->numa_preferred_nid;
2117 else
2118 p->numa_preferred_nid = -1;
2119
2120 p->node_stamp = 0ULL;
2121 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2122 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2123 p->numa_work.next = &p->numa_work;
2124 p->numa_faults = NULL;
2125 p->last_task_numa_placement = 0;
2126 p->last_sum_exec_runtime = 0;
2127
2128 p->numa_group = NULL;
2129 #endif /* CONFIG_NUMA_BALANCING */
2130 }
2131
2132 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2133
2134 #ifdef CONFIG_NUMA_BALANCING
2135
2136 void set_numabalancing_state(bool enabled)
2137 {
2138 if (enabled)
2139 static_branch_enable(&sched_numa_balancing);
2140 else
2141 static_branch_disable(&sched_numa_balancing);
2142 }
2143
2144 #ifdef CONFIG_PROC_SYSCTL
2145 int sysctl_numa_balancing(struct ctl_table *table, int write,
2146 void __user *buffer, size_t *lenp, loff_t *ppos)
2147 {
2148 struct ctl_table t;
2149 int err;
2150 int state = static_branch_likely(&sched_numa_balancing);
2151
2152 if (write && !capable(CAP_SYS_ADMIN))
2153 return -EPERM;
2154
2155 t = *table;
2156 t.data = &state;
2157 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2158 if (err < 0)
2159 return err;
2160 if (write)
2161 set_numabalancing_state(state);
2162 return err;
2163 }
2164 #endif
2165 #endif
2166
2167 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2168
2169 #ifdef CONFIG_SCHEDSTATS
2170 static void set_schedstats(bool enabled)
2171 {
2172 if (enabled)
2173 static_branch_enable(&sched_schedstats);
2174 else
2175 static_branch_disable(&sched_schedstats);
2176 }
2177
2178 void force_schedstat_enabled(void)
2179 {
2180 if (!schedstat_enabled()) {
2181 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2182 static_branch_enable(&sched_schedstats);
2183 }
2184 }
2185
2186 static int __init setup_schedstats(char *str)
2187 {
2188 int ret = 0;
2189 if (!str)
2190 goto out;
2191
2192 if (!strcmp(str, "enable")) {
2193 set_schedstats(true);
2194 ret = 1;
2195 } else if (!strcmp(str, "disable")) {
2196 set_schedstats(false);
2197 ret = 1;
2198 }
2199 out:
2200 if (!ret)
2201 pr_warn("Unable to parse schedstats=\n");
2202
2203 return ret;
2204 }
2205 __setup("schedstats=", setup_schedstats);
2206
2207 #ifdef CONFIG_PROC_SYSCTL
2208 int sysctl_schedstats(struct ctl_table *table, int write,
2209 void __user *buffer, size_t *lenp, loff_t *ppos)
2210 {
2211 struct ctl_table t;
2212 int err;
2213 int state = static_branch_likely(&sched_schedstats);
2214
2215 if (write && !capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217
2218 t = *table;
2219 t.data = &state;
2220 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2221 if (err < 0)
2222 return err;
2223 if (write)
2224 set_schedstats(state);
2225 return err;
2226 }
2227 #endif
2228 #endif
2229
2230 /*
2231 * fork()/clone()-time setup:
2232 */
2233 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2234 {
2235 unsigned long flags;
2236 int cpu = get_cpu();
2237
2238 __sched_fork(clone_flags, p);
2239 /*
2240 * We mark the process as running here. This guarantees that
2241 * nobody will actually run it, and a signal or other external
2242 * event cannot wake it up and insert it on the runqueue either.
2243 */
2244 p->state = TASK_RUNNING;
2245
2246 /*
2247 * Make sure we do not leak PI boosting priority to the child.
2248 */
2249 p->prio = current->normal_prio;
2250
2251 /*
2252 * Revert to default priority/policy on fork if requested.
2253 */
2254 if (unlikely(p->sched_reset_on_fork)) {
2255 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2256 p->policy = SCHED_NORMAL;
2257 p->static_prio = NICE_TO_PRIO(0);
2258 p->rt_priority = 0;
2259 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2260 p->static_prio = NICE_TO_PRIO(0);
2261
2262 p->prio = p->normal_prio = __normal_prio(p);
2263 set_load_weight(p);
2264
2265 /*
2266 * We don't need the reset flag anymore after the fork. It has
2267 * fulfilled its duty:
2268 */
2269 p->sched_reset_on_fork = 0;
2270 }
2271
2272 if (dl_prio(p->prio)) {
2273 put_cpu();
2274 return -EAGAIN;
2275 } else if (rt_prio(p->prio)) {
2276 p->sched_class = &rt_sched_class;
2277 } else {
2278 p->sched_class = &fair_sched_class;
2279 }
2280
2281 if (p->sched_class->task_fork)
2282 p->sched_class->task_fork(p);
2283
2284 /*
2285 * The child is not yet in the pid-hash so no cgroup attach races,
2286 * and the cgroup is pinned to this child due to cgroup_fork()
2287 * is ran before sched_fork().
2288 *
2289 * Silence PROVE_RCU.
2290 */
2291 raw_spin_lock_irqsave(&p->pi_lock, flags);
2292 set_task_cpu(p, cpu);
2293 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2294
2295 #ifdef CONFIG_SCHED_INFO
2296 if (likely(sched_info_on()))
2297 memset(&p->sched_info, 0, sizeof(p->sched_info));
2298 #endif
2299 #if defined(CONFIG_SMP)
2300 p->on_cpu = 0;
2301 #endif
2302 init_task_preempt_count(p);
2303 #ifdef CONFIG_SMP
2304 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2305 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2306 #endif
2307
2308 put_cpu();
2309 return 0;
2310 }
2311
2312 unsigned long to_ratio(u64 period, u64 runtime)
2313 {
2314 if (runtime == RUNTIME_INF)
2315 return 1ULL << 20;
2316
2317 /*
2318 * Doing this here saves a lot of checks in all
2319 * the calling paths, and returning zero seems
2320 * safe for them anyway.
2321 */
2322 if (period == 0)
2323 return 0;
2324
2325 return div64_u64(runtime << 20, period);
2326 }
2327
2328 #ifdef CONFIG_SMP
2329 inline struct dl_bw *dl_bw_of(int i)
2330 {
2331 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2332 "sched RCU must be held");
2333 return &cpu_rq(i)->rd->dl_bw;
2334 }
2335
2336 static inline int dl_bw_cpus(int i)
2337 {
2338 struct root_domain *rd = cpu_rq(i)->rd;
2339 int cpus = 0;
2340
2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 "sched RCU must be held");
2343 for_each_cpu_and(i, rd->span, cpu_active_mask)
2344 cpus++;
2345
2346 return cpus;
2347 }
2348 #else
2349 inline struct dl_bw *dl_bw_of(int i)
2350 {
2351 return &cpu_rq(i)->dl.dl_bw;
2352 }
2353
2354 static inline int dl_bw_cpus(int i)
2355 {
2356 return 1;
2357 }
2358 #endif
2359
2360 /*
2361 * We must be sure that accepting a new task (or allowing changing the
2362 * parameters of an existing one) is consistent with the bandwidth
2363 * constraints. If yes, this function also accordingly updates the currently
2364 * allocated bandwidth to reflect the new situation.
2365 *
2366 * This function is called while holding p's rq->lock.
2367 *
2368 * XXX we should delay bw change until the task's 0-lag point, see
2369 * __setparam_dl().
2370 */
2371 static int dl_overflow(struct task_struct *p, int policy,
2372 const struct sched_attr *attr)
2373 {
2374
2375 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2376 u64 period = attr->sched_period ?: attr->sched_deadline;
2377 u64 runtime = attr->sched_runtime;
2378 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2379 int cpus, err = -1;
2380
2381 if (new_bw == p->dl.dl_bw)
2382 return 0;
2383
2384 /*
2385 * Either if a task, enters, leave, or stays -deadline but changes
2386 * its parameters, we may need to update accordingly the total
2387 * allocated bandwidth of the container.
2388 */
2389 raw_spin_lock(&dl_b->lock);
2390 cpus = dl_bw_cpus(task_cpu(p));
2391 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2392 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2393 __dl_add(dl_b, new_bw);
2394 err = 0;
2395 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2396 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2397 __dl_clear(dl_b, p->dl.dl_bw);
2398 __dl_add(dl_b, new_bw);
2399 err = 0;
2400 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2401 __dl_clear(dl_b, p->dl.dl_bw);
2402 err = 0;
2403 }
2404 raw_spin_unlock(&dl_b->lock);
2405
2406 return err;
2407 }
2408
2409 extern void init_dl_bw(struct dl_bw *dl_b);
2410
2411 /*
2412 * wake_up_new_task - wake up a newly created task for the first time.
2413 *
2414 * This function will do some initial scheduler statistics housekeeping
2415 * that must be done for every newly created context, then puts the task
2416 * on the runqueue and wakes it.
2417 */
2418 void wake_up_new_task(struct task_struct *p)
2419 {
2420 unsigned long flags;
2421 struct rq *rq;
2422
2423 raw_spin_lock_irqsave(&p->pi_lock, flags);
2424 /* Initialize new task's runnable average */
2425 init_entity_runnable_average(&p->se);
2426 #ifdef CONFIG_SMP
2427 /*
2428 * Fork balancing, do it here and not earlier because:
2429 * - cpus_allowed can change in the fork path
2430 * - any previously selected cpu might disappear through hotplug
2431 */
2432 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2433 #endif
2434
2435 rq = __task_rq_lock(p);
2436 activate_task(rq, p, 0);
2437 p->on_rq = TASK_ON_RQ_QUEUED;
2438 trace_sched_wakeup_new(p);
2439 check_preempt_curr(rq, p, WF_FORK);
2440 #ifdef CONFIG_SMP
2441 if (p->sched_class->task_woken) {
2442 /*
2443 * Nothing relies on rq->lock after this, so its fine to
2444 * drop it.
2445 */
2446 lockdep_unpin_lock(&rq->lock);
2447 p->sched_class->task_woken(rq, p);
2448 lockdep_pin_lock(&rq->lock);
2449 }
2450 #endif
2451 task_rq_unlock(rq, p, &flags);
2452 }
2453
2454 #ifdef CONFIG_PREEMPT_NOTIFIERS
2455
2456 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2457
2458 void preempt_notifier_inc(void)
2459 {
2460 static_key_slow_inc(&preempt_notifier_key);
2461 }
2462 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2463
2464 void preempt_notifier_dec(void)
2465 {
2466 static_key_slow_dec(&preempt_notifier_key);
2467 }
2468 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2469
2470 /**
2471 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2472 * @notifier: notifier struct to register
2473 */
2474 void preempt_notifier_register(struct preempt_notifier *notifier)
2475 {
2476 if (!static_key_false(&preempt_notifier_key))
2477 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2478
2479 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2480 }
2481 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2482
2483 /**
2484 * preempt_notifier_unregister - no longer interested in preemption notifications
2485 * @notifier: notifier struct to unregister
2486 *
2487 * This is *not* safe to call from within a preemption notifier.
2488 */
2489 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2490 {
2491 hlist_del(&notifier->link);
2492 }
2493 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2494
2495 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2496 {
2497 struct preempt_notifier *notifier;
2498
2499 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2500 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2501 }
2502
2503 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2504 {
2505 if (static_key_false(&preempt_notifier_key))
2506 __fire_sched_in_preempt_notifiers(curr);
2507 }
2508
2509 static void
2510 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2511 struct task_struct *next)
2512 {
2513 struct preempt_notifier *notifier;
2514
2515 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2516 notifier->ops->sched_out(notifier, next);
2517 }
2518
2519 static __always_inline void
2520 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
2522 {
2523 if (static_key_false(&preempt_notifier_key))
2524 __fire_sched_out_preempt_notifiers(curr, next);
2525 }
2526
2527 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2528
2529 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530 {
2531 }
2532
2533 static inline void
2534 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 struct task_struct *next)
2536 {
2537 }
2538
2539 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2540
2541 /**
2542 * prepare_task_switch - prepare to switch tasks
2543 * @rq: the runqueue preparing to switch
2544 * @prev: the current task that is being switched out
2545 * @next: the task we are going to switch to.
2546 *
2547 * This is called with the rq lock held and interrupts off. It must
2548 * be paired with a subsequent finish_task_switch after the context
2549 * switch.
2550 *
2551 * prepare_task_switch sets up locking and calls architecture specific
2552 * hooks.
2553 */
2554 static inline void
2555 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2556 struct task_struct *next)
2557 {
2558 sched_info_switch(rq, prev, next);
2559 perf_event_task_sched_out(prev, next);
2560 fire_sched_out_preempt_notifiers(prev, next);
2561 prepare_lock_switch(rq, next);
2562 prepare_arch_switch(next);
2563 }
2564
2565 /**
2566 * finish_task_switch - clean up after a task-switch
2567 * @prev: the thread we just switched away from.
2568 *
2569 * finish_task_switch must be called after the context switch, paired
2570 * with a prepare_task_switch call before the context switch.
2571 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2572 * and do any other architecture-specific cleanup actions.
2573 *
2574 * Note that we may have delayed dropping an mm in context_switch(). If
2575 * so, we finish that here outside of the runqueue lock. (Doing it
2576 * with the lock held can cause deadlocks; see schedule() for
2577 * details.)
2578 *
2579 * The context switch have flipped the stack from under us and restored the
2580 * local variables which were saved when this task called schedule() in the
2581 * past. prev == current is still correct but we need to recalculate this_rq
2582 * because prev may have moved to another CPU.
2583 */
2584 static struct rq *finish_task_switch(struct task_struct *prev)
2585 __releases(rq->lock)
2586 {
2587 struct rq *rq = this_rq();
2588 struct mm_struct *mm = rq->prev_mm;
2589 long prev_state;
2590
2591 /*
2592 * The previous task will have left us with a preempt_count of 2
2593 * because it left us after:
2594 *
2595 * schedule()
2596 * preempt_disable(); // 1
2597 * __schedule()
2598 * raw_spin_lock_irq(&rq->lock) // 2
2599 *
2600 * Also, see FORK_PREEMPT_COUNT.
2601 */
2602 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2603 "corrupted preempt_count: %s/%d/0x%x\n",
2604 current->comm, current->pid, preempt_count()))
2605 preempt_count_set(FORK_PREEMPT_COUNT);
2606
2607 rq->prev_mm = NULL;
2608
2609 /*
2610 * A task struct has one reference for the use as "current".
2611 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2612 * schedule one last time. The schedule call will never return, and
2613 * the scheduled task must drop that reference.
2614 *
2615 * We must observe prev->state before clearing prev->on_cpu (in
2616 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2617 * running on another CPU and we could rave with its RUNNING -> DEAD
2618 * transition, resulting in a double drop.
2619 */
2620 prev_state = prev->state;
2621 vtime_task_switch(prev);
2622 perf_event_task_sched_in(prev, current);
2623 finish_lock_switch(rq, prev);
2624 finish_arch_post_lock_switch();
2625
2626 fire_sched_in_preempt_notifiers(current);
2627 if (mm)
2628 mmdrop(mm);
2629 if (unlikely(prev_state == TASK_DEAD)) {
2630 if (prev->sched_class->task_dead)
2631 prev->sched_class->task_dead(prev);
2632
2633 /*
2634 * Remove function-return probe instances associated with this
2635 * task and put them back on the free list.
2636 */
2637 kprobe_flush_task(prev);
2638 put_task_struct(prev);
2639 }
2640
2641 tick_nohz_task_switch();
2642 return rq;
2643 }
2644
2645 #ifdef CONFIG_SMP
2646
2647 /* rq->lock is NOT held, but preemption is disabled */
2648 static void __balance_callback(struct rq *rq)
2649 {
2650 struct callback_head *head, *next;
2651 void (*func)(struct rq *rq);
2652 unsigned long flags;
2653
2654 raw_spin_lock_irqsave(&rq->lock, flags);
2655 head = rq->balance_callback;
2656 rq->balance_callback = NULL;
2657 while (head) {
2658 func = (void (*)(struct rq *))head->func;
2659 next = head->next;
2660 head->next = NULL;
2661 head = next;
2662
2663 func(rq);
2664 }
2665 raw_spin_unlock_irqrestore(&rq->lock, flags);
2666 }
2667
2668 static inline void balance_callback(struct rq *rq)
2669 {
2670 if (unlikely(rq->balance_callback))
2671 __balance_callback(rq);
2672 }
2673
2674 #else
2675
2676 static inline void balance_callback(struct rq *rq)
2677 {
2678 }
2679
2680 #endif
2681
2682 /**
2683 * schedule_tail - first thing a freshly forked thread must call.
2684 * @prev: the thread we just switched away from.
2685 */
2686 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2687 __releases(rq->lock)
2688 {
2689 struct rq *rq;
2690
2691 /*
2692 * New tasks start with FORK_PREEMPT_COUNT, see there and
2693 * finish_task_switch() for details.
2694 *
2695 * finish_task_switch() will drop rq->lock() and lower preempt_count
2696 * and the preempt_enable() will end up enabling preemption (on
2697 * PREEMPT_COUNT kernels).
2698 */
2699
2700 rq = finish_task_switch(prev);
2701 balance_callback(rq);
2702 preempt_enable();
2703
2704 if (current->set_child_tid)
2705 put_user(task_pid_vnr(current), current->set_child_tid);
2706 }
2707
2708 /*
2709 * context_switch - switch to the new MM and the new thread's register state.
2710 */
2711 static __always_inline struct rq *
2712 context_switch(struct rq *rq, struct task_struct *prev,
2713 struct task_struct *next)
2714 {
2715 struct mm_struct *mm, *oldmm;
2716
2717 prepare_task_switch(rq, prev, next);
2718
2719 mm = next->mm;
2720 oldmm = prev->active_mm;
2721 /*
2722 * For paravirt, this is coupled with an exit in switch_to to
2723 * combine the page table reload and the switch backend into
2724 * one hypercall.
2725 */
2726 arch_start_context_switch(prev);
2727
2728 if (!mm) {
2729 next->active_mm = oldmm;
2730 atomic_inc(&oldmm->mm_count);
2731 enter_lazy_tlb(oldmm, next);
2732 } else
2733 switch_mm(oldmm, mm, next);
2734
2735 if (!prev->mm) {
2736 prev->active_mm = NULL;
2737 rq->prev_mm = oldmm;
2738 }
2739 /*
2740 * Since the runqueue lock will be released by the next
2741 * task (which is an invalid locking op but in the case
2742 * of the scheduler it's an obvious special-case), so we
2743 * do an early lockdep release here:
2744 */
2745 lockdep_unpin_lock(&rq->lock);
2746 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2747
2748 /* Here we just switch the register state and the stack. */
2749 switch_to(prev, next, prev);
2750 barrier();
2751
2752 return finish_task_switch(prev);
2753 }
2754
2755 /*
2756 * nr_running and nr_context_switches:
2757 *
2758 * externally visible scheduler statistics: current number of runnable
2759 * threads, total number of context switches performed since bootup.
2760 */
2761 unsigned long nr_running(void)
2762 {
2763 unsigned long i, sum = 0;
2764
2765 for_each_online_cpu(i)
2766 sum += cpu_rq(i)->nr_running;
2767
2768 return sum;
2769 }
2770
2771 /*
2772 * Check if only the current task is running on the cpu.
2773 *
2774 * Caution: this function does not check that the caller has disabled
2775 * preemption, thus the result might have a time-of-check-to-time-of-use
2776 * race. The caller is responsible to use it correctly, for example:
2777 *
2778 * - from a non-preemptable section (of course)
2779 *
2780 * - from a thread that is bound to a single CPU
2781 *
2782 * - in a loop with very short iterations (e.g. a polling loop)
2783 */
2784 bool single_task_running(void)
2785 {
2786 return raw_rq()->nr_running == 1;
2787 }
2788 EXPORT_SYMBOL(single_task_running);
2789
2790 unsigned long long nr_context_switches(void)
2791 {
2792 int i;
2793 unsigned long long sum = 0;
2794
2795 for_each_possible_cpu(i)
2796 sum += cpu_rq(i)->nr_switches;
2797
2798 return sum;
2799 }
2800
2801 unsigned long nr_iowait(void)
2802 {
2803 unsigned long i, sum = 0;
2804
2805 for_each_possible_cpu(i)
2806 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2807
2808 return sum;
2809 }
2810
2811 unsigned long nr_iowait_cpu(int cpu)
2812 {
2813 struct rq *this = cpu_rq(cpu);
2814 return atomic_read(&this->nr_iowait);
2815 }
2816
2817 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2818 {
2819 struct rq *rq = this_rq();
2820 *nr_waiters = atomic_read(&rq->nr_iowait);
2821 *load = rq->load.weight;
2822 }
2823
2824 #ifdef CONFIG_SMP
2825
2826 /*
2827 * sched_exec - execve() is a valuable balancing opportunity, because at
2828 * this point the task has the smallest effective memory and cache footprint.
2829 */
2830 void sched_exec(void)
2831 {
2832 struct task_struct *p = current;
2833 unsigned long flags;
2834 int dest_cpu;
2835
2836 raw_spin_lock_irqsave(&p->pi_lock, flags);
2837 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2838 if (dest_cpu == smp_processor_id())
2839 goto unlock;
2840
2841 if (likely(cpu_active(dest_cpu))) {
2842 struct migration_arg arg = { p, dest_cpu };
2843
2844 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2845 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2846 return;
2847 }
2848 unlock:
2849 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2850 }
2851
2852 #endif
2853
2854 DEFINE_PER_CPU(struct kernel_stat, kstat);
2855 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2856
2857 EXPORT_PER_CPU_SYMBOL(kstat);
2858 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2859
2860 /*
2861 * Return accounted runtime for the task.
2862 * In case the task is currently running, return the runtime plus current's
2863 * pending runtime that have not been accounted yet.
2864 */
2865 unsigned long long task_sched_runtime(struct task_struct *p)
2866 {
2867 unsigned long flags;
2868 struct rq *rq;
2869 u64 ns;
2870
2871 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2872 /*
2873 * 64-bit doesn't need locks to atomically read a 64bit value.
2874 * So we have a optimization chance when the task's delta_exec is 0.
2875 * Reading ->on_cpu is racy, but this is ok.
2876 *
2877 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2878 * If we race with it entering cpu, unaccounted time is 0. This is
2879 * indistinguishable from the read occurring a few cycles earlier.
2880 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2881 * been accounted, so we're correct here as well.
2882 */
2883 if (!p->on_cpu || !task_on_rq_queued(p))
2884 return p->se.sum_exec_runtime;
2885 #endif
2886
2887 rq = task_rq_lock(p, &flags);
2888 /*
2889 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2890 * project cycles that may never be accounted to this
2891 * thread, breaking clock_gettime().
2892 */
2893 if (task_current(rq, p) && task_on_rq_queued(p)) {
2894 update_rq_clock(rq);
2895 p->sched_class->update_curr(rq);
2896 }
2897 ns = p->se.sum_exec_runtime;
2898 task_rq_unlock(rq, p, &flags);
2899
2900 return ns;
2901 }
2902
2903 /*
2904 * This function gets called by the timer code, with HZ frequency.
2905 * We call it with interrupts disabled.
