c52bc5aa6ba0b96e4f20740bac13e5eca8f69671
[deliverable/linux.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236
237 /*
238 * Need this for bootstrapping a per node allocator.
239 */
240 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_AC MAX_NUMNODES
244 #define SIZE_NODE (2 * MAX_NUMNODES)
245
246 static int drain_freelist(struct kmem_cache *cache,
247 struct kmem_cache_node *n, int tofree);
248 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 int node, struct list_head *list);
250 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252 static void cache_reap(struct work_struct *unused);
253
254 static int slab_early_init = 1;
255
256 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
258
259 static void kmem_cache_node_init(struct kmem_cache_node *parent)
260 {
261 INIT_LIST_HEAD(&parent->slabs_full);
262 INIT_LIST_HEAD(&parent->slabs_partial);
263 INIT_LIST_HEAD(&parent->slabs_free);
264 parent->shared = NULL;
265 parent->alien = NULL;
266 parent->colour_next = 0;
267 spin_lock_init(&parent->list_lock);
268 parent->free_objects = 0;
269 parent->free_touched = 0;
270 }
271
272 #define MAKE_LIST(cachep, listp, slab, nodeid) \
273 do { \
274 INIT_LIST_HEAD(listp); \
275 list_splice(&get_node(cachep, nodeid)->slab, listp); \
276 } while (0)
277
278 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
279 do { \
280 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
281 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 } while (0)
284
285 #define CFLGS_OFF_SLAB (0x80000000UL)
286 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
287
288 #define BATCHREFILL_LIMIT 16
289 /*
290 * Optimization question: fewer reaps means less probability for unnessary
291 * cpucache drain/refill cycles.
292 *
293 * OTOH the cpuarrays can contain lots of objects,
294 * which could lock up otherwise freeable slabs.
295 */
296 #define REAPTIMEOUT_AC (2*HZ)
297 #define REAPTIMEOUT_NODE (4*HZ)
298
299 #if STATS
300 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
301 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
302 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
303 #define STATS_INC_GROWN(x) ((x)->grown++)
304 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
305 #define STATS_SET_HIGH(x) \
306 do { \
307 if ((x)->num_active > (x)->high_mark) \
308 (x)->high_mark = (x)->num_active; \
309 } while (0)
310 #define STATS_INC_ERR(x) ((x)->errors++)
311 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
312 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
313 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
314 #define STATS_SET_FREEABLE(x, i) \
315 do { \
316 if ((x)->max_freeable < i) \
317 (x)->max_freeable = i; \
318 } while (0)
319 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
320 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
321 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
322 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
323 #else
324 #define STATS_INC_ACTIVE(x) do { } while (0)
325 #define STATS_DEC_ACTIVE(x) do { } while (0)
326 #define STATS_INC_ALLOCED(x) do { } while (0)
327 #define STATS_INC_GROWN(x) do { } while (0)
328 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
329 #define STATS_SET_HIGH(x) do { } while (0)
330 #define STATS_INC_ERR(x) do { } while (0)
331 #define STATS_INC_NODEALLOCS(x) do { } while (0)
332 #define STATS_INC_NODEFREES(x) do { } while (0)
333 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
334 #define STATS_SET_FREEABLE(x, i) do { } while (0)
335 #define STATS_INC_ALLOCHIT(x) do { } while (0)
336 #define STATS_INC_ALLOCMISS(x) do { } while (0)
337 #define STATS_INC_FREEHIT(x) do { } while (0)
338 #define STATS_INC_FREEMISS(x) do { } while (0)
339 #endif
340
341 #if DEBUG
342
343 /*
344 * memory layout of objects:
345 * 0 : objp
346 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
347 * the end of an object is aligned with the end of the real
348 * allocation. Catches writes behind the end of the allocation.
349 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
350 * redzone word.
351 * cachep->obj_offset: The real object.
352 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353 * cachep->size - 1* BYTES_PER_WORD: last caller address
354 * [BYTES_PER_WORD long]
355 */
356 static int obj_offset(struct kmem_cache *cachep)
357 {
358 return cachep->obj_offset;
359 }
360
361 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
362 {
363 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 return (unsigned long long*) (objp + obj_offset(cachep) -
365 sizeof(unsigned long long));
366 }
367
368 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
369 {
370 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 if (cachep->flags & SLAB_STORE_USER)
372 return (unsigned long long *)(objp + cachep->size -
373 sizeof(unsigned long long) -
374 REDZONE_ALIGN);
375 return (unsigned long long *) (objp + cachep->size -
376 sizeof(unsigned long long));
377 }
378
379 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
380 {
381 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382 return (void **)(objp + cachep->size - BYTES_PER_WORD);
383 }
384
385 #else
386
387 #define obj_offset(x) 0
388 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
390 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
391
392 #endif
393
394 #define OBJECT_FREE (0)
395 #define OBJECT_ACTIVE (1)
396
397 #ifdef CONFIG_DEBUG_SLAB_LEAK
398
399 static void set_obj_status(struct page *page, int idx, int val)
400 {
401 int freelist_size;
402 char *status;
403 struct kmem_cache *cachep = page->slab_cache;
404
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
407 status[idx] = val;
408 }
409
410 static inline unsigned int get_obj_status(struct page *page, int idx)
411 {
412 int freelist_size;
413 char *status;
414 struct kmem_cache *cachep = page->slab_cache;
415
416 freelist_size = cachep->num * sizeof(freelist_idx_t);
417 status = (char *)page->freelist + freelist_size;
418
419 return status[idx];
420 }
421
422 #else
423 static inline void set_obj_status(struct page *page, int idx, int val) {}
424
425 #endif
426
427 /*
428 * Do not go above this order unless 0 objects fit into the slab or
429 * overridden on the command line.
430 */
431 #define SLAB_MAX_ORDER_HI 1
432 #define SLAB_MAX_ORDER_LO 0
433 static int slab_max_order = SLAB_MAX_ORDER_LO;
434 static bool slab_max_order_set __initdata;
435
436 static inline struct kmem_cache *virt_to_cache(const void *obj)
437 {
438 struct page *page = virt_to_head_page(obj);
439 return page->slab_cache;
440 }
441
442 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 unsigned int idx)
444 {
445 return page->s_mem + cache->size * idx;
446 }
447
448 /*
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
453 */
454 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct page *page, void *obj)
456 {
457 u32 offset = (obj - page->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 }
460
461 static struct arraycache_init initarray_generic =
462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
463
464 /* internal cache of cache description objs */
465 static struct kmem_cache kmem_cache_boot = {
466 .batchcount = 1,
467 .limit = BOOT_CPUCACHE_ENTRIES,
468 .shared = 1,
469 .size = sizeof(struct kmem_cache),
470 .name = "kmem_cache",
471 };
472
473 #define BAD_ALIEN_MAGIC 0x01020304ul
474
475 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
476
477 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
478 {
479 return cachep->array[smp_processor_id()];
480 }
481
482 static size_t calculate_freelist_size(int nr_objs, size_t align)
483 {
484 size_t freelist_size;
485
486 freelist_size = nr_objs * sizeof(freelist_idx_t);
487 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
488 freelist_size += nr_objs * sizeof(char);
489
490 if (align)
491 freelist_size = ALIGN(freelist_size, align);
492
493 return freelist_size;
494 }
495
496 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
497 size_t idx_size, size_t align)
498 {
499 int nr_objs;
500 size_t remained_size;
501 size_t freelist_size;
502 int extra_space = 0;
503
504 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
505 extra_space = sizeof(char);
506 /*
507 * Ignore padding for the initial guess. The padding
508 * is at most @align-1 bytes, and @buffer_size is at
509 * least @align. In the worst case, this result will
510 * be one greater than the number of objects that fit
511 * into the memory allocation when taking the padding
512 * into account.
