91f07d0e9ce7ef2d18d55181a83b3fad3d80fdaa
[deliverable/linux.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 */
91
92 /**
93 * struct mm_slot - ksm information per mm that is being scanned
94 * @link: link to the mm_slots hash list
95 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
96 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
97 * @mm: the mm that this information is valid for
98 */
99 struct mm_slot {
100 struct hlist_node link;
101 struct list_head mm_list;
102 struct rmap_item *rmap_list;
103 struct mm_struct *mm;
104 };
105
106 /**
107 * struct ksm_scan - cursor for scanning
108 * @mm_slot: the current mm_slot we are scanning
109 * @address: the next address inside that to be scanned
110 * @rmap_list: link to the next rmap to be scanned in the rmap_list
111 * @seqnr: count of completed full scans (needed when removing unstable node)
112 *
113 * There is only the one ksm_scan instance of this cursor structure.
114 */
115 struct ksm_scan {
116 struct mm_slot *mm_slot;
117 unsigned long address;
118 struct rmap_item **rmap_list;
119 unsigned long seqnr;
120 };
121
122 /**
123 * struct stable_node - node of the stable rbtree
124 * @node: rb node of this ksm page in the stable tree
125 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
126 * @list: linked into migrate_nodes, pending placement in the proper node tree
127 * @hlist: hlist head of rmap_items using this ksm page
128 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
129 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
130 */
131 struct stable_node {
132 union {
133 struct rb_node node; /* when node of stable tree */
134 struct { /* when listed for migration */
135 struct list_head *head;
136 struct list_head list;
137 };
138 };
139 struct hlist_head hlist;
140 unsigned long kpfn;
141 #ifdef CONFIG_NUMA
142 int nid;
143 #endif
144 };
145
146 /**
147 * struct rmap_item - reverse mapping item for virtual addresses
148 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
149 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
150 * @mm: the memory structure this rmap_item is pointing into
151 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
152 * @oldchecksum: previous checksum of the page at that virtual address
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @node: rb node of this rmap_item in the unstable tree
155 * @head: pointer to stable_node heading this list in the stable tree
156 * @hlist: link into hlist of rmap_items hanging off that stable_node
157 */
158 struct rmap_item {
159 struct rmap_item *rmap_list;
160 struct anon_vma *anon_vma; /* when stable */
161 struct mm_struct *mm;
162 unsigned long address; /* + low bits used for flags below */
163 unsigned int oldchecksum; /* when unstable */
164 #ifdef CONFIG_NUMA
165 int nid;
166 #endif
167 union {
168 struct rb_node node; /* when node of unstable tree */
169 struct { /* when listed from stable tree */
170 struct stable_node *head;
171 struct hlist_node hlist;
172 };
173 };
174 };
175
176 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
177 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
178 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
179
180 /* The stable and unstable tree heads */
181 static struct rb_root root_unstable_tree[MAX_NUMNODES];
182 static struct rb_root root_stable_tree[MAX_NUMNODES];
183
184 /* Recently migrated nodes of stable tree, pending proper placement */
185 static LIST_HEAD(migrate_nodes);
186
187 #define MM_SLOTS_HASH_BITS 10
188 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
189
190 static struct mm_slot ksm_mm_head = {
191 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
192 };
193 static struct ksm_scan ksm_scan = {
194 .mm_slot = &ksm_mm_head,
195 };
196
197 static struct kmem_cache *rmap_item_cache;
198 static struct kmem_cache *stable_node_cache;
199 static struct kmem_cache *mm_slot_cache;
200
201 /* The number of nodes in the stable tree */
202 static unsigned long ksm_pages_shared;
203
204 /* The number of page slots additionally sharing those nodes */
205 static unsigned long ksm_pages_sharing;
206
207 /* The number of nodes in the unstable tree */
208 static unsigned long ksm_pages_unshared;
209
210 /* The number of rmap_items in use: to calculate pages_volatile */
211 static unsigned long ksm_rmap_items;
212
213 /* Number of pages ksmd should scan in one batch */
214 static unsigned int ksm_thread_pages_to_scan = 100;
215
216 /* Milliseconds ksmd should sleep between batches */
217 static unsigned int ksm_thread_sleep_millisecs = 20;
218
219 #ifdef CONFIG_NUMA
220 /* Zeroed when merging across nodes is not allowed */
221 static unsigned int ksm_merge_across_nodes = 1;
222 #else
223 #define ksm_merge_across_nodes 1U
224 #endif
225
226 #define KSM_RUN_STOP 0
227 #define KSM_RUN_MERGE 1
228 #define KSM_RUN_UNMERGE 2
229 static unsigned int ksm_run = KSM_RUN_STOP;
230
231 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
232 static DEFINE_MUTEX(ksm_thread_mutex);
233 static DEFINE_SPINLOCK(ksm_mmlist_lock);
234
235 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
236 sizeof(struct __struct), __alignof__(struct __struct),\
237 (__flags), NULL)
238
239 static int __init ksm_slab_init(void)
240 {
241 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
242 if (!rmap_item_cache)
243 goto out;
244
245 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
246 if (!stable_node_cache)
247 goto out_free1;
248
249 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
250 if (!mm_slot_cache)
251 goto out_free2;
252
253 return 0;
254
255 out_free2:
256 kmem_cache_destroy(stable_node_cache);
257 out_free1:
258 kmem_cache_destroy(rmap_item_cache);
259 out:
260 return -ENOMEM;
261 }
262
263 static void __init ksm_slab_free(void)
264 {
265 kmem_cache_destroy(mm_slot_cache);
266 kmem_cache_destroy(stable_node_cache);
267 kmem_cache_destroy(rmap_item_cache);
268 mm_slot_cache = NULL;
269 }
270
271 static inline struct rmap_item *alloc_rmap_item(void)
272 {
273 struct rmap_item *rmap_item;
274
275 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
276 if (rmap_item)
277 ksm_rmap_items++;
278 return rmap_item;
279 }
280
281 static inline void free_rmap_item(struct rmap_item *rmap_item)
282 {
283 ksm_rmap_items--;
284 rmap_item->mm = NULL; /* debug safety */
285 kmem_cache_free(rmap_item_cache, rmap_item);
286 }
287
288 static inline struct stable_node *alloc_stable_node(void)
289 {
290 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
291 }
292
293 static inline void free_stable_node(struct stable_node *stable_node)
294 {
295 kmem_cache_free(stable_node_cache, stable_node);
296 }
297
298 static inline struct mm_slot *alloc_mm_slot(void)
299 {
300 if (!mm_slot_cache) /* initialization failed */
301 return NULL;
302 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
303 }
304
305 static inline void free_mm_slot(struct mm_slot *mm_slot)
306 {
307 kmem_cache_free(mm_slot_cache, mm_slot);
308 }
309
310 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
311 {
312 struct hlist_node *node;
313 struct mm_slot *slot;
314
315 hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
316 if (slot->mm == mm)
317 return slot;
318
319 return NULL;
320 }
321
322 static void insert_to_mm_slots_hash(struct mm_struct *mm,
323 struct mm_slot *mm_slot)
324 {
325 mm_slot->mm = mm;
326 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
327 }
328
329 /*
330 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
331 * page tables after it has passed through ksm_exit() - which, if necessary,
332 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
333 * a special flag: they can just back out as soon as mm_users goes to zero.
334 * ksm_test_exit() is used throughout to make this test for exit: in some
335 * places for correctness, in some places just to avoid unnecessary work.
336 */
337 static inline bool ksm_test_exit(struct mm_struct *mm)
338 {
339 return atomic_read(&mm->mm_users) == 0;
340 }
341
342 /*
343 * We use break_ksm to break COW on a ksm page: it's a stripped down
344 *
345 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
346 * put_page(page);
347 *
348 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
349 * in case the application has unmapped and remapped mm,addr meanwhile.
350 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
351 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
352 */
353 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
354 {
355 struct page *page;
356 int ret = 0;
357
358 do {
359 cond_resched();
360 page = follow_page(vma, addr, FOLL_GET);
361 if (IS_ERR_OR_NULL(page))
362 break;
363 if (PageKsm(page))
364 ret = handle_mm_fault(vma->vm_mm, vma, addr,
365 FAULT_FLAG_WRITE);
366 else
367 ret = VM_FAULT_WRITE;
368 put_page(page);
369 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
370 /*
371 * We must loop because handle_mm_fault() may back out if there's
372 * any difficulty e.g. if pte accessed bit gets updated concurrently.
373 *
374 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
375 * COW has been broken, even if the vma does not permit VM_WRITE;
376 * but note that a concurrent fault might break PageKsm for us.
377 *
378 * VM_FAULT_SIGBUS could occur if we race with truncation of the
379 * backing file, which also invalidates anonymous pages: that's
380 * okay, that truncation will have unmapped the PageKsm for us.
381 *
382 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
383 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
384 * current task has TIF_MEMDIE set, and will be OOM killed on return
385 * to user; and ksmd, having no mm, would never be chosen for that.
386 *
387 * But if the mm is in a limited mem_cgroup, then the fault may fail
388 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
389 * even ksmd can fail in this way - though it's usually breaking ksm
390 * just to undo a merge it made a moment before, so unlikely to oom.