2906 */
2907 void scheduler_tick(void)
2908 {
2909 int cpu = smp_processor_id();
2910 struct rq *rq = cpu_rq(cpu);
2911 struct task_struct *curr = rq->curr;
2912
2913 sched_clock_tick();
2914
2915 raw_spin_lock(&rq->lock);
2916 update_rq_clock(rq);
2917 curr->sched_class->task_tick(rq, curr, 0);
2918 update_cpu_load_active(rq);
2919 calc_global_load_tick(rq);
2920 raw_spin_unlock(&rq->lock);
2921
2922 perf_event_task_tick();
2923
2924 #ifdef CONFIG_SMP
2925 rq->idle_balance = idle_cpu(cpu);
2926 trigger_load_balance(rq);
2927 #endif
2928 rq_last_tick_reset(rq);
2929 }
2930
2931 #ifdef CONFIG_NO_HZ_FULL
2932 /**
2933 * scheduler_tick_max_deferment
2934 *
2935 * Keep at least one tick per second when a single
2936 * active task is running because the scheduler doesn't
2937 * yet completely support full dynticks environment.
2938 *
2939 * This makes sure that uptime, CFS vruntime, load
2940 * balancing, etc... continue to move forward, even
2941 * with a very low granularity.
2942 *
2943 * Return: Maximum deferment in nanoseconds.
2944 */
2945 u64 scheduler_tick_max_deferment(void)
2946 {
2947 struct rq *rq = this_rq();
2948 unsigned long next, now = READ_ONCE(jiffies);
2949
2950 next = rq->last_sched_tick + HZ;
2951
2952 if (time_before_eq(next, now))
2953 return 0;
2954
2955 return jiffies_to_nsecs(next - now);
2956 }
2957 #endif
2958
2959 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2960 defined(CONFIG_PREEMPT_TRACER))
2961
2962 void preempt_count_add(int val)
2963 {
2964 #ifdef CONFIG_DEBUG_PREEMPT
2965 /*
2966 * Underflow?
2967 */
2968 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2969 return;
2970 #endif
2971 __preempt_count_add(val);
2972 #ifdef CONFIG_DEBUG_PREEMPT
2973 /*
2974 * Spinlock count overflowing soon?
2975 */
2976 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2977 PREEMPT_MASK - 10);
2978 #endif
2979 if (preempt_count() == val) {
2980 unsigned long ip = get_lock_parent_ip();
2981 #ifdef CONFIG_DEBUG_PREEMPT
2982 current->preempt_disable_ip = ip;
2983 #endif
2984 trace_preempt_off(CALLER_ADDR0, ip);
2985 }
2986 }
2987 EXPORT_SYMBOL(preempt_count_add);
2988 NOKPROBE_SYMBOL(preempt_count_add);
2989
2990 void preempt_count_sub(int val)
2991 {
2992 #ifdef CONFIG_DEBUG_PREEMPT
2993 /*
2994 * Underflow?
2995 */
2996 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2997 return;
2998 /*
2999 * Is the spinlock portion underflowing?
3000 */
3001 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3002 !(preempt_count() & PREEMPT_MASK)))
3003 return;
3004 #endif
3005
3006 if (preempt_count() == val)
3007 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3008 __preempt_count_sub(val);
3009 }
3010 EXPORT_SYMBOL(preempt_count_sub);
3011 NOKPROBE_SYMBOL(preempt_count_sub);
3012
3013 #endif
3014
3015 /*
3016 * Print scheduling while atomic bug:
3017 */
3018 static noinline void __schedule_bug(struct task_struct *prev)
3019 {
3020 if (oops_in_progress)
3021 return;
3022
3023 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3024 prev->comm, prev->pid, preempt_count());
3025
3026 debug_show_held_locks(prev);
3027 print_modules();
3028 if (irqs_disabled())
3029 print_irqtrace_events(prev);
3030 #ifdef CONFIG_DEBUG_PREEMPT
3031 if (in_atomic_preempt_off()) {
3032 pr_err("Preemption disabled at:");
3033 print_ip_sym(current->preempt_disable_ip);
3034 pr_cont("\n");
3035 }
3036 #endif
3037 dump_stack();
3038 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3039 }
3040
3041 /*
3042 * Various schedule()-time debugging checks and statistics:
3043 */
3044 static inline void schedule_debug(struct task_struct *prev)
3045 {
3046 #ifdef CONFIG_SCHED_STACK_END_CHECK
3047 BUG_ON(task_stack_end_corrupted(prev));
3048 #endif
3049
3050 if (unlikely(in_atomic_preempt_off())) {
3051 __schedule_bug(prev);
3052 preempt_count_set(PREEMPT_DISABLED);
3053 }
3054 rcu_sleep_check();
3055
3056 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3057
3058 schedstat_inc(this_rq(), sched_count);
3059 }
3060
3061 /*
3062 * Pick up the highest-prio task:
3063 */
3064 static inline struct task_struct *
3065 pick_next_task(struct rq *rq, struct task_struct *prev)
3066 {
3067 const struct sched_class *class = &fair_sched_class;
3068 struct task_struct *p;
3069
3070 /*
3071 * Optimization: we know that if all tasks are in
3072 * the fair class we can call that function directly:
3073 */
3074 if (likely(prev->sched_class == class &&
3075 rq->nr_running == rq->cfs.h_nr_running)) {
3076 p = fair_sched_class.pick_next_task(rq, prev);
3077 if (unlikely(p == RETRY_TASK))
3078 goto again;
3079
3080 /* assumes fair_sched_class->next == idle_sched_class */
3081 if (unlikely(!p))
3082 p = idle_sched_class.pick_next_task(rq, prev);
3083
3084 return p;
3085 }
3086
3087 again:
3088 for_each_class(class) {
3089 p = class->pick_next_task(rq, prev);
3090 if (p) {
3091 if (unlikely(p == RETRY_TASK))
3092 goto again;
3093 return p;
3094 }
3095 }
3096
3097 BUG(); /* the idle class will always have a runnable task */
3098 }
3099
3100 /*
3101 * __schedule() is the main scheduler function.
3102 *
3103 * The main means of driving the scheduler and thus entering this function are:
3104 *
3105 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3106 *
3107 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3108 * paths. For example, see arch/x86/entry_64.S.
3109 *
3110 * To drive preemption between tasks, the scheduler sets the flag in timer
3111 * interrupt handler scheduler_tick().
3112 *
3113 * 3. Wakeups don't really cause entry into schedule(). They add a
3114 * task to the run-queue and that's it.
3115 *
3116 * Now, if the new task added to the run-queue preempts the current
3117 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3118 * called on the nearest possible occasion:
3119 *
3120 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3121 *
3122 * - in syscall or exception context, at the next outmost
3123 * preempt_enable(). (this might be as soon as the wake_up()'s
3124 * spin_unlock()!)
3125 *
3126 * - in IRQ context, return from interrupt-handler to
3127 * preemptible context
3128 *
3129 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3130 * then at the next:
3131 *
3132 * - cond_resched() call
3133 * - explicit schedule() call
3134 * - return from syscall or exception to user-space
3135 * - return from interrupt-handler to user-space
3136 *
3137 * WARNING: must be called with preemption disabled!
3138 */
3139 static void __sched notrace __schedule(bool preempt)
3140 {
3141 struct task_struct *prev, *next;
3142 unsigned long *switch_count;
3143 struct rq *rq;
3144 int cpu;
3145
3146 cpu = smp_processor_id();
3147 rq = cpu_rq(cpu);
3148 prev = rq->curr;
3149
3150 /*
3151 * do_exit() calls schedule() with preemption disabled as an exception;
3152 * however we must fix that up, otherwise the next task will see an
3153 * inconsistent (higher) preempt count.
3154 *
3155 * It also avoids the below schedule_debug() test from complaining
3156 * about this.
3157 */
3158 if (unlikely(prev->state == TASK_DEAD))
3159 preempt_enable_no_resched_notrace();
3160
3161 schedule_debug(prev);
3162
3163 if (sched_feat(HRTICK))
3164 hrtick_clear(rq);
3165
3166 local_irq_disable();
3167 rcu_note_context_switch();
3168
3169 /*
3170 * Make sure that signal_pending_state()->signal_pending() below
3171 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3172 * done by the caller to avoid the race with signal_wake_up().
3173 */
3174 smp_mb__before_spinlock();
3175 raw_spin_lock(&rq->lock);
3176 lockdep_pin_lock(&rq->lock);
3177
3178 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3179
3180 switch_count = &prev->nivcsw;
3181 if (!preempt && prev->state) {
3182 if (unlikely(signal_pending_state(prev->state, prev))) {
3183 prev->state = TASK_RUNNING;
3184 } else {
3185 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3186 prev->on_rq = 0;
3187
3188 /*
3189 * If a worker went to sleep, notify and ask workqueue
3190 * whether it wants to wake up a task to maintain
3191 * concurrency.
3192 */
3193 if (prev->flags & PF_WQ_WORKER) {
3194 struct task_struct *to_wakeup;
3195
3196 to_wakeup = wq_worker_sleeping(prev);
3197 if (to_wakeup)
3198 try_to_wake_up_local(to_wakeup);
3199 }
3200 }
3201 switch_count = &prev->nvcsw;
3202 }
3203
3204 if (task_on_rq_queued(prev))
3205 update_rq_clock(rq);
3206
3207 next = pick_next_task(rq, prev);
3208 clear_tsk_need_resched(prev);
3209 clear_preempt_need_resched();
3210 rq->clock_skip_update = 0;
3211
3212 if (likely(prev != next)) {
3213 rq->nr_switches++;
3214 rq->curr = next;
3215 ++*switch_count;
3216
3217 trace_sched_switch(preempt, prev, next);
3218 rq = context_switch(rq, prev, next); /* unlocks the rq */
3219 } else {
3220 lockdep_unpin_lock(&rq->lock);
3221 raw_spin_unlock_irq(&rq->lock);
3222 }
3223
3224 balance_callback(rq);
3225 }
3226 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3227
3228 static inline void sched_submit_work(struct task_struct *tsk)
3229 {
3230 if (!tsk->state || tsk_is_pi_blocked(tsk))
3231 return;
3232 /*
3233 * If we are going to sleep and we have plugged IO queued,
3234 * make sure to submit it to avoid deadlocks.
3235 */
3236 if (blk_needs_flush_plug(tsk))
3237 blk_schedule_flush_plug(tsk);
3238 }
3239
3240 asmlinkage __visible void __sched schedule(void)
3241 {
3242 struct task_struct *tsk = current;
3243
3244 sched_submit_work(tsk);
3245 do {
3246 preempt_disable();
3247 __schedule(false);
3248 sched_preempt_enable_no_resched();
3249 } while (need_resched());
3250 }
3251 EXPORT_SYMBOL(schedule);
3252
3253 #ifdef CONFIG_CONTEXT_TRACKING
3254 asmlinkage __visible void __sched schedule_user(void)
3255 {
3256 /*
3257 * If we come here after a random call to set_need_resched(),
3258 * or we have been woken up remotely but the IPI has not yet arrived,
3259 * we haven't yet exited the RCU idle mode. Do it here manually until
3260 * we find a better solution.
3261 *
3262 * NB: There are buggy callers of this function. Ideally we
3263 * should warn if prev_state != CONTEXT_USER, but that will trigger
3264 * too frequently to make sense yet.
3265 */
3266 enum ctx_state prev_state = exception_enter();
3267 schedule();
3268 exception_exit(prev_state);
3269 }
3270 #endif
3271
3272 /**
3273 * schedule_preempt_disabled - called with preemption disabled
3274 *
3275 * Returns with preemption disabled. Note: preempt_count must be 1
3276 */
3277 void __sched schedule_preempt_disabled(void)
3278 {
3279 sched_preempt_enable_no_resched();
3280 schedule();
3281 preempt_disable();
3282 }
3283
3284 static void __sched notrace preempt_schedule_common(void)
3285 {
3286 do {
3287 preempt_disable_notrace();
3288 __schedule(true);
3289 preempt_enable_no_resched_notrace();
3290
3291 /*
3292 * Check again in case we missed a preemption opportunity
3293 * between schedule and now.
3294 */
3295 } while (need_resched());
3296 }
3297
3298 #ifdef CONFIG_PREEMPT
3299 /*
3300 * this is the entry point to schedule() from in-kernel preemption
3301 * off of preempt_enable. Kernel preemptions off return from interrupt
3302 * occur there and call schedule directly.
3303 */
3304 asmlinkage __visible void __sched notrace preempt_schedule(void)
3305 {
3306 /*
3307 * If there is a non-zero preempt_count or interrupts are disabled,
3308 * we do not want to preempt the current task. Just return..
3309 */
3310 if (likely(!preemptible()))
3311 return;
3312
3313 preempt_schedule_common();
3314 }
3315 NOKPROBE_SYMBOL(preempt_schedule);
3316 EXPORT_SYMBOL(preempt_schedule);
3317
3318 /**
3319 * preempt_schedule_notrace - preempt_schedule called by tracing
3320 *
3321 * The tracing infrastructure uses preempt_enable_notrace to prevent
3322 * recursion and tracing preempt enabling caused by the tracing
3323 * infrastructure itself. But as tracing can happen in areas coming
3324 * from userspace or just about to enter userspace, a preempt enable
3325 * can occur before user_exit() is called. This will cause the scheduler
3326 * to be called when the system is still in usermode.
3327 *
3328 * To prevent this, the preempt_enable_notrace will use this function
3329 * instead of preempt_schedule() to exit user context if needed before
3330 * calling the scheduler.
3331 */
3332 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3333 {
3334 enum ctx_state prev_ctx;
3335
3336 if (likely(!preemptible()))
3337 return;
3338
3339 do {
3340 preempt_disable_notrace();
3341 /*
3342 * Needs preempt disabled in case user_exit() is traced
3343 * and the tracer calls preempt_enable_notrace() causing
3344 * an infinite recursion.
3345 */
3346 prev_ctx = exception_enter();
3347 __schedule(true);
3348 exception_exit(prev_ctx);
3349
3350 preempt_enable_no_resched_notrace();
3351 } while (need_resched());
3352 }
3353 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3354
3355 #endif /* CONFIG_PREEMPT */
3356
3357 /*
3358 * this is the entry point to schedule() from kernel preemption
3359 * off of irq context.
3360 * Note, that this is called and return with irqs disabled. This will
3361 * protect us against recursive calling from irq.
3362 */
3363 asmlinkage __visible void __sched preempt_schedule_irq(void)
3364 {
3365 enum ctx_state prev_state;
3366
3367 /* Catch callers which need to be fixed */
3368 BUG_ON(preempt_count() || !irqs_disabled());
3369
3370 prev_state = exception_enter();
3371
3372 do {
3373 preempt_disable();
3374 local_irq_enable();
3375 __schedule(true);
3376 local_irq_disable();
3377 sched_preempt_enable_no_resched();
3378 } while (need_resched());
3379
3380 exception_exit(prev_state);
3381 }
3382
3383 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3384 void *key)
3385 {
3386 return try_to_wake_up(curr->private, mode, wake_flags);
3387 }
3388 EXPORT_SYMBOL(default_wake_function);
3389
3390 #ifdef CONFIG_RT_MUTEXES
3391
3392 /*
3393 * rt_mutex_setprio - set the current priority of a task
3394 * @p: task
3395 * @prio: prio value (kernel-internal form)
3396 *
3397 * This function changes the 'effective' priority of a task. It does
3398 * not touch ->normal_prio like __setscheduler().
3399 *
3400 * Used by the rt_mutex code to implement priority inheritance
3401 * logic. Call site only calls if the priority of the task changed.
3402 */
3403 void rt_mutex_setprio(struct task_struct *p, int prio)
3404 {
3405 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3406 struct rq *rq;
3407 const struct sched_class *prev_class;
3408
3409 BUG_ON(prio > MAX_PRIO);
3410
3411 rq = __task_rq_lock(p);
3412
3413 /*
3414 * Idle task boosting is a nono in general. There is one
3415 * exception, when PREEMPT_RT and NOHZ is active:
3416 *
3417 * The idle task calls get_next_timer_interrupt() and holds
3418 * the timer wheel base->lock on the CPU and another CPU wants
3419 * to access the timer (probably to cancel it). We can safely
3420 * ignore the boosting request, as the idle CPU runs this code
3421 * with interrupts disabled and will complete the lock
3422 * protected section without being interrupted. So there is no
3423 * real need to boost.
3424 */
3425 if (unlikely(p == rq->idle)) {
3426 WARN_ON(p != rq->curr);
3427 WARN_ON(p->pi_blocked_on);
3428 goto out_unlock;
3429 }
3430
3431 trace_sched_pi_setprio(p, prio);
3432 oldprio = p->prio;
3433
3434 if (oldprio == prio)
3435 queue_flag &= ~DEQUEUE_MOVE;
3436
3437 prev_class = p->sched_class;
3438 queued = task_on_rq_queued(p);
3439 running = task_current(rq, p);
3440 if (queued)
3441 dequeue_task(rq, p, queue_flag);
3442 if (running)
3443 put_prev_task(rq, p);
3444
3445 /*
3446 * Boosting condition are:
3447 * 1. -rt task is running and holds mutex A
3448 * --> -dl task blocks on mutex A
3449 *
3450 * 2. -dl task is running and holds mutex A
3451 * --> -dl task blocks on mutex A and could preempt the
3452 * running task
3453 */
3454 if (dl_prio(prio)) {
3455 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3456 if (!dl_prio(p->normal_prio) ||
3457 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3458 p->dl.dl_boosted = 1;
3459 queue_flag |= ENQUEUE_REPLENISH;
3460 } else
3461 p->dl.dl_boosted = 0;
3462 p->sched_class = &dl_sched_class;
3463 } else if (rt_prio(prio)) {
3464 if (dl_prio(oldprio))
3465 p->dl.dl_boosted = 0;
3466 if (oldprio < prio)
3467 queue_flag |= ENQUEUE_HEAD;
3468 p->sched_class = &rt_sched_class;
3469 } else {
3470 if (dl_prio(oldprio))
3471 p->dl.dl_boosted = 0;
3472 if (rt_prio(oldprio))
3473 p->rt.timeout = 0;
3474 p->sched_class = &fair_sched_class;
3475 }
3476
3477 p->prio = prio;
3478
3479 if (running)
3480 p->sched_class->set_curr_task(rq);
3481 if (queued)
3482 enqueue_task(rq, p, queue_flag);
3483
3484 check_class_changed(rq, p, prev_class, oldprio);
3485 out_unlock:
3486 preempt_disable(); /* avoid rq from going away on us */
3487 __task_rq_unlock(rq);
3488
3489 balance_callback(rq);
3490 preempt_enable();
3491 }
3492 #endif
3493
3494 void set_user_nice(struct task_struct *p, long nice)
3495 {
3496 int old_prio, delta, queued;
3497 unsigned long flags;
3498 struct rq *rq;
3499
3500 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3501 return;
3502 /*
3503 * We have to be careful, if called from sys_setpriority(),
3504 * the task might be in the middle of scheduling on another CPU.
3505 */
3506 rq = task_rq_lock(p, &flags);
3507 /*
3508 * The RT priorities are set via sched_setscheduler(), but we still
3509 * allow the 'normal' nice value to be set - but as expected
3510 * it wont have any effect on scheduling until the task is
3511 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3512 */
3513 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3514 p->static_prio = NICE_TO_PRIO(nice);
3515 goto out_unlock;
3516 }
3517 queued = task_on_rq_queued(p);
3518 if (queued)
3519 dequeue_task(rq, p, DEQUEUE_SAVE);
3520
3521 p->static_prio = NICE_TO_PRIO(nice);
3522 set_load_weight(p);
3523 old_prio = p->prio;
3524 p->prio = effective_prio(p);
3525 delta = p->prio - old_prio;
3526
3527 if (queued) {
3528 enqueue_task(rq, p, ENQUEUE_RESTORE);
3529 /*
3530 * If the task increased its priority or is running and
3531 * lowered its priority, then reschedule its CPU:
3532 */
3533 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3534 resched_curr(rq);
3535 }
3536 out_unlock:
3537 task_rq_unlock(rq, p, &flags);
3538 }
3539 EXPORT_SYMBOL(set_user_nice);
3540
3541 /*
3542 * can_nice - check if a task can reduce its nice value
3543 * @p: task
3544 * @nice: nice value
3545 */
3546 int can_nice(const struct task_struct *p, const int nice)
3547 {
3548 /* convert nice value [19,-20] to rlimit style value [1,40] */
3549 int nice_rlim = nice_to_rlimit(nice);
3550
3551 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3552 capable(CAP_SYS_NICE));
3553 }
3554
3555 #ifdef __ARCH_WANT_SYS_NICE
3556
3557 /*
3558 * sys_nice - change the priority of the current process.
3559 * @increment: priority increment
3560 *
3561 * sys_setpriority is a more generic, but much slower function that
3562 * does similar things.
3563 */
3564 SYSCALL_DEFINE1(nice, int, increment)
3565 {
3566 long nice, retval;
3567
3568 /*
3569 * Setpriority might change our priority at the same moment.
3570 * We don't have to worry. Conceptually one call occurs first
3571 * and we have a single winner.
3572 */
3573 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3574 nice = task_nice(current) + increment;
3575
3576 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3577 if (increment < 0 && !can_nice(current, nice))
3578 return -EPERM;
3579
3580 retval = security_task_setnice(current, nice);
3581 if (retval)
3582 return retval;
3583
3584 set_user_nice(current, nice);
3585 return 0;
3586 }
3587
3588 #endif
3589
3590 /**
3591 * task_prio - return the priority value of a given task.
3592 * @p: the task in question.
3593 *
3594 * Return: The priority value as seen by users in /proc.
3595 * RT tasks are offset by -200. Normal tasks are centered
3596 * around 0, value goes from -16 to +15.
3597 */
3598 int task_prio(const struct task_struct *p)
3599 {
3600 return p->prio - MAX_RT_PRIO;
3601 }
3602
3603 /**
3604 * idle_cpu - is a given cpu idle currently?
3605 * @cpu: the processor in question.
3606 *
3607 * Return: 1 if the CPU is currently idle. 0 otherwise.
3608 */
3609 int idle_cpu(int cpu)
3610 {
3611 struct rq *rq = cpu_rq(cpu);
3612
3613 if (rq->curr != rq->idle)
3614 return 0;
3615
3616 if (rq->nr_running)
3617 return 0;
3618
3619 #ifdef CONFIG_SMP
3620 if (!llist_empty(&rq->wake_list))
3621 return 0;
3622 #endif
3623
3624 return 1;
3625 }
3626
3627 /**
3628 * idle_task - return the idle task for a given cpu.
3629 * @cpu: the processor in question.
3630 *
3631 * Return: The idle task for the cpu @cpu.
3632 */
3633 struct task_struct *idle_task(int cpu)
3634 {
3635 return cpu_rq(cpu)->idle;
3636 }
3637
3638 /**
3639 * find_process_by_pid - find a process with a matching PID value.
3640 * @pid: the pid in question.
3641 *
3642 * The task of @pid, if found. %NULL otherwise.
3643 */
3644 static struct task_struct *find_process_by_pid(pid_t pid)
3645 {
3646 return pid ? find_task_by_vpid(pid) : current;
3647 }
3648
3649 /*
3650 * This function initializes the sched_dl_entity of a newly becoming
3651 * SCHED_DEADLINE task.
3652 *
3653 * Only the static values are considered here, the actual runtime and the
3654 * absolute deadline will be properly calculated when the task is enqueued
3655 * for the first time with its new policy.
3656 */
3657 static void
3658 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3659 {
3660 struct sched_dl_entity *dl_se = &p->dl;
3661
3662 dl_se->dl_runtime = attr->sched_runtime;
3663 dl_se->dl_deadline = attr->sched_deadline;
3664 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3665 dl_se->flags = attr->sched_flags;
3666 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3667
3668 /*
3669 * Changing the parameters of a task is 'tricky' and we're not doing
3670 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3671 *
3672 * What we SHOULD do is delay the bandwidth release until the 0-lag
3673 * point. This would include retaining the task_struct until that time
3674 * and change dl_overflow() to not immediately decrement the current
3675 * amount.