513 */
514 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
515
516 /*
517 * This calculated number will be either the right
518 * amount, or one greater than what we want.
519 */
520 remained_size = slab_size - nr_objs * buffer_size;
521 freelist_size = calculate_freelist_size(nr_objs, align);
522 if (remained_size < freelist_size)
523 nr_objs--;
524
525 return nr_objs;
526 }
527
528 /*
529 * Calculate the number of objects and left-over bytes for a given buffer size.
530 */
531 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
532 size_t align, int flags, size_t *left_over,
533 unsigned int *num)
534 {
535 int nr_objs;
536 size_t mgmt_size;
537 size_t slab_size = PAGE_SIZE << gfporder;
538
539 /*
540 * The slab management structure can be either off the slab or
541 * on it. For the latter case, the memory allocated for a
542 * slab is used for:
543 *
544 * - One unsigned int for each object
545 * - Padding to respect alignment of @align
546 * - @buffer_size bytes for each object
547 *
548 * If the slab management structure is off the slab, then the
549 * alignment will already be calculated into the size. Because
550 * the slabs are all pages aligned, the objects will be at the
551 * correct alignment when allocated.
552 */
553 if (flags & CFLGS_OFF_SLAB) {
554 mgmt_size = 0;
555 nr_objs = slab_size / buffer_size;
556
557 } else {
558 nr_objs = calculate_nr_objs(slab_size, buffer_size,
559 sizeof(freelist_idx_t), align);
560 mgmt_size = calculate_freelist_size(nr_objs, align);
561 }
562 *num = nr_objs;
563 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
564 }
565
566 #if DEBUG
567 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
568
569 static void __slab_error(const char *function, struct kmem_cache *cachep,
570 char *msg)
571 {
572 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
573 function, cachep->name, msg);
574 dump_stack();
575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
576 }
577 #endif
578
579 /*
580 * By default on NUMA we use alien caches to stage the freeing of
581 * objects allocated from other nodes. This causes massive memory
582 * inefficiencies when using fake NUMA setup to split memory into a
583 * large number of small nodes, so it can be disabled on the command
584 * line
585 */
586
587 static int use_alien_caches __read_mostly = 1;
588 static int __init noaliencache_setup(char *s)
589 {
590 use_alien_caches = 0;
591 return 1;
592 }
593 __setup("noaliencache", noaliencache_setup);
594
595 static int __init slab_max_order_setup(char *str)
596 {
597 get_option(&str, &slab_max_order);
598 slab_max_order = slab_max_order < 0 ? 0 :
599 min(slab_max_order, MAX_ORDER - 1);
600 slab_max_order_set = true;
601
602 return 1;
603 }
604 __setup("slab_max_order=", slab_max_order_setup);
605
606 #ifdef CONFIG_NUMA
607 /*
608 * Special reaping functions for NUMA systems called from cache_reap().
609 * These take care of doing round robin flushing of alien caches (containing
610 * objects freed on different nodes from which they were allocated) and the
611 * flushing of remote pcps by calling drain_node_pages.
612 */
613 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
614
615 static void init_reap_node(int cpu)
616 {
617 int node;
618
619 node = next_node(cpu_to_mem(cpu), node_online_map);
620 if (node == MAX_NUMNODES)
621 node = first_node(node_online_map);
622
623 per_cpu(slab_reap_node, cpu) = node;
624 }
625
626 static void next_reap_node(void)
627 {
628 int node = __this_cpu_read(slab_reap_node);
629
630 node = next_node(node, node_online_map);
631 if (unlikely(node >= MAX_NUMNODES))
632 node = first_node(node_online_map);
633 __this_cpu_write(slab_reap_node, node);
634 }
635
636 #else
637 #define init_reap_node(cpu) do { } while (0)
638 #define next_reap_node(void) do { } while (0)
639 #endif
640
641 /*
642 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
643 * via the workqueue/eventd.
644 * Add the CPU number into the expiration time to minimize the possibility of
645 * the CPUs getting into lockstep and contending for the global cache chain
646 * lock.
647 */
648 static void start_cpu_timer(int cpu)
649 {
650 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
651
652 /*
653 * When this gets called from do_initcalls via cpucache_init(),
654 * init_workqueues() has already run, so keventd will be setup
655 * at that time.
656 */
657 if (keventd_up() && reap_work->work.func == NULL) {
658 init_reap_node(cpu);
659 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
660 schedule_delayed_work_on(cpu, reap_work,
661 __round_jiffies_relative(HZ, cpu));
662 }
663 }
664
665 static void init_arraycache(struct array_cache *ac, int limit, int batch)
666 {
667 /*
668 * The array_cache structures contain pointers to free object.
669 * However, when such objects are allocated or transferred to another
670 * cache the pointers are not cleared and they could be counted as
671 * valid references during a kmemleak scan. Therefore, kmemleak must
672 * not scan such objects.
673 */
674 kmemleak_no_scan(ac);
675 if (ac) {
676 ac->avail = 0;
677 ac->limit = limit;
678 ac->batchcount = batch;
679 ac->touched = 0;
680 }
681 }
682
683 static struct array_cache *alloc_arraycache(int node, int entries,
684 int batchcount, gfp_t gfp)
685 {
686 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
687 struct array_cache *ac = NULL;
688
689 ac = kmalloc_node(memsize, gfp, node);
690 init_arraycache(ac, entries, batchcount);
691 return ac;
692 }
693
694 static inline bool is_slab_pfmemalloc(struct page *page)
695 {
696 return PageSlabPfmemalloc(page);
697 }
698
699 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
700 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
701 struct array_cache *ac)
702 {
703 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
704 struct page *page;
705 unsigned long flags;
706
707 if (!pfmemalloc_active)
708 return;
709
710 spin_lock_irqsave(&n->list_lock, flags);
711 list_for_each_entry(page, &n->slabs_full, lru)
712 if (is_slab_pfmemalloc(page))
713 goto out;
714
715 list_for_each_entry(page, &n->slabs_partial, lru)
716 if (is_slab_pfmemalloc(page))
717 goto out;
718
719 list_for_each_entry(page, &n->slabs_free, lru)
720 if (is_slab_pfmemalloc(page))
721 goto out;
722
723 pfmemalloc_active = false;
724 out:
725 spin_unlock_irqrestore(&n->list_lock, flags);
726 }
727
728 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
729 gfp_t flags, bool force_refill)
730 {
731 int i;
732 void *objp = ac->entry[--ac->avail];
733
734 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
735 if (unlikely(is_obj_pfmemalloc(objp))) {
736 struct kmem_cache_node *n;
737
738 if (gfp_pfmemalloc_allowed(flags)) {
739 clear_obj_pfmemalloc(&objp);
740 return objp;
741 }
742
743 /* The caller cannot use PFMEMALLOC objects, find another one */
744 for (i = 0; i < ac->avail; i++) {
745 /* If a !PFMEMALLOC object is found, swap them */
746 if (!is_obj_pfmemalloc(ac->entry[i])) {
747 objp = ac->entry[i];
748 ac->entry[i] = ac->entry[ac->avail];
749 ac->entry[ac->avail] = objp;
750 return objp;
751 }
752 }
753
754 /*
755 * If there are empty slabs on the slabs_free list and we are
756 * being forced to refill the cache, mark this one !pfmemalloc.