391 *
392 * That's a pity: we might therefore have more kernel pages allocated
393 * than we're counting as nodes in the stable tree; but ksm_do_scan
394 * will retry to break_cow on each pass, so should recover the page
395 * in due course. The important thing is to not let VM_MERGEABLE
396 * be cleared while any such pages might remain in the area.
397 */
398 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
399 }
400
401 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
402 unsigned long addr)
403 {
404 struct vm_area_struct *vma;
405 if (ksm_test_exit(mm))
406 return NULL;
407 vma = find_vma(mm, addr);
408 if (!vma || vma->vm_start > addr)
409 return NULL;
410 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
411 return NULL;
412 return vma;
413 }
414
415 static void break_cow(struct rmap_item *rmap_item)
416 {
417 struct mm_struct *mm = rmap_item->mm;
418 unsigned long addr = rmap_item->address;
419 struct vm_area_struct *vma;
420
421 /*
422 * It is not an accident that whenever we want to break COW
423 * to undo, we also need to drop a reference to the anon_vma.
424 */
425 put_anon_vma(rmap_item->anon_vma);
426
427 down_read(&mm->mmap_sem);
428 vma = find_mergeable_vma(mm, addr);
429 if (vma)
430 break_ksm(vma, addr);
431 up_read(&mm->mmap_sem);
432 }
433
434 static struct page *page_trans_compound_anon(struct page *page)
435 {
436 if (PageTransCompound(page)) {
437 struct page *head = compound_trans_head(page);
438 /*
439 * head may actually be splitted and freed from under
440 * us but it's ok here.
441 */
442 if (PageAnon(head))
443 return head;
444 }
445 return NULL;
446 }
447
448 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
449 {
450 struct mm_struct *mm = rmap_item->mm;
451 unsigned long addr = rmap_item->address;
452 struct vm_area_struct *vma;
453 struct page *page;
454
455 down_read(&mm->mmap_sem);
456 vma = find_mergeable_vma(mm, addr);
457 if (!vma)
458 goto out;
459
460 page = follow_page(vma, addr, FOLL_GET);
461 if (IS_ERR_OR_NULL(page))
462 goto out;
463 if (PageAnon(page) || page_trans_compound_anon(page)) {
464 flush_anon_page(vma, page, addr);
465 flush_dcache_page(page);
466 } else {
467 put_page(page);
468 out: page = NULL;
469 }
470 up_read(&mm->mmap_sem);
471 return page;
472 }
473
474 /*
475 * This helper is used for getting right index into array of tree roots.
476 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
477 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
478 * every node has its own stable and unstable tree.
479 */
480 static inline int get_kpfn_nid(unsigned long kpfn)
481 {
482 return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
483 }
484
485 static void remove_node_from_stable_tree(struct stable_node *stable_node)
486 {
487 struct rmap_item *rmap_item;
488 struct hlist_node *hlist;
489
490 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
491 if (rmap_item->hlist.next)
492 ksm_pages_sharing--;
493 else
494 ksm_pages_shared--;
495 put_anon_vma(rmap_item->anon_vma);
496 rmap_item->address &= PAGE_MASK;
497 cond_resched();
498 }
499
500 if (stable_node->head == &migrate_nodes)
501 list_del(&stable_node->list);
502 else
503 rb_erase(&stable_node->node,
504 &root_stable_tree[NUMA(stable_node->nid)]);
505 free_stable_node(stable_node);
506 }
507
508 /*
509 * get_ksm_page: checks if the page indicated by the stable node
510 * is still its ksm page, despite having held no reference to it.
511 * In which case we can trust the content of the page, and it
512 * returns the gotten page; but if the page has now been zapped,
513 * remove the stale node from the stable tree and return NULL.
514 * But beware, the stable node's page might be being migrated.
515 *
516 * You would expect the stable_node to hold a reference to the ksm page.
517 * But if it increments the page's count, swapping out has to wait for
518 * ksmd to come around again before it can free the page, which may take
519 * seconds or even minutes: much too unresponsive. So instead we use a
520 * "keyhole reference": access to the ksm page from the stable node peeps
521 * out through its keyhole to see if that page still holds the right key,
522 * pointing back to this stable node. This relies on freeing a PageAnon
523 * page to reset its page->mapping to NULL, and relies on no other use of
524 * a page to put something that might look like our key in page->mapping.
525 * is on its way to being freed; but it is an anomaly to bear in mind.
526 */
527 static struct page *get_ksm_page(struct stable_node *stable_node, bool locked)
528 {
529 struct page *page;
530 void *expected_mapping;
531 unsigned long kpfn;
532
533 expected_mapping = (void *)stable_node +
534 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
535 again:
536 kpfn = ACCESS_ONCE(stable_node->kpfn);
537 page = pfn_to_page(kpfn);
538
539 /*
540 * page is computed from kpfn, so on most architectures reading
541 * page->mapping is naturally ordered after reading node->kpfn,
542 * but on Alpha we need to be more careful.
543 */
544 smp_read_barrier_depends();
545 if (ACCESS_ONCE(page->mapping) != expected_mapping)
546 goto stale;
547
548 /*
549 * We cannot do anything with the page while its refcount is 0.
550 * Usually 0 means free, or tail of a higher-order page: in which
551 * case this node is no longer referenced, and should be freed;
552 * however, it might mean that the page is under page_freeze_refs().
553 * The __remove_mapping() case is easy, again the node is now stale;
554 * but if page is swapcache in migrate_page_move_mapping(), it might
555 * still be our page, in which case it's essential to keep the node.
556 */
557 while (!get_page_unless_zero(page)) {
558 /*
559 * Another check for page->mapping != expected_mapping would
560 * work here too. We have chosen the !PageSwapCache test to
561 * optimize the common case, when the page is or is about to
562 * be freed: PageSwapCache is cleared (under spin_lock_irq)
563 * in the freeze_refs section of __remove_mapping(); but Anon
564 * page->mapping reset to NULL later, in free_pages_prepare().
565 */
566 if (!PageSwapCache(page))
567 goto stale;
568 cpu_relax();
569 }
570
571 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
572 put_page(page);
573 goto stale;
574 }
575
576 if (locked) {
577 lock_page(page);
578 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
579 unlock_page(page);
580 put_page(page);
581 goto stale;
582 }
583 }
584 return page;
585
586 stale:
587 /*
588 * We come here from above when page->mapping or !PageSwapCache
589 * suggests that the node is stale; but it might be under migration.
590 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
591 * before checking whether node->kpfn has been changed.
592 */
593 smp_rmb();
594 if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
595 goto again;
596 remove_node_from_stable_tree(stable_node);
597 return NULL;
598 }
599
600 /*
601 * Removing rmap_item from stable or unstable tree.
602 * This function will clean the information from the stable/unstable tree.
603 */
604 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
605 {
606 if (rmap_item->address & STABLE_FLAG) {
607 struct stable_node *stable_node;
608 struct page *page;
609
610 stable_node = rmap_item->head;
611 page = get_ksm_page(stable_node, true);
612 if (!page)
613 goto out;
614
615 hlist_del(&rmap_item->hlist);
616 unlock_page(page);
617 put_page(page);
618
619 if (stable_node->hlist.first)
620 ksm_pages_sharing--;
621 else
622 ksm_pages_shared--;
623
624 put_anon_vma(rmap_item->anon_vma);
625 rmap_item->address &= PAGE_MASK;
626
627 } else if (rmap_item->address & UNSTABLE_FLAG) {
628 unsigned char age;
629 /*
630 * Usually ksmd can and must skip the rb_erase, because
631 * root_unstable_tree was already reset to RB_ROOT.
632 * But be careful when an mm is exiting: do the rb_erase
633 * if this rmap_item was inserted by this scan, rather
634 * than left over from before.
635 */
636 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
637 BUG_ON(age > 1);
638 if (!age)
639 rb_erase(&rmap_item->node,
640 &root_unstable_tree[NUMA(rmap_item->nid)]);
641 ksm_pages_unshared--;
642 rmap_item->address &= PAGE_MASK;
643 }
644 out:
645 cond_resched(); /* we're called from many long loops */
646 }
647
648 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
649 struct rmap_item **rmap_list)
650 {
651 while (*rmap_list) {
652 struct rmap_item *rmap_item = *rmap_list;
653 *rmap_list = rmap_item->rmap_list;
654 remove_rmap_item_from_tree(rmap_item);
655 free_rmap_item(rmap_item);
656 }
657 }
658
659 /*
660 * Though it's very tempting to unmerge rmap_items from stable tree rather
661 * than check every pte of a given vma, the locking doesn't quite work for
662 * that - an rmap_item is assigned to the stable tree after inserting ksm
663 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
664 * rmap_items from parent to child at fork time (so as not to waste time
665 * if exit comes before the next scan reaches it).
666 *
667 * Similarly, although we'd like to remove rmap_items (so updating counts
668 * and freeing memory) when unmerging an area, it's easier to leave that
669 * to the next pass of ksmd - consider, for example, how ksmd might be
670 * in cmp_and_merge_page on one of the rmap_items we would be removing.