3676 *
3677 * Instead we retain the current runtime/deadline and let the new
3678 * parameters take effect after the current reservation period lapses.
3679 * This is safe (albeit pessimistic) because the 0-lag point is always
3680 * before the current scheduling deadline.
3681 *
3682 * We can still have temporary overloads because we do not delay the
3683 * change in bandwidth until that time; so admission control is
3684 * not on the safe side. It does however guarantee tasks will never
3685 * consume more than promised.
3686 */
3687 }
3688
3689 /*
3690 * sched_setparam() passes in -1 for its policy, to let the functions
3691 * it calls know not to change it.
3692 */
3693 #define SETPARAM_POLICY -1
3694
3695 static void __setscheduler_params(struct task_struct *p,
3696 const struct sched_attr *attr)
3697 {
3698 int policy = attr->sched_policy;
3699
3700 if (policy == SETPARAM_POLICY)
3701 policy = p->policy;
3702
3703 p->policy = policy;
3704
3705 if (dl_policy(policy))
3706 __setparam_dl(p, attr);
3707 else if (fair_policy(policy))
3708 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3709
3710 /*
3711 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3712 * !rt_policy. Always setting this ensures that things like
3713 * getparam()/getattr() don't report silly values for !rt tasks.
3714 */
3715 p->rt_priority = attr->sched_priority;
3716 p->normal_prio = normal_prio(p);
3717 set_load_weight(p);
3718 }
3719
3720 /* Actually do priority change: must hold pi & rq lock. */
3721 static void __setscheduler(struct rq *rq, struct task_struct *p,
3722 const struct sched_attr *attr, bool keep_boost)
3723 {
3724 __setscheduler_params(p, attr);
3725
3726 /*
3727 * Keep a potential priority boosting if called from
3728 * sched_setscheduler().
3729 */
3730 if (keep_boost)
3731 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3732 else
3733 p->prio = normal_prio(p);
3734
3735 if (dl_prio(p->prio))
3736 p->sched_class = &dl_sched_class;
3737 else if (rt_prio(p->prio))
3738 p->sched_class = &rt_sched_class;
3739 else
3740 p->sched_class = &fair_sched_class;
3741 }
3742
3743 static void
3744 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3745 {
3746 struct sched_dl_entity *dl_se = &p->dl;
3747
3748 attr->sched_priority = p->rt_priority;
3749 attr->sched_runtime = dl_se->dl_runtime;
3750 attr->sched_deadline = dl_se->dl_deadline;
3751 attr->sched_period = dl_se->dl_period;
3752 attr->sched_flags = dl_se->flags;
3753 }
3754
3755 /*
3756 * This function validates the new parameters of a -deadline task.
3757 * We ask for the deadline not being zero, and greater or equal
3758 * than the runtime, as well as the period of being zero or
3759 * greater than deadline. Furthermore, we have to be sure that
3760 * user parameters are above the internal resolution of 1us (we
3761 * check sched_runtime only since it is always the smaller one) and
3762 * below 2^63 ns (we have to check both sched_deadline and
3763 * sched_period, as the latter can be zero).
3764 */
3765 static bool
3766 __checkparam_dl(const struct sched_attr *attr)
3767 {
3768 /* deadline != 0 */
3769 if (attr->sched_deadline == 0)
3770 return false;
3771
3772 /*
3773 * Since we truncate DL_SCALE bits, make sure we're at least
3774 * that big.
3775 */
3776 if (attr->sched_runtime < (1ULL << DL_SCALE))
3777 return false;
3778
3779 /*
3780 * Since we use the MSB for wrap-around and sign issues, make
3781 * sure it's not set (mind that period can be equal to zero).
3782 */
3783 if (attr->sched_deadline & (1ULL << 63) ||
3784 attr->sched_period & (1ULL << 63))
3785 return false;
3786
3787 /* runtime <= deadline <= period (if period != 0) */
3788 if ((attr->sched_period != 0 &&
3789 attr->sched_period < attr->sched_deadline) ||
3790 attr->sched_deadline < attr->sched_runtime)
3791 return false;
3792
3793 return true;
3794 }
3795
3796 /*
3797 * check the target process has a UID that matches the current process's
3798 */
3799 static bool check_same_owner(struct task_struct *p)
3800 {
3801 const struct cred *cred = current_cred(), *pcred;
3802 bool match;
3803
3804 rcu_read_lock();
3805 pcred = __task_cred(p);
3806 match = (uid_eq(cred->euid, pcred->euid) ||
3807 uid_eq(cred->euid, pcred->uid));
3808 rcu_read_unlock();
3809 return match;
3810 }
3811
3812 static bool dl_param_changed(struct task_struct *p,
3813 const struct sched_attr *attr)
3814 {
3815 struct sched_dl_entity *dl_se = &p->dl;
3816
3817 if (dl_se->dl_runtime != attr->sched_runtime ||
3818 dl_se->dl_deadline != attr->sched_deadline ||
3819 dl_se->dl_period != attr->sched_period ||
3820 dl_se->flags != attr->sched_flags)
3821 return true;
3822
3823 return false;
3824 }
3825
3826 static int __sched_setscheduler(struct task_struct *p,
3827 const struct sched_attr *attr,
3828 bool user, bool pi)
3829 {
3830 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3831 MAX_RT_PRIO - 1 - attr->sched_priority;
3832 int retval, oldprio, oldpolicy = -1, queued, running;
3833 int new_effective_prio, policy = attr->sched_policy;
3834 unsigned long flags;
3835 const struct sched_class *prev_class;
3836 struct rq *rq;
3837 int reset_on_fork;
3838 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3839
3840 /* may grab non-irq protected spin_locks */
3841 BUG_ON(in_interrupt());
3842 recheck:
3843 /* double check policy once rq lock held */
3844 if (policy < 0) {
3845 reset_on_fork = p->sched_reset_on_fork;
3846 policy = oldpolicy = p->policy;
3847 } else {
3848 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3849
3850 if (!valid_policy(policy))
3851 return -EINVAL;
3852 }
3853
3854 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3855 return -EINVAL;
3856
3857 /*
3858 * Valid priorities for SCHED_FIFO and SCHED_RR are
3859 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3860 * SCHED_BATCH and SCHED_IDLE is 0.
3861 */
3862 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3863 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3864 return -EINVAL;
3865 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3866 (rt_policy(policy) != (attr->sched_priority != 0)))
3867 return -EINVAL;
3868
3869 /*
3870 * Allow unprivileged RT tasks to decrease priority:
3871 */
3872 if (user && !capable(CAP_SYS_NICE)) {
3873 if (fair_policy(policy)) {
3874 if (attr->sched_nice < task_nice(p) &&
3875 !can_nice(p, attr->sched_nice))
3876 return -EPERM;
3877 }
3878
3879 if (rt_policy(policy)) {
3880 unsigned long rlim_rtprio =
3881 task_rlimit(p, RLIMIT_RTPRIO);
3882
3883 /* can't set/change the rt policy */
3884 if (policy != p->policy && !rlim_rtprio)
3885 return -EPERM;
3886
3887 /* can't increase priority */
3888 if (attr->sched_priority > p->rt_priority &&
3889 attr->sched_priority > rlim_rtprio)
3890 return -EPERM;
3891 }
3892
3893 /*
3894 * Can't set/change SCHED_DEADLINE policy at all for now
3895 * (safest behavior); in the future we would like to allow
3896 * unprivileged DL tasks to increase their relative deadline
3897 * or reduce their runtime (both ways reducing utilization)
3898 */
3899 if (dl_policy(policy))
3900 return -EPERM;
3901
3902 /*
3903 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3904 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3905 */
3906 if (idle_policy(p->policy) && !idle_policy(policy)) {
3907 if (!can_nice(p, task_nice(p)))
3908 return -EPERM;
3909 }
3910
3911 /* can't change other user's priorities */
3912 if (!check_same_owner(p))
3913 return -EPERM;
3914
3915 /* Normal users shall not reset the sched_reset_on_fork flag */
3916 if (p->sched_reset_on_fork && !reset_on_fork)
3917 return -EPERM;
3918 }
3919
3920 if (user) {
3921 retval = security_task_setscheduler(p);
3922 if (retval)
3923 return retval;
3924 }
3925
3926 /*
3927 * make sure no PI-waiters arrive (or leave) while we are
3928 * changing the priority of the task:
3929 *
3930 * To be able to change p->policy safely, the appropriate
3931 * runqueue lock must be held.
3932 */
3933 rq = task_rq_lock(p, &flags);
3934
3935 /*
3936 * Changing the policy of the stop threads its a very bad idea
3937 */
3938 if (p == rq->stop) {
3939 task_rq_unlock(rq, p, &flags);
3940 return -EINVAL;
3941 }
3942
3943 /*
3944 * If not changing anything there's no need to proceed further,
3945 * but store a possible modification of reset_on_fork.
3946 */
3947 if (unlikely(policy == p->policy)) {
3948 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3949 goto change;
3950 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3951 goto change;
3952 if (dl_policy(policy) && dl_param_changed(p, attr))
3953 goto change;
3954
3955 p->sched_reset_on_fork = reset_on_fork;
3956 task_rq_unlock(rq, p, &flags);
3957 return 0;
3958 }
3959 change:
3960
3961 if (user) {
3962 #ifdef CONFIG_RT_GROUP_SCHED
3963 /*
3964 * Do not allow realtime tasks into groups that have no runtime
3965 * assigned.
3966 */
3967 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3968 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3969 !task_group_is_autogroup(task_group(p))) {
3970 task_rq_unlock(rq, p, &flags);
3971 return -EPERM;
3972 }
3973 #endif
3974 #ifdef CONFIG_SMP
3975 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3976 cpumask_t *span = rq->rd->span;
3977
3978 /*
3979 * Don't allow tasks with an affinity mask smaller than
3980 * the entire root_domain to become SCHED_DEADLINE. We
3981 * will also fail if there's no bandwidth available.
3982 */
3983 if (!cpumask_subset(span, &p->cpus_allowed) ||
3984 rq->rd->dl_bw.bw == 0) {
3985 task_rq_unlock(rq, p, &flags);
3986 return -EPERM;
3987 }
3988 }
3989 #endif
3990 }
3991
3992 /* recheck policy now with rq lock held */
3993 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3994 policy = oldpolicy = -1;
3995 task_rq_unlock(rq, p, &flags);
3996 goto recheck;
3997 }
3998
3999 /*
4000 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4001 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4002 * is available.
4003 */
4004 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4005 task_rq_unlock(rq, p, &flags);
4006 return -EBUSY;
4007 }
4008
4009 p->sched_reset_on_fork = reset_on_fork;
4010 oldprio = p->prio;
4011
4012 if (pi) {
4013 /*
4014 * Take priority boosted tasks into account. If the new
4015 * effective priority is unchanged, we just store the new
4016 * normal parameters and do not touch the scheduler class and
4017 * the runqueue. This will be done when the task deboost
4018 * itself.
4019 */
4020 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4021 if (new_effective_prio == oldprio)
4022 queue_flags &= ~DEQUEUE_MOVE;
4023 }
4024
4025 queued = task_on_rq_queued(p);
4026 running = task_current(rq, p);
4027 if (queued)
4028 dequeue_task(rq, p, queue_flags);
4029 if (running)
4030 put_prev_task(rq, p);
4031
4032 prev_class = p->sched_class;
4033 __setscheduler(rq, p, attr, pi);
4034
4035 if (running)
4036 p->sched_class->set_curr_task(rq);
4037 if (queued) {
4038 /*
4039 * We enqueue to tail when the priority of a task is
4040 * increased (user space view).
4041 */
4042 if (oldprio < p->prio)
4043 queue_flags |= ENQUEUE_HEAD;
4044
4045 enqueue_task(rq, p, queue_flags);
4046 }
4047
4048 check_class_changed(rq, p, prev_class, oldprio);
4049 preempt_disable(); /* avoid rq from going away on us */
4050 task_rq_unlock(rq, p, &flags);
4051
4052 if (pi)
4053 rt_mutex_adjust_pi(p);
4054
4055 /*
4056 * Run balance callbacks after we've adjusted the PI chain.
4057 */
4058 balance_callback(rq);
4059 preempt_enable();
4060
4061 return 0;
4062 }
4063
4064 static int _sched_setscheduler(struct task_struct *p, int policy,
4065 const struct sched_param *param, bool check)
4066 {
4067 struct sched_attr attr = {
4068 .sched_policy = policy,
4069 .sched_priority = param->sched_priority,
4070 .sched_nice = PRIO_TO_NICE(p->static_prio),
4071 };
4072
4073 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4074 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4075 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4076 policy &= ~SCHED_RESET_ON_FORK;
4077 attr.sched_policy = policy;
4078 }
4079
4080 return __sched_setscheduler(p, &attr, check, true);
4081 }
4082 /**
4083 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4084 * @p: the task in question.
4085 * @policy: new policy.
4086 * @param: structure containing the new RT priority.
4087 *
4088 * Return: 0 on success. An error code otherwise.
4089 *
4090 * NOTE that the task may be already dead.
4091 */
4092 int sched_setscheduler(struct task_struct *p, int policy,
4093 const struct sched_param *param)
4094 {
4095 return _sched_setscheduler(p, policy, param, true);
4096 }
4097 EXPORT_SYMBOL_GPL(sched_setscheduler);
4098
4099 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4100 {
4101 return __sched_setscheduler(p, attr, true, true);
4102 }
4103 EXPORT_SYMBOL_GPL(sched_setattr);
4104
4105 /**
4106 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4107 * @p: the task in question.
4108 * @policy: new policy.
4109 * @param: structure containing the new RT priority.
4110 *
4111 * Just like sched_setscheduler, only don't bother checking if the
4112 * current context has permission. For example, this is needed in
4113 * stop_machine(): we create temporary high priority worker threads,
4114 * but our caller might not have that capability.
4115 *
4116 * Return: 0 on success. An error code otherwise.
4117 */
4118 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4119 const struct sched_param *param)
4120 {
4121 return _sched_setscheduler(p, policy, param, false);
4122 }
4123 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4124
4125 static int
4126 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4127 {
4128 struct sched_param lparam;
4129 struct task_struct *p;
4130 int retval;
4131
4132 if (!param || pid < 0)
4133 return -EINVAL;
4134 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4135 return -EFAULT;
4136
4137 rcu_read_lock();
4138 retval = -ESRCH;
4139 p = find_process_by_pid(pid);
4140 if (p != NULL)
4141 retval = sched_setscheduler(p, policy, &lparam);
4142 rcu_read_unlock();
4143
4144 return retval;
4145 }
4146
4147 /*
4148 * Mimics kernel/events/core.c perf_copy_attr().
4149 */
4150 static int sched_copy_attr(struct sched_attr __user *uattr,
4151 struct sched_attr *attr)
4152 {
4153 u32 size;
4154 int ret;
4155
4156 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4157 return -EFAULT;
4158
4159 /*
4160 * zero the full structure, so that a short copy will be nice.
4161 */
4162 memset(attr, 0, sizeof(*attr));
4163
4164 ret = get_user(size, &uattr->size);
4165 if (ret)
4166 return ret;
4167
4168 if (size > PAGE_SIZE) /* silly large */
4169 goto err_size;
4170
4171 if (!size) /* abi compat */
4172 size = SCHED_ATTR_SIZE_VER0;
4173
4174 if (size < SCHED_ATTR_SIZE_VER0)
4175 goto err_size;
4176
4177 /*
4178 * If we're handed a bigger struct than we know of,
4179 * ensure all the unknown bits are 0 - i.e. new
4180 * user-space does not rely on any kernel feature
4181 * extensions we dont know about yet.
4182 */
4183 if (size > sizeof(*attr)) {
4184 unsigned char __user *addr;
4185 unsigned char __user *end;
4186 unsigned char val;
4187
4188 addr = (void __user *)uattr + sizeof(*attr);
4189 end = (void __user *)uattr + size;
4190
4191 for (; addr < end; addr++) {
4192 ret = get_user(val, addr);
4193 if (ret)
4194 return ret;
4195 if (val)
4196 goto err_size;
4197 }
4198 size = sizeof(*attr);
4199 }
4200
4201 ret = copy_from_user(attr, uattr, size);
4202 if (ret)
4203 return -EFAULT;
4204
4205 /*
4206 * XXX: do we want to be lenient like existing syscalls; or do we want
4207 * to be strict and return an error on out-of-bounds values?
4208 */
4209 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4210
4211 return 0;
4212
4213 err_size:
4214 put_user(sizeof(*attr), &uattr->size);
4215 return -E2BIG;
4216 }
4217
4218 /**
4219 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4220 * @pid: the pid in question.
4221 * @policy: new policy.
4222 * @param: structure containing the new RT priority.
4223 *
4224 * Return: 0 on success. An error code otherwise.
4225 */
4226 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4227 struct sched_param __user *, param)
4228 {
4229 /* negative values for policy are not valid */
4230 if (policy < 0)
4231 return -EINVAL;
4232
4233 return do_sched_setscheduler(pid, policy, param);
4234 }
4235
4236 /**
4237 * sys_sched_setparam - set/change the RT priority of a thread
4238 * @pid: the pid in question.
4239 * @param: structure containing the new RT priority.
4240 *
4241 * Return: 0 on success. An error code otherwise.
4242 */
4243 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4244 {
4245 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4246 }
4247
4248 /**
4249 * sys_sched_setattr - same as above, but with extended sched_attr
4250 * @pid: the pid in question.
4251 * @uattr: structure containing the extended parameters.
4252 * @flags: for future extension.
4253 */
4254 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4255 unsigned int, flags)
4256 {
4257 struct sched_attr attr;
4258 struct task_struct *p;
4259 int retval;
4260
4261 if (!uattr || pid < 0 || flags)
4262 return -EINVAL;
4263
4264 retval = sched_copy_attr(uattr, &attr);
4265 if (retval)
4266 return retval;
4267
4268 if ((int)attr.sched_policy < 0)
4269 return -EINVAL;
4270
4271 rcu_read_lock();
4272 retval = -ESRCH;
4273 p = find_process_by_pid(pid);
4274 if (p != NULL)
4275 retval = sched_setattr(p, &attr);
4276 rcu_read_unlock();
4277
4278 return retval;
4279 }
4280
4281 /**
4282 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4283 * @pid: the pid in question.
4284 *
4285 * Return: On success, the policy of the thread. Otherwise, a negative error
4286 * code.
4287 */
4288 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4289 {
4290 struct task_struct *p;
4291 int retval;
4292
4293 if (pid < 0)
4294 return -EINVAL;
4295
4296 retval = -ESRCH;
4297 rcu_read_lock();
4298 p = find_process_by_pid(pid);
4299 if (p) {
4300 retval = security_task_getscheduler(p);
4301 if (!retval)
4302 retval = p->policy
4303 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4304 }
4305 rcu_read_unlock();
4306 return retval;
4307 }
4308
4309 /**
4310 * sys_sched_getparam - get the RT priority of a thread
4311 * @pid: the pid in question.
4312 * @param: structure containing the RT priority.
4313 *
4314 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4315 * code.
4316 */
4317 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4318 {
4319 struct sched_param lp = { .sched_priority = 0 };
4320 struct task_struct *p;
4321 int retval;
4322
4323 if (!param || pid < 0)
4324 return -EINVAL;
4325
4326 rcu_read_lock();
4327 p = find_process_by_pid(pid);
4328 retval = -ESRCH;
4329 if (!p)
4330 goto out_unlock;
4331
4332 retval = security_task_getscheduler(p);
4333 if (retval)
4334 goto out_unlock;
4335
4336 if (task_has_rt_policy(p))
4337 lp.sched_priority = p->rt_priority;
4338 rcu_read_unlock();
4339
4340 /*
4341 * This one might sleep, we cannot do it with a spinlock held ...
4342 */
4343 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4344
4345 return retval;
4346
4347 out_unlock:
4348 rcu_read_unlock();
4349 return retval;
4350 }
4351
4352 static int sched_read_attr(struct sched_attr __user *uattr,
4353 struct sched_attr *attr,
4354 unsigned int usize)
4355 {
4356 int ret;
4357
4358 if (!access_ok(VERIFY_WRITE, uattr, usize))
4359 return -EFAULT;
4360
4361 /*
4362 * If we're handed a smaller struct than we know of,
4363 * ensure all the unknown bits are 0 - i.e. old
4364 * user-space does not get uncomplete information.
4365 */
4366 if (usize < sizeof(*attr)) {
4367 unsigned char *addr;
4368 unsigned char *end;
4369
4370 addr = (void *)attr + usize;
4371 end = (void *)attr + sizeof(*attr);
4372
4373 for (; addr < end; addr++) {
4374 if (*addr)
4375 return -EFBIG;
4376 }
4377
4378 attr->size = usize;
4379 }
4380
4381 ret = copy_to_user(uattr, attr, attr->size);
4382 if (ret)
4383 return -EFAULT;
4384
4385 return 0;
4386 }
4387
4388 /**
4389 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4390 * @pid: the pid in question.
4391 * @uattr: structure containing the extended parameters.
4392 * @size: sizeof(attr) for fwd/bwd comp.
4393 * @flags: for future extension.
4394 */
4395 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4396 unsigned int, size, unsigned int, flags)
4397 {
4398 struct sched_attr attr = {
4399 .size = sizeof(struct sched_attr),
4400 };
4401 struct task_struct *p;
4402 int retval;
4403
4404 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4405 size < SCHED_ATTR_SIZE_VER0 || flags)
4406 return -EINVAL;
4407
4408 rcu_read_lock();
4409 p = find_process_by_pid(pid);
4410 retval = -ESRCH;
4411 if (!p)
4412 goto out_unlock;
4413
4414 retval = security_task_getscheduler(p);
4415 if (retval)
4416 goto out_unlock;
4417
4418 attr.sched_policy = p->policy;
4419 if (p->sched_reset_on_fork)
4420 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4421 if (task_has_dl_policy(p))
4422 __getparam_dl(p, &attr);
4423 else if (task_has_rt_policy(p))
4424 attr.sched_priority = p->rt_priority;
4425 else
4426 attr.sched_nice = task_nice(p);
4427
4428 rcu_read_unlock();
4429
4430 retval = sched_read_attr(uattr, &attr, size);
4431 return retval;
4432
4433 out_unlock:
4434 rcu_read_unlock();
4435 return retval;
4436 }
4437
4438 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4439 {
4440 cpumask_var_t cpus_allowed, new_mask;
4441 struct task_struct *p;
4442 int retval;
4443
4444 rcu_read_lock();
4445
4446 p = find_process_by_pid(pid);
4447 if (!p) {
4448 rcu_read_unlock();
4449 return -ESRCH;
4450 }
4451
4452 /* Prevent p going away */
4453 get_task_struct(p);
4454 rcu_read_unlock();
4455
4456 if (p->flags & PF_NO_SETAFFINITY) {
4457 retval = -EINVAL;
4458 goto out_put_task;
4459 }
4460 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4461 retval = -ENOMEM;
4462 goto out_put_task;
4463 }
4464 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4465 retval = -ENOMEM;
4466 goto out_free_cpus_allowed;
4467 }
4468 retval = -EPERM;
4469 if (!check_same_owner(p)) {
4470 rcu_read_lock();
4471 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4472 rcu_read_unlock();
4473 goto out_free_new_mask;
4474 }
4475 rcu_read_unlock();
4476 }
4477
4478 retval = security_task_setscheduler(p);
4479 if (retval)
4480 goto out_free_new_mask;
4481
4482
4483 cpuset_cpus_allowed(p, cpus_allowed);
4484 cpumask_and(new_mask, in_mask, cpus_allowed);
4485
4486 /*
4487 * Since bandwidth control happens on root_domain basis,
4488 * if admission test is enabled, we only admit -deadline
4489 * tasks allowed to run on all the CPUs in the task's
4490 * root_domain.