757 */
758 n = get_node(cachep, numa_mem_id());
759 if (!list_empty(&n->slabs_free) && force_refill) {
760 struct page *page = virt_to_head_page(objp);
761 ClearPageSlabPfmemalloc(page);
762 clear_obj_pfmemalloc(&objp);
763 recheck_pfmemalloc_active(cachep, ac);
764 return objp;
765 }
766
767 /* No !PFMEMALLOC objects available */
768 ac->avail++;
769 objp = NULL;
770 }
771
772 return objp;
773 }
774
775 static inline void *ac_get_obj(struct kmem_cache *cachep,
776 struct array_cache *ac, gfp_t flags, bool force_refill)
777 {
778 void *objp;
779
780 if (unlikely(sk_memalloc_socks()))
781 objp = __ac_get_obj(cachep, ac, flags, force_refill);
782 else
783 objp = ac->entry[--ac->avail];
784
785 return objp;
786 }
787
788 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
789 void *objp)
790 {
791 if (unlikely(pfmemalloc_active)) {
792 /* Some pfmemalloc slabs exist, check if this is one */
793 struct page *page = virt_to_head_page(objp);
794 if (PageSlabPfmemalloc(page))
795 set_obj_pfmemalloc(&objp);
796 }
797
798 return objp;
799 }
800
801 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
802 void *objp)
803 {
804 if (unlikely(sk_memalloc_socks()))
805 objp = __ac_put_obj(cachep, ac, objp);
806
807 ac->entry[ac->avail++] = objp;
808 }
809
810 /*
811 * Transfer objects in one arraycache to another.
812 * Locking must be handled by the caller.
813 *
814 * Return the number of entries transferred.
815 */
816 static int transfer_objects(struct array_cache *to,
817 struct array_cache *from, unsigned int max)
818 {
819 /* Figure out how many entries to transfer */
820 int nr = min3(from->avail, max, to->limit - to->avail);
821
822 if (!nr)
823 return 0;
824
825 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
826 sizeof(void *) *nr);
827
828 from->avail -= nr;
829 to->avail += nr;
830 return nr;
831 }
832
833 #ifndef CONFIG_NUMA
834
835 #define drain_alien_cache(cachep, alien) do { } while (0)
836 #define reap_alien(cachep, n) do { } while (0)
837
838 static inline struct alien_cache **alloc_alien_cache(int node,
839 int limit, gfp_t gfp)
840 {
841 return (struct alien_cache **)BAD_ALIEN_MAGIC;
842 }
843
844 static inline void free_alien_cache(struct alien_cache **ac_ptr)
845 {
846 }
847
848 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
849 {
850 return 0;
851 }
852
853 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
854 gfp_t flags)
855 {
856 return NULL;
857 }
858
859 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
860 gfp_t flags, int nodeid)
861 {
862 return NULL;
863 }
864
865 #else /* CONFIG_NUMA */
866
867 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869
870 static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
872 {
873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874 struct alien_cache *alc = NULL;
875
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
878 spin_lock_init(&alc->lock);
879 return alc;
880 }
881
882 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883 {
884 struct alien_cache **alc_ptr;
885 size_t memsize = sizeof(void *) * nr_node_ids;
886 int i;
887
888 if (limit > 1)
889 limit = 12;
890 alc_ptr = kzalloc_node(memsize, gfp, node);
891 if (!alc_ptr)
892 return NULL;
893
894 for_each_node(i) {
895 if (i == node || !node_online(i))
896 continue;
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
898 if (!alc_ptr[i]) {
899 for (i--; i >= 0; i--)
900 kfree(alc_ptr[i]);
901 kfree(alc_ptr);
902 return NULL;
903 }
904 }
905 return alc_ptr;
906 }
907
908 static void free_alien_cache(struct alien_cache **alc_ptr)
909 {
910 int i;
911
912 if (!alc_ptr)
913 return;
914 for_each_node(i)
915 kfree(alc_ptr[i]);
916 kfree(alc_ptr);
917 }
918
919 static void __drain_alien_cache(struct kmem_cache *cachep,
920 struct array_cache *ac, int node,
921 struct list_head *list)
922 {
923 struct kmem_cache_node *n = get_node(cachep, node);
924
925 if (ac->avail) {
926 spin_lock(&n->list_lock);
927 /*
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
931 */
932 if (n->shared)
933 transfer_objects(n->shared, ac, ac->limit);
934
935 free_block(cachep, ac->entry, ac->avail, node, list);
936 ac->avail = 0;
937 spin_unlock(&n->list_lock);
938 }
939 }
940
941 /*
942 * Called from cache_reap() to regularly drain alien caches round robin.
943 */
944 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945 {
946 int node = __this_cpu_read(slab_reap_node);
947
948 if (n->alien) {
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
951
952 if (alc) {
953 ac = &alc->ac;
954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
955 LIST_HEAD(list);
956
957 __drain_alien_cache(cachep, ac, node, &list);
958 spin_unlock_irq(&alc->lock);
959 slabs_destroy(cachep, &list);
960 }
961 }
962 }
963 }
964
965 static void drain_alien_cache(struct kmem_cache *cachep,
966 struct alien_cache **alien)
967 {
968 int i = 0;
969 struct alien_cache *alc;
970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
974 alc = alien[i];
975 if (alc) {
976 LIST_HEAD(list);
977
978 ac = &alc->ac;
979 spin_lock_irqsave(&alc->lock, flags);
980 __drain_alien_cache(cachep, ac, i, &list);
981 spin_unlock_irqrestore(&alc->lock, flags);
982 slabs_destroy(cachep, &list);
983 }
984 }
985 }
986
987 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988 {
989 int nodeid = page_to_nid(virt_to_page(objp));
990 struct kmem_cache_node *n;
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
993 int node;
994 LIST_HEAD(list);
995
996 node = numa_mem_id();
997
998 /*
999 * Make sure we are not freeing a object from another node to the array
1000 * cache on this cpu.
1001 */
1002 if (likely(nodeid == node))
1003 return 0;
1004
1005 n = get_node(cachep, node);
1006 STATS_INC_NODEFREES(cachep);
1007 if (n->alien && n->alien[nodeid]) {
1008 alien = n->alien[nodeid];
1009 ac = &alien->ac;
1010 spin_lock(&alien->lock);
1011 if (unlikely(ac->avail == ac->limit)) {
1012 STATS_INC_ACOVERFLOW(cachep);
1013 __drain_alien_cache(cachep, ac, nodeid, &list);
1014 }
1015 ac_put_obj(cachep, ac, objp);
1016 spin_unlock(&alien->lock);
1017 slabs_destroy(cachep, &list);
1018 } else {
1019 n = get_node(cachep, nodeid);
1020 spin_lock(&n->list_lock);
1021 free_block(cachep, &objp, 1, nodeid, &list);
1022 spin_unlock(&n->list_lock);
1023 slabs_destroy(cachep, &list);
1024 }
1025 return 1;
1026 }
1027 #endif
1028
1029 /*
1030 * Allocates and initializes node for a node on each slab cache, used for
1031 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1032 * will be allocated off-node since memory is not yet online for the new node.
1033 * When hotplugging memory or a cpu, existing node are not replaced if
1034 * already in use.
1035 *
1036 * Must hold slab_mutex.