671 */
672 static int unmerge_ksm_pages(struct vm_area_struct *vma,
673 unsigned long start, unsigned long end)
674 {
675 unsigned long addr;
676 int err = 0;
677
678 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
679 if (ksm_test_exit(vma->vm_mm))
680 break;
681 if (signal_pending(current))
682 err = -ERESTARTSYS;
683 else
684 err = break_ksm(vma, addr);
685 }
686 return err;
687 }
688
689 #ifdef CONFIG_SYSFS
690 /*
691 * Only called through the sysfs control interface:
692 */
693 static int remove_stable_node(struct stable_node *stable_node)
694 {
695 struct page *page;
696 int err;
697
698 page = get_ksm_page(stable_node, true);
699 if (!page) {
700 /*
701 * get_ksm_page did remove_node_from_stable_tree itself.
702 */
703 return 0;
704 }
705
706 if (WARN_ON_ONCE(page_mapped(page)))
707 err = -EBUSY;
708 else {
709 /*
710 * This page might be in a pagevec waiting to be freed,
711 * or it might be PageSwapCache (perhaps under writeback),
712 * or it might have been removed from swapcache a moment ago.
713 */
714 set_page_stable_node(page, NULL);
715 remove_node_from_stable_tree(stable_node);
716 err = 0;
717 }
718
719 unlock_page(page);
720 put_page(page);
721 return err;
722 }
723
724 static int remove_all_stable_nodes(void)
725 {
726 struct stable_node *stable_node;
727 struct list_head *this, *next;
728 int nid;
729 int err = 0;
730
731 for (nid = 0; nid < nr_node_ids; nid++) {
732 while (root_stable_tree[nid].rb_node) {
733 stable_node = rb_entry(root_stable_tree[nid].rb_node,
734 struct stable_node, node);
735 if (remove_stable_node(stable_node)) {
736 err = -EBUSY;
737 break; /* proceed to next nid */
738 }
739 cond_resched();
740 }
741 }
742 list_for_each_safe(this, next, &migrate_nodes) {
743 stable_node = list_entry(this, struct stable_node, list);
744 if (remove_stable_node(stable_node))
745 err = -EBUSY;
746 cond_resched();
747 }
748 return err;
749 }
750
751 static int unmerge_and_remove_all_rmap_items(void)
752 {
753 struct mm_slot *mm_slot;
754 struct mm_struct *mm;
755 struct vm_area_struct *vma;
756 int err = 0;
757
758 spin_lock(&ksm_mmlist_lock);
759 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
760 struct mm_slot, mm_list);
761 spin_unlock(&ksm_mmlist_lock);
762
763 for (mm_slot = ksm_scan.mm_slot;
764 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
765 mm = mm_slot->mm;
766 down_read(&mm->mmap_sem);
767 for (vma = mm->mmap; vma; vma = vma->vm_next) {
768 if (ksm_test_exit(mm))
769 break;
770 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
771 continue;
772 err = unmerge_ksm_pages(vma,
773 vma->vm_start, vma->vm_end);
774 if (err)
775 goto error;
776 }
777
778 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
779
780 spin_lock(&ksm_mmlist_lock);
781 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
782 struct mm_slot, mm_list);
783 if (ksm_test_exit(mm)) {
784 hash_del(&mm_slot->link);
785 list_del(&mm_slot->mm_list);
786 spin_unlock(&ksm_mmlist_lock);
787
788 free_mm_slot(mm_slot);
789 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
790 up_read(&mm->mmap_sem);
791 mmdrop(mm);
792 } else {
793 spin_unlock(&ksm_mmlist_lock);
794 up_read(&mm->mmap_sem);
795 }
796 }
797
798 /* Clean up stable nodes, but don't worry if some are still busy */
799 remove_all_stable_nodes();
800 ksm_scan.seqnr = 0;
801 return 0;
802
803 error:
804 up_read(&mm->mmap_sem);
805 spin_lock(&ksm_mmlist_lock);
806 ksm_scan.mm_slot = &ksm_mm_head;
807 spin_unlock(&ksm_mmlist_lock);
808 return err;
809 }
810 #endif /* CONFIG_SYSFS */
811
812 static u32 calc_checksum(struct page *page)
813 {
814 u32 checksum;
815 void *addr = kmap_atomic(page);
816 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
817 kunmap_atomic(addr);
818 return checksum;
819 }
820
821 static int memcmp_pages(struct page *page1, struct page *page2)
822 {
823 char *addr1, *addr2;
824 int ret;
825
826 addr1 = kmap_atomic(page1);
827 addr2 = kmap_atomic(page2);
828 ret = memcmp(addr1, addr2, PAGE_SIZE);
829 kunmap_atomic(addr2);
830 kunmap_atomic(addr1);
831 return ret;
832 }
833
834 static inline int pages_identical(struct page *page1, struct page *page2)
835 {
836 return !memcmp_pages(page1, page2);
837 }
838
839 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
840 pte_t *orig_pte)
841 {
842 struct mm_struct *mm = vma->vm_mm;
843 unsigned long addr;
844 pte_t *ptep;
845 spinlock_t *ptl;
846 int swapped;
847 int err = -EFAULT;
848 unsigned long mmun_start; /* For mmu_notifiers */
849 unsigned long mmun_end; /* For mmu_notifiers */
850
851 addr = page_address_in_vma(page, vma);
852 if (addr == -EFAULT)
853 goto out;
854
855 BUG_ON(PageTransCompound(page));
856
857 mmun_start = addr;
858 mmun_end = addr + PAGE_SIZE;
859 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
860
861 ptep = page_check_address(page, mm, addr, &ptl, 0);
862 if (!ptep)
863 goto out_mn;
864
865 if (pte_write(*ptep) || pte_dirty(*ptep)) {
866 pte_t entry;
867
868 swapped = PageSwapCache(page);
869 flush_cache_page(vma, addr, page_to_pfn(page));
870 /*
871 * Ok this is tricky, when get_user_pages_fast() run it doesn't
872 * take any lock, therefore the check that we are going to make
873 * with the pagecount against the mapcount is racey and
874 * O_DIRECT can happen right after the check.
875 * So we clear the pte and flush the tlb before the check
876 * this assure us that no O_DIRECT can happen after the check
877 * or in the middle of the check.
878 */
879 entry = ptep_clear_flush(vma, addr, ptep);
880 /*
881 * Check that no O_DIRECT or similar I/O is in progress on the
882 * page
883 */
884 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
885 set_pte_at(mm, addr, ptep, entry);
886 goto out_unlock;
887 }
888 if (pte_dirty(entry))
889 set_page_dirty(page);
890 entry = pte_mkclean(pte_wrprotect(entry));
891 set_pte_at_notify(mm, addr, ptep, entry);
892 }
893 *orig_pte = *ptep;
894 err = 0;
895
896 out_unlock:
897 pte_unmap_unlock(ptep, ptl);
898 out_mn:
899 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
900 out:
901 return err;
902 }
903
904 /**
905 * replace_page - replace page in vma by new ksm page
906 * @vma: vma that holds the pte pointing to page
907 * @page: the page we are replacing by kpage
908 * @kpage: the ksm page we replace page by
909 * @orig_pte: the original value of the pte
910 *
911 * Returns 0 on success, -EFAULT on failure.
912 */
913 static int replace_page(struct vm_area_struct *vma, struct page *page,
914 struct page *kpage, pte_t orig_pte)
915 {
916 struct mm_struct *mm = vma->vm_mm;
917 pmd_t *pmd;
918 pte_t *ptep;
919 spinlock_t *ptl;
920 unsigned long addr;
921 int err = -EFAULT;
922 unsigned long mmun_start; /* For mmu_notifiers */
923 unsigned long mmun_end; /* For mmu_notifiers */
924
925 addr = page_address_in_vma(page, vma);
926 if (addr == -EFAULT)
927 goto out;
928
929 pmd = mm_find_pmd(mm, addr);
930 if (!pmd)
931 goto out;
932 BUG_ON(pmd_trans_huge(*pmd));
933
934 mmun_start = addr;
935 mmun_end = addr + PAGE_SIZE;
936 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
937
938 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
939 if (!pte_same(*ptep, orig_pte)) {
940 pte_unmap_unlock(ptep, ptl);
941 goto out_mn;
942 }
943
944 get_page(kpage);
945 page_add_anon_rmap(kpage, vma, addr);
946
947 flush_cache_page(vma, addr, pte_pfn(*ptep));
948 ptep_clear_flush(vma, addr, ptep);
949 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
950
951 page_remove_rmap(page);
952 if (!page_mapped(page))
953 try_to_free_swap(page);
954 put_page(page);
955
956 pte_unmap_unlock(ptep, ptl);
957 err = 0;
958 out_mn:
959 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
960 out:
961 return err;
962 }
963
964 static int page_trans_compound_anon_split(struct page *page)
965 {
966 int ret = 0;
967 struct page *transhuge_head = page_trans_compound_anon(page);
968 if (transhuge_head) {
969 /* Get the reference on the head to split it. */
970 if (get_page_unless_zero(transhuge_head)) {
971 /*
972 * Recheck we got the reference while the head
973 * was still anonymous.