4491 */
4492 #ifdef CONFIG_SMP
4493 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4494 rcu_read_lock();
4495 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4496 retval = -EBUSY;
4497 rcu_read_unlock();
4498 goto out_free_new_mask;
4499 }
4500 rcu_read_unlock();
4501 }
4502 #endif
4503 again:
4504 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4505
4506 if (!retval) {
4507 cpuset_cpus_allowed(p, cpus_allowed);
4508 if (!cpumask_subset(new_mask, cpus_allowed)) {
4509 /*
4510 * We must have raced with a concurrent cpuset
4511 * update. Just reset the cpus_allowed to the
4512 * cpuset's cpus_allowed
4513 */
4514 cpumask_copy(new_mask, cpus_allowed);
4515 goto again;
4516 }
4517 }
4518 out_free_new_mask:
4519 free_cpumask_var(new_mask);
4520 out_free_cpus_allowed:
4521 free_cpumask_var(cpus_allowed);
4522 out_put_task:
4523 put_task_struct(p);
4524 return retval;
4525 }
4526
4527 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4528 struct cpumask *new_mask)
4529 {
4530 if (len < cpumask_size())
4531 cpumask_clear(new_mask);
4532 else if (len > cpumask_size())
4533 len = cpumask_size();
4534
4535 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4536 }
4537
4538 /**
4539 * sys_sched_setaffinity - set the cpu affinity of a process
4540 * @pid: pid of the process
4541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4542 * @user_mask_ptr: user-space pointer to the new cpu mask
4543 *
4544 * Return: 0 on success. An error code otherwise.
4545 */
4546 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4547 unsigned long __user *, user_mask_ptr)
4548 {
4549 cpumask_var_t new_mask;
4550 int retval;
4551
4552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4553 return -ENOMEM;
4554
4555 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4556 if (retval == 0)
4557 retval = sched_setaffinity(pid, new_mask);
4558 free_cpumask_var(new_mask);
4559 return retval;
4560 }
4561
4562 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4563 {
4564 struct task_struct *p;
4565 unsigned long flags;
4566 int retval;
4567
4568 rcu_read_lock();
4569
4570 retval = -ESRCH;
4571 p = find_process_by_pid(pid);
4572 if (!p)
4573 goto out_unlock;
4574
4575 retval = security_task_getscheduler(p);
4576 if (retval)
4577 goto out_unlock;
4578
4579 raw_spin_lock_irqsave(&p->pi_lock, flags);
4580 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4581 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4582
4583 out_unlock:
4584 rcu_read_unlock();
4585
4586 return retval;
4587 }
4588
4589 /**
4590 * sys_sched_getaffinity - get the cpu affinity of a process
4591 * @pid: pid of the process
4592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4593 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4594 *
4595 * Return: 0 on success. An error code otherwise.
4596 */
4597 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4598 unsigned long __user *, user_mask_ptr)
4599 {
4600 int ret;
4601 cpumask_var_t mask;
4602
4603 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4604 return -EINVAL;
4605 if (len & (sizeof(unsigned long)-1))
4606 return -EINVAL;
4607
4608 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4609 return -ENOMEM;
4610
4611 ret = sched_getaffinity(pid, mask);
4612 if (ret == 0) {
4613 size_t retlen = min_t(size_t, len, cpumask_size());
4614
4615 if (copy_to_user(user_mask_ptr, mask, retlen))
4616 ret = -EFAULT;
4617 else
4618 ret = retlen;
4619 }
4620 free_cpumask_var(mask);
4621
4622 return ret;
4623 }
4624
4625 /**
4626 * sys_sched_yield - yield the current processor to other threads.
4627 *
4628 * This function yields the current CPU to other tasks. If there are no
4629 * other threads running on this CPU then this function will return.
4630 *
4631 * Return: 0.
4632 */
4633 SYSCALL_DEFINE0(sched_yield)
4634 {
4635 struct rq *rq = this_rq_lock();
4636
4637 schedstat_inc(rq, yld_count);
4638 current->sched_class->yield_task(rq);
4639
4640 /*
4641 * Since we are going to call schedule() anyway, there's
4642 * no need to preempt or enable interrupts:
4643 */
4644 __release(rq->lock);
4645 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4646 do_raw_spin_unlock(&rq->lock);
4647 sched_preempt_enable_no_resched();
4648
4649 schedule();
4650
4651 return 0;
4652 }
4653
4654 int __sched _cond_resched(void)
4655 {
4656 if (should_resched(0)) {
4657 preempt_schedule_common();
4658 return 1;
4659 }
4660 return 0;
4661 }
4662 EXPORT_SYMBOL(_cond_resched);
4663
4664 /*
4665 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4666 * call schedule, and on return reacquire the lock.
4667 *
4668 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4669 * operations here to prevent schedule() from being called twice (once via
4670 * spin_unlock(), once by hand).
4671 */
4672 int __cond_resched_lock(spinlock_t *lock)
4673 {
4674 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4675 int ret = 0;
4676
4677 lockdep_assert_held(lock);
4678
4679 if (spin_needbreak(lock) || resched) {
4680 spin_unlock(lock);
4681 if (resched)
4682 preempt_schedule_common();
4683 else
4684 cpu_relax();
4685 ret = 1;
4686 spin_lock(lock);
4687 }
4688 return ret;
4689 }
4690 EXPORT_SYMBOL(__cond_resched_lock);
4691
4692 int __sched __cond_resched_softirq(void)
4693 {
4694 BUG_ON(!in_softirq());
4695
4696 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4697 local_bh_enable();
4698 preempt_schedule_common();
4699 local_bh_disable();
4700 return 1;
4701 }
4702 return 0;
4703 }
4704 EXPORT_SYMBOL(__cond_resched_softirq);
4705
4706 /**
4707 * yield - yield the current processor to other threads.
4708 *
4709 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4710 *
4711 * The scheduler is at all times free to pick the calling task as the most
4712 * eligible task to run, if removing the yield() call from your code breaks
4713 * it, its already broken.
4714 *
4715 * Typical broken usage is:
4716 *
4717 * while (!event)
4718 * yield();
4719 *
4720 * where one assumes that yield() will let 'the other' process run that will
4721 * make event true. If the current task is a SCHED_FIFO task that will never
4722 * happen. Never use yield() as a progress guarantee!!
4723 *
4724 * If you want to use yield() to wait for something, use wait_event().
4725 * If you want to use yield() to be 'nice' for others, use cond_resched().
4726 * If you still want to use yield(), do not!
4727 */
4728 void __sched yield(void)
4729 {
4730 set_current_state(TASK_RUNNING);
4731 sys_sched_yield();
4732 }
4733 EXPORT_SYMBOL(yield);
4734
4735 /**
4736 * yield_to - yield the current processor to another thread in
4737 * your thread group, or accelerate that thread toward the
4738 * processor it's on.
4739 * @p: target task
4740 * @preempt: whether task preemption is allowed or not
4741 *
4742 * It's the caller's job to ensure that the target task struct
4743 * can't go away on us before we can do any checks.
4744 *
4745 * Return:
4746 * true (>0) if we indeed boosted the target task.
4747 * false (0) if we failed to boost the target.
4748 * -ESRCH if there's no task to yield to.
4749 */
4750 int __sched yield_to(struct task_struct *p, bool preempt)
4751 {
4752 struct task_struct *curr = current;
4753 struct rq *rq, *p_rq;
4754 unsigned long flags;
4755 int yielded = 0;
4756
4757 local_irq_save(flags);
4758 rq = this_rq();
4759
4760 again:
4761 p_rq = task_rq(p);
4762 /*
4763 * If we're the only runnable task on the rq and target rq also
4764 * has only one task, there's absolutely no point in yielding.
4765 */
4766 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4767 yielded = -ESRCH;
4768 goto out_irq;
4769 }
4770
4771 double_rq_lock(rq, p_rq);
4772 if (task_rq(p) != p_rq) {
4773 double_rq_unlock(rq, p_rq);
4774 goto again;
4775 }
4776
4777 if (!curr->sched_class->yield_to_task)
4778 goto out_unlock;
4779
4780 if (curr->sched_class != p->sched_class)
4781 goto out_unlock;
4782
4783 if (task_running(p_rq, p) || p->state)
4784 goto out_unlock;
4785
4786 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4787 if (yielded) {
4788 schedstat_inc(rq, yld_count);
4789 /*
4790 * Make p's CPU reschedule; pick_next_entity takes care of
4791 * fairness.
4792 */
4793 if (preempt && rq != p_rq)
4794 resched_curr(p_rq);
4795 }
4796
4797 out_unlock:
4798 double_rq_unlock(rq, p_rq);
4799 out_irq:
4800 local_irq_restore(flags);
4801
4802 if (yielded > 0)
4803 schedule();
4804
4805 return yielded;
4806 }
4807 EXPORT_SYMBOL_GPL(yield_to);
4808
4809 /*
4810 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4811 * that process accounting knows that this is a task in IO wait state.
4812 */
4813 long __sched io_schedule_timeout(long timeout)
4814 {
4815 int old_iowait = current->in_iowait;
4816 struct rq *rq;
4817 long ret;
4818
4819 current->in_iowait = 1;
4820 blk_schedule_flush_plug(current);
4821
4822 delayacct_blkio_start();
4823 rq = raw_rq();
4824 atomic_inc(&rq->nr_iowait);
4825 ret = schedule_timeout(timeout);
4826 current->in_iowait = old_iowait;
4827 atomic_dec(&rq->nr_iowait);
4828 delayacct_blkio_end();
4829
4830 return ret;
4831 }
4832 EXPORT_SYMBOL(io_schedule_timeout);
4833
4834 /**
4835 * sys_sched_get_priority_max - return maximum RT priority.
4836 * @policy: scheduling class.
4837 *
4838 * Return: On success, this syscall returns the maximum
4839 * rt_priority that can be used by a given scheduling class.
4840 * On failure, a negative error code is returned.
4841 */
4842 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4843 {
4844 int ret = -EINVAL;
4845
4846 switch (policy) {
4847 case SCHED_FIFO:
4848 case SCHED_RR:
4849 ret = MAX_USER_RT_PRIO-1;
4850 break;
4851 case SCHED_DEADLINE:
4852 case SCHED_NORMAL:
4853 case SCHED_BATCH:
4854 case SCHED_IDLE:
4855 ret = 0;
4856 break;
4857 }
4858 return ret;
4859 }
4860
4861 /**
4862 * sys_sched_get_priority_min - return minimum RT priority.
4863 * @policy: scheduling class.
4864 *
4865 * Return: On success, this syscall returns the minimum
4866 * rt_priority that can be used by a given scheduling class.
4867 * On failure, a negative error code is returned.
4868 */
4869 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4870 {
4871 int ret = -EINVAL;
4872
4873 switch (policy) {
4874 case SCHED_FIFO:
4875 case SCHED_RR:
4876 ret = 1;
4877 break;
4878 case SCHED_DEADLINE:
4879 case SCHED_NORMAL:
4880 case SCHED_BATCH:
4881 case SCHED_IDLE:
4882 ret = 0;
4883 }
4884 return ret;
4885 }
4886
4887 /**
4888 * sys_sched_rr_get_interval - return the default timeslice of a process.
4889 * @pid: pid of the process.
4890 * @interval: userspace pointer to the timeslice value.
4891 *
4892 * this syscall writes the default timeslice value of a given process
4893 * into the user-space timespec buffer. A value of '0' means infinity.
4894 *
4895 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4896 * an error code.
4897 */
4898 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4899 struct timespec __user *, interval)
4900 {
4901 struct task_struct *p;
4902 unsigned int time_slice;
4903 unsigned long flags;
4904 struct rq *rq;
4905 int retval;
4906 struct timespec t;
4907
4908 if (pid < 0)
4909 return -EINVAL;
4910
4911 retval = -ESRCH;
4912 rcu_read_lock();
4913 p = find_process_by_pid(pid);
4914 if (!p)
4915 goto out_unlock;
4916
4917 retval = security_task_getscheduler(p);
4918 if (retval)
4919 goto out_unlock;
4920
4921 rq = task_rq_lock(p, &flags);
4922 time_slice = 0;
4923 if (p->sched_class->get_rr_interval)
4924 time_slice = p->sched_class->get_rr_interval(rq, p);
4925 task_rq_unlock(rq, p, &flags);
4926
4927 rcu_read_unlock();
4928 jiffies_to_timespec(time_slice, &t);
4929 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4930 return retval;
4931
4932 out_unlock:
4933 rcu_read_unlock();
4934 return retval;
4935 }
4936
4937 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4938
4939 void sched_show_task(struct task_struct *p)
4940 {
4941 unsigned long free = 0;
4942 int ppid;
4943 unsigned long state = p->state;
4944
4945 if (state)
4946 state = __ffs(state) + 1;
4947 printk(KERN_INFO "%-15.15s %c", p->comm,
4948 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4949 #if BITS_PER_LONG == 32
4950 if (state == TASK_RUNNING)
4951 printk(KERN_CONT " running ");
4952 else
4953 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4954 #else
4955 if (state == TASK_RUNNING)
4956 printk(KERN_CONT " running task ");
4957 else
4958 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4959 #endif
4960 #ifdef CONFIG_DEBUG_STACK_USAGE
4961 free = stack_not_used(p);
4962 #endif
4963 ppid = 0;
4964 rcu_read_lock();
4965 if (pid_alive(p))
4966 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4967 rcu_read_unlock();
4968 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4969 task_pid_nr(p), ppid,
4970 (unsigned long)task_thread_info(p)->flags);
4971
4972 print_worker_info(KERN_INFO, p);
4973 show_stack(p, NULL);
4974 }
4975
4976 void show_state_filter(unsigned long state_filter)
4977 {
4978 struct task_struct *g, *p;
4979
4980 #if BITS_PER_LONG == 32
4981 printk(KERN_INFO
4982 " task PC stack pid father\n");
4983 #else
4984 printk(KERN_INFO
4985 " task PC stack pid father\n");
4986 #endif
4987 rcu_read_lock();
4988 for_each_process_thread(g, p) {
4989 /*
4990 * reset the NMI-timeout, listing all files on a slow
4991 * console might take a lot of time:
4992 */
4993 touch_nmi_watchdog();
4994 if (!state_filter || (p->state & state_filter))
4995 sched_show_task(p);
4996 }
4997
4998 touch_all_softlockup_watchdogs();
4999
5000 #ifdef CONFIG_SCHED_DEBUG
5001 sysrq_sched_debug_show();
5002 #endif
5003 rcu_read_unlock();
5004 /*
5005 * Only show locks if all tasks are dumped:
5006 */
5007 if (!state_filter)
5008 debug_show_all_locks();
5009 }
5010
5011 void init_idle_bootup_task(struct task_struct *idle)
5012 {
5013 idle->sched_class = &idle_sched_class;
5014 }
5015
5016 /**
5017 * init_idle - set up an idle thread for a given CPU
5018 * @idle: task in question
5019 * @cpu: cpu the idle task belongs to
5020 *
5021 * NOTE: this function does not set the idle thread's NEED_RESCHED
5022 * flag, to make booting more robust.
5023 */
5024 void init_idle(struct task_struct *idle, int cpu)
5025 {
5026 struct rq *rq = cpu_rq(cpu);
5027 unsigned long flags;
5028
5029 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5030 raw_spin_lock(&rq->lock);
5031
5032 __sched_fork(0, idle);
5033 idle->state = TASK_RUNNING;
5034 idle->se.exec_start = sched_clock();
5035
5036 kasan_unpoison_task_stack(idle);
5037
5038 #ifdef CONFIG_SMP
5039 /*
5040 * Its possible that init_idle() gets called multiple times on a task,
5041 * in that case do_set_cpus_allowed() will not do the right thing.
5042 *
5043 * And since this is boot we can forgo the serialization.
5044 */
5045 set_cpus_allowed_common(idle, cpumask_of(cpu));
5046 #endif
5047 /*
5048 * We're having a chicken and egg problem, even though we are
5049 * holding rq->lock, the cpu isn't yet set to this cpu so the
5050 * lockdep check in task_group() will fail.
5051 *
5052 * Similar case to sched_fork(). / Alternatively we could
5053 * use task_rq_lock() here and obtain the other rq->lock.
5054 *
5055 * Silence PROVE_RCU
5056 */
5057 rcu_read_lock();
5058 __set_task_cpu(idle, cpu);
5059 rcu_read_unlock();
5060
5061 rq->curr = rq->idle = idle;
5062 idle->on_rq = TASK_ON_RQ_QUEUED;
5063 #ifdef CONFIG_SMP
5064 idle->on_cpu = 1;
5065 #endif
5066 raw_spin_unlock(&rq->lock);
5067 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5068
5069 /* Set the preempt count _outside_ the spinlocks! */
5070 init_idle_preempt_count(idle, cpu);
5071
5072 /*
5073 * The idle tasks have their own, simple scheduling class:
5074 */
5075 idle->sched_class = &idle_sched_class;
5076 ftrace_graph_init_idle_task(idle, cpu);
5077 vtime_init_idle(idle, cpu);
5078 #ifdef CONFIG_SMP
5079 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5080 #endif
5081 }
5082
5083 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5084 const struct cpumask *trial)
5085 {
5086 int ret = 1, trial_cpus;
5087 struct dl_bw *cur_dl_b;
5088 unsigned long flags;
5089
5090 if (!cpumask_weight(cur))
5091 return ret;
5092
5093 rcu_read_lock_sched();
5094 cur_dl_b = dl_bw_of(cpumask_any(cur));
5095 trial_cpus = cpumask_weight(trial);
5096
5097 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5098 if (cur_dl_b->bw != -1 &&
5099 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5100 ret = 0;
5101 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5102 rcu_read_unlock_sched();
5103
5104 return ret;
5105 }
5106
5107 int task_can_attach(struct task_struct *p,
5108 const struct cpumask *cs_cpus_allowed)
5109 {
5110 int ret = 0;
5111
5112 /*
5113 * Kthreads which disallow setaffinity shouldn't be moved
5114 * to a new cpuset; we don't want to change their cpu
5115 * affinity and isolating such threads by their set of
5116 * allowed nodes is unnecessary. Thus, cpusets are not
5117 * applicable for such threads. This prevents checking for
5118 * success of set_cpus_allowed_ptr() on all attached tasks
5119 * before cpus_allowed may be changed.
5120 */
5121 if (p->flags & PF_NO_SETAFFINITY) {
5122 ret = -EINVAL;
5123 goto out;
5124 }
5125
5126 #ifdef CONFIG_SMP
5127 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5128 cs_cpus_allowed)) {
5129 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5130 cs_cpus_allowed);
5131 struct dl_bw *dl_b;
5132 bool overflow;
5133 int cpus;
5134 unsigned long flags;
5135
5136 rcu_read_lock_sched();
5137 dl_b = dl_bw_of(dest_cpu);
5138 raw_spin_lock_irqsave(&dl_b->lock, flags);
5139 cpus = dl_bw_cpus(dest_cpu);
5140 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5141 if (overflow)
5142 ret = -EBUSY;
5143 else {
5144 /*
5145 * We reserve space for this task in the destination
5146 * root_domain, as we can't fail after this point.
5147 * We will free resources in the source root_domain
5148 * later on (see set_cpus_allowed_dl()).
5149 */
5150 __dl_add(dl_b, p->dl.dl_bw);
5151 }
5152 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5153 rcu_read_unlock_sched();
5154
5155 }
5156 #endif
5157 out:
5158 return ret;
5159 }
5160
5161 #ifdef CONFIG_SMP
5162
5163 #ifdef CONFIG_NUMA_BALANCING
5164 /* Migrate current task p to target_cpu */
5165 int migrate_task_to(struct task_struct *p, int target_cpu)
5166 {
5167 struct migration_arg arg = { p, target_cpu };
5168 int curr_cpu = task_cpu(p);
5169
5170 if (curr_cpu == target_cpu)
5171 return 0;
5172
5173 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5174 return -EINVAL;
5175
5176 /* TODO: This is not properly updating schedstats */
5177
5178 trace_sched_move_numa(p, curr_cpu, target_cpu);
5179 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5180 }
5181
5182 /*
5183 * Requeue a task on a given node and accurately track the number of NUMA
5184 * tasks on the runqueues
5185 */
5186 void sched_setnuma(struct task_struct *p, int nid)
5187 {
5188 struct rq *rq;
5189 unsigned long flags;
5190 bool queued, running;
5191
5192 rq = task_rq_lock(p, &flags);
5193 queued = task_on_rq_queued(p);
5194 running = task_current(rq, p);
5195
5196 if (queued)
5197 dequeue_task(rq, p, DEQUEUE_SAVE);
5198 if (running)
5199 put_prev_task(rq, p);
5200
5201 p->numa_preferred_nid = nid;
5202
5203 if (running)
5204 p->sched_class->set_curr_task(rq);
5205 if (queued)
5206 enqueue_task(rq, p, ENQUEUE_RESTORE);
5207 task_rq_unlock(rq, p, &flags);
5208 }
5209 #endif /* CONFIG_NUMA_BALANCING */
5210
5211 #ifdef CONFIG_HOTPLUG_CPU
5212 /*
5213 * Ensures that the idle task is using init_mm right before its cpu goes
5214 * offline.
5215 */
5216 void idle_task_exit(void)
5217 {
5218 struct mm_struct *mm = current->active_mm;
5219
5220 BUG_ON(cpu_online(smp_processor_id()));
5221
5222 if (mm != &init_mm) {
5223 switch_mm(mm, &init_mm, current);
5224 finish_arch_post_lock_switch();
5225 }
5226 mmdrop(mm);
5227 }
5228
5229 /*
5230 * Since this CPU is going 'away' for a while, fold any nr_active delta
5231 * we might have. Assumes we're called after migrate_tasks() so that the
5232 * nr_active count is stable.
5233 *
5234 * Also see the comment "Global load-average calculations".
5235 */
5236 static void calc_load_migrate(struct rq *rq)
5237 {
5238 long delta = calc_load_fold_active(rq);
5239 if (delta)
5240 atomic_long_add(delta, &calc_load_tasks);
5241 }
5242
5243 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5244 {
5245 }
5246
5247 static const struct sched_class fake_sched_class = {
5248 .put_prev_task = put_prev_task_fake,
5249 };
5250
5251 static struct task_struct fake_task = {
5252 /*
5253 * Avoid pull_{rt,dl}_task()
5254 */
5255 .prio = MAX_PRIO + 1,
5256 .sched_class = &fake_sched_class,
5257 };
5258
5259 /*
5260 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5261 * try_to_wake_up()->select_task_rq().
5262 *
5263 * Called with rq->lock held even though we'er in stop_machine() and
5264 * there's no concurrency possible, we hold the required locks anyway
5265 * because of lock validation efforts.
5266 */
5267 static void migrate_tasks(struct rq *dead_rq)
5268 {
5269 struct rq *rq = dead_rq;
5270 struct task_struct *next, *stop = rq->stop;
5271 int dest_cpu;
5272
5273 /*
5274 * Fudge the rq selection such that the below task selection loop
5275 * doesn't get stuck on the currently eligible stop task.
5276 *
5277 * We're currently inside stop_machine() and the rq is either stuck
5278 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5279 * either way we should never end up calling schedule() until we're
5280 * done here.