1037 */
1038 static int init_cache_node_node(int node)
1039 {
1040 struct kmem_cache *cachep;
1041 struct kmem_cache_node *n;
1042 const size_t memsize = sizeof(struct kmem_cache_node);
1043
1044 list_for_each_entry(cachep, &slab_caches, list) {
1045 /*
1046 * Set up the kmem_cache_node for cpu before we can
1047 * begin anything. Make sure some other cpu on this
1048 * node has not already allocated this
1049 */
1050 n = get_node(cachep, node);
1051 if (!n) {
1052 n = kmalloc_node(memsize, GFP_KERNEL, node);
1053 if (!n)
1054 return -ENOMEM;
1055 kmem_cache_node_init(n);
1056 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1057 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1058
1059 /*
1060 * The kmem_cache_nodes don't come and go as CPUs
1061 * come and go. slab_mutex is sufficient
1062 * protection here.
1063 */
1064 cachep->node[node] = n;
1065 }
1066
1067 spin_lock_irq(&n->list_lock);
1068 n->free_limit =
1069 (1 + nr_cpus_node(node)) *
1070 cachep->batchcount + cachep->num;
1071 spin_unlock_irq(&n->list_lock);
1072 }
1073 return 0;
1074 }
1075
1076 static inline int slabs_tofree(struct kmem_cache *cachep,
1077 struct kmem_cache_node *n)
1078 {
1079 return (n->free_objects + cachep->num - 1) / cachep->num;
1080 }
1081
1082 static void cpuup_canceled(long cpu)
1083 {
1084 struct kmem_cache *cachep;
1085 struct kmem_cache_node *n = NULL;
1086 int node = cpu_to_mem(cpu);
1087 const struct cpumask *mask = cpumask_of_node(node);
1088
1089 list_for_each_entry(cachep, &slab_caches, list) {
1090 struct array_cache *nc;
1091 struct array_cache *shared;
1092 struct alien_cache **alien;
1093 LIST_HEAD(list);
1094
1095 /* cpu is dead; no one can alloc from it. */
1096 nc = cachep->array[cpu];
1097 cachep->array[cpu] = NULL;
1098 n = get_node(cachep, node);
1099
1100 if (!n)
1101 goto free_array_cache;
1102
1103 spin_lock_irq(&n->list_lock);
1104
1105 /* Free limit for this kmem_cache_node */
1106 n->free_limit -= cachep->batchcount;
1107 if (nc)
1108 free_block(cachep, nc->entry, nc->avail, node, &list);
1109
1110 if (!cpumask_empty(mask)) {
1111 spin_unlock_irq(&n->list_lock);
1112 goto free_array_cache;
1113 }
1114
1115 shared = n->shared;
1116 if (shared) {
1117 free_block(cachep, shared->entry,
1118 shared->avail, node, &list);
1119 n->shared = NULL;
1120 }
1121
1122 alien = n->alien;
1123 n->alien = NULL;
1124
1125 spin_unlock_irq(&n->list_lock);
1126
1127 kfree(shared);
1128 if (alien) {
1129 drain_alien_cache(cachep, alien);
1130 free_alien_cache(alien);
1131 }
1132 free_array_cache:
1133 slabs_destroy(cachep, &list);
1134 kfree(nc);
1135 }
1136 /*
1137 * In the previous loop, all the objects were freed to
1138 * the respective cache's slabs, now we can go ahead and
1139 * shrink each nodelist to its limit.
1140 */
1141 list_for_each_entry(cachep, &slab_caches, list) {
1142 n = get_node(cachep, node);
1143 if (!n)
1144 continue;
1145 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146 }
1147 }
1148
1149 static int cpuup_prepare(long cpu)
1150 {
1151 struct kmem_cache *cachep;
1152 struct kmem_cache_node *n = NULL;
1153 int node = cpu_to_mem(cpu);
1154 int err;
1155
1156 /*
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
1160 * kmem_cache_node and not this cpu's kmem_cache_node
1161 */
1162 err = init_cache_node_node(node);
1163 if (err < 0)
1164 goto bad;
1165
1166 /*
1167 * Now we can go ahead with allocating the shared arrays and
1168 * array caches
1169 */
1170 list_for_each_entry(cachep, &slab_caches, list) {
1171 struct array_cache *nc;
1172 struct array_cache *shared = NULL;
1173 struct alien_cache **alien = NULL;
1174
1175 nc = alloc_arraycache(node, cachep->limit,
1176 cachep->batchcount, GFP_KERNEL);
1177 if (!nc)
1178 goto bad;
1179 if (cachep->shared) {
1180 shared = alloc_arraycache(node,
1181 cachep->shared * cachep->batchcount,
1182 0xbaadf00d, GFP_KERNEL);
1183 if (!shared) {
1184 kfree(nc);
1185 goto bad;
1186 }
1187 }
1188 if (use_alien_caches) {
1189 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1190 if (!alien) {
1191 kfree(shared);
1192 kfree(nc);
1193 goto bad;
1194 }
1195 }
1196 cachep->array[cpu] = nc;
1197 n = get_node(cachep, node);
1198 BUG_ON(!n);
1199
1200 spin_lock_irq(&n->list_lock);
1201 if (!n->shared) {
1202 /*
1203 * We are serialised from CPU_DEAD or
1204 * CPU_UP_CANCELLED by the cpucontrol lock
1205 */
1206 n->shared = shared;
1207 shared = NULL;
1208 }
1209 #ifdef CONFIG_NUMA
1210 if (!n->alien) {
1211 n->alien = alien;
1212 alien = NULL;
1213 }
1214 #endif
1215 spin_unlock_irq(&n->list_lock);
1216 kfree(shared);
1217 free_alien_cache(alien);
1218 }
1219
1220 return 0;
1221 bad:
1222 cpuup_canceled(cpu);
1223 return -ENOMEM;
1224 }
1225
1226 static int cpuup_callback(struct notifier_block *nfb,
1227 unsigned long action, void *hcpu)
1228 {
1229 long cpu = (long)hcpu;
1230 int err = 0;
1231
1232 switch (action) {
1233 case CPU_UP_PREPARE:
1234 case CPU_UP_PREPARE_FROZEN:
1235 mutex_lock(&slab_mutex);
1236 err = cpuup_prepare(cpu);
1237 mutex_unlock(&slab_mutex);
1238 break;
1239 case CPU_ONLINE:
1240 case CPU_ONLINE_FROZEN:
1241 start_cpu_timer(cpu);
1242 break;
1243 #ifdef CONFIG_HOTPLUG_CPU
1244 case CPU_DOWN_PREPARE:
1245 case CPU_DOWN_PREPARE_FROZEN:
1246 /*
1247 * Shutdown cache reaper. Note that the slab_mutex is
1248 * held so that if cache_reap() is invoked it cannot do
1249 * anything expensive but will only modify reap_work
1250 * and reschedule the timer.
1251 */
1252 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1253 /* Now the cache_reaper is guaranteed to be not running. */
1254 per_cpu(slab_reap_work, cpu).work.func = NULL;
1255 break;
1256 case CPU_DOWN_FAILED:
1257 case CPU_DOWN_FAILED_FROZEN:
1258 start_cpu_timer(cpu);
1259 break;
1260 case CPU_DEAD:
1261 case CPU_DEAD_FROZEN:
1262 /*
1263 * Even if all the cpus of a node are down, we don't free the
1264 * kmem_cache_node of any cache. This to avoid a race between
1265 * cpu_down, and a kmalloc allocation from another cpu for
1266 * memory from the node of the cpu going down. The node
1267 * structure is usually allocated from kmem_cache_create() and
1268 * gets destroyed at kmem_cache_destroy().