974 */
975 if (PageAnon(transhuge_head))
976 ret = split_huge_page(transhuge_head);
977 else
978 /*
979 * Retry later if split_huge_page run
980 * from under us.
981 */
982 ret = 1;
983 put_page(transhuge_head);
984 } else
985 /* Retry later if split_huge_page run from under us. */
986 ret = 1;
987 }
988 return ret;
989 }
990
991 /*
992 * try_to_merge_one_page - take two pages and merge them into one
993 * @vma: the vma that holds the pte pointing to page
994 * @page: the PageAnon page that we want to replace with kpage
995 * @kpage: the PageKsm page that we want to map instead of page,
996 * or NULL the first time when we want to use page as kpage.
997 *
998 * This function returns 0 if the pages were merged, -EFAULT otherwise.
999 */
1000 static int try_to_merge_one_page(struct vm_area_struct *vma,
1001 struct page *page, struct page *kpage)
1002 {
1003 pte_t orig_pte = __pte(0);
1004 int err = -EFAULT;
1005
1006 if (page == kpage) /* ksm page forked */
1007 return 0;
1008
1009 if (!(vma->vm_flags & VM_MERGEABLE))
1010 goto out;
1011 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1012 goto out;
1013 BUG_ON(PageTransCompound(page));
1014 if (!PageAnon(page))
1015 goto out;
1016
1017 /*
1018 * We need the page lock to read a stable PageSwapCache in
1019 * write_protect_page(). We use trylock_page() instead of
1020 * lock_page() because we don't want to wait here - we
1021 * prefer to continue scanning and merging different pages,
1022 * then come back to this page when it is unlocked.
1023 */
1024 if (!trylock_page(page))
1025 goto out;
1026 /*
1027 * If this anonymous page is mapped only here, its pte may need
1028 * to be write-protected. If it's mapped elsewhere, all of its
1029 * ptes are necessarily already write-protected. But in either
1030 * case, we need to lock and check page_count is not raised.
1031 */
1032 if (write_protect_page(vma, page, &orig_pte) == 0) {
1033 if (!kpage) {
1034 /*
1035 * While we hold page lock, upgrade page from
1036 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1037 * stable_tree_insert() will update stable_node.
1038 */
1039 set_page_stable_node(page, NULL);
1040 mark_page_accessed(page);
1041 err = 0;
1042 } else if (pages_identical(page, kpage))
1043 err = replace_page(vma, page, kpage, orig_pte);
1044 }
1045
1046 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1047 munlock_vma_page(page);
1048 if (!PageMlocked(kpage)) {
1049 unlock_page(page);
1050 lock_page(kpage);
1051 mlock_vma_page(kpage);
1052 page = kpage; /* for final unlock */
1053 }
1054 }
1055
1056 unlock_page(page);
1057 out:
1058 return err;
1059 }
1060
1061 /*
1062 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1063 * but no new kernel page is allocated: kpage must already be a ksm page.
1064 *
1065 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1066 */
1067 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1068 struct page *page, struct page *kpage)
1069 {
1070 struct mm_struct *mm = rmap_item->mm;
1071 struct vm_area_struct *vma;
1072 int err = -EFAULT;
1073
1074 down_read(&mm->mmap_sem);
1075 if (ksm_test_exit(mm))
1076 goto out;
1077 vma = find_vma(mm, rmap_item->address);
1078 if (!vma || vma->vm_start > rmap_item->address)
1079 goto out;
1080
1081 err = try_to_merge_one_page(vma, page, kpage);
1082 if (err)
1083 goto out;
1084
1085 /* Must get reference to anon_vma while still holding mmap_sem */
1086 rmap_item->anon_vma = vma->anon_vma;
1087 get_anon_vma(vma->anon_vma);
1088 out:
1089 up_read(&mm->mmap_sem);
1090 return err;
1091 }
1092
1093 /*
1094 * try_to_merge_two_pages - take two identical pages and prepare them
1095 * to be merged into one page.
1096 *
1097 * This function returns the kpage if we successfully merged two identical
1098 * pages into one ksm page, NULL otherwise.
1099 *
1100 * Note that this function upgrades page to ksm page: if one of the pages
1101 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1102 */
1103 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1104 struct page *page,
1105 struct rmap_item *tree_rmap_item,
1106 struct page *tree_page)
1107 {
1108 int err;
1109
1110 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1111 if (!err) {
1112 err = try_to_merge_with_ksm_page(tree_rmap_item,
1113 tree_page, page);
1114 /*
1115 * If that fails, we have a ksm page with only one pte
1116 * pointing to it: so break it.
1117 */
1118 if (err)
1119 break_cow(rmap_item);
1120 }
1121 return err ? NULL : page;
1122 }
1123
1124 /*
1125 * stable_tree_search - search for page inside the stable tree
1126 *
1127 * This function checks if there is a page inside the stable tree
1128 * with identical content to the page that we are scanning right now.
1129 *
1130 * This function returns the stable tree node of identical content if found,
1131 * NULL otherwise.
1132 */
1133 static struct page *stable_tree_search(struct page *page)
1134 {
1135 int nid;
1136 struct rb_node **new;
1137 struct rb_node *parent;
1138 struct stable_node *stable_node;
1139 struct stable_node *page_node;
1140
1141 page_node = page_stable_node(page);
1142 if (page_node && page_node->head != &migrate_nodes) {
1143 /* ksm page forked */
1144 get_page(page);
1145 return page;
1146 }
1147
1148 nid = get_kpfn_nid(page_to_pfn(page));
1149 again:
1150 new = &root_stable_tree[nid].rb_node;
1151 parent = NULL;
1152
1153 while (*new) {
1154 struct page *tree_page;
1155 int ret;
1156
1157 cond_resched();
1158 stable_node = rb_entry(*new, struct stable_node, node);
1159 tree_page = get_ksm_page(stable_node, false);
1160 if (!tree_page)
1161 return NULL;
1162
1163 ret = memcmp_pages(page, tree_page);
1164 put_page(tree_page);
1165
1166 parent = *new;
1167 if (ret < 0)
1168 new = &parent->rb_left;
1169 else if (ret > 0)
1170 new = &parent->rb_right;
1171 else {
1172 /*
1173 * Lock and unlock the stable_node's page (which
1174 * might already have been migrated) so that page
1175 * migration is sure to notice its raised count.
1176 * It would be more elegant to return stable_node
1177 * than kpage, but that involves more changes.
1178 */
1179 tree_page = get_ksm_page(stable_node, true);
1180 if (tree_page) {
1181 unlock_page(tree_page);
1182 if (get_kpfn_nid(stable_node->kpfn) !=
1183 NUMA(stable_node->nid)) {
1184 put_page(tree_page);
1185 goto replace;
1186 }
1187 return tree_page;
1188 }
1189 /*
1190 * There is now a place for page_node, but the tree may
1191 * have been rebalanced, so re-evaluate parent and new.
1192 */
1193 if (page_node)
1194 goto again;
1195 return NULL;
1196 }
1197 }
1198
1199 if (!page_node)
1200 return NULL;
1201
1202 list_del(&page_node->list);
1203 DO_NUMA(page_node->nid = nid);
1204 rb_link_node(&page_node->node, parent, new);
1205 rb_insert_color(&page_node->node, &root_stable_tree[nid]);
1206 get_page(page);
1207 return page;
1208
1209 replace:
1210 if (page_node) {
1211 list_del(&page_node->list);
1212 DO_NUMA(page_node->nid = nid);
1213 rb_replace_node(&stable_node->node,
1214 &page_node->node, &root_stable_tree[nid]);
1215 get_page(page);
1216 } else {
1217 rb_erase(&stable_node->node, &root_stable_tree[nid]);
1218 page = NULL;
1219 }
1220 stable_node->head = &migrate_nodes;
1221 list_add(&stable_node->list, stable_node->head);
1222 return page;
1223 }
1224
1225 /*
1226 * stable_tree_insert - insert stable tree node pointing to new ksm page
1227 * into the stable tree.
1228 *
1229 * This function returns the stable tree node just allocated on success,
1230 * NULL otherwise.
1231 */
1232 static struct stable_node *stable_tree_insert(struct page *kpage)
1233 {
1234 int nid;
1235 unsigned long kpfn;
1236 struct rb_node **new;
1237 struct rb_node *parent = NULL;
1238 struct stable_node *stable_node;
1239
1240 kpfn = page_to_pfn(kpage);
1241 nid = get_kpfn_nid(kpfn);
1242 new = &root_stable_tree[nid].rb_node;
1243
1244 while (*new) {
1245 struct page *tree_page;
1246 int ret;
1247
1248 cond_resched();
1249 stable_node = rb_entry(*new, struct stable_node, node);
1250 tree_page = get_ksm_page(stable_node, false);
1251 if (!tree_page)
1252 return NULL;
1253
1254 ret = memcmp_pages(kpage, tree_page);
1255 put_page(tree_page);
1256
1257 parent = *new;
1258 if (ret < 0)
1259 new = &parent->rb_left;
1260 else if (ret > 0)
1261 new = &parent->rb_right;
1262 else {
1263 /*
1264 * It is not a bug that stable_tree_search() didn't
1265 * find this node: because at that time our page was
1266 * not yet write-protected, so may have changed since.