5281 */
5282 rq->stop = NULL;
5283
5284 /*
5285 * put_prev_task() and pick_next_task() sched
5286 * class method both need to have an up-to-date
5287 * value of rq->clock[_task]
5288 */
5289 update_rq_clock(rq);
5290
5291 for (;;) {
5292 /*
5293 * There's this thread running, bail when that's the only
5294 * remaining thread.
5295 */
5296 if (rq->nr_running == 1)
5297 break;
5298
5299 /*
5300 * pick_next_task assumes pinned rq->lock.
5301 */
5302 lockdep_pin_lock(&rq->lock);
5303 next = pick_next_task(rq, &fake_task);
5304 BUG_ON(!next);
5305 next->sched_class->put_prev_task(rq, next);
5306
5307 /*
5308 * Rules for changing task_struct::cpus_allowed are holding
5309 * both pi_lock and rq->lock, such that holding either
5310 * stabilizes the mask.
5311 *
5312 * Drop rq->lock is not quite as disastrous as it usually is
5313 * because !cpu_active at this point, which means load-balance
5314 * will not interfere. Also, stop-machine.
5315 */
5316 lockdep_unpin_lock(&rq->lock);
5317 raw_spin_unlock(&rq->lock);
5318 raw_spin_lock(&next->pi_lock);
5319 raw_spin_lock(&rq->lock);
5320
5321 /*
5322 * Since we're inside stop-machine, _nothing_ should have
5323 * changed the task, WARN if weird stuff happened, because in
5324 * that case the above rq->lock drop is a fail too.
5325 */
5326 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5327 raw_spin_unlock(&next->pi_lock);
5328 continue;
5329 }
5330
5331 /* Find suitable destination for @next, with force if needed. */
5332 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5333
5334 rq = __migrate_task(rq, next, dest_cpu);
5335 if (rq != dead_rq) {
5336 raw_spin_unlock(&rq->lock);
5337 rq = dead_rq;
5338 raw_spin_lock(&rq->lock);
5339 }
5340 raw_spin_unlock(&next->pi_lock);
5341 }
5342
5343 rq->stop = stop;
5344 }
5345 #endif /* CONFIG_HOTPLUG_CPU */
5346
5347 static void set_rq_online(struct rq *rq)
5348 {
5349 if (!rq->online) {
5350 const struct sched_class *class;
5351
5352 cpumask_set_cpu(rq->cpu, rq->rd->online);
5353 rq->online = 1;
5354
5355 for_each_class(class) {
5356 if (class->rq_online)
5357 class->rq_online(rq);
5358 }
5359 }
5360 }
5361
5362 static void set_rq_offline(struct rq *rq)
5363 {
5364 if (rq->online) {
5365 const struct sched_class *class;
5366
5367 for_each_class(class) {
5368 if (class->rq_offline)
5369 class->rq_offline(rq);
5370 }
5371
5372 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5373 rq->online = 0;
5374 }
5375 }
5376
5377 /*
5378 * migration_call - callback that gets triggered when a CPU is added.
5379 * Here we can start up the necessary migration thread for the new CPU.
5380 */
5381 static int
5382 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5383 {
5384 int cpu = (long)hcpu;
5385 unsigned long flags;
5386 struct rq *rq = cpu_rq(cpu);
5387
5388 switch (action & ~CPU_TASKS_FROZEN) {
5389
5390 case CPU_UP_PREPARE:
5391 rq->calc_load_update = calc_load_update;
5392 account_reset_rq(rq);
5393 break;
5394
5395 case CPU_ONLINE:
5396 /* Update our root-domain */
5397 raw_spin_lock_irqsave(&rq->lock, flags);
5398 if (rq->rd) {
5399 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5400
5401 set_rq_online(rq);
5402 }
5403 raw_spin_unlock_irqrestore(&rq->lock, flags);
5404 break;
5405
5406 #ifdef CONFIG_HOTPLUG_CPU
5407 case CPU_DYING:
5408 sched_ttwu_pending();
5409 /* Update our root-domain */
5410 raw_spin_lock_irqsave(&rq->lock, flags);
5411 if (rq->rd) {
5412 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5413 set_rq_offline(rq);
5414 }
5415 migrate_tasks(rq);
5416 BUG_ON(rq->nr_running != 1); /* the migration thread */
5417 raw_spin_unlock_irqrestore(&rq->lock, flags);
5418 break;
5419
5420 case CPU_DEAD:
5421 calc_load_migrate(rq);
5422 break;
5423 #endif
5424 }
5425
5426 update_max_interval();
5427
5428 return NOTIFY_OK;
5429 }
5430
5431 /*
5432 * Register at high priority so that task migration (migrate_all_tasks)
5433 * happens before everything else. This has to be lower priority than
5434 * the notifier in the perf_event subsystem, though.
5435 */
5436 static struct notifier_block migration_notifier = {
5437 .notifier_call = migration_call,
5438 .priority = CPU_PRI_MIGRATION,
5439 };
5440
5441 static void set_cpu_rq_start_time(void)
5442 {
5443 int cpu = smp_processor_id();
5444 struct rq *rq = cpu_rq(cpu);
5445 rq->age_stamp = sched_clock_cpu(cpu);
5446 }
5447
5448 static int sched_cpu_active(struct notifier_block *nfb,
5449 unsigned long action, void *hcpu)
5450 {
5451 int cpu = (long)hcpu;
5452
5453 switch (action & ~CPU_TASKS_FROZEN) {
5454 case CPU_STARTING:
5455 set_cpu_rq_start_time();
5456 return NOTIFY_OK;
5457
5458 case CPU_DOWN_FAILED:
5459 set_cpu_active(cpu, true);
5460 return NOTIFY_OK;
5461
5462 default:
5463 return NOTIFY_DONE;
5464 }
5465 }
5466
5467 static int sched_cpu_inactive(struct notifier_block *nfb,
5468 unsigned long action, void *hcpu)
5469 {
5470 switch (action & ~CPU_TASKS_FROZEN) {
5471 case CPU_DOWN_PREPARE:
5472 set_cpu_active((long)hcpu, false);
5473 return NOTIFY_OK;
5474 default:
5475 return NOTIFY_DONE;
5476 }
5477 }
5478
5479 static int __init migration_init(void)
5480 {
5481 void *cpu = (void *)(long)smp_processor_id();
5482 int err;
5483
5484 /* Initialize migration for the boot CPU */
5485 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5486 BUG_ON(err == NOTIFY_BAD);
5487 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5488 register_cpu_notifier(&migration_notifier);
5489
5490 /* Register cpu active notifiers */
5491 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5492 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5493
5494 return 0;
5495 }
5496 early_initcall(migration_init);
5497
5498 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5499
5500 #ifdef CONFIG_SCHED_DEBUG
5501
5502 static __read_mostly int sched_debug_enabled;
5503
5504 static int __init sched_debug_setup(char *str)
5505 {
5506 sched_debug_enabled = 1;
5507
5508 return 0;
5509 }
5510 early_param("sched_debug", sched_debug_setup);
5511
5512 static inline bool sched_debug(void)
5513 {
5514 return sched_debug_enabled;
5515 }
5516
5517 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5518 struct cpumask *groupmask)
5519 {
5520 struct sched_group *group = sd->groups;
5521
5522 cpumask_clear(groupmask);
5523
5524 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5525
5526 if (!(sd->flags & SD_LOAD_BALANCE)) {
5527 printk("does not load-balance\n");
5528 if (sd->parent)
5529 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5530 " has parent");
5531 return -1;
5532 }
5533
5534 printk(KERN_CONT "span %*pbl level %s\n",
5535 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5536
5537 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5538 printk(KERN_ERR "ERROR: domain->span does not contain "
5539 "CPU%d\n", cpu);
5540 }
5541 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5542 printk(KERN_ERR "ERROR: domain->groups does not contain"
5543 " CPU%d\n", cpu);
5544 }
5545
5546 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5547 do {
5548 if (!group) {
5549 printk("\n");
5550 printk(KERN_ERR "ERROR: group is NULL\n");
5551 break;
5552 }
5553
5554 if (!cpumask_weight(sched_group_cpus(group))) {
5555 printk(KERN_CONT "\n");
5556 printk(KERN_ERR "ERROR: empty group\n");
5557 break;
5558 }
5559
5560 if (!(sd->flags & SD_OVERLAP) &&
5561 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5562 printk(KERN_CONT "\n");
5563 printk(KERN_ERR "ERROR: repeated CPUs\n");
5564 break;
5565 }
5566
5567 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5568
5569 printk(KERN_CONT " %*pbl",
5570 cpumask_pr_args(sched_group_cpus(group)));
5571 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5572 printk(KERN_CONT " (cpu_capacity = %d)",
5573 group->sgc->capacity);
5574 }
5575
5576 group = group->next;
5577 } while (group != sd->groups);
5578 printk(KERN_CONT "\n");
5579
5580 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5581 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5582
5583 if (sd->parent &&
5584 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5585 printk(KERN_ERR "ERROR: parent span is not a superset "
5586 "of domain->span\n");
5587 return 0;
5588 }
5589
5590 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5591 {
5592 int level = 0;
5593
5594 if (!sched_debug_enabled)
5595 return;
5596
5597 if (!sd) {
5598 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5599 return;
5600 }
5601
5602 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5603
5604 for (;;) {
5605 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5606 break;
5607 level++;
5608 sd = sd->parent;
5609 if (!sd)
5610 break;
5611 }
5612 }
5613 #else /* !CONFIG_SCHED_DEBUG */
5614 # define sched_domain_debug(sd, cpu) do { } while (0)
5615 static inline bool sched_debug(void)
5616 {
5617 return false;
5618 }
5619 #endif /* CONFIG_SCHED_DEBUG */
5620
5621 static int sd_degenerate(struct sched_domain *sd)
5622 {
5623 if (cpumask_weight(sched_domain_span(sd)) == 1)
5624 return 1;
5625
5626 /* Following flags need at least 2 groups */
5627 if (sd->flags & (SD_LOAD_BALANCE |
5628 SD_BALANCE_NEWIDLE |
5629 SD_BALANCE_FORK |
5630 SD_BALANCE_EXEC |
5631 SD_SHARE_CPUCAPACITY |
5632 SD_SHARE_PKG_RESOURCES |
5633 SD_SHARE_POWERDOMAIN)) {
5634 if (sd->groups != sd->groups->next)
5635 return 0;
5636 }
5637
5638 /* Following flags don't use groups */
5639 if (sd->flags & (SD_WAKE_AFFINE))
5640 return 0;
5641
5642 return 1;
5643 }
5644
5645 static int
5646 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5647 {
5648 unsigned long cflags = sd->flags, pflags = parent->flags;
5649
5650 if (sd_degenerate(parent))
5651 return 1;
5652
5653 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5654 return 0;
5655
5656 /* Flags needing groups don't count if only 1 group in parent */
5657 if (parent->groups == parent->groups->next) {
5658 pflags &= ~(SD_LOAD_BALANCE |
5659 SD_BALANCE_NEWIDLE |
5660 SD_BALANCE_FORK |
5661 SD_BALANCE_EXEC |
5662 SD_SHARE_CPUCAPACITY |
5663 SD_SHARE_PKG_RESOURCES |
5664 SD_PREFER_SIBLING |
5665 SD_SHARE_POWERDOMAIN);
5666 if (nr_node_ids == 1)
5667 pflags &= ~SD_SERIALIZE;
5668 }
5669 if (~cflags & pflags)
5670 return 0;
5671
5672 return 1;
5673 }
5674
5675 static void free_rootdomain(struct rcu_head *rcu)
5676 {
5677 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5678
5679 cpupri_cleanup(&rd->cpupri);
5680 cpudl_cleanup(&rd->cpudl);
5681 free_cpumask_var(rd->dlo_mask);
5682 free_cpumask_var(rd->rto_mask);
5683 free_cpumask_var(rd->online);
5684 free_cpumask_var(rd->span);
5685 kfree(rd);
5686 }
5687
5688 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5689 {
5690 struct root_domain *old_rd = NULL;
5691 unsigned long flags;
5692
5693 raw_spin_lock_irqsave(&rq->lock, flags);
5694
5695 if (rq->rd) {
5696 old_rd = rq->rd;
5697
5698 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5699 set_rq_offline(rq);
5700
5701 cpumask_clear_cpu(rq->cpu, old_rd->span);
5702
5703 /*
5704 * If we dont want to free the old_rd yet then
5705 * set old_rd to NULL to skip the freeing later
5706 * in this function:
5707 */
5708 if (!atomic_dec_and_test(&old_rd->refcount))
5709 old_rd = NULL;
5710 }
5711
5712 atomic_inc(&rd->refcount);
5713 rq->rd = rd;
5714
5715 cpumask_set_cpu(rq->cpu, rd->span);
5716 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5717 set_rq_online(rq);
5718
5719 raw_spin_unlock_irqrestore(&rq->lock, flags);
5720
5721 if (old_rd)
5722 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5723 }
5724
5725 static int init_rootdomain(struct root_domain *rd)
5726 {
5727 memset(rd, 0, sizeof(*rd));
5728
5729 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5730 goto out;
5731 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5732 goto free_span;
5733 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5734 goto free_online;
5735 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5736 goto free_dlo_mask;
5737
5738 init_dl_bw(&rd->dl_bw);
5739 if (cpudl_init(&rd->cpudl) != 0)
5740 goto free_dlo_mask;
5741
5742 if (cpupri_init(&rd->cpupri) != 0)
5743 goto free_rto_mask;
5744 return 0;
5745
5746 free_rto_mask:
5747 free_cpumask_var(rd->rto_mask);
5748 free_dlo_mask:
5749 free_cpumask_var(rd->dlo_mask);
5750 free_online:
5751 free_cpumask_var(rd->online);
5752 free_span:
5753 free_cpumask_var(rd->span);
5754 out:
5755 return -ENOMEM;
5756 }
5757
5758 /*
5759 * By default the system creates a single root-domain with all cpus as
5760 * members (mimicking the global state we have today).
5761 */
5762 struct root_domain def_root_domain;
5763
5764 static void init_defrootdomain(void)
5765 {
5766 init_rootdomain(&def_root_domain);
5767
5768 atomic_set(&def_root_domain.refcount, 1);
5769 }
5770
5771 static struct root_domain *alloc_rootdomain(void)
5772 {
5773 struct root_domain *rd;
5774
5775 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5776 if (!rd)
5777 return NULL;
5778
5779 if (init_rootdomain(rd) != 0) {
5780 kfree(rd);
5781 return NULL;
5782 }
5783
5784 return rd;
5785 }
5786
5787 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5788 {
5789 struct sched_group *tmp, *first;
5790
5791 if (!sg)
5792 return;
5793
5794 first = sg;
5795 do {
5796 tmp = sg->next;
5797
5798 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5799 kfree(sg->sgc);
5800
5801 kfree(sg);
5802 sg = tmp;
5803 } while (sg != first);
5804 }
5805
5806 static void free_sched_domain(struct rcu_head *rcu)
5807 {
5808 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5809
5810 /*
5811 * If its an overlapping domain it has private groups, iterate and
5812 * nuke them all.
5813 */
5814 if (sd->flags & SD_OVERLAP) {
5815 free_sched_groups(sd->groups, 1);
5816 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5817 kfree(sd->groups->sgc);
5818 kfree(sd->groups);
5819 }
5820 kfree(sd);
5821 }
5822
5823 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5824 {
5825 call_rcu(&sd->rcu, free_sched_domain);
5826 }
5827
5828 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5829 {
5830 for (; sd; sd = sd->parent)
5831 destroy_sched_domain(sd, cpu);
5832 }
5833
5834 /*
5835 * Keep a special pointer to the highest sched_domain that has
5836 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5837 * allows us to avoid some pointer chasing select_idle_sibling().
5838 *
5839 * Also keep a unique ID per domain (we use the first cpu number in
5840 * the cpumask of the domain), this allows us to quickly tell if
5841 * two cpus are in the same cache domain, see cpus_share_cache().
5842 */
5843 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5844 DEFINE_PER_CPU(int, sd_llc_size);
5845 DEFINE_PER_CPU(int, sd_llc_id);
5846 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5847 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5848 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5849
5850 static void update_top_cache_domain(int cpu)
5851 {
5852 struct sched_domain *sd;
5853 struct sched_domain *busy_sd = NULL;
5854 int id = cpu;
5855 int size = 1;
5856
5857 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5858 if (sd) {
5859 id = cpumask_first(sched_domain_span(sd));
5860 size = cpumask_weight(sched_domain_span(sd));
5861 busy_sd = sd->parent; /* sd_busy */
5862 }
5863 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5864
5865 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5866 per_cpu(sd_llc_size, cpu) = size;
5867 per_cpu(sd_llc_id, cpu) = id;
5868
5869 sd = lowest_flag_domain(cpu, SD_NUMA);
5870 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5871
5872 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5873 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5874 }
5875
5876 /*
5877 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5878 * hold the hotplug lock.
5879 */
5880 static void
5881 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5882 {
5883 struct rq *rq = cpu_rq(cpu);
5884 struct sched_domain *tmp;
5885
5886 /* Remove the sched domains which do not contribute to scheduling. */
5887 for (tmp = sd; tmp; ) {
5888 struct sched_domain *parent = tmp->parent;
5889 if (!parent)
5890 break;
5891
5892 if (sd_parent_degenerate(tmp, parent)) {
5893 tmp->parent = parent->parent;
5894 if (parent->parent)
5895 parent->parent->child = tmp;
5896 /*
5897 * Transfer SD_PREFER_SIBLING down in case of a
5898 * degenerate parent; the spans match for this
5899 * so the property transfers.
5900 */
5901 if (parent->flags & SD_PREFER_SIBLING)
5902 tmp->flags |= SD_PREFER_SIBLING;
5903 destroy_sched_domain(parent, cpu);
5904 } else
5905 tmp = tmp->parent;
5906 }
5907
5908 if (sd && sd_degenerate(sd)) {
5909 tmp = sd;
5910 sd = sd->parent;
5911 destroy_sched_domain(tmp, cpu);
5912 if (sd)
5913 sd->child = NULL;
5914 }
5915
5916 sched_domain_debug(sd, cpu);
5917
5918 rq_attach_root(rq, rd);
5919 tmp = rq->sd;
5920 rcu_assign_pointer(rq->sd, sd);
5921 destroy_sched_domains(tmp, cpu);
5922
5923 update_top_cache_domain(cpu);
5924 }
5925
5926 /* Setup the mask of cpus configured for isolated domains */
5927 static int __init isolated_cpu_setup(char *str)
5928 {
5929 int ret;
5930
5931 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5932 ret = cpulist_parse(str, cpu_isolated_map);
5933 if (ret) {
5934 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5935 return 0;
5936 }
5937 return 1;
5938 }
5939 __setup("isolcpus=", isolated_cpu_setup);
5940
5941 struct s_data {
5942 struct sched_domain ** __percpu sd;
5943 struct root_domain *rd;
5944 };
5945
5946 enum s_alloc {
5947 sa_rootdomain,
5948 sa_sd,
5949 sa_sd_storage,
5950 sa_none,
5951 };
5952
5953 /*
5954 * Build an iteration mask that can exclude certain CPUs from the upwards
5955 * domain traversal.
5956 *
5957 * Asymmetric node setups can result in situations where the domain tree is of
5958 * unequal depth, make sure to skip domains that already cover the entire
5959 * range.
5960 *
5961 * In that case build_sched_domains() will have terminated the iteration early
5962 * and our sibling sd spans will be empty. Domains should always include the
5963 * cpu they're built on, so check that.
5964 *
5965 */
5966 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5967 {
5968 const struct cpumask *span = sched_domain_span(sd);
5969 struct sd_data *sdd = sd->private;
5970 struct sched_domain *sibling;
5971 int i;
5972
5973 for_each_cpu(i, span) {
5974 sibling = *per_cpu_ptr(sdd->sd, i);
5975 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5976 continue;
5977
5978 cpumask_set_cpu(i, sched_group_mask(sg));
5979 }
5980 }
5981
5982 /*
5983 * Return the canonical balance cpu for this group, this is the first cpu
5984 * of this group that's also in the iteration mask.
5985 */
5986 int group_balance_cpu(struct sched_group *sg)
5987 {
5988 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5989 }
5990
5991 static int
5992 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5993 {
5994 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5995 const struct cpumask *span = sched_domain_span(sd);
5996 struct cpumask *covered = sched_domains_tmpmask;
5997 struct sd_data *sdd = sd->private;
5998 struct sched_domain *sibling;
5999 int i;
6000
6001 cpumask_clear(covered);
6002
6003 for_each_cpu(i, span) {
6004 struct cpumask *sg_span;
6005
6006 if (cpumask_test_cpu(i, covered))
6007 continue;
6008
6009 sibling = *per_cpu_ptr(sdd->sd, i);
6010
6011 /* See the comment near build_group_mask(). */
6012 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6013 continue;
6014
6015 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6016 GFP_KERNEL, cpu_to_node(cpu));
6017
6018 if (!sg)
6019 goto fail;
6020
6021 sg_span = sched_group_cpus(sg);
6022 if (sibling->child)
6023 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6024 else
6025 cpumask_set_cpu(i, sg_span);
6026
6027 cpumask_or(covered, covered, sg_span);
6028
6029 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6030 if (atomic_inc_return(&sg->sgc->ref) == 1)
6031 build_group_mask(sd, sg);
6032
6033 /*
6034 * Initialize sgc->capacity such that even if we mess up the
6035 * domains and no possible iteration will get us here, we won't
6036 * die on a /0 trap.
6037 */
6038 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6039
6040 /*
6041 * Make sure the first group of this domain contains the
6042 * canonical balance cpu. Otherwise the sched_domain iteration
6043 * breaks. See update_sg_lb_stats().
6044 */
6045 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6046 group_balance_cpu(sg) == cpu)
6047 groups = sg;
6048
6049 if (!first)
6050 first = sg;
6051 if (last)
6052 last->next = sg;
6053 last = sg;
6054 last->next = first;
6055 }
6056 sd->groups = groups;
6057
6058 return 0;
6059
6060 fail:
6061 free_sched_groups(first, 0);
6062
6063 return -ENOMEM;
6064 }
6065
6066 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6067 {
6068 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6069 struct sched_domain *child = sd->child;
6070
6071 if (child)
6072 cpu = cpumask_first(sched_domain_span(child));
6073
6074 if (sg) {
6075 *sg = *per_cpu_ptr(sdd->sg, cpu);
6076 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6077 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6078 }
6079
6080 return cpu;
6081 }
6082
6083 /*
6084 * build_sched_groups will build a circular linked list of the groups
6085 * covered by the given span, and will set each group's ->cpumask correctly,
6086 * and ->cpu_capacity to 0.
6087 *
6088 * Assumes the sched_domain tree is fully constructed
6089 */
6090 static int
6091 build_sched_groups(struct sched_domain *sd, int cpu)
6092 {
6093 struct sched_group *first = NULL, *last = NULL;
6094 struct sd_data *sdd = sd->private;
6095 const struct cpumask *span = sched_domain_span(sd);
6096 struct cpumask *covered;
6097 int i;
6098
6099 get_group(cpu, sdd, &sd->groups);
6100 atomic_inc(&sd->groups->ref);
6101
6102 if (cpu != cpumask_first(span))
6103 return 0;
6104
6105 lockdep_assert_held(&sched_domains_mutex);
6106 covered = sched_domains_tmpmask;
6107
6108 cpumask_clear(covered);
6109
6110 for_each_cpu(i, span) {
6111 struct sched_group *sg;
6112 int group, j;
6113
6114 if (cpumask_test_cpu(i, covered))
6115 continue;
6116
6117 group = get_group(i, sdd, &sg);
6118 cpumask_setall(sched_group_mask(sg));
6119
6120 for_each_cpu(j, span) {
6121 if (get_group(j, sdd, NULL) != group)
6122 continue;
6123
6124 cpumask_set_cpu(j, covered);
6125 cpumask_set_cpu(j, sched_group_cpus(sg));
6126 }
6127
6128 if (!first)
6129 first = sg;
6130 if (last)
6131 last->next = sg;
6132 last = sg;
6133 }
6134 last->next = first;
6135
6136 return 0;
6137 }
6138
6139 /*
6140 * Initialize sched groups cpu_capacity.