1269 */
1270 /* fall through */
1271 #endif
1272 case CPU_UP_CANCELED:
1273 case CPU_UP_CANCELED_FROZEN:
1274 mutex_lock(&slab_mutex);
1275 cpuup_canceled(cpu);
1276 mutex_unlock(&slab_mutex);
1277 break;
1278 }
1279 return notifier_from_errno(err);
1280 }
1281
1282 static struct notifier_block cpucache_notifier = {
1283 &cpuup_callback, NULL, 0
1284 };
1285
1286 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1287 /*
1288 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1289 * Returns -EBUSY if all objects cannot be drained so that the node is not
1290 * removed.
1291 *
1292 * Must hold slab_mutex.
1293 */
1294 static int __meminit drain_cache_node_node(int node)
1295 {
1296 struct kmem_cache *cachep;
1297 int ret = 0;
1298
1299 list_for_each_entry(cachep, &slab_caches, list) {
1300 struct kmem_cache_node *n;
1301
1302 n = get_node(cachep, node);
1303 if (!n)
1304 continue;
1305
1306 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1307
1308 if (!list_empty(&n->slabs_full) ||
1309 !list_empty(&n->slabs_partial)) {
1310 ret = -EBUSY;
1311 break;
1312 }
1313 }
1314 return ret;
1315 }
1316
1317 static int __meminit slab_memory_callback(struct notifier_block *self,
1318 unsigned long action, void *arg)
1319 {
1320 struct memory_notify *mnb = arg;
1321 int ret = 0;
1322 int nid;
1323
1324 nid = mnb->status_change_nid;
1325 if (nid < 0)
1326 goto out;
1327
1328 switch (action) {
1329 case MEM_GOING_ONLINE:
1330 mutex_lock(&slab_mutex);
1331 ret = init_cache_node_node(nid);
1332 mutex_unlock(&slab_mutex);
1333 break;
1334 case MEM_GOING_OFFLINE:
1335 mutex_lock(&slab_mutex);
1336 ret = drain_cache_node_node(nid);
1337 mutex_unlock(&slab_mutex);
1338 break;
1339 case MEM_ONLINE:
1340 case MEM_OFFLINE:
1341 case MEM_CANCEL_ONLINE:
1342 case MEM_CANCEL_OFFLINE:
1343 break;
1344 }
1345 out:
1346 return notifier_from_errno(ret);
1347 }
1348 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1349
1350 /*
1351 * swap the static kmem_cache_node with kmalloced memory
1352 */
1353 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1354 int nodeid)
1355 {
1356 struct kmem_cache_node *ptr;
1357
1358 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1359 BUG_ON(!ptr);
1360
1361 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1362 /*
1363 * Do not assume that spinlocks can be initialized via memcpy:
1364 */
1365 spin_lock_init(&ptr->list_lock);
1366
1367 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1368 cachep->node[nodeid] = ptr;
1369 }
1370
1371 /*
1372 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1373 * size of kmem_cache_node.
1374 */
1375 static void __init set_up_node(struct kmem_cache *cachep, int index)
1376 {
1377 int node;
1378
1379 for_each_online_node(node) {
1380 cachep->node[node] = &init_kmem_cache_node[index + node];
1381 cachep->node[node]->next_reap = jiffies +
1382 REAPTIMEOUT_NODE +
1383 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1384 }
1385 }
1386
1387 /*
1388 * The memory after the last cpu cache pointer is used for the
1389 * the node pointer.
1390 */
1391 static void setup_node_pointer(struct kmem_cache *cachep)
1392 {
1393 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1394 }
1395
1396 /*
1397 * Initialisation. Called after the page allocator have been initialised and
1398 * before smp_init().
1399 */
1400 void __init kmem_cache_init(void)
1401 {
1402 int i;
1403
1404 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1405 sizeof(struct rcu_head));
1406 kmem_cache = &kmem_cache_boot;
1407 setup_node_pointer(kmem_cache);
1408
1409 if (num_possible_nodes() == 1)
1410 use_alien_caches = 0;
1411
1412 for (i = 0; i < NUM_INIT_LISTS; i++)
1413 kmem_cache_node_init(&init_kmem_cache_node[i]);
1414
1415 set_up_node(kmem_cache, CACHE_CACHE);
1416
1417 /*
1418 * Fragmentation resistance on low memory - only use bigger
1419 * page orders on machines with more than 32MB of memory if
1420 * not overridden on the command line.
1421 */
1422 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1423 slab_max_order = SLAB_MAX_ORDER_HI;
1424
1425 /* Bootstrap is tricky, because several objects are allocated
1426 * from caches that do not exist yet:
1427 * 1) initialize the kmem_cache cache: it contains the struct
1428 * kmem_cache structures of all caches, except kmem_cache itself:
1429 * kmem_cache is statically allocated.
1430 * Initially an __init data area is used for the head array and the
1431 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1432 * array at the end of the bootstrap.
1433 * 2) Create the first kmalloc cache.
1434 * The struct kmem_cache for the new cache is allocated normally.
1435 * An __init data area is used for the head array.
1436 * 3) Create the remaining kmalloc caches, with minimally sized
1437 * head arrays.
1438 * 4) Replace the __init data head arrays for kmem_cache and the first
1439 * kmalloc cache with kmalloc allocated arrays.
1440 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1441 * the other cache's with kmalloc allocated memory.
1442 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1443 */
1444
1445 /* 1) create the kmem_cache */
1446
1447 /*
1448 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1449 */
1450 create_boot_cache(kmem_cache, "kmem_cache",
1451 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1452 nr_node_ids * sizeof(struct kmem_cache_node *),
1453 SLAB_HWCACHE_ALIGN);
1454 list_add(&kmem_cache->list, &slab_caches);
1455
1456 /* 2+3) create the kmalloc caches */
1457
1458 /*
1459 * Initialize the caches that provide memory for the array cache and the
1460 * kmem_cache_node structures first. Without this, further allocations will
1461 * bug.
1462 */
1463
1464 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1465 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1466
1467 if (INDEX_AC != INDEX_NODE)
1468 kmalloc_caches[INDEX_NODE] =
1469 create_kmalloc_cache("kmalloc-node",
1470 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1471
1472 slab_early_init = 0;
1473
1474 /* 4) Replace the bootstrap head arrays */
1475 {
1476 struct array_cache *ptr;
1477
1478 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1479
1480 memcpy(ptr, cpu_cache_get(kmem_cache),
1481 sizeof(struct arraycache_init));
1482
1483 kmem_cache->array[smp_processor_id()] = ptr;
1484
1485 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1486
1487 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1488 != &initarray_generic.cache);
1489 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1490 sizeof(struct arraycache_init));
1491
1492 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1493 }
1494 /* 5) Replace the bootstrap kmem_cache_node */
1495 {
1496 int nid;
1497
1498 for_each_online_node(nid) {
1499 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1500
1501 init_list(kmalloc_caches[INDEX_AC],
1502 &init_kmem_cache_node[SIZE_AC + nid], nid);
1503
1504 if (INDEX_AC != INDEX_NODE) {
1505 init_list(kmalloc_caches[INDEX_NODE],
1506 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1507 }
1508 }
1509 }
1510
1511 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1512 }
1513
1514 void __init kmem_cache_init_late(void)
1515 {
1516 struct kmem_cache *cachep;
1517
1518 slab_state = UP;
1519
1520 /* 6) resize the head arrays to their final sizes */
1521 mutex_lock(&slab_mutex);
1522 list_for_each_entry(cachep, &slab_caches, list)
1523 if (enable_cpucache(cachep, GFP_NOWAIT))
1524 BUG();
1525 mutex_unlock(&slab_mutex);
1526
1527 /* Done! */
1528 slab_state = FULL;
1529
1530 /*
1531 * Register a cpu startup notifier callback that initializes
1532 * cpu_cache_get for all new cpus
1533 */
1534 register_cpu_notifier(&cpucache_notifier);
1535
1536 #ifdef CONFIG_NUMA
1537 /*
1538 * Register a memory hotplug callback that initializes and frees
1539 * node.