1267 */
1268 return NULL;
1269 }
1270 }
1271
1272 stable_node = alloc_stable_node();
1273 if (!stable_node)
1274 return NULL;
1275
1276 INIT_HLIST_HEAD(&stable_node->hlist);
1277 stable_node->kpfn = kpfn;
1278 set_page_stable_node(kpage, stable_node);
1279 DO_NUMA(stable_node->nid = nid);
1280 rb_link_node(&stable_node->node, parent, new);
1281 rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1282
1283 return stable_node;
1284 }
1285
1286 /*
1287 * unstable_tree_search_insert - search for identical page,
1288 * else insert rmap_item into the unstable tree.
1289 *
1290 * This function searches for a page in the unstable tree identical to the
1291 * page currently being scanned; and if no identical page is found in the
1292 * tree, we insert rmap_item as a new object into the unstable tree.
1293 *
1294 * This function returns pointer to rmap_item found to be identical
1295 * to the currently scanned page, NULL otherwise.
1296 *
1297 * This function does both searching and inserting, because they share
1298 * the same walking algorithm in an rbtree.
1299 */
1300 static
1301 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1302 struct page *page,
1303 struct page **tree_pagep)
1304 {
1305 struct rb_node **new;
1306 struct rb_root *root;
1307 struct rb_node *parent = NULL;
1308 int nid;
1309
1310 nid = get_kpfn_nid(page_to_pfn(page));
1311 root = &root_unstable_tree[nid];
1312 new = &root->rb_node;
1313
1314 while (*new) {
1315 struct rmap_item *tree_rmap_item;
1316 struct page *tree_page;
1317 int ret;
1318
1319 cond_resched();
1320 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1321 tree_page = get_mergeable_page(tree_rmap_item);
1322 if (IS_ERR_OR_NULL(tree_page))
1323 return NULL;
1324
1325 /*
1326 * Don't substitute a ksm page for a forked page.
1327 */
1328 if (page == tree_page) {
1329 put_page(tree_page);
1330 return NULL;
1331 }
1332
1333 /*
1334 * If tree_page has been migrated to another NUMA node, it
1335 * will be flushed out and put into the right unstable tree
1336 * next time: only merge with it if merge_across_nodes.
1337 */
1338 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1339 put_page(tree_page);
1340 return NULL;
1341 }
1342
1343 ret = memcmp_pages(page, tree_page);
1344
1345 parent = *new;
1346 if (ret < 0) {
1347 put_page(tree_page);
1348 new = &parent->rb_left;
1349 } else if (ret > 0) {
1350 put_page(tree_page);
1351 new = &parent->rb_right;
1352 } else {
1353 *tree_pagep = tree_page;
1354 return tree_rmap_item;
1355 }
1356 }
1357
1358 rmap_item->address |= UNSTABLE_FLAG;
1359 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1360 DO_NUMA(rmap_item->nid = nid);
1361 rb_link_node(&rmap_item->node, parent, new);
1362 rb_insert_color(&rmap_item->node, root);
1363
1364 ksm_pages_unshared++;
1365 return NULL;
1366 }
1367
1368 /*
1369 * stable_tree_append - add another rmap_item to the linked list of
1370 * rmap_items hanging off a given node of the stable tree, all sharing
1371 * the same ksm page.
1372 */
1373 static void stable_tree_append(struct rmap_item *rmap_item,
1374 struct stable_node *stable_node)
1375 {
1376 rmap_item->head = stable_node;
1377 rmap_item->address |= STABLE_FLAG;
1378 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1379
1380 if (rmap_item->hlist.next)
1381 ksm_pages_sharing++;
1382 else
1383 ksm_pages_shared++;
1384 }
1385
1386 /*
1387 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1388 * if not, compare checksum to previous and if it's the same, see if page can
1389 * be inserted into the unstable tree, or merged with a page already there and
1390 * both transferred to the stable tree.
1391 *
1392 * @page: the page that we are searching identical page to.
1393 * @rmap_item: the reverse mapping into the virtual address of this page
1394 */
1395 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1396 {
1397 struct rmap_item *tree_rmap_item;
1398 struct page *tree_page = NULL;
1399 struct stable_node *stable_node;
1400 struct page *kpage;
1401 unsigned int checksum;
1402 int err;
1403
1404 stable_node = page_stable_node(page);
1405 if (stable_node) {
1406 if (stable_node->head != &migrate_nodes &&
1407 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1408 rb_erase(&stable_node->node,
1409 &root_stable_tree[NUMA(stable_node->nid)]);
1410 stable_node->head = &migrate_nodes;
1411 list_add(&stable_node->list, stable_node->head);
1412 }
1413 if (stable_node->head != &migrate_nodes &&
1414 rmap_item->head == stable_node)
1415 return;
1416 }
1417
1418 /* We first start with searching the page inside the stable tree */
1419 kpage = stable_tree_search(page);
1420 if (kpage == page && rmap_item->head == stable_node) {
1421 put_page(kpage);
1422 return;
1423 }
1424
1425 remove_rmap_item_from_tree(rmap_item);
1426
1427 if (kpage) {
1428 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1429 if (!err) {
1430 /*
1431 * The page was successfully merged:
1432 * add its rmap_item to the stable tree.
1433 */
1434 lock_page(kpage);
1435 stable_tree_append(rmap_item, page_stable_node(kpage));
1436 unlock_page(kpage);
1437 }
1438 put_page(kpage);
1439 return;
1440 }
1441
1442 /*
1443 * If the hash value of the page has changed from the last time
1444 * we calculated it, this page is changing frequently: therefore we
1445 * don't want to insert it in the unstable tree, and we don't want
1446 * to waste our time searching for something identical to it there.
1447 */
1448 checksum = calc_checksum(page);
1449 if (rmap_item->oldchecksum != checksum) {
1450 rmap_item->oldchecksum = checksum;
1451 return;
1452 }
1453
1454 tree_rmap_item =
1455 unstable_tree_search_insert(rmap_item, page, &tree_page);
1456 if (tree_rmap_item) {
1457 kpage = try_to_merge_two_pages(rmap_item, page,
1458 tree_rmap_item, tree_page);
1459 put_page(tree_page);
1460 /*
1461 * As soon as we merge this page, we want to remove the
1462 * rmap_item of the page we have merged with from the unstable
1463 * tree, and insert it instead as new node in the stable tree.
1464 */
1465 if (kpage) {
1466 remove_rmap_item_from_tree(tree_rmap_item);
1467
1468 lock_page(kpage);
1469 stable_node = stable_tree_insert(kpage);
1470 if (stable_node) {
1471 stable_tree_append(tree_rmap_item, stable_node);
1472 stable_tree_append(rmap_item, stable_node);
1473 }
1474 unlock_page(kpage);
1475
1476 /*
1477 * If we fail to insert the page into the stable tree,
1478 * we will have 2 virtual addresses that are pointing
1479 * to a ksm page left outside the stable tree,
1480 * in which case we need to break_cow on both.
1481 */
1482 if (!stable_node) {
1483 break_cow(tree_rmap_item);
1484 break_cow(rmap_item);
1485 }
1486 }
1487 }
1488 }
1489
1490 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1491 struct rmap_item **rmap_list,
1492 unsigned long addr)
1493 {
1494 struct rmap_item *rmap_item;
1495
1496 while (*rmap_list) {
1497 rmap_item = *rmap_list;
1498 if ((rmap_item->address & PAGE_MASK) == addr)
1499 return rmap_item;
1500 if (rmap_item->address > addr)
1501 break;
1502 *rmap_list = rmap_item->rmap_list;
1503 remove_rmap_item_from_tree(rmap_item);
1504 free_rmap_item(rmap_item);
1505 }
1506
1507 rmap_item = alloc_rmap_item();
1508 if (rmap_item) {
1509 /* It has already been zeroed */
1510 rmap_item->mm = mm_slot->mm;
1511 rmap_item->address = addr;
1512 rmap_item->rmap_list = *rmap_list;
1513 *rmap_list = rmap_item;
1514 }
1515 return rmap_item;
1516 }
1517
1518 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1519 {
1520 struct mm_struct *mm;
1521 struct mm_slot *slot;
1522 struct vm_area_struct *vma;
1523 struct rmap_item *rmap_item;
1524 int nid;
1525
1526 if (list_empty(&ksm_mm_head.mm_list))
1527 return NULL;
1528
1529 slot = ksm_scan.mm_slot;
1530 if (slot == &ksm_mm_head) {
1531 /*
1532 * A number of pages can hang around indefinitely on per-cpu
1533 * pagevecs, raised page count preventing write_protect_page
1534 * from merging them. Though it doesn't really matter much,
1535 * it is puzzling to see some stuck in pages_volatile until
1536 * other activity jostles them out, and they also prevented
1537 * LTP's KSM test from succeeding deterministically; so drain
1538 * them here (here rather than on entry to ksm_do_scan(),
1539 * so we don't IPI too often when pages_to_scan is set low).