6141 *
6142 * cpu_capacity indicates the capacity of sched group, which is used while
6143 * distributing the load between different sched groups in a sched domain.
6144 * Typically cpu_capacity for all the groups in a sched domain will be same
6145 * unless there are asymmetries in the topology. If there are asymmetries,
6146 * group having more cpu_capacity will pickup more load compared to the
6147 * group having less cpu_capacity.
6148 */
6149 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6150 {
6151 struct sched_group *sg = sd->groups;
6152
6153 WARN_ON(!sg);
6154
6155 do {
6156 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6157 sg = sg->next;
6158 } while (sg != sd->groups);
6159
6160 if (cpu != group_balance_cpu(sg))
6161 return;
6162
6163 update_group_capacity(sd, cpu);
6164 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6165 }
6166
6167 /*
6168 * Initializers for schedule domains
6169 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6170 */
6171
6172 static int default_relax_domain_level = -1;
6173 int sched_domain_level_max;
6174
6175 static int __init setup_relax_domain_level(char *str)
6176 {
6177 if (kstrtoint(str, 0, &default_relax_domain_level))
6178 pr_warn("Unable to set relax_domain_level\n");
6179
6180 return 1;
6181 }
6182 __setup("relax_domain_level=", setup_relax_domain_level);
6183
6184 static void set_domain_attribute(struct sched_domain *sd,
6185 struct sched_domain_attr *attr)
6186 {
6187 int request;
6188
6189 if (!attr || attr->relax_domain_level < 0) {
6190 if (default_relax_domain_level < 0)
6191 return;
6192 else
6193 request = default_relax_domain_level;
6194 } else
6195 request = attr->relax_domain_level;
6196 if (request < sd->level) {
6197 /* turn off idle balance on this domain */
6198 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6199 } else {
6200 /* turn on idle balance on this domain */
6201 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202 }
6203 }
6204
6205 static void __sdt_free(const struct cpumask *cpu_map);
6206 static int __sdt_alloc(const struct cpumask *cpu_map);
6207
6208 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6209 const struct cpumask *cpu_map)
6210 {
6211 switch (what) {
6212 case sa_rootdomain:
6213 if (!atomic_read(&d->rd->refcount))
6214 free_rootdomain(&d->rd->rcu); /* fall through */
6215 case sa_sd:
6216 free_percpu(d->sd); /* fall through */
6217 case sa_sd_storage:
6218 __sdt_free(cpu_map); /* fall through */
6219 case sa_none:
6220 break;
6221 }
6222 }
6223
6224 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6225 const struct cpumask *cpu_map)
6226 {
6227 memset(d, 0, sizeof(*d));
6228
6229 if (__sdt_alloc(cpu_map))
6230 return sa_sd_storage;
6231 d->sd = alloc_percpu(struct sched_domain *);
6232 if (!d->sd)
6233 return sa_sd_storage;
6234 d->rd = alloc_rootdomain();
6235 if (!d->rd)
6236 return sa_sd;
6237 return sa_rootdomain;
6238 }
6239
6240 /*
6241 * NULL the sd_data elements we've used to build the sched_domain and
6242 * sched_group structure so that the subsequent __free_domain_allocs()
6243 * will not free the data we're using.
6244 */
6245 static void claim_allocations(int cpu, struct sched_domain *sd)
6246 {
6247 struct sd_data *sdd = sd->private;
6248
6249 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6250 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6251
6252 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6253 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6254
6255 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6256 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6257 }
6258
6259 #ifdef CONFIG_NUMA
6260 static int sched_domains_numa_levels;
6261 enum numa_topology_type sched_numa_topology_type;
6262 static int *sched_domains_numa_distance;
6263 int sched_max_numa_distance;
6264 static struct cpumask ***sched_domains_numa_masks;
6265 static int sched_domains_curr_level;
6266 #endif
6267
6268 /*
6269 * SD_flags allowed in topology descriptions.
6270 *
6271 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6272 * SD_SHARE_PKG_RESOURCES - describes shared caches
6273 * SD_NUMA - describes NUMA topologies
6274 * SD_SHARE_POWERDOMAIN - describes shared power domain
6275 *
6276 * Odd one out:
6277 * SD_ASYM_PACKING - describes SMT quirks
6278 */
6279 #define TOPOLOGY_SD_FLAGS \
6280 (SD_SHARE_CPUCAPACITY | \
6281 SD_SHARE_PKG_RESOURCES | \
6282 SD_NUMA | \
6283 SD_ASYM_PACKING | \
6284 SD_SHARE_POWERDOMAIN)
6285
6286 static struct sched_domain *
6287 sd_init(struct sched_domain_topology_level *tl, int cpu)
6288 {
6289 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6290 int sd_weight, sd_flags = 0;
6291
6292 #ifdef CONFIG_NUMA
6293 /*
6294 * Ugly hack to pass state to sd_numa_mask()...
6295 */
6296 sched_domains_curr_level = tl->numa_level;
6297 #endif
6298
6299 sd_weight = cpumask_weight(tl->mask(cpu));
6300
6301 if (tl->sd_flags)
6302 sd_flags = (*tl->sd_flags)();
6303 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6304 "wrong sd_flags in topology description\n"))
6305 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6306
6307 *sd = (struct sched_domain){
6308 .min_interval = sd_weight,
6309 .max_interval = 2*sd_weight,
6310 .busy_factor = 32,
6311 .imbalance_pct = 125,
6312
6313 .cache_nice_tries = 0,
6314 .busy_idx = 0,
6315 .idle_idx = 0,
6316 .newidle_idx = 0,
6317 .wake_idx = 0,
6318 .forkexec_idx = 0,
6319
6320 .flags = 1*SD_LOAD_BALANCE
6321 | 1*SD_BALANCE_NEWIDLE
6322 | 1*SD_BALANCE_EXEC
6323 | 1*SD_BALANCE_FORK
6324 | 0*SD_BALANCE_WAKE
6325 | 1*SD_WAKE_AFFINE
6326 | 0*SD_SHARE_CPUCAPACITY
6327 | 0*SD_SHARE_PKG_RESOURCES
6328 | 0*SD_SERIALIZE
6329 | 0*SD_PREFER_SIBLING
6330 | 0*SD_NUMA
6331 | sd_flags
6332 ,
6333
6334 .last_balance = jiffies,
6335 .balance_interval = sd_weight,
6336 .smt_gain = 0,
6337 .max_newidle_lb_cost = 0,
6338 .next_decay_max_lb_cost = jiffies,
6339 #ifdef CONFIG_SCHED_DEBUG
6340 .name = tl->name,
6341 #endif
6342 };
6343
6344 /*
6345 * Convert topological properties into behaviour.
6346 */
6347
6348 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6349 sd->flags |= SD_PREFER_SIBLING;
6350 sd->imbalance_pct = 110;
6351 sd->smt_gain = 1178; /* ~15% */
6352
6353 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6354 sd->imbalance_pct = 117;
6355 sd->cache_nice_tries = 1;
6356 sd->busy_idx = 2;
6357
6358 #ifdef CONFIG_NUMA
6359 } else if (sd->flags & SD_NUMA) {
6360 sd->cache_nice_tries = 2;
6361 sd->busy_idx = 3;
6362 sd->idle_idx = 2;
6363
6364 sd->flags |= SD_SERIALIZE;
6365 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6366 sd->flags &= ~(SD_BALANCE_EXEC |
6367 SD_BALANCE_FORK |
6368 SD_WAKE_AFFINE);
6369 }
6370
6371 #endif
6372 } else {
6373 sd->flags |= SD_PREFER_SIBLING;
6374 sd->cache_nice_tries = 1;
6375 sd->busy_idx = 2;
6376 sd->idle_idx = 1;
6377 }
6378
6379 sd->private = &tl->data;
6380
6381 return sd;
6382 }
6383
6384 /*
6385 * Topology list, bottom-up.
6386 */
6387 static struct sched_domain_topology_level default_topology[] = {
6388 #ifdef CONFIG_SCHED_SMT
6389 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6390 #endif
6391 #ifdef CONFIG_SCHED_MC
6392 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6393 #endif
6394 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6395 { NULL, },
6396 };
6397
6398 static struct sched_domain_topology_level *sched_domain_topology =
6399 default_topology;
6400
6401 #define for_each_sd_topology(tl) \
6402 for (tl = sched_domain_topology; tl->mask; tl++)
6403
6404 void set_sched_topology(struct sched_domain_topology_level *tl)
6405 {
6406 sched_domain_topology = tl;
6407 }
6408
6409 #ifdef CONFIG_NUMA
6410
6411 static const struct cpumask *sd_numa_mask(int cpu)
6412 {
6413 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6414 }
6415
6416 static void sched_numa_warn(const char *str)
6417 {
6418 static int done = false;
6419 int i,j;
6420
6421 if (done)
6422 return;
6423
6424 done = true;
6425
6426 printk(KERN_WARNING "ERROR: %s\n\n", str);
6427
6428 for (i = 0; i < nr_node_ids; i++) {
6429 printk(KERN_WARNING " ");
6430 for (j = 0; j < nr_node_ids; j++)
6431 printk(KERN_CONT "%02d ", node_distance(i,j));
6432 printk(KERN_CONT "\n");
6433 }
6434 printk(KERN_WARNING "\n");
6435 }
6436
6437 bool find_numa_distance(int distance)
6438 {
6439 int i;
6440
6441 if (distance == node_distance(0, 0))
6442 return true;
6443
6444 for (i = 0; i < sched_domains_numa_levels; i++) {
6445 if (sched_domains_numa_distance[i] == distance)
6446 return true;
6447 }
6448
6449 return false;
6450 }
6451
6452 /*
6453 * A system can have three types of NUMA topology:
6454 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6455 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6456 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6457 *
6458 * The difference between a glueless mesh topology and a backplane
6459 * topology lies in whether communication between not directly
6460 * connected nodes goes through intermediary nodes (where programs
6461 * could run), or through backplane controllers. This affects
6462 * placement of programs.
6463 *
6464 * The type of topology can be discerned with the following tests:
6465 * - If the maximum distance between any nodes is 1 hop, the system
6466 * is directly connected.
6467 * - If for two nodes A and B, located N > 1 hops away from each other,
6468 * there is an intermediary node C, which is < N hops away from both
6469 * nodes A and B, the system is a glueless mesh.
6470 */
6471 static void init_numa_topology_type(void)
6472 {
6473 int a, b, c, n;
6474
6475 n = sched_max_numa_distance;
6476
6477 if (sched_domains_numa_levels <= 1) {
6478 sched_numa_topology_type = NUMA_DIRECT;
6479 return;
6480 }
6481
6482 for_each_online_node(a) {
6483 for_each_online_node(b) {
6484 /* Find two nodes furthest removed from each other. */
6485 if (node_distance(a, b) < n)
6486 continue;
6487
6488 /* Is there an intermediary node between a and b? */
6489 for_each_online_node(c) {
6490 if (node_distance(a, c) < n &&
6491 node_distance(b, c) < n) {
6492 sched_numa_topology_type =
6493 NUMA_GLUELESS_MESH;
6494 return;
6495 }
6496 }
6497
6498 sched_numa_topology_type = NUMA_BACKPLANE;
6499 return;
6500 }
6501 }
6502 }
6503
6504 static void sched_init_numa(void)
6505 {
6506 int next_distance, curr_distance = node_distance(0, 0);
6507 struct sched_domain_topology_level *tl;
6508 int level = 0;
6509 int i, j, k;
6510
6511 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6512 if (!sched_domains_numa_distance)
6513 return;
6514
6515 /*
6516 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6517 * unique distances in the node_distance() table.
6518 *
6519 * Assumes node_distance(0,j) includes all distances in
6520 * node_distance(i,j) in order to avoid cubic time.
6521 */
6522 next_distance = curr_distance;
6523 for (i = 0; i < nr_node_ids; i++) {
6524 for (j = 0; j < nr_node_ids; j++) {
6525 for (k = 0; k < nr_node_ids; k++) {
6526 int distance = node_distance(i, k);
6527
6528 if (distance > curr_distance &&
6529 (distance < next_distance ||
6530 next_distance == curr_distance))
6531 next_distance = distance;
6532
6533 /*
6534 * While not a strong assumption it would be nice to know
6535 * about cases where if node A is connected to B, B is not
6536 * equally connected to A.
6537 */
6538 if (sched_debug() && node_distance(k, i) != distance)
6539 sched_numa_warn("Node-distance not symmetric");
6540
6541 if (sched_debug() && i && !find_numa_distance(distance))
6542 sched_numa_warn("Node-0 not representative");
6543 }
6544 if (next_distance != curr_distance) {
6545 sched_domains_numa_distance[level++] = next_distance;
6546 sched_domains_numa_levels = level;
6547 curr_distance = next_distance;
6548 } else break;
6549 }
6550
6551 /*
6552 * In case of sched_debug() we verify the above assumption.
6553 */
6554 if (!sched_debug())
6555 break;
6556 }
6557
6558 if (!level)
6559 return;
6560
6561 /*
6562 * 'level' contains the number of unique distances, excluding the
6563 * identity distance node_distance(i,i).
6564 *
6565 * The sched_domains_numa_distance[] array includes the actual distance
6566 * numbers.
6567 */
6568
6569 /*
6570 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6571 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6572 * the array will contain less then 'level' members. This could be
6573 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6574 * in other functions.
6575 *
6576 * We reset it to 'level' at the end of this function.
6577 */
6578 sched_domains_numa_levels = 0;
6579
6580 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6581 if (!sched_domains_numa_masks)
6582 return;
6583
6584 /*
6585 * Now for each level, construct a mask per node which contains all
6586 * cpus of nodes that are that many hops away from us.
6587 */
6588 for (i = 0; i < level; i++) {
6589 sched_domains_numa_masks[i] =
6590 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6591 if (!sched_domains_numa_masks[i])
6592 return;
6593
6594 for (j = 0; j < nr_node_ids; j++) {
6595 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6596 if (!mask)
6597 return;
6598
6599 sched_domains_numa_masks[i][j] = mask;
6600
6601 for_each_node(k) {
6602 if (node_distance(j, k) > sched_domains_numa_distance[i])
6603 continue;
6604
6605 cpumask_or(mask, mask, cpumask_of_node(k));
6606 }
6607 }
6608 }
6609
6610 /* Compute default topology size */
6611 for (i = 0; sched_domain_topology[i].mask; i++);
6612
6613 tl = kzalloc((i + level + 1) *
6614 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6615 if (!tl)
6616 return;
6617
6618 /*
6619 * Copy the default topology bits..
6620 */
6621 for (i = 0; sched_domain_topology[i].mask; i++)
6622 tl[i] = sched_domain_topology[i];
6623
6624 /*
6625 * .. and append 'j' levels of NUMA goodness.
6626 */
6627 for (j = 0; j < level; i++, j++) {
6628 tl[i] = (struct sched_domain_topology_level){
6629 .mask = sd_numa_mask,
6630 .sd_flags = cpu_numa_flags,
6631 .flags = SDTL_OVERLAP,
6632 .numa_level = j,
6633 SD_INIT_NAME(NUMA)
6634 };
6635 }
6636
6637 sched_domain_topology = tl;
6638
6639 sched_domains_numa_levels = level;
6640 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6641
6642 init_numa_topology_type();
6643 }
6644
6645 static void sched_domains_numa_masks_set(int cpu)
6646 {
6647 int i, j;
6648 int node = cpu_to_node(cpu);
6649
6650 for (i = 0; i < sched_domains_numa_levels; i++) {
6651 for (j = 0; j < nr_node_ids; j++) {
6652 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6653 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6654 }
6655 }
6656 }
6657
6658 static void sched_domains_numa_masks_clear(int cpu)
6659 {
6660 int i, j;
6661 for (i = 0; i < sched_domains_numa_levels; i++) {
6662 for (j = 0; j < nr_node_ids; j++)
6663 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6664 }
6665 }
6666
6667 /*
6668 * Update sched_domains_numa_masks[level][node] array when new cpus
6669 * are onlined.
6670 */
6671 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6672 unsigned long action,
6673 void *hcpu)
6674 {
6675 int cpu = (long)hcpu;
6676
6677 switch (action & ~CPU_TASKS_FROZEN) {
6678 case CPU_ONLINE:
6679 sched_domains_numa_masks_set(cpu);
6680 break;
6681
6682 case CPU_DEAD:
6683 sched_domains_numa_masks_clear(cpu);
6684 break;
6685
6686 default:
6687 return NOTIFY_DONE;
6688 }
6689
6690 return NOTIFY_OK;
6691 }
6692 #else
6693 static inline void sched_init_numa(void)
6694 {
6695 }
6696
6697 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6698 unsigned long action,
6699 void *hcpu)
6700 {
6701 return 0;
6702 }
6703 #endif /* CONFIG_NUMA */
6704
6705 static int __sdt_alloc(const struct cpumask *cpu_map)
6706 {
6707 struct sched_domain_topology_level *tl;
6708 int j;
6709
6710 for_each_sd_topology(tl) {
6711 struct sd_data *sdd = &tl->data;
6712
6713 sdd->sd = alloc_percpu(struct sched_domain *);
6714 if (!sdd->sd)
6715 return -ENOMEM;
6716
6717 sdd->sg = alloc_percpu(struct sched_group *);
6718 if (!sdd->sg)
6719 return -ENOMEM;
6720
6721 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6722 if (!sdd->sgc)
6723 return -ENOMEM;
6724
6725 for_each_cpu(j, cpu_map) {
6726 struct sched_domain *sd;
6727 struct sched_group *sg;
6728 struct sched_group_capacity *sgc;
6729
6730 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6731 GFP_KERNEL, cpu_to_node(j));
6732 if (!sd)
6733 return -ENOMEM;
6734
6735 *per_cpu_ptr(sdd->sd, j) = sd;
6736
6737 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6738 GFP_KERNEL, cpu_to_node(j));
6739 if (!sg)
6740 return -ENOMEM;
6741
6742 sg->next = sg;
6743
6744 *per_cpu_ptr(sdd->sg, j) = sg;
6745
6746 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6747 GFP_KERNEL, cpu_to_node(j));
6748 if (!sgc)
6749 return -ENOMEM;
6750
6751 *per_cpu_ptr(sdd->sgc, j) = sgc;
6752 }
6753 }
6754
6755 return 0;
6756 }
6757
6758 static void __sdt_free(const struct cpumask *cpu_map)
6759 {
6760 struct sched_domain_topology_level *tl;
6761 int j;
6762
6763 for_each_sd_topology(tl) {
6764 struct sd_data *sdd = &tl->data;
6765
6766 for_each_cpu(j, cpu_map) {
6767 struct sched_domain *sd;
6768
6769 if (sdd->sd) {
6770 sd = *per_cpu_ptr(sdd->sd, j);
6771 if (sd && (sd->flags & SD_OVERLAP))
6772 free_sched_groups(sd->groups, 0);
6773 kfree(*per_cpu_ptr(sdd->sd, j));
6774 }
6775
6776 if (sdd->sg)
6777 kfree(*per_cpu_ptr(sdd->sg, j));
6778 if (sdd->sgc)
6779 kfree(*per_cpu_ptr(sdd->sgc, j));
6780 }
6781 free_percpu(sdd->sd);
6782 sdd->sd = NULL;
6783 free_percpu(sdd->sg);
6784 sdd->sg = NULL;
6785 free_percpu(sdd->sgc);
6786 sdd->sgc = NULL;
6787 }
6788 }
6789
6790 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6791 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6792 struct sched_domain *child, int cpu)
6793 {
6794 struct sched_domain *sd = sd_init(tl, cpu);
6795 if (!sd)
6796 return child;
6797
6798 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6799 if (child) {
6800 sd->level = child->level + 1;
6801 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6802 child->parent = sd;
6803 sd->child = child;
6804
6805 if (!cpumask_subset(sched_domain_span(child),
6806 sched_domain_span(sd))) {
6807 pr_err("BUG: arch topology borken\n");
6808 #ifdef CONFIG_SCHED_DEBUG
6809 pr_err(" the %s domain not a subset of the %s domain\n",
6810 child->name, sd->name);
6811 #endif
6812 /* Fixup, ensure @sd has at least @child cpus. */
6813 cpumask_or(sched_domain_span(sd),
6814 sched_domain_span(sd),
6815 sched_domain_span(child));
6816 }
6817
6818 }
6819 set_domain_attribute(sd, attr);
6820
6821 return sd;
6822 }
6823
6824 /*
6825 * Build sched domains for a given set of cpus and attach the sched domains
6826 * to the individual cpus
6827 */
6828 static int build_sched_domains(const struct cpumask *cpu_map,
6829 struct sched_domain_attr *attr)
6830 {
6831 enum s_alloc alloc_state;
6832 struct sched_domain *sd;
6833 struct s_data d;
6834 int i, ret = -ENOMEM;
6835
6836 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6837 if (alloc_state != sa_rootdomain)
6838 goto error;
6839
6840 /* Set up domains for cpus specified by the cpu_map. */
6841 for_each_cpu(i, cpu_map) {
6842 struct sched_domain_topology_level *tl;
6843
6844 sd = NULL;
6845 for_each_sd_topology(tl) {
6846 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6847 if (tl == sched_domain_topology)
6848 *per_cpu_ptr(d.sd, i) = sd;
6849 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6850 sd->flags |= SD_OVERLAP;
6851 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6852 break;
6853 }
6854 }
6855
6856 /* Build the groups for the domains */
6857 for_each_cpu(i, cpu_map) {
6858 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6859 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6860 if (sd->flags & SD_OVERLAP) {
6861 if (build_overlap_sched_groups(sd, i))
6862 goto error;
6863 } else {
6864 if (build_sched_groups(sd, i))
6865 goto error;
6866 }
6867 }
6868 }
6869
6870 /* Calculate CPU capacity for physical packages and nodes */
6871 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6872 if (!cpumask_test_cpu(i, cpu_map))
6873 continue;
6874
6875 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6876 claim_allocations(i, sd);
6877 init_sched_groups_capacity(i, sd);
6878 }
6879 }
6880
6881 /* Attach the domains */
6882 rcu_read_lock();
6883 for_each_cpu(i, cpu_map) {
6884 sd = *per_cpu_ptr(d.sd, i);
6885 cpu_attach_domain(sd, d.rd, i);
6886 }
6887 rcu_read_unlock();
6888
6889 ret = 0;
6890 error:
6891 __free_domain_allocs(&d, alloc_state, cpu_map);
6892 return ret;
6893 }
6894
6895 static cpumask_var_t *doms_cur; /* current sched domains */
6896 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6897 static struct sched_domain_attr *dattr_cur;
6898 /* attribues of custom domains in 'doms_cur' */
6899
6900 /*
6901 * Special case: If a kmalloc of a doms_cur partition (array of
6902 * cpumask) fails, then fallback to a single sched domain,
6903 * as determined by the single cpumask fallback_doms.
6904 */
6905 static cpumask_var_t fallback_doms;
6906
6907 /*
6908 * arch_update_cpu_topology lets virtualized architectures update the
6909 * cpu core maps. It is supposed to return 1 if the topology changed
6910 * or 0 if it stayed the same.