1540 */
1541 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1542 #endif
1543
1544 /*
1545 * The reap timers are started later, with a module init call: That part
1546 * of the kernel is not yet operational.
1547 */
1548 }
1549
1550 static int __init cpucache_init(void)
1551 {
1552 int cpu;
1553
1554 /*
1555 * Register the timers that return unneeded pages to the page allocator
1556 */
1557 for_each_online_cpu(cpu)
1558 start_cpu_timer(cpu);
1559
1560 /* Done! */
1561 slab_state = FULL;
1562 return 0;
1563 }
1564 __initcall(cpucache_init);
1565
1566 static noinline void
1567 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1568 {
1569 #if DEBUG
1570 struct kmem_cache_node *n;
1571 struct page *page;
1572 unsigned long flags;
1573 int node;
1574 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 DEFAULT_RATELIMIT_BURST);
1576
1577 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1578 return;
1579
1580 printk(KERN_WARNING
1581 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1582 nodeid, gfpflags);
1583 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1584 cachep->name, cachep->size, cachep->gfporder);
1585
1586 for_each_kmem_cache_node(cachep, node, n) {
1587 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1588 unsigned long active_slabs = 0, num_slabs = 0;
1589
1590 spin_lock_irqsave(&n->list_lock, flags);
1591 list_for_each_entry(page, &n->slabs_full, lru) {
1592 active_objs += cachep->num;
1593 active_slabs++;
1594 }
1595 list_for_each_entry(page, &n->slabs_partial, lru) {
1596 active_objs += page->active;
1597 active_slabs++;
1598 }
1599 list_for_each_entry(page, &n->slabs_free, lru)
1600 num_slabs++;
1601
1602 free_objects += n->free_objects;
1603 spin_unlock_irqrestore(&n->list_lock, flags);
1604
1605 num_slabs += active_slabs;
1606 num_objs = num_slabs * cachep->num;
1607 printk(KERN_WARNING
1608 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1609 node, active_slabs, num_slabs, active_objs, num_objs,
1610 free_objects);
1611 }
1612 #endif
1613 }
1614
1615 /*
1616 * Interface to system's page allocator. No need to hold the
1617 * kmem_cache_node ->list_lock.
1618 *
1619 * If we requested dmaable memory, we will get it. Even if we
1620 * did not request dmaable memory, we might get it, but that
1621 * would be relatively rare and ignorable.
1622 */
1623 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1624 int nodeid)
1625 {
1626 struct page *page;
1627 int nr_pages;
1628
1629 flags |= cachep->allocflags;
1630 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1631 flags |= __GFP_RECLAIMABLE;
1632
1633 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1634 return NULL;
1635
1636 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1637 if (!page) {
1638 memcg_uncharge_slab(cachep, cachep->gfporder);
1639 slab_out_of_memory(cachep, flags, nodeid);
1640 return NULL;
1641 }
1642
1643 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1644 if (unlikely(page->pfmemalloc))
1645 pfmemalloc_active = true;
1646
1647 nr_pages = (1 << cachep->gfporder);
1648 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1649 add_zone_page_state(page_zone(page),
1650 NR_SLAB_RECLAIMABLE, nr_pages);
1651 else
1652 add_zone_page_state(page_zone(page),
1653 NR_SLAB_UNRECLAIMABLE, nr_pages);
1654 __SetPageSlab(page);
1655 if (page->pfmemalloc)
1656 SetPageSlabPfmemalloc(page);
1657
1658 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1659 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1660
1661 if (cachep->ctor)
1662 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1663 else
1664 kmemcheck_mark_unallocated_pages(page, nr_pages);
1665 }
1666
1667 return page;
1668 }
1669
1670 /*
1671 * Interface to system's page release.
1672 */
1673 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1674 {
1675 const unsigned long nr_freed = (1 << cachep->gfporder);
1676
1677 kmemcheck_free_shadow(page, cachep->gfporder);
1678
1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 sub_zone_page_state(page_zone(page),
1681 NR_SLAB_RECLAIMABLE, nr_freed);
1682 else
1683 sub_zone_page_state(page_zone(page),
1684 NR_SLAB_UNRECLAIMABLE, nr_freed);
1685
1686 BUG_ON(!PageSlab(page));
1687 __ClearPageSlabPfmemalloc(page);
1688 __ClearPageSlab(page);
1689 page_mapcount_reset(page);
1690 page->mapping = NULL;
1691
1692 if (current->reclaim_state)
1693 current->reclaim_state->reclaimed_slab += nr_freed;
1694 __free_pages(page, cachep->gfporder);
1695 memcg_uncharge_slab(cachep, cachep->gfporder);
1696 }
1697
1698 static void kmem_rcu_free(struct rcu_head *head)
1699 {
1700 struct kmem_cache *cachep;
1701 struct page *page;
1702
1703 page = container_of(head, struct page, rcu_head);
1704 cachep = page->slab_cache;
1705
1706 kmem_freepages(cachep, page);
1707 }
1708
1709 #if DEBUG
1710
1711 #ifdef CONFIG_DEBUG_PAGEALLOC
1712 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1713 unsigned long caller)
1714 {
1715 int size = cachep->object_size;
1716
1717 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1718
1719 if (size < 5 * sizeof(unsigned long))
1720 return;
1721
1722 *addr++ = 0x12345678;
1723 *addr++ = caller;
1724 *addr++ = smp_processor_id();
1725 size -= 3 * sizeof(unsigned long);
1726 {
1727 unsigned long *sptr = &caller;
1728 unsigned long svalue;
1729
1730 while (!kstack_end(sptr)) {
1731 svalue = *sptr++;
1732 if (kernel_text_address(svalue)) {
1733 *addr++ = svalue;
1734 size -= sizeof(unsigned long);
1735 if (size <= sizeof(unsigned long))
1736 break;
1737 }
1738 }
1739
1740 }
1741 *addr++ = 0x87654321;
1742 }
1743 #endif
1744
1745 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1746 {
1747 int size = cachep->object_size;
1748 addr = &((char *)addr)[obj_offset(cachep)];
1749
1750 memset(addr, val, size);
1751 *(unsigned char *)(addr + size - 1) = POISON_END;
1752 }
1753
1754 static void dump_line(char *data, int offset, int limit)
1755 {
1756 int i;
1757 unsigned char error = 0;
1758 int bad_count = 0;
1759
1760 printk(KERN_ERR "%03x: ", offset);
1761 for (i = 0; i < limit; i++) {
1762 if (data[offset + i] != POISON_FREE) {
1763 error = data[offset + i];
1764 bad_count++;
1765 }
1766 }
1767 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1768 &data[offset], limit, 1);
1769
1770 if (bad_count == 1) {
1771 error ^= POISON_FREE;
1772 if (!(error & (error - 1))) {
1773 printk(KERN_ERR "Single bit error detected. Probably "
1774 "bad RAM.\n");
1775 #ifdef CONFIG_X86
1776 printk(KERN_ERR "Run memtest86+ or a similar memory "
1777 "test tool.\n");
1778 #else
1779 printk(KERN_ERR "Run a memory test tool.\n");
1780 #endif
1781 }
1782 }
1783 }
1784 #endif
1785
1786 #if DEBUG
1787
1788 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1789 {