1540 */
1541 lru_add_drain_all();
1542
1543 /*
1544 * Whereas stale stable_nodes on the stable_tree itself
1545 * get pruned in the regular course of stable_tree_search(),
1546 * those moved out to the migrate_nodes list can accumulate:
1547 * so prune them once before each full scan.
1548 */
1549 if (!ksm_merge_across_nodes) {
1550 struct stable_node *stable_node;
1551 struct list_head *this, *next;
1552 struct page *page;
1553
1554 list_for_each_safe(this, next, &migrate_nodes) {
1555 stable_node = list_entry(this,
1556 struct stable_node, list);
1557 page = get_ksm_page(stable_node, false);
1558 if (page)
1559 put_page(page);
1560 cond_resched();
1561 }
1562 }
1563
1564 for (nid = 0; nid < nr_node_ids; nid++)
1565 root_unstable_tree[nid] = RB_ROOT;
1566
1567 spin_lock(&ksm_mmlist_lock);
1568 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1569 ksm_scan.mm_slot = slot;
1570 spin_unlock(&ksm_mmlist_lock);
1571 /*
1572 * Although we tested list_empty() above, a racing __ksm_exit
1573 * of the last mm on the list may have removed it since then.
1574 */
1575 if (slot == &ksm_mm_head)
1576 return NULL;
1577 next_mm:
1578 ksm_scan.address = 0;
1579 ksm_scan.rmap_list = &slot->rmap_list;
1580 }
1581
1582 mm = slot->mm;
1583 down_read(&mm->mmap_sem);
1584 if (ksm_test_exit(mm))
1585 vma = NULL;
1586 else
1587 vma = find_vma(mm, ksm_scan.address);
1588
1589 for (; vma; vma = vma->vm_next) {
1590 if (!(vma->vm_flags & VM_MERGEABLE))
1591 continue;
1592 if (ksm_scan.address < vma->vm_start)
1593 ksm_scan.address = vma->vm_start;
1594 if (!vma->anon_vma)
1595 ksm_scan.address = vma->vm_end;
1596
1597 while (ksm_scan.address < vma->vm_end) {
1598 if (ksm_test_exit(mm))
1599 break;
1600 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1601 if (IS_ERR_OR_NULL(*page)) {
1602 ksm_scan.address += PAGE_SIZE;
1603 cond_resched();
1604 continue;
1605 }
1606 if (PageAnon(*page) ||
1607 page_trans_compound_anon(*page)) {
1608 flush_anon_page(vma, *page, ksm_scan.address);
1609 flush_dcache_page(*page);
1610 rmap_item = get_next_rmap_item(slot,
1611 ksm_scan.rmap_list, ksm_scan.address);
1612 if (rmap_item) {
1613 ksm_scan.rmap_list =
1614 &rmap_item->rmap_list;
1615 ksm_scan.address += PAGE_SIZE;
1616 } else
1617 put_page(*page);
1618 up_read(&mm->mmap_sem);
1619 return rmap_item;
1620 }
1621 put_page(*page);
1622 ksm_scan.address += PAGE_SIZE;
1623 cond_resched();
1624 }
1625 }
1626
1627 if (ksm_test_exit(mm)) {
1628 ksm_scan.address = 0;
1629 ksm_scan.rmap_list = &slot->rmap_list;
1630 }
1631 /*
1632 * Nuke all the rmap_items that are above this current rmap:
1633 * because there were no VM_MERGEABLE vmas with such addresses.
1634 */
1635 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1636
1637 spin_lock(&ksm_mmlist_lock);
1638 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1639 struct mm_slot, mm_list);
1640 if (ksm_scan.address == 0) {
1641 /*
1642 * We've completed a full scan of all vmas, holding mmap_sem
1643 * throughout, and found no VM_MERGEABLE: so do the same as
1644 * __ksm_exit does to remove this mm from all our lists now.
1645 * This applies either when cleaning up after __ksm_exit
1646 * (but beware: we can reach here even before __ksm_exit),
1647 * or when all VM_MERGEABLE areas have been unmapped (and
1648 * mmap_sem then protects against race with MADV_MERGEABLE).
1649 */
1650 hash_del(&slot->link);
1651 list_del(&slot->mm_list);
1652 spin_unlock(&ksm_mmlist_lock);
1653
1654 free_mm_slot(slot);
1655 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1656 up_read(&mm->mmap_sem);
1657 mmdrop(mm);
1658 } else {
1659 spin_unlock(&ksm_mmlist_lock);
1660 up_read(&mm->mmap_sem);
1661 }
1662
1663 /* Repeat until we've completed scanning the whole list */
1664 slot = ksm_scan.mm_slot;
1665 if (slot != &ksm_mm_head)
1666 goto next_mm;
1667
1668 ksm_scan.seqnr++;
1669 return NULL;
1670 }
1671
1672 /**
1673 * ksm_do_scan - the ksm scanner main worker function.
1674 * @scan_npages - number of pages we want to scan before we return.
1675 */
1676 static void ksm_do_scan(unsigned int scan_npages)
1677 {
1678 struct rmap_item *rmap_item;
1679 struct page *uninitialized_var(page);
1680
1681 while (scan_npages-- && likely(!freezing(current))) {
1682 cond_resched();
1683 rmap_item = scan_get_next_rmap_item(&page);
1684 if (!rmap_item)
1685 return;
1686 cmp_and_merge_page(page, rmap_item);
1687 put_page(page);
1688 }
1689 }
1690
1691 static int ksmd_should_run(void)
1692 {
1693 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1694 }
1695
1696 static int ksm_scan_thread(void *nothing)
1697 {
1698 set_freezable();
1699 set_user_nice(current, 5);
1700
1701 while (!kthread_should_stop()) {
1702 mutex_lock(&ksm_thread_mutex);
1703 if (ksmd_should_run())
1704 ksm_do_scan(ksm_thread_pages_to_scan);
1705 mutex_unlock(&ksm_thread_mutex);
1706
1707 try_to_freeze();
1708
1709 if (ksmd_should_run()) {
1710 schedule_timeout_interruptible(
1711 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1712 } else {
1713 wait_event_freezable(ksm_thread_wait,
1714 ksmd_should_run() || kthread_should_stop());
1715 }
1716 }
1717 return 0;
1718 }
1719
1720 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1721 unsigned long end, int advice, unsigned long *vm_flags)
1722 {
1723 struct mm_struct *mm = vma->vm_mm;
1724 int err;
1725
1726 switch (advice) {
1727 case MADV_MERGEABLE:
1728 /*
1729 * Be somewhat over-protective for now!
1730 */
1731 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1732 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1733 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1734 return 0; /* just ignore the advice */
1735
1736 #ifdef VM_SAO
1737 if (*vm_flags & VM_SAO)
1738 return 0;
1739 #endif
1740
1741 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1742 err = __ksm_enter(mm);
1743 if (err)
1744 return err;
1745 }
1746
1747 *vm_flags |= VM_MERGEABLE;
1748 break;
1749
1750 case MADV_UNMERGEABLE:
1751 if (!(*vm_flags & VM_MERGEABLE))
1752 return 0; /* just ignore the advice */
1753
1754 if (vma->anon_vma) {
1755 err = unmerge_ksm_pages(vma, start, end);
1756 if (err)
1757 return err;
1758 }
1759
1760 *vm_flags &= ~VM_MERGEABLE;
1761 break;
1762 }
1763
1764 return 0;
1765 }
1766
1767 int __ksm_enter(struct mm_struct *mm)
1768 {
1769 struct mm_slot *mm_slot;
1770 int needs_wakeup;
1771
1772 mm_slot = alloc_mm_slot();
1773 if (!mm_slot)
1774 return -ENOMEM;
1775
1776 /* Check ksm_run too? Would need tighter locking */
1777 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1778
1779 spin_lock(&ksm_mmlist_lock);
1780 insert_to_mm_slots_hash(mm, mm_slot);
1781 /*
1782 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1783 * insert just behind the scanning cursor, to let the area settle
1784 * down a little; when fork is followed by immediate exec, we don't
1785 * want ksmd to waste time setting up and tearing down an rmap_list.
1786 *
1787 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1788 * scanning cursor, otherwise KSM pages in newly forked mms will be
1789 * missed: then we might as well insert at the end of the list.
1790 */
1791 if (ksm_run & KSM_RUN_UNMERGE)
1792 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1793 else
1794 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1795 spin_unlock(&ksm_mmlist_lock);
1796
1797 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1798 atomic_inc(&mm->mm_count);
1799
1800 if (needs_wakeup)
1801 wake_up_interruptible(&ksm_thread_wait);
1802
1803 return 0;
1804 }
1805
1806 void __ksm_exit(struct mm_struct *mm)
1807 {
1808 struct mm_slot *mm_slot;
1809 int easy_to_free = 0;
1810
1811 /*
1812 * This process is exiting: if it's straightforward (as is the
1813 * case when ksmd was never running), free mm_slot immediately.
1814 * But if it's at the cursor or has rmap_items linked to it, use
1815 * mmap_sem to synchronize with any break_cows before pagetables
1816 * are freed, and leave the mm_slot on the list for ksmd to free.
1817 * Beware: ksm may already have noticed it exiting and freed the slot.