6911 */
6912 int __weak arch_update_cpu_topology(void)
6913 {
6914 return 0;
6915 }
6916
6917 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6918 {
6919 int i;
6920 cpumask_var_t *doms;
6921
6922 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6923 if (!doms)
6924 return NULL;
6925 for (i = 0; i < ndoms; i++) {
6926 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6927 free_sched_domains(doms, i);
6928 return NULL;
6929 }
6930 }
6931 return doms;
6932 }
6933
6934 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6935 {
6936 unsigned int i;
6937 for (i = 0; i < ndoms; i++)
6938 free_cpumask_var(doms[i]);
6939 kfree(doms);
6940 }
6941
6942 /*
6943 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6944 * For now this just excludes isolated cpus, but could be used to
6945 * exclude other special cases in the future.
6946 */
6947 static int init_sched_domains(const struct cpumask *cpu_map)
6948 {
6949 int err;
6950
6951 arch_update_cpu_topology();
6952 ndoms_cur = 1;
6953 doms_cur = alloc_sched_domains(ndoms_cur);
6954 if (!doms_cur)
6955 doms_cur = &fallback_doms;
6956 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6957 err = build_sched_domains(doms_cur[0], NULL);
6958 register_sched_domain_sysctl();
6959
6960 return err;
6961 }
6962
6963 /*
6964 * Detach sched domains from a group of cpus specified in cpu_map
6965 * These cpus will now be attached to the NULL domain
6966 */
6967 static void detach_destroy_domains(const struct cpumask *cpu_map)
6968 {
6969 int i;
6970
6971 rcu_read_lock();
6972 for_each_cpu(i, cpu_map)
6973 cpu_attach_domain(NULL, &def_root_domain, i);
6974 rcu_read_unlock();
6975 }
6976
6977 /* handle null as "default" */
6978 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6979 struct sched_domain_attr *new, int idx_new)
6980 {
6981 struct sched_domain_attr tmp;
6982
6983 /* fast path */
6984 if (!new && !cur)
6985 return 1;
6986
6987 tmp = SD_ATTR_INIT;
6988 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6989 new ? (new + idx_new) : &tmp,
6990 sizeof(struct sched_domain_attr));
6991 }
6992
6993 /*
6994 * Partition sched domains as specified by the 'ndoms_new'
6995 * cpumasks in the array doms_new[] of cpumasks. This compares
6996 * doms_new[] to the current sched domain partitioning, doms_cur[].
6997 * It destroys each deleted domain and builds each new domain.
6998 *
6999 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7000 * The masks don't intersect (don't overlap.) We should setup one
7001 * sched domain for each mask. CPUs not in any of the cpumasks will
7002 * not be load balanced. If the same cpumask appears both in the
7003 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7004 * it as it is.
7005 *
7006 * The passed in 'doms_new' should be allocated using
7007 * alloc_sched_domains. This routine takes ownership of it and will
7008 * free_sched_domains it when done with it. If the caller failed the
7009 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7010 * and partition_sched_domains() will fallback to the single partition
7011 * 'fallback_doms', it also forces the domains to be rebuilt.
7012 *
7013 * If doms_new == NULL it will be replaced with cpu_online_mask.
7014 * ndoms_new == 0 is a special case for destroying existing domains,
7015 * and it will not create the default domain.
7016 *
7017 * Call with hotplug lock held
7018 */
7019 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7020 struct sched_domain_attr *dattr_new)
7021 {
7022 int i, j, n;
7023 int new_topology;
7024
7025 mutex_lock(&sched_domains_mutex);
7026
7027 /* always unregister in case we don't destroy any domains */
7028 unregister_sched_domain_sysctl();
7029
7030 /* Let architecture update cpu core mappings. */
7031 new_topology = arch_update_cpu_topology();
7032
7033 n = doms_new ? ndoms_new : 0;
7034
7035 /* Destroy deleted domains */
7036 for (i = 0; i < ndoms_cur; i++) {
7037 for (j = 0; j < n && !new_topology; j++) {
7038 if (cpumask_equal(doms_cur[i], doms_new[j])
7039 && dattrs_equal(dattr_cur, i, dattr_new, j))
7040 goto match1;
7041 }
7042 /* no match - a current sched domain not in new doms_new[] */
7043 detach_destroy_domains(doms_cur[i]);
7044 match1:
7045 ;
7046 }
7047
7048 n = ndoms_cur;
7049 if (doms_new == NULL) {
7050 n = 0;
7051 doms_new = &fallback_doms;
7052 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7053 WARN_ON_ONCE(dattr_new);
7054 }
7055
7056 /* Build new domains */
7057 for (i = 0; i < ndoms_new; i++) {
7058 for (j = 0; j < n && !new_topology; j++) {
7059 if (cpumask_equal(doms_new[i], doms_cur[j])
7060 && dattrs_equal(dattr_new, i, dattr_cur, j))
7061 goto match2;
7062 }
7063 /* no match - add a new doms_new */
7064 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7065 match2:
7066 ;
7067 }
7068
7069 /* Remember the new sched domains */
7070 if (doms_cur != &fallback_doms)
7071 free_sched_domains(doms_cur, ndoms_cur);
7072 kfree(dattr_cur); /* kfree(NULL) is safe */
7073 doms_cur = doms_new;
7074 dattr_cur = dattr_new;
7075 ndoms_cur = ndoms_new;
7076
7077 register_sched_domain_sysctl();
7078
7079 mutex_unlock(&sched_domains_mutex);
7080 }
7081
7082 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7083
7084 /*
7085 * Update cpusets according to cpu_active mask. If cpusets are
7086 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7087 * around partition_sched_domains().
7088 *
7089 * If we come here as part of a suspend/resume, don't touch cpusets because we
7090 * want to restore it back to its original state upon resume anyway.
7091 */
7092 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7093 void *hcpu)
7094 {
7095 switch (action) {
7096 case CPU_ONLINE_FROZEN:
7097 case CPU_DOWN_FAILED_FROZEN:
7098
7099 /*
7100 * num_cpus_frozen tracks how many CPUs are involved in suspend
7101 * resume sequence. As long as this is not the last online
7102 * operation in the resume sequence, just build a single sched
7103 * domain, ignoring cpusets.
7104 */
7105 num_cpus_frozen--;
7106 if (likely(num_cpus_frozen)) {
7107 partition_sched_domains(1, NULL, NULL);
7108 break;
7109 }
7110
7111 /*
7112 * This is the last CPU online operation. So fall through and
7113 * restore the original sched domains by considering the
7114 * cpuset configurations.
7115 */
7116
7117 case CPU_ONLINE:
7118 cpuset_update_active_cpus(true);
7119 break;
7120 default:
7121 return NOTIFY_DONE;
7122 }
7123 return NOTIFY_OK;
7124 }
7125
7126 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7127 void *hcpu)
7128 {
7129 unsigned long flags;
7130 long cpu = (long)hcpu;
7131 struct dl_bw *dl_b;
7132 bool overflow;
7133 int cpus;
7134
7135 switch (action) {
7136 case CPU_DOWN_PREPARE:
7137 rcu_read_lock_sched();
7138 dl_b = dl_bw_of(cpu);
7139
7140 raw_spin_lock_irqsave(&dl_b->lock, flags);
7141 cpus = dl_bw_cpus(cpu);
7142 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7143 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7144
7145 rcu_read_unlock_sched();
7146
7147 if (overflow)
7148 return notifier_from_errno(-EBUSY);
7149 cpuset_update_active_cpus(false);
7150 break;
7151 case CPU_DOWN_PREPARE_FROZEN:
7152 num_cpus_frozen++;
7153 partition_sched_domains(1, NULL, NULL);
7154 break;
7155 default:
7156 return NOTIFY_DONE;
7157 }
7158 return NOTIFY_OK;
7159 }
7160
7161 void __init sched_init_smp(void)
7162 {
7163 cpumask_var_t non_isolated_cpus;
7164
7165 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7166 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7167
7168 sched_init_numa();
7169
7170 /*
7171 * There's no userspace yet to cause hotplug operations; hence all the
7172 * cpu masks are stable and all blatant races in the below code cannot
7173 * happen.
7174 */
7175 mutex_lock(&sched_domains_mutex);
7176 init_sched_domains(cpu_active_mask);
7177 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7178 if (cpumask_empty(non_isolated_cpus))
7179 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7180 mutex_unlock(&sched_domains_mutex);
7181
7182 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7183 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7184 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7185
7186 init_hrtick();
7187
7188 /* Move init over to a non-isolated CPU */
7189 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7190 BUG();
7191 sched_init_granularity();
7192 free_cpumask_var(non_isolated_cpus);
7193
7194 init_sched_rt_class();
7195 init_sched_dl_class();
7196 }
7197 #else
7198 void __init sched_init_smp(void)
7199 {
7200 sched_init_granularity();
7201 }
7202 #endif /* CONFIG_SMP */
7203
7204 int in_sched_functions(unsigned long addr)
7205 {
7206 return in_lock_functions(addr) ||
7207 (addr >= (unsigned long)__sched_text_start
7208 && addr < (unsigned long)__sched_text_end);
7209 }
7210
7211 #ifdef CONFIG_CGROUP_SCHED
7212 /*
7213 * Default task group.
7214 * Every task in system belongs to this group at bootup.
7215 */
7216 struct task_group root_task_group;
7217 LIST_HEAD(task_groups);
7218
7219 /* Cacheline aligned slab cache for task_group */
7220 static struct kmem_cache *task_group_cache __read_mostly;
7221 #endif
7222
7223 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7224
7225 void __init sched_init(void)
7226 {
7227 int i, j;
7228 unsigned long alloc_size = 0, ptr;
7229
7230 #ifdef CONFIG_FAIR_GROUP_SCHED
7231 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7232 #endif
7233 #ifdef CONFIG_RT_GROUP_SCHED
7234 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235 #endif
7236 if (alloc_size) {
7237 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7238
7239 #ifdef CONFIG_FAIR_GROUP_SCHED
7240 root_task_group.se = (struct sched_entity **)ptr;
7241 ptr += nr_cpu_ids * sizeof(void **);
7242
7243 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7244 ptr += nr_cpu_ids * sizeof(void **);
7245
7246 #endif /* CONFIG_FAIR_GROUP_SCHED */
7247 #ifdef CONFIG_RT_GROUP_SCHED
7248 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7249 ptr += nr_cpu_ids * sizeof(void **);
7250
7251 root_task_group.rt_rq = (struct rt_rq **)ptr;
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
7254 #endif /* CONFIG_RT_GROUP_SCHED */
7255 }
7256 #ifdef CONFIG_CPUMASK_OFFSTACK
7257 for_each_possible_cpu(i) {
7258 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7259 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7260 }
7261 #endif /* CONFIG_CPUMASK_OFFSTACK */
7262
7263 init_rt_bandwidth(&def_rt_bandwidth,
7264 global_rt_period(), global_rt_runtime());
7265 init_dl_bandwidth(&def_dl_bandwidth,
7266 global_rt_period(), global_rt_runtime());
7267
7268 #ifdef CONFIG_SMP
7269 init_defrootdomain();
7270 #endif
7271
7272 #ifdef CONFIG_RT_GROUP_SCHED
7273 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7274 global_rt_period(), global_rt_runtime());
7275 #endif /* CONFIG_RT_GROUP_SCHED */
7276
7277 #ifdef CONFIG_CGROUP_SCHED
7278 task_group_cache = KMEM_CACHE(task_group, 0);
7279
7280 list_add(&root_task_group.list, &task_groups);
7281 INIT_LIST_HEAD(&root_task_group.children);
7282 INIT_LIST_HEAD(&root_task_group.siblings);
7283 autogroup_init(&init_task);
7284 #endif /* CONFIG_CGROUP_SCHED */
7285
7286 for_each_possible_cpu(i) {
7287 struct rq *rq;
7288
7289 rq = cpu_rq(i);
7290 raw_spin_lock_init(&rq->lock);
7291 rq->nr_running = 0;
7292 rq->calc_load_active = 0;
7293 rq->calc_load_update = jiffies + LOAD_FREQ;
7294 init_cfs_rq(&rq->cfs);
7295 init_rt_rq(&rq->rt);
7296 init_dl_rq(&rq->dl);
7297 #ifdef CONFIG_FAIR_GROUP_SCHED
7298 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7299 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7300 /*
7301 * How much cpu bandwidth does root_task_group get?
7302 *
7303 * In case of task-groups formed thr' the cgroup filesystem, it
7304 * gets 100% of the cpu resources in the system. This overall
7305 * system cpu resource is divided among the tasks of
7306 * root_task_group and its child task-groups in a fair manner,
7307 * based on each entity's (task or task-group's) weight
7308 * (se->load.weight).
7309 *
7310 * In other words, if root_task_group has 10 tasks of weight
7311 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7312 * then A0's share of the cpu resource is:
7313 *
7314 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7315 *
7316 * We achieve this by letting root_task_group's tasks sit
7317 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7318 */
7319 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7320 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7321 #endif /* CONFIG_FAIR_GROUP_SCHED */
7322
7323 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7324 #ifdef CONFIG_RT_GROUP_SCHED
7325 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7326 #endif
7327
7328 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7329 rq->cpu_load[j] = 0;
7330
7331 rq->last_load_update_tick = jiffies;
7332
7333 #ifdef CONFIG_SMP
7334 rq->sd = NULL;
7335 rq->rd = NULL;
7336 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7337 rq->balance_callback = NULL;
7338 rq->active_balance = 0;
7339 rq->next_balance = jiffies;
7340 rq->push_cpu = 0;
7341 rq->cpu = i;
7342 rq->online = 0;
7343 rq->idle_stamp = 0;
7344 rq->avg_idle = 2*sysctl_sched_migration_cost;
7345 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7346
7347 INIT_LIST_HEAD(&rq->cfs_tasks);
7348
7349 rq_attach_root(rq, &def_root_domain);
7350 #ifdef CONFIG_NO_HZ_COMMON
7351 rq->nohz_flags = 0;
7352 #endif
7353 #ifdef CONFIG_NO_HZ_FULL
7354 rq->last_sched_tick = 0;
7355 #endif
7356 #endif
7357 init_rq_hrtick(rq);
7358 atomic_set(&rq->nr_iowait, 0);
7359 }
7360
7361 set_load_weight(&init_task);
7362
7363 #ifdef CONFIG_PREEMPT_NOTIFIERS
7364 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7365 #endif
7366
7367 /*
7368 * The boot idle thread does lazy MMU switching as well:
7369 */
7370 atomic_inc(&init_mm.mm_count);
7371 enter_lazy_tlb(&init_mm, current);
7372
7373 /*
7374 * During early bootup we pretend to be a normal task:
7375 */
7376 current->sched_class = &fair_sched_class;
7377
7378 /*
7379 * Make us the idle thread. Technically, schedule() should not be
7380 * called from this thread, however somewhere below it might be,
7381 * but because we are the idle thread, we just pick up running again
7382 * when this runqueue becomes "idle".
7383 */
7384 init_idle(current, smp_processor_id());
7385
7386 calc_load_update = jiffies + LOAD_FREQ;
7387
7388 #ifdef CONFIG_SMP
7389 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7390 /* May be allocated at isolcpus cmdline parse time */
7391 if (cpu_isolated_map == NULL)
7392 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7393 idle_thread_set_boot_cpu();
7394 set_cpu_rq_start_time();
7395 #endif
7396 init_sched_fair_class();
7397
7398 scheduler_running = 1;
7399 }
7400
7401 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7402 static inline int preempt_count_equals(int preempt_offset)
7403 {
7404 int nested = preempt_count() + rcu_preempt_depth();
7405
7406 return (nested == preempt_offset);
7407 }
7408
7409 void __might_sleep(const char *file, int line, int preempt_offset)
7410 {
7411 /*
7412 * Blocking primitives will set (and therefore destroy) current->state,
7413 * since we will exit with TASK_RUNNING make sure we enter with it,
7414 * otherwise we will destroy state.
7415 */
7416 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7417 "do not call blocking ops when !TASK_RUNNING; "
7418 "state=%lx set at [<%p>] %pS\n",
7419 current->state,
7420 (void *)current->task_state_change,
7421 (void *)current->task_state_change);
7422
7423 ___might_sleep(file, line, preempt_offset);
7424 }
7425 EXPORT_SYMBOL(__might_sleep);
7426
7427 void ___might_sleep(const char *file, int line, int preempt_offset)
7428 {
7429 static unsigned long prev_jiffy; /* ratelimiting */
7430
7431 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7432 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7433 !is_idle_task(current)) ||
7434 system_state != SYSTEM_RUNNING || oops_in_progress)
7435 return;
7436 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7437 return;
7438 prev_jiffy = jiffies;
7439
7440 printk(KERN_ERR
7441 "BUG: sleeping function called from invalid context at %s:%d\n",
7442 file, line);
7443 printk(KERN_ERR
7444 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7445 in_atomic(), irqs_disabled(),
7446 current->pid, current->comm);
7447
7448 if (task_stack_end_corrupted(current))
7449 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7450
7451 debug_show_held_locks(current);
7452 if (irqs_disabled())
7453 print_irqtrace_events(current);
7454 #ifdef CONFIG_DEBUG_PREEMPT
7455 if (!preempt_count_equals(preempt_offset)) {
7456 pr_err("Preemption disabled at:");
7457 print_ip_sym(current->preempt_disable_ip);
7458 pr_cont("\n");
7459 }
7460 #endif
7461 dump_stack();
7462 }
7463 EXPORT_SYMBOL(___might_sleep);
7464 #endif
7465
7466 #ifdef CONFIG_MAGIC_SYSRQ
7467 void normalize_rt_tasks(void)
7468 {
7469 struct task_struct *g, *p;
7470 struct sched_attr attr = {
7471 .sched_policy = SCHED_NORMAL,
7472 };
7473
7474 read_lock(&tasklist_lock);
7475 for_each_process_thread(g, p) {
7476 /*
7477 * Only normalize user tasks:
7478 */
7479 if (p->flags & PF_KTHREAD)
7480 continue;
7481
7482 p->se.exec_start = 0;
7483 #ifdef CONFIG_SCHEDSTATS
7484 p->se.statistics.wait_start = 0;
7485 p->se.statistics.sleep_start = 0;
7486 p->se.statistics.block_start = 0;
7487 #endif
7488
7489 if (!dl_task(p) && !rt_task(p)) {
7490 /*
7491 * Renice negative nice level userspace
7492 * tasks back to 0:
7493 */
7494 if (task_nice(p) < 0)
7495 set_user_nice(p, 0);
7496 continue;
7497 }
7498
7499 __sched_setscheduler(p, &attr, false, false);
7500 }
7501 read_unlock(&tasklist_lock);
7502 }
7503
7504 #endif /* CONFIG_MAGIC_SYSRQ */
7505
7506 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7507 /*
7508 * These functions are only useful for the IA64 MCA handling, or kdb.
7509 *
7510 * They can only be called when the whole system has been
7511 * stopped - every CPU needs to be quiescent, and no scheduling
7512 * activity can take place. Using them for anything else would
7513 * be a serious bug, and as a result, they aren't even visible
7514 * under any other configuration.
7515 */
7516
7517 /**
7518 * curr_task - return the current task for a given cpu.
7519 * @cpu: the processor in question.
7520 *
7521 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7522 *
7523 * Return: The current task for @cpu.
7524 */
7525 struct task_struct *curr_task(int cpu)
7526 {
7527 return cpu_curr(cpu);
7528 }
7529
7530 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7531
7532 #ifdef CONFIG_IA64
7533 /**
7534 * set_curr_task - set the current task for a given cpu.
7535 * @cpu: the processor in question.
7536 * @p: the task pointer to set.
7537 *
7538 * Description: This function must only be used when non-maskable interrupts
7539 * are serviced on a separate stack. It allows the architecture to switch the
7540 * notion of the current task on a cpu in a non-blocking manner. This function
7541 * must be called with all CPU's synchronized, and interrupts disabled, the
7542 * and caller must save the original value of the current task (see
7543 * curr_task() above) and restore that value before reenabling interrupts and
7544 * re-starting the system.
7545 *
7546 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7547 */
7548 void set_curr_task(int cpu, struct task_struct *p)
7549 {
7550 cpu_curr(cpu) = p;
7551 }
7552
7553 #endif
7554
7555 #ifdef CONFIG_CGROUP_SCHED
7556 /* task_group_lock serializes the addition/removal of task groups */
7557 static DEFINE_SPINLOCK(task_group_lock);
7558
7559 static void sched_free_group(struct task_group *tg)
7560 {
7561 free_fair_sched_group(tg);
7562 free_rt_sched_group(tg);
7563 autogroup_free(tg);
7564 kmem_cache_free(task_group_cache, tg);
7565 }
7566
7567 /* allocate runqueue etc for a new task group */
7568 struct task_group *sched_create_group(struct task_group *parent)
7569 {
7570 struct task_group *tg;
7571
7572 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7573 if (!tg)
7574 return ERR_PTR(-ENOMEM);
7575
7576 if (!alloc_fair_sched_group(tg, parent))
7577 goto err;
7578
7579 if (!alloc_rt_sched_group(tg, parent))
7580 goto err;
7581
7582 return tg;
7583
7584 err:
7585 sched_free_group(tg);
7586 return ERR_PTR(-ENOMEM);
7587 }
7588
7589 void sched_online_group(struct task_group *tg, struct task_group *parent)
7590 {
7591 unsigned long flags;
7592
7593 spin_lock_irqsave(&task_group_lock, flags);
7594 list_add_rcu(&tg->list, &task_groups);
7595
7596 WARN_ON(!parent); /* root should already exist */
7597
7598 tg->parent = parent;
7599 INIT_LIST_HEAD(&tg->children);
7600 list_add_rcu(&tg->siblings, &parent->children);
7601 spin_unlock_irqrestore(&task_group_lock, flags);
7602 }
7603
7604 /* rcu callback to free various structures associated with a task group */
7605 static void sched_free_group_rcu(struct rcu_head *rhp)
7606 {
7607 /* now it should be safe to free those cfs_rqs */
7608 sched_free_group(container_of(rhp, struct task_group, rcu));
7609 }
7610
7611 void sched_destroy_group(struct task_group *tg)
7612 {
7613 /* wait for possible concurrent references to cfs_rqs complete */
7614 call_rcu(&tg->rcu, sched_free_group_rcu);
7615 }
7616
7617 void sched_offline_group(struct task_group *tg)
7618 {
7619 unsigned long flags;
7620
7621 /* end participation in shares distribution */
7622 unregister_fair_sched_group(tg);
7623
7624 spin_lock_irqsave(&task_group_lock, flags);
7625 list_del_rcu(&tg->list);
7626 list_del_rcu(&tg->siblings);
7627 spin_unlock_irqrestore(&task_group_lock, flags);
7628 }
7629
7630 /* change task's runqueue when it moves between groups.
7631 * The caller of this function should have put the task in its new group
7632 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7633 * reflect its new group.
7634 */
7635 void sched_move_task(struct task_struct *tsk)
7636 {
7637 struct task_group *tg;
7638 int queued, running;
7639 unsigned long flags;
7640 struct rq *rq;
7641
7642 rq = task_rq_lock(tsk, &flags);
7643
7644 running = task_current(rq, tsk);
7645 queued = task_on_rq_queued(tsk);
7646
7647 if (queued)
7648 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7649 if (unlikely(running))
7650 put_prev_task(rq, tsk);
7651
7652 /*
7653 * All callers are synchronized by task_rq_lock(); we do not use RCU
7654 * which is pointless here. Thus, we pass "true" to task_css_check()
7655 * to prevent lockdep warnings.