1790 int i, size;
1791 char *realobj;
1792
1793 if (cachep->flags & SLAB_RED_ZONE) {
1794 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1795 *dbg_redzone1(cachep, objp),
1796 *dbg_redzone2(cachep, objp));
1797 }
1798
1799 if (cachep->flags & SLAB_STORE_USER) {
1800 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1801 *dbg_userword(cachep, objp),
1802 *dbg_userword(cachep, objp));
1803 }
1804 realobj = (char *)objp + obj_offset(cachep);
1805 size = cachep->object_size;
1806 for (i = 0; i < size && lines; i += 16, lines--) {
1807 int limit;
1808 limit = 16;
1809 if (i + limit > size)
1810 limit = size - i;
1811 dump_line(realobj, i, limit);
1812 }
1813 }
1814
1815 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1816 {
1817 char *realobj;
1818 int size, i;
1819 int lines = 0;
1820
1821 realobj = (char *)objp + obj_offset(cachep);
1822 size = cachep->object_size;
1823
1824 for (i = 0; i < size; i++) {
1825 char exp = POISON_FREE;
1826 if (i == size - 1)
1827 exp = POISON_END;
1828 if (realobj[i] != exp) {
1829 int limit;
1830 /* Mismatch ! */
1831 /* Print header */
1832 if (lines == 0) {
1833 printk(KERN_ERR
1834 "Slab corruption (%s): %s start=%p, len=%d\n",
1835 print_tainted(), cachep->name, realobj, size);
1836 print_objinfo(cachep, objp, 0);
1837 }
1838 /* Hexdump the affected line */
1839 i = (i / 16) * 16;
1840 limit = 16;
1841 if (i + limit > size)
1842 limit = size - i;
1843 dump_line(realobj, i, limit);
1844 i += 16;
1845 lines++;
1846 /* Limit to 5 lines */
1847 if (lines > 5)
1848 break;
1849 }
1850 }
1851 if (lines != 0) {
1852 /* Print some data about the neighboring objects, if they
1853 * exist:
1854 */
1855 struct page *page = virt_to_head_page(objp);
1856 unsigned int objnr;
1857
1858 objnr = obj_to_index(cachep, page, objp);
1859 if (objnr) {
1860 objp = index_to_obj(cachep, page, objnr - 1);
1861 realobj = (char *)objp + obj_offset(cachep);
1862 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1863 realobj, size);
1864 print_objinfo(cachep, objp, 2);
1865 }
1866 if (objnr + 1 < cachep->num) {
1867 objp = index_to_obj(cachep, page, objnr + 1);
1868 realobj = (char *)objp + obj_offset(cachep);
1869 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1870 realobj, size);
1871 print_objinfo(cachep, objp, 2);
1872 }
1873 }
1874 }
1875 #endif
1876
1877 #if DEBUG
1878 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1879 struct page *page)
1880 {
1881 int i;
1882 for (i = 0; i < cachep->num; i++) {
1883 void *objp = index_to_obj(cachep, page, i);
1884
1885 if (cachep->flags & SLAB_POISON) {
1886 #ifdef CONFIG_DEBUG_PAGEALLOC
1887 if (cachep->size % PAGE_SIZE == 0 &&
1888 OFF_SLAB(cachep))
1889 kernel_map_pages(virt_to_page(objp),
1890 cachep->size / PAGE_SIZE, 1);
1891 else
1892 check_poison_obj(cachep, objp);
1893 #else
1894 check_poison_obj(cachep, objp);
1895 #endif
1896 }
1897 if (cachep->flags & SLAB_RED_ZONE) {
1898 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1899 slab_error(cachep, "start of a freed object "
1900 "was overwritten");
1901 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1902 slab_error(cachep, "end of a freed object "
1903 "was overwritten");
1904 }
1905 }
1906 }
1907 #else
1908 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1909 struct page *page)
1910 {
1911 }
1912 #endif
1913
1914 /**
1915 * slab_destroy - destroy and release all objects in a slab
1916 * @cachep: cache pointer being destroyed
1917 * @page: page pointer being destroyed
1918 *
1919 * Destroy all the objs in a slab page, and release the mem back to the system.
1920 * Before calling the slab page must have been unlinked from the cache. The
1921 * kmem_cache_node ->list_lock is not held/needed.
1922 */
1923 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1924 {
1925 void *freelist;
1926
1927 freelist = page->freelist;
1928 slab_destroy_debugcheck(cachep, page);
1929 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1930 struct rcu_head *head;
1931
1932 /*
1933 * RCU free overloads the RCU head over the LRU.
1934 * slab_page has been overloeaded over the LRU,
1935 * however it is not used from now on so that
1936 * we can use it safely.
1937 */
1938 head = (void *)&page->rcu_head;
1939 call_rcu(head, kmem_rcu_free);
1940
1941 } else {
1942 kmem_freepages(cachep, page);
1943 }
1944
1945 /*
1946 * From now on, we don't use freelist
1947 * although actual page can be freed in rcu context
1948 */
1949 if (OFF_SLAB(cachep))
1950 kmem_cache_free(cachep->freelist_cache, freelist);
1951 }
1952
1953 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1954 {
1955 struct page *page, *n;
1956
1957 list_for_each_entry_safe(page, n, list, lru) {
1958 list_del(&page->lru);
1959 slab_destroy(cachep, page);
1960 }
1961 }
1962
1963 /**
1964 * calculate_slab_order - calculate size (page order) of slabs
1965 * @cachep: pointer to the cache that is being created
1966 * @size: size of objects to be created in this cache.
1967 * @align: required alignment for the objects.
1968 * @flags: slab allocation flags
1969 *
1970 * Also calculates the number of objects per slab.
1971 *
1972 * This could be made much more intelligent. For now, try to avoid using
1973 * high order pages for slabs. When the gfp() functions are more friendly
1974 * towards high-order requests, this should be changed.
1975 */
1976 static size_t calculate_slab_order(struct kmem_cache *cachep,
1977 size_t size, size_t align, unsigned long flags)
1978 {
1979 unsigned long offslab_limit;
1980 size_t left_over = 0;
1981 int gfporder;
1982
1983 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1984 unsigned int num;
1985 size_t remainder;
1986
1987 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1988 if (!num)
1989 continue;
1990
1991 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1992 if (num > SLAB_OBJ_MAX_NUM)
1993 break;
1994
1995 if (flags & CFLGS_OFF_SLAB) {
1996 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1997 /*
1998 * Max number of objs-per-slab for caches which
1999 * use off-slab slabs. Needed to avoid a possible
2000 * looping condition in cache_grow().
2001 */
2002 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2003 freelist_size_per_obj += sizeof(char);
2004 offslab_limit = size;
2005 offslab_limit /= freelist_size_per_obj;
2006
2007 if (num > offslab_limit)
2008 break;
2009 }
2010
2011 /* Found something acceptable - save it away */
2012 cachep->num = num;
2013 cachep->gfporder = gfporder;
2014 left_over = remainder;
2015
2016 /*
2017 * A VFS-reclaimable slab tends to have most allocations
2018 * as GFP_NOFS and we really don't want to have to be allocating
2019 * higher-order pages when we are unable to shrink dcache.