1818 */
1819
1820 spin_lock(&ksm_mmlist_lock);
1821 mm_slot = get_mm_slot(mm);
1822 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1823 if (!mm_slot->rmap_list) {
1824 hash_del(&mm_slot->link);
1825 list_del(&mm_slot->mm_list);
1826 easy_to_free = 1;
1827 } else {
1828 list_move(&mm_slot->mm_list,
1829 &ksm_scan.mm_slot->mm_list);
1830 }
1831 }
1832 spin_unlock(&ksm_mmlist_lock);
1833
1834 if (easy_to_free) {
1835 free_mm_slot(mm_slot);
1836 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1837 mmdrop(mm);
1838 } else if (mm_slot) {
1839 down_write(&mm->mmap_sem);
1840 up_write(&mm->mmap_sem);
1841 }
1842 }
1843
1844 struct page *ksm_might_need_to_copy(struct page *page,
1845 struct vm_area_struct *vma, unsigned long address)
1846 {
1847 struct anon_vma *anon_vma = page_anon_vma(page);
1848 struct page *new_page;
1849
1850 if (PageKsm(page)) {
1851 if (page_stable_node(page) &&
1852 !(ksm_run & KSM_RUN_UNMERGE))
1853 return page; /* no need to copy it */
1854 } else if (!anon_vma) {
1855 return page; /* no need to copy it */
1856 } else if (anon_vma->root == vma->anon_vma->root &&
1857 page->index == linear_page_index(vma, address)) {
1858 return page; /* still no need to copy it */
1859 }
1860 if (!PageUptodate(page))
1861 return page; /* let do_swap_page report the error */
1862
1863 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1864 if (new_page) {
1865 copy_user_highpage(new_page, page, address, vma);
1866
1867 SetPageDirty(new_page);
1868 __SetPageUptodate(new_page);
1869 __set_page_locked(new_page);
1870 }
1871
1872 return new_page;
1873 }
1874
1875 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1876 unsigned long *vm_flags)
1877 {
1878 struct stable_node *stable_node;
1879 struct rmap_item *rmap_item;
1880 struct hlist_node *hlist;
1881 unsigned int mapcount = page_mapcount(page);
1882 int referenced = 0;
1883 int search_new_forks = 0;
1884
1885 VM_BUG_ON(!PageKsm(page));
1886 VM_BUG_ON(!PageLocked(page));
1887
1888 stable_node = page_stable_node(page);
1889 if (!stable_node)
1890 return 0;
1891 again:
1892 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1893 struct anon_vma *anon_vma = rmap_item->anon_vma;
1894 struct anon_vma_chain *vmac;
1895 struct vm_area_struct *vma;
1896
1897 anon_vma_lock_read(anon_vma);
1898 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1899 0, ULONG_MAX) {
1900 vma = vmac->vma;
1901 if (rmap_item->address < vma->vm_start ||
1902 rmap_item->address >= vma->vm_end)
1903 continue;
1904 /*
1905 * Initially we examine only the vma which covers this
1906 * rmap_item; but later, if there is still work to do,
1907 * we examine covering vmas in other mms: in case they
1908 * were forked from the original since ksmd passed.
1909 */
1910 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1911 continue;
1912
1913 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1914 continue;
1915
1916 referenced += page_referenced_one(page, vma,
1917 rmap_item->address, &mapcount, vm_flags);
1918 if (!search_new_forks || !mapcount)
1919 break;
1920 }
1921 anon_vma_unlock_read(anon_vma);
1922 if (!mapcount)
1923 goto out;
1924 }
1925 if (!search_new_forks++)
1926 goto again;
1927 out:
1928 return referenced;
1929 }
1930
1931 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1932 {
1933 struct stable_node *stable_node;
1934 struct hlist_node *hlist;
1935 struct rmap_item *rmap_item;
1936 int ret = SWAP_AGAIN;
1937 int search_new_forks = 0;
1938
1939 VM_BUG_ON(!PageKsm(page));
1940 VM_BUG_ON(!PageLocked(page));
1941
1942 stable_node = page_stable_node(page);
1943 if (!stable_node)
1944 return SWAP_FAIL;
1945 again:
1946 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1947 struct anon_vma *anon_vma = rmap_item->anon_vma;
1948 struct anon_vma_chain *vmac;
1949 struct vm_area_struct *vma;
1950
1951 anon_vma_lock_read(anon_vma);
1952 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1953 0, ULONG_MAX) {
1954 vma = vmac->vma;
1955 if (rmap_item->address < vma->vm_start ||
1956 rmap_item->address >= vma->vm_end)
1957 continue;
1958 /*
1959 * Initially we examine only the vma which covers this
1960 * rmap_item; but later, if there is still work to do,
1961 * we examine covering vmas in other mms: in case they
1962 * were forked from the original since ksmd passed.
1963 */
1964 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1965 continue;
1966
1967 ret = try_to_unmap_one(page, vma,
1968 rmap_item->address, flags);
1969 if (ret != SWAP_AGAIN || !page_mapped(page)) {
1970 anon_vma_unlock_read(anon_vma);
1971 goto out;
1972 }
1973 }
1974 anon_vma_unlock_read(anon_vma);
1975 }
1976 if (!search_new_forks++)
1977 goto again;
1978 out:
1979 return ret;
1980 }
1981
1982 #ifdef CONFIG_MIGRATION
1983 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1984 struct vm_area_struct *, unsigned long, void *), void *arg)
1985 {
1986 struct stable_node *stable_node;
1987 struct hlist_node *hlist;
1988 struct rmap_item *rmap_item;
1989 int ret = SWAP_AGAIN;
1990 int search_new_forks = 0;
1991
1992 VM_BUG_ON(!PageKsm(page));
1993 VM_BUG_ON(!PageLocked(page));
1994
1995 stable_node = page_stable_node(page);
1996 if (!stable_node)
1997 return ret;
1998 again:
1999 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2000 struct anon_vma *anon_vma = rmap_item->anon_vma;
2001 struct anon_vma_chain *vmac;
2002 struct vm_area_struct *vma;
2003
2004 anon_vma_lock_read(anon_vma);
2005 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2006 0, ULONG_MAX) {
2007 vma = vmac->vma;
2008 if (rmap_item->address < vma->vm_start ||
2009 rmap_item->address >= vma->vm_end)
2010 continue;
2011 /*
2012 * Initially we examine only the vma which covers this
2013 * rmap_item; but later, if there is still work to do,
2014 * we examine covering vmas in other mms: in case they
2015 * were forked from the original since ksmd passed.
2016 */
2017 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2018 continue;
2019
2020 ret = rmap_one(page, vma, rmap_item->address, arg);
2021 if (ret != SWAP_AGAIN) {
2022 anon_vma_unlock_read(anon_vma);
2023 goto out;
2024 }
2025 }
2026 anon_vma_unlock_read(anon_vma);
2027 }
2028 if (!search_new_forks++)
2029 goto again;
2030 out:
2031 return ret;
2032 }
2033
2034 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2035 {
2036 struct stable_node *stable_node;
2037
2038 VM_BUG_ON(!PageLocked(oldpage));
2039 VM_BUG_ON(!PageLocked(newpage));
2040 VM_BUG_ON(newpage->mapping != oldpage->mapping);
2041
2042 stable_node = page_stable_node(newpage);
2043 if (stable_node) {
2044 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2045 stable_node->kpfn = page_to_pfn(newpage);
2046 /*
2047 * newpage->mapping was set in advance; now we need smp_wmb()
2048 * to make sure that the new stable_node->kpfn is visible
2049 * to get_ksm_page() before it can see that oldpage->mapping
2050 * has gone stale (or that PageSwapCache has been cleared).
2051 */
2052 smp_wmb();
2053 set_page_stable_node(oldpage, NULL);
2054 }
2055 }
2056 #endif /* CONFIG_MIGRATION */
2057
2058 #ifdef CONFIG_MEMORY_HOTREMOVE
2059 static void ksm_check_stable_tree(unsigned long start_pfn,
2060 unsigned long end_pfn)
2061 {
2062 struct stable_node *stable_node;
2063 struct list_head *this, *next;
2064 struct rb_node *node;
2065 int nid;
2066
2067 for (nid = 0; nid < nr_node_ids; nid++) {
2068 node = rb_first(&root_stable_tree[nid]);
2069 while (node) {
2070 stable_node = rb_entry(node, struct stable_node, node);
2071 if (stable_node->kpfn >= start_pfn &&
2072 stable_node->kpfn < end_pfn) {
2073 /*
2074 * Don't get_ksm_page, page has already gone:
2075 * which is why we keep kpfn instead of page*
2076 */
2077 remove_node_from_stable_tree(stable_node);
2078 node = rb_first(&root_stable_tree[nid]);
2079 } else
2080 node = rb_next(node);
2081 cond_resched();
2082 }
2083 }
2084 list_for_each_safe(this, next, &migrate_nodes) {
2085 stable_node = list_entry(this, struct stable_node, list);
2086 if (stable_node->kpfn >= start_pfn &&
2087 stable_node->kpfn < end_pfn)
2088 remove_node_from_stable_tree(stable_node);
2089 cond_resched();
2090 }
2091 }
2092
2093 static int ksm_memory_callback(struct notifier_block *self,
2094 unsigned long action, void *arg)
2095 {
2096 struct memory_notify *mn = arg;
2097
2098 switch (action) {
2099 case MEM_GOING_OFFLINE:
2100 /*
2101 * Keep it very simple for now: just lock out ksmd and
2102 * MADV_UNMERGEABLE while any memory is going offline.