7656 */
7657 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7658 struct task_group, css);
7659 tg = autogroup_task_group(tsk, tg);
7660 tsk->sched_task_group = tg;
7661
7662 #ifdef CONFIG_FAIR_GROUP_SCHED
7663 if (tsk->sched_class->task_move_group)
7664 tsk->sched_class->task_move_group(tsk);
7665 else
7666 #endif
7667 set_task_rq(tsk, task_cpu(tsk));
7668
7669 if (unlikely(running))
7670 tsk->sched_class->set_curr_task(rq);
7671 if (queued)
7672 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7673
7674 task_rq_unlock(rq, tsk, &flags);
7675 }
7676 #endif /* CONFIG_CGROUP_SCHED */
7677
7678 #ifdef CONFIG_RT_GROUP_SCHED
7679 /*
7680 * Ensure that the real time constraints are schedulable.
7681 */
7682 static DEFINE_MUTEX(rt_constraints_mutex);
7683
7684 /* Must be called with tasklist_lock held */
7685 static inline int tg_has_rt_tasks(struct task_group *tg)
7686 {
7687 struct task_struct *g, *p;
7688
7689 /*
7690 * Autogroups do not have RT tasks; see autogroup_create().
7691 */
7692 if (task_group_is_autogroup(tg))
7693 return 0;
7694
7695 for_each_process_thread(g, p) {
7696 if (rt_task(p) && task_group(p) == tg)
7697 return 1;
7698 }
7699
7700 return 0;
7701 }
7702
7703 struct rt_schedulable_data {
7704 struct task_group *tg;
7705 u64 rt_period;
7706 u64 rt_runtime;
7707 };
7708
7709 static int tg_rt_schedulable(struct task_group *tg, void *data)
7710 {
7711 struct rt_schedulable_data *d = data;
7712 struct task_group *child;
7713 unsigned long total, sum = 0;
7714 u64 period, runtime;
7715
7716 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7717 runtime = tg->rt_bandwidth.rt_runtime;
7718
7719 if (tg == d->tg) {
7720 period = d->rt_period;
7721 runtime = d->rt_runtime;
7722 }
7723
7724 /*
7725 * Cannot have more runtime than the period.
7726 */
7727 if (runtime > period && runtime != RUNTIME_INF)
7728 return -EINVAL;
7729
7730 /*
7731 * Ensure we don't starve existing RT tasks.
7732 */
7733 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7734 return -EBUSY;
7735
7736 total = to_ratio(period, runtime);
7737
7738 /*
7739 * Nobody can have more than the global setting allows.
7740 */
7741 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7742 return -EINVAL;
7743
7744 /*
7745 * The sum of our children's runtime should not exceed our own.
7746 */
7747 list_for_each_entry_rcu(child, &tg->children, siblings) {
7748 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7749 runtime = child->rt_bandwidth.rt_runtime;
7750
7751 if (child == d->tg) {
7752 period = d->rt_period;
7753 runtime = d->rt_runtime;
7754 }
7755
7756 sum += to_ratio(period, runtime);
7757 }
7758
7759 if (sum > total)
7760 return -EINVAL;
7761
7762 return 0;
7763 }
7764
7765 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7766 {
7767 int ret;
7768
7769 struct rt_schedulable_data data = {
7770 .tg = tg,
7771 .rt_period = period,
7772 .rt_runtime = runtime,
7773 };
7774
7775 rcu_read_lock();
7776 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7777 rcu_read_unlock();
7778
7779 return ret;
7780 }
7781
7782 static int tg_set_rt_bandwidth(struct task_group *tg,
7783 u64 rt_period, u64 rt_runtime)
7784 {
7785 int i, err = 0;
7786
7787 /*
7788 * Disallowing the root group RT runtime is BAD, it would disallow the
7789 * kernel creating (and or operating) RT threads.
7790 */
7791 if (tg == &root_task_group && rt_runtime == 0)
7792 return -EINVAL;
7793
7794 /* No period doesn't make any sense. */
7795 if (rt_period == 0)
7796 return -EINVAL;
7797
7798 mutex_lock(&rt_constraints_mutex);
7799 read_lock(&tasklist_lock);
7800 err = __rt_schedulable(tg, rt_period, rt_runtime);
7801 if (err)
7802 goto unlock;
7803
7804 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7805 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7806 tg->rt_bandwidth.rt_runtime = rt_runtime;
7807
7808 for_each_possible_cpu(i) {
7809 struct rt_rq *rt_rq = tg->rt_rq[i];
7810
7811 raw_spin_lock(&rt_rq->rt_runtime_lock);
7812 rt_rq->rt_runtime = rt_runtime;
7813 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7814 }
7815 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7816 unlock:
7817 read_unlock(&tasklist_lock);
7818 mutex_unlock(&rt_constraints_mutex);
7819
7820 return err;
7821 }
7822
7823 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7824 {
7825 u64 rt_runtime, rt_period;
7826
7827 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7828 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7829 if (rt_runtime_us < 0)
7830 rt_runtime = RUNTIME_INF;
7831
7832 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7833 }
7834
7835 static long sched_group_rt_runtime(struct task_group *tg)
7836 {
7837 u64 rt_runtime_us;
7838
7839 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7840 return -1;
7841
7842 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7843 do_div(rt_runtime_us, NSEC_PER_USEC);
7844 return rt_runtime_us;
7845 }
7846
7847 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7848 {
7849 u64 rt_runtime, rt_period;
7850
7851 rt_period = rt_period_us * NSEC_PER_USEC;
7852 rt_runtime = tg->rt_bandwidth.rt_runtime;
7853
7854 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7855 }
7856
7857 static long sched_group_rt_period(struct task_group *tg)
7858 {
7859 u64 rt_period_us;
7860
7861 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7862 do_div(rt_period_us, NSEC_PER_USEC);
7863 return rt_period_us;
7864 }
7865 #endif /* CONFIG_RT_GROUP_SCHED */
7866
7867 #ifdef CONFIG_RT_GROUP_SCHED
7868 static int sched_rt_global_constraints(void)
7869 {
7870 int ret = 0;
7871
7872 mutex_lock(&rt_constraints_mutex);
7873 read_lock(&tasklist_lock);
7874 ret = __rt_schedulable(NULL, 0, 0);
7875 read_unlock(&tasklist_lock);
7876 mutex_unlock(&rt_constraints_mutex);
7877
7878 return ret;
7879 }
7880
7881 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7882 {
7883 /* Don't accept realtime tasks when there is no way for them to run */
7884 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7885 return 0;
7886
7887 return 1;
7888 }
7889
7890 #else /* !CONFIG_RT_GROUP_SCHED */
7891 static int sched_rt_global_constraints(void)
7892 {
7893 unsigned long flags;
7894 int i, ret = 0;
7895
7896 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7897 for_each_possible_cpu(i) {
7898 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7899
7900 raw_spin_lock(&rt_rq->rt_runtime_lock);
7901 rt_rq->rt_runtime = global_rt_runtime();
7902 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7903 }
7904 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7905
7906 return ret;
7907 }
7908 #endif /* CONFIG_RT_GROUP_SCHED */
7909
7910 static int sched_dl_global_validate(void)
7911 {
7912 u64 runtime = global_rt_runtime();
7913 u64 period = global_rt_period();
7914 u64 new_bw = to_ratio(period, runtime);
7915 struct dl_bw *dl_b;
7916 int cpu, ret = 0;
7917 unsigned long flags;
7918
7919 /*
7920 * Here we want to check the bandwidth not being set to some
7921 * value smaller than the currently allocated bandwidth in
7922 * any of the root_domains.
7923 *
7924 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7925 * cycling on root_domains... Discussion on different/better
7926 * solutions is welcome!
7927 */
7928 for_each_possible_cpu(cpu) {
7929 rcu_read_lock_sched();
7930 dl_b = dl_bw_of(cpu);
7931
7932 raw_spin_lock_irqsave(&dl_b->lock, flags);
7933 if (new_bw < dl_b->total_bw)
7934 ret = -EBUSY;
7935 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7936
7937 rcu_read_unlock_sched();
7938
7939 if (ret)
7940 break;
7941 }
7942
7943 return ret;
7944 }
7945
7946 static void sched_dl_do_global(void)
7947 {
7948 u64 new_bw = -1;
7949 struct dl_bw *dl_b;
7950 int cpu;
7951 unsigned long flags;
7952
7953 def_dl_bandwidth.dl_period = global_rt_period();
7954 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7955
7956 if (global_rt_runtime() != RUNTIME_INF)
7957 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7958
7959 /*
7960 * FIXME: As above...
7961 */
7962 for_each_possible_cpu(cpu) {
7963 rcu_read_lock_sched();
7964 dl_b = dl_bw_of(cpu);
7965
7966 raw_spin_lock_irqsave(&dl_b->lock, flags);
7967 dl_b->bw = new_bw;
7968 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7969
7970 rcu_read_unlock_sched();
7971 }
7972 }
7973
7974 static int sched_rt_global_validate(void)
7975 {
7976 if (sysctl_sched_rt_period <= 0)
7977 return -EINVAL;
7978
7979 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7980 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7981 return -EINVAL;
7982
7983 return 0;
7984 }
7985
7986 static void sched_rt_do_global(void)
7987 {
7988 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7989 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7990 }
7991
7992 int sched_rt_handler(struct ctl_table *table, int write,
7993 void __user *buffer, size_t *lenp,
7994 loff_t *ppos)
7995 {
7996 int old_period, old_runtime;
7997 static DEFINE_MUTEX(mutex);
7998 int ret;
7999
8000 mutex_lock(&mutex);
8001 old_period = sysctl_sched_rt_period;
8002 old_runtime = sysctl_sched_rt_runtime;
8003
8004 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8005
8006 if (!ret && write) {
8007 ret = sched_rt_global_validate();
8008 if (ret)
8009 goto undo;
8010
8011 ret = sched_dl_global_validate();
8012 if (ret)
8013 goto undo;
8014
8015 ret = sched_rt_global_constraints();
8016 if (ret)
8017 goto undo;
8018
8019 sched_rt_do_global();
8020 sched_dl_do_global();
8021 }
8022 if (0) {
8023 undo:
8024 sysctl_sched_rt_period = old_period;
8025 sysctl_sched_rt_runtime = old_runtime;
8026 }
8027 mutex_unlock(&mutex);
8028
8029 return ret;
8030 }
8031
8032 int sched_rr_handler(struct ctl_table *table, int write,
8033 void __user *buffer, size_t *lenp,
8034 loff_t *ppos)
8035 {
8036 int ret;
8037 static DEFINE_MUTEX(mutex);
8038
8039 mutex_lock(&mutex);
8040 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8041 /* make sure that internally we keep jiffies */
8042 /* also, writing zero resets timeslice to default */
8043 if (!ret && write) {
8044 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8045 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8046 }
8047 mutex_unlock(&mutex);
8048 return ret;
8049 }
8050
8051 #ifdef CONFIG_CGROUP_SCHED
8052
8053 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8054 {
8055 return css ? container_of(css, struct task_group, css) : NULL;
8056 }
8057
8058 static struct cgroup_subsys_state *
8059 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8060 {
8061 struct task_group *parent = css_tg(parent_css);
8062 struct task_group *tg;
8063
8064 if (!parent) {
8065 /* This is early initialization for the top cgroup */
8066 return &root_task_group.css;
8067 }
8068
8069 tg = sched_create_group(parent);
8070 if (IS_ERR(tg))
8071 return ERR_PTR(-ENOMEM);
8072
8073 sched_online_group(tg, parent);
8074
8075 return &tg->css;
8076 }
8077
8078 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8079 {
8080 struct task_group *tg = css_tg(css);
8081
8082 sched_offline_group(tg);
8083 }
8084
8085 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8086 {
8087 struct task_group *tg = css_tg(css);
8088
8089 /*
8090 * Relies on the RCU grace period between css_released() and this.
8091 */
8092 sched_free_group(tg);
8093 }
8094
8095 static void cpu_cgroup_fork(struct task_struct *task)
8096 {
8097 sched_move_task(task);
8098 }
8099
8100 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8101 {
8102 struct task_struct *task;
8103 struct cgroup_subsys_state *css;
8104
8105 cgroup_taskset_for_each(task, css, tset) {
8106 #ifdef CONFIG_RT_GROUP_SCHED
8107 if (!sched_rt_can_attach(css_tg(css), task))
8108 return -EINVAL;
8109 #else
8110 /* We don't support RT-tasks being in separate groups */
8111 if (task->sched_class != &fair_sched_class)
8112 return -EINVAL;
8113 #endif
8114 }
8115 return 0;
8116 }
8117
8118 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8119 {
8120 struct task_struct *task;
8121 struct cgroup_subsys_state *css;
8122
8123 cgroup_taskset_for_each(task, css, tset)
8124 sched_move_task(task);
8125 }
8126
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8129 struct cftype *cftype, u64 shareval)
8130 {
8131 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8132 }
8133
8134 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8135 struct cftype *cft)
8136 {
8137 struct task_group *tg = css_tg(css);
8138
8139 return (u64) scale_load_down(tg->shares);
8140 }
8141
8142 #ifdef CONFIG_CFS_BANDWIDTH
8143 static DEFINE_MUTEX(cfs_constraints_mutex);
8144
8145 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8146 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8147
8148 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8149
8150 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8151 {
8152 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8153 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8154
8155 if (tg == &root_task_group)
8156 return -EINVAL;
8157
8158 /*
8159 * Ensure we have at some amount of bandwidth every period. This is
8160 * to prevent reaching a state of large arrears when throttled via
8161 * entity_tick() resulting in prolonged exit starvation.
8162 */
8163 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8164 return -EINVAL;
8165
8166 /*
8167 * Likewise, bound things on the otherside by preventing insane quota
8168 * periods. This also allows us to normalize in computing quota
8169 * feasibility.
8170 */
8171 if (period > max_cfs_quota_period)
8172 return -EINVAL;
8173
8174 /*
8175 * Prevent race between setting of cfs_rq->runtime_enabled and
8176 * unthrottle_offline_cfs_rqs().
8177 */
8178 get_online_cpus();
8179 mutex_lock(&cfs_constraints_mutex);
8180 ret = __cfs_schedulable(tg, period, quota);
8181 if (ret)
8182 goto out_unlock;
8183
8184 runtime_enabled = quota != RUNTIME_INF;
8185 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8186 /*
8187 * If we need to toggle cfs_bandwidth_used, off->on must occur
8188 * before making related changes, and on->off must occur afterwards
8189 */
8190 if (runtime_enabled && !runtime_was_enabled)
8191 cfs_bandwidth_usage_inc();
8192 raw_spin_lock_irq(&cfs_b->lock);
8193 cfs_b->period = ns_to_ktime(period);
8194 cfs_b->quota = quota;
8195
8196 __refill_cfs_bandwidth_runtime(cfs_b);
8197 /* restart the period timer (if active) to handle new period expiry */
8198 if (runtime_enabled)
8199 start_cfs_bandwidth(cfs_b);
8200 raw_spin_unlock_irq(&cfs_b->lock);
8201
8202 for_each_online_cpu(i) {
8203 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8204 struct rq *rq = cfs_rq->rq;
8205
8206 raw_spin_lock_irq(&rq->lock);
8207 cfs_rq->runtime_enabled = runtime_enabled;
8208 cfs_rq->runtime_remaining = 0;
8209
8210 if (cfs_rq->throttled)
8211 unthrottle_cfs_rq(cfs_rq);
8212 raw_spin_unlock_irq(&rq->lock);
8213 }
8214 if (runtime_was_enabled && !runtime_enabled)
8215 cfs_bandwidth_usage_dec();
8216 out_unlock:
8217 mutex_unlock(&cfs_constraints_mutex);
8218 put_online_cpus();
8219
8220 return ret;
8221 }
8222
8223 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8224 {
8225 u64 quota, period;
8226
8227 period = ktime_to_ns(tg->cfs_bandwidth.period);
8228 if (cfs_quota_us < 0)
8229 quota = RUNTIME_INF;
8230 else
8231 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8232
8233 return tg_set_cfs_bandwidth(tg, period, quota);
8234 }
8235
8236 long tg_get_cfs_quota(struct task_group *tg)
8237 {
8238 u64 quota_us;
8239
8240 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8241 return -1;
8242
8243 quota_us = tg->cfs_bandwidth.quota;
8244 do_div(quota_us, NSEC_PER_USEC);
8245
8246 return quota_us;
8247 }
8248
8249 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8250 {
8251 u64 quota, period;
8252
8253 period = (u64)cfs_period_us * NSEC_PER_USEC;
8254 quota = tg->cfs_bandwidth.quota;
8255
8256 return tg_set_cfs_bandwidth(tg, period, quota);
8257 }
8258
8259 long tg_get_cfs_period(struct task_group *tg)
8260 {
8261 u64 cfs_period_us;
8262
8263 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8264 do_div(cfs_period_us, NSEC_PER_USEC);
8265
8266 return cfs_period_us;
8267 }
8268
8269 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8270 struct cftype *cft)
8271 {
8272 return tg_get_cfs_quota(css_tg(css));
8273 }
8274
8275 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8276 struct cftype *cftype, s64 cfs_quota_us)
8277 {
8278 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8279 }
8280
8281 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8282 struct cftype *cft)
8283 {
8284 return tg_get_cfs_period(css_tg(css));
8285 }
8286
8287 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8288 struct cftype *cftype, u64 cfs_period_us)
8289 {
8290 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8291 }
8292
8293 struct cfs_schedulable_data {
8294 struct task_group *tg;
8295 u64 period, quota;
8296 };
8297
8298 /*
8299 * normalize group quota/period to be quota/max_period
8300 * note: units are usecs
8301 */
8302 static u64 normalize_cfs_quota(struct task_group *tg,
8303 struct cfs_schedulable_data *d)
8304 {
8305 u64 quota, period;
8306
8307 if (tg == d->tg) {
8308 period = d->period;
8309 quota = d->quota;
8310 } else {
8311 period = tg_get_cfs_period(tg);
8312 quota = tg_get_cfs_quota(tg);
8313 }
8314
8315 /* note: these should typically be equivalent */
8316 if (quota == RUNTIME_INF || quota == -1)
8317 return RUNTIME_INF;
8318
8319 return to_ratio(period, quota);
8320 }
8321
8322 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8323 {
8324 struct cfs_schedulable_data *d = data;
8325 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8326 s64 quota = 0, parent_quota = -1;
8327
8328 if (!tg->parent) {
8329 quota = RUNTIME_INF;
8330 } else {
8331 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8332
8333 quota = normalize_cfs_quota(tg, d);
8334 parent_quota = parent_b->hierarchical_quota;
8335
8336 /*
8337 * ensure max(child_quota) <= parent_quota, inherit when no
8338 * limit is set
8339 */
8340 if (quota == RUNTIME_INF)
8341 quota = parent_quota;
8342 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8343 return -EINVAL;
8344 }
8345 cfs_b->hierarchical_quota = quota;
8346
8347 return 0;
8348 }
8349
8350 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8351 {
8352 int ret;
8353 struct cfs_schedulable_data data = {
8354 .tg = tg,
8355 .period = period,
8356 .quota = quota,
8357 };
8358
8359 if (quota != RUNTIME_INF) {
8360 do_div(data.period, NSEC_PER_USEC);
8361 do_div(data.quota, NSEC_PER_USEC);
8362 }
8363
8364 rcu_read_lock();
8365 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8366 rcu_read_unlock();
8367
8368 return ret;
8369 }
8370
8371 static int cpu_stats_show(struct seq_file *sf, void *v)
8372 {
8373 struct task_group *tg = css_tg(seq_css(sf));
8374 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8375
8376 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8377 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8378 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8379
8380 return 0;
8381 }
8382 #endif /* CONFIG_CFS_BANDWIDTH */
8383 #endif /* CONFIG_FAIR_GROUP_SCHED */
8384
8385 #ifdef CONFIG_RT_GROUP_SCHED
8386 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8387 struct cftype *cft, s64 val)
8388 {
8389 return sched_group_set_rt_runtime(css_tg(css), val);
8390 }
8391
8392 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8393 struct cftype *cft)
8394 {
8395 return sched_group_rt_runtime(css_tg(css));
8396 }
8397
8398 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8399 struct cftype *cftype, u64 rt_period_us)
8400 {
8401 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8402 }
8403
8404 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8405 struct cftype *cft)
8406 {
8407 return sched_group_rt_period(css_tg(css));
8408 }
8409 #endif /* CONFIG_RT_GROUP_SCHED */
8410
8411 static struct cftype cpu_files[] = {
8412 #ifdef CONFIG_FAIR_GROUP_SCHED
8413 {
8414 .name = "shares",
8415 .read_u64 = cpu_shares_read_u64,
8416 .write_u64 = cpu_shares_write_u64,
8417 },
8418 #endif
8419 #ifdef CONFIG_CFS_BANDWIDTH
8420 {
8421 .name = "cfs_quota_us",
8422 .read_s64 = cpu_cfs_quota_read_s64,
8423 .write_s64 = cpu_cfs_quota_write_s64,
8424 },
8425 {
8426 .name = "cfs_period_us",
8427 .read_u64 = cpu_cfs_period_read_u64,
8428 .write_u64 = cpu_cfs_period_write_u64,
8429 },
8430 {
8431 .name = "stat",
8432 .seq_show = cpu_stats_show,
8433 },
8434 #endif
8435 #ifdef CONFIG_RT_GROUP_SCHED
8436 {
8437 .name = "rt_runtime_us",
8438 .read_s64 = cpu_rt_runtime_read,
8439 .write_s64 = cpu_rt_runtime_write,
8440 },
8441 {
8442 .name = "rt_period_us",
8443 .read_u64 = cpu_rt_period_read_uint,
8444 .write_u64 = cpu_rt_period_write_uint,
8445 },
8446 #endif
8447 { } /* terminate */
8448 };
8449
8450 struct cgroup_subsys cpu_cgrp_subsys = {
8451 .css_alloc = cpu_cgroup_css_alloc,
8452 .css_released = cpu_cgroup_css_released,
8453 .css_free = cpu_cgroup_css_free,
8454 .fork = cpu_cgroup_fork,
8455 .can_attach = cpu_cgroup_can_attach,
8456 .attach = cpu_cgroup_attach,
8457 .legacy_cftypes = cpu_files,
8458 .early_init = true,
8459 };
8460
8461 #endif /* CONFIG_CGROUP_SCHED */
8462
8463 void dump_cpu_task(int cpu)
8464 {
8465 pr_info("Task dump for CPU %d:\n", cpu);
8466 sched_show_task(cpu_curr(cpu));
8467 }
8468
8469 /*
8470 * Nice levels are multiplicative, with a gentle 10% change for every
8471 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8472 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8473 * that remained on nice 0.
8474 *
8475 * The "10% effect" is relative and cumulative: from _any_ nice level,
8476 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8477 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8478 * If a task goes up by ~10% and another task goes down by ~10% then
8479 * the relative distance between them is ~25%.)
8480 */
8481 const int sched_prio_to_weight[40] = {
8482 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8483 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8484 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8485 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8486 /* 0 */ 1024, 820, 655, 526, 423,
8487 /* 5 */ 335, 272, 215, 172, 137,
8488 /* 10 */ 110, 87, 70, 56, 45,
8489 /* 15 */ 36, 29, 23, 18, 15,
8490 };
8491
8492 /*
8493 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8494 *
8495 * In cases where the weight does not change often, we can use the
8496 * precalculated inverse to speed up arithmetics by turning divisions
8497 * into multiplications:
8498 */
8499 const u32 sched_prio_to_wmult[40] = {
8500 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8501 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8502 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8503 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8504 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8505 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8506 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8507 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8508 };
This page took 0.233774 seconds and 6 git commands to generate.