2103 * mutex_lock_nested() is necessary because lockdep was alarmed
2104 * that here we take ksm_thread_mutex inside notifier chain
2105 * mutex, and later take notifier chain mutex inside
2106 * ksm_thread_mutex to unlock it. But that's safe because both
2107 * are inside mem_hotplug_mutex.
2108 */
2109 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
2110 break;
2111
2112 case MEM_OFFLINE:
2113 /*
2114 * Most of the work is done by page migration; but there might
2115 * be a few stable_nodes left over, still pointing to struct
2116 * pages which have been offlined: prune those from the tree,
2117 * otherwise get_ksm_page() might later try to access a
2118 * non-existent struct page.
2119 */
2120 ksm_check_stable_tree(mn->start_pfn,
2121 mn->start_pfn + mn->nr_pages);
2122 /* fallthrough */
2123
2124 case MEM_CANCEL_OFFLINE:
2125 mutex_unlock(&ksm_thread_mutex);
2126 break;
2127 }
2128 return NOTIFY_OK;
2129 }
2130 #endif /* CONFIG_MEMORY_HOTREMOVE */
2131
2132 #ifdef CONFIG_SYSFS
2133 /*
2134 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2135 */
2136
2137 #define KSM_ATTR_RO(_name) \
2138 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2139 #define KSM_ATTR(_name) \
2140 static struct kobj_attribute _name##_attr = \
2141 __ATTR(_name, 0644, _name##_show, _name##_store)
2142
2143 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2144 struct kobj_attribute *attr, char *buf)
2145 {
2146 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2147 }
2148
2149 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2150 struct kobj_attribute *attr,
2151 const char *buf, size_t count)
2152 {
2153 unsigned long msecs;
2154 int err;
2155
2156 err = strict_strtoul(buf, 10, &msecs);
2157 if (err || msecs > UINT_MAX)
2158 return -EINVAL;
2159
2160 ksm_thread_sleep_millisecs = msecs;
2161
2162 return count;
2163 }
2164 KSM_ATTR(sleep_millisecs);
2165
2166 static ssize_t pages_to_scan_show(struct kobject *kobj,
2167 struct kobj_attribute *attr, char *buf)
2168 {
2169 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2170 }
2171
2172 static ssize_t pages_to_scan_store(struct kobject *kobj,
2173 struct kobj_attribute *attr,
2174 const char *buf, size_t count)
2175 {
2176 int err;
2177 unsigned long nr_pages;
2178
2179 err = strict_strtoul(buf, 10, &nr_pages);
2180 if (err || nr_pages > UINT_MAX)
2181 return -EINVAL;
2182
2183 ksm_thread_pages_to_scan = nr_pages;
2184
2185 return count;
2186 }
2187 KSM_ATTR(pages_to_scan);
2188
2189 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2190 char *buf)
2191 {
2192 return sprintf(buf, "%u\n", ksm_run);
2193 }
2194
2195 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2196 const char *buf, size_t count)
2197 {
2198 int err;
2199 unsigned long flags;
2200
2201 err = strict_strtoul(buf, 10, &flags);
2202 if (err || flags > UINT_MAX)
2203 return -EINVAL;
2204 if (flags > KSM_RUN_UNMERGE)
2205 return -EINVAL;
2206
2207 /*
2208 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2209 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2210 * breaking COW to free the pages_shared (but leaves mm_slots
2211 * on the list for when ksmd may be set running again).
2212 */
2213
2214 mutex_lock(&ksm_thread_mutex);
2215 if (ksm_run != flags) {
2216 ksm_run = flags;
2217 if (flags & KSM_RUN_UNMERGE) {
2218 set_current_oom_origin();
2219 err = unmerge_and_remove_all_rmap_items();
2220 clear_current_oom_origin();
2221 if (err) {
2222 ksm_run = KSM_RUN_STOP;
2223 count = err;
2224 }
2225 }
2226 }
2227 mutex_unlock(&ksm_thread_mutex);
2228
2229 if (flags & KSM_RUN_MERGE)
2230 wake_up_interruptible(&ksm_thread_wait);
2231
2232 return count;
2233 }
2234 KSM_ATTR(run);
2235
2236 #ifdef CONFIG_NUMA
2237 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2238 struct kobj_attribute *attr, char *buf)
2239 {
2240 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2241 }
2242
2243 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2244 struct kobj_attribute *attr,
2245 const char *buf, size_t count)
2246 {
2247 int err;
2248 unsigned long knob;
2249
2250 err = kstrtoul(buf, 10, &knob);
2251 if (err)
2252 return err;
2253 if (knob > 1)
2254 return -EINVAL;
2255
2256 mutex_lock(&ksm_thread_mutex);
2257 if (ksm_merge_across_nodes != knob) {
2258 if (ksm_pages_shared || remove_all_stable_nodes())
2259 err = -EBUSY;
2260 else
2261 ksm_merge_across_nodes = knob;
2262 }
2263 mutex_unlock(&ksm_thread_mutex);
2264
2265 return err ? err : count;
2266 }
2267 KSM_ATTR(merge_across_nodes);
2268 #endif
2269
2270 static ssize_t pages_shared_show(struct kobject *kobj,
2271 struct kobj_attribute *attr, char *buf)
2272 {
2273 return sprintf(buf, "%lu\n", ksm_pages_shared);
2274 }
2275 KSM_ATTR_RO(pages_shared);
2276
2277 static ssize_t pages_sharing_show(struct kobject *kobj,
2278 struct kobj_attribute *attr, char *buf)
2279 {
2280 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2281 }
2282 KSM_ATTR_RO(pages_sharing);
2283
2284 static ssize_t pages_unshared_show(struct kobject *kobj,
2285 struct kobj_attribute *attr, char *buf)
2286 {
2287 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2288 }
2289 KSM_ATTR_RO(pages_unshared);
2290
2291 static ssize_t pages_volatile_show(struct kobject *kobj,
2292 struct kobj_attribute *attr, char *buf)
2293 {
2294 long ksm_pages_volatile;
2295
2296 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2297 - ksm_pages_sharing - ksm_pages_unshared;
2298 /*
2299 * It was not worth any locking to calculate that statistic,
2300 * but it might therefore sometimes be negative: conceal that.
2301 */
2302 if (ksm_pages_volatile < 0)
2303 ksm_pages_volatile = 0;
2304 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2305 }
2306 KSM_ATTR_RO(pages_volatile);
2307
2308 static ssize_t full_scans_show(struct kobject *kobj,
2309 struct kobj_attribute *attr, char *buf)
2310 {
2311 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2312 }
2313 KSM_ATTR_RO(full_scans);
2314
2315 static struct attribute *ksm_attrs[] = {
2316 &sleep_millisecs_attr.attr,
2317 &pages_to_scan_attr.attr,
2318 &run_attr.attr,
2319 &pages_shared_attr.attr,
2320 &pages_sharing_attr.attr,
2321 &pages_unshared_attr.attr,
2322 &pages_volatile_attr.attr,
2323 &full_scans_attr.attr,
2324 #ifdef CONFIG_NUMA
2325 &merge_across_nodes_attr.attr,
2326 #endif
2327 NULL,
2328 };
2329
2330 static struct attribute_group ksm_attr_group = {
2331 .attrs = ksm_attrs,
2332 .name = "ksm",
2333 };
2334 #endif /* CONFIG_SYSFS */
2335
2336 static int __init ksm_init(void)
2337 {
2338 struct task_struct *ksm_thread;
2339 int err;
2340 int nid;
2341
2342 err = ksm_slab_init();
2343 if (err)
2344 goto out;
2345
2346 for (nid = 0; nid < nr_node_ids; nid++)
2347 root_stable_tree[nid] = RB_ROOT;
2348
2349 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2350 if (IS_ERR(ksm_thread)) {
2351 printk(KERN_ERR "ksm: creating kthread failed\n");
2352 err = PTR_ERR(ksm_thread);
2353 goto out_free;
2354 }
2355
2356 #ifdef CONFIG_SYSFS
2357 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2358 if (err) {
2359 printk(KERN_ERR "ksm: register sysfs failed\n");
2360 kthread_stop(ksm_thread);
2361 goto out_free;
2362 }
2363 #else
2364 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2365
2366 #endif /* CONFIG_SYSFS */
2367
2368 #ifdef CONFIG_MEMORY_HOTREMOVE
2369 /*
2370 * Choose a high priority since the callback takes ksm_thread_mutex:
2371 * later callbacks could only be taking locks which nest within that.
2372 */
2373 hotplug_memory_notifier(ksm_memory_callback, 100);
2374 #endif
2375 return 0;
2376
2377 out_free:
2378 ksm_slab_free();
2379 out:
2380 return err;
2381 }
2382 module_init(ksm_init)
This page took 0.073924 seconds and 4 git commands to generate.