2020 */
2021 if (flags & SLAB_RECLAIM_ACCOUNT)
2022 break;
2023
2024 /*
2025 * Large number of objects is good, but very large slabs are
2026 * currently bad for the gfp()s.
2027 */
2028 if (gfporder >= slab_max_order)
2029 break;
2030
2031 /*
2032 * Acceptable internal fragmentation?
2033 */
2034 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2035 break;
2036 }
2037 return left_over;
2038 }
2039
2040 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2041 {
2042 if (slab_state >= FULL)
2043 return enable_cpucache(cachep, gfp);
2044
2045 if (slab_state == DOWN) {
2046 /*
2047 * Note: Creation of first cache (kmem_cache).
2048 * The setup_node is taken care
2049 * of by the caller of __kmem_cache_create
2050 */
2051 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2052 slab_state = PARTIAL;
2053 } else if (slab_state == PARTIAL) {
2054 /*
2055 * Note: the second kmem_cache_create must create the cache
2056 * that's used by kmalloc(24), otherwise the creation of
2057 * further caches will BUG().
2058 */
2059 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2060
2061 /*
2062 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2063 * the second cache, then we need to set up all its node/,
2064 * otherwise the creation of further caches will BUG().
2065 */
2066 set_up_node(cachep, SIZE_AC);
2067 if (INDEX_AC == INDEX_NODE)
2068 slab_state = PARTIAL_NODE;
2069 else
2070 slab_state = PARTIAL_ARRAYCACHE;
2071 } else {
2072 /* Remaining boot caches */
2073 cachep->array[smp_processor_id()] =
2074 kmalloc(sizeof(struct arraycache_init), gfp);
2075
2076 if (slab_state == PARTIAL_ARRAYCACHE) {
2077 set_up_node(cachep, SIZE_NODE);
2078 slab_state = PARTIAL_NODE;
2079 } else {
2080 int node;
2081 for_each_online_node(node) {
2082 cachep->node[node] =
2083 kmalloc_node(sizeof(struct kmem_cache_node),
2084 gfp, node);
2085 BUG_ON(!cachep->node[node]);
2086 kmem_cache_node_init(cachep->node[node]);
2087 }
2088 }
2089 }
2090 cachep->node[numa_mem_id()]->next_reap =
2091 jiffies + REAPTIMEOUT_NODE +
2092 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2093
2094 cpu_cache_get(cachep)->avail = 0;
2095 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2096 cpu_cache_get(cachep)->batchcount = 1;
2097 cpu_cache_get(cachep)->touched = 0;
2098 cachep->batchcount = 1;
2099 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2100 return 0;
2101 }
2102
2103 /**
2104 * __kmem_cache_create - Create a cache.
2105 * @cachep: cache management descriptor
2106 * @flags: SLAB flags
2107 *
2108 * Returns a ptr to the cache on success, NULL on failure.
2109 * Cannot be called within a int, but can be interrupted.
2110 * The @ctor is run when new pages are allocated by the cache.
2111 *
2112 * The flags are
2113 *
2114 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2115 * to catch references to uninitialised memory.
2116 *
2117 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2118 * for buffer overruns.
2119 *
2120 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2121 * cacheline. This can be beneficial if you're counting cycles as closely
2122 * as davem.
2123 */
2124 int
2125 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2126 {
2127 size_t left_over, freelist_size;
2128 size_t ralign = BYTES_PER_WORD;
2129 gfp_t gfp;
2130 int err;
2131 size_t size = cachep->size;
2132
2133 #if DEBUG
2134 #if FORCED_DEBUG
2135 /*
2136 * Enable redzoning and last user accounting, except for caches with
2137 * large objects, if the increased size would increase the object size
2138 * above the next power of two: caches with object sizes just above a
2139 * power of two have a significant amount of internal fragmentation.
2140 */
2141 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2142 2 * sizeof(unsigned long long)))
2143 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2144 if (!(flags & SLAB_DESTROY_BY_RCU))
2145 flags |= SLAB_POISON;
2146 #endif
2147 if (flags & SLAB_DESTROY_BY_RCU)
2148 BUG_ON(flags & SLAB_POISON);
2149 #endif
2150
2151 /*
2152 * Check that size is in terms of words. This is needed to avoid
2153 * unaligned accesses for some archs when redzoning is used, and makes
2154 * sure any on-slab bufctl's are also correctly aligned.
2155 */
2156 if (size & (BYTES_PER_WORD - 1)) {
2157 size += (BYTES_PER_WORD - 1);
2158 size &= ~(BYTES_PER_WORD - 1);
2159 }
2160
2161 if (flags & SLAB_RED_ZONE) {
2162 ralign = REDZONE_ALIGN;
2163 /* If redzoning, ensure that the second redzone is suitably
2164 * aligned, by adjusting the object size accordingly. */
2165 size += REDZONE_ALIGN - 1;
2166 size &= ~(REDZONE_ALIGN - 1);
2167 }
2168
2169 /* 3) caller mandated alignment */
2170 if (ralign < cachep->align) {
2171 ralign = cachep->align;
2172 }
2173 /* disable debug if necessary */
2174 if (ralign > __alignof__(unsigned long long))
2175 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2176 /*
2177 * 4) Store it.
2178 */
2179 cachep->align = ralign;
2180
2181 if (slab_is_available())
2182 gfp = GFP_KERNEL;
2183 else
2184 gfp = GFP_NOWAIT;
2185
2186 setup_node_pointer(cachep);
2187 #if DEBUG
2188
2189 /*
2190 * Both debugging options require word-alignment which is calculated
2191 * into align above.
2192 */
2193 if (flags & SLAB_RED_ZONE) {
2194 /* add space for red zone words */
2195 cachep->obj_offset += sizeof(unsigned long long);
2196 size += 2 * sizeof(unsigned long long);
2197 }
2198 if (flags & SLAB_STORE_USER) {
2199 /* user store requires one word storage behind the end of
2200 * the real object. But if the second red zone needs to be
2201 * aligned to 64 bits, we must allow that much space.
2202 */
2203 if (flags & SLAB_RED_ZONE)
2204 size += REDZONE_ALIGN;
2205 else
2206 size += BYTES_PER_WORD;
2207 }
2208 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2209 if (size >= kmalloc_size(INDEX_NODE + 1)
2210 && cachep->object_size > cache_line_size()
2211 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2212 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2213 size = PAGE_SIZE;
2214 }
2215 #endif
2216 #endif
2217
2218 /*
2219 * Determine if the slab management is 'on' or 'off' slab.
2220 * (bootstrapping cannot cope with offslab caches so don't do
2221 * it too early on. Always use on-slab management when
2222 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2223 */
2224 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2225 !(flags & SLAB_NOLEAKTRACE))
2226 /*
2227 * Size is large, assume best to place the slab management obj
2228 * off-slab (should allow better packing of objs).
2229 */
2230 flags |= CFLGS_OFF_SLAB;
2231
2232 size = ALIGN(size, cachep->align);
2233 /*
2234 * We should restrict the number of objects in a slab to implement
2235 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2236 */
2237 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2238 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2239
2240 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2241
2242 if (!cachep->num)
2243 return -E2BIG;
2244
2245 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2246
2247 /*
2248 * If the slab has been placed off-slab, and we have enough space then
2249 * move it on-slab. This is at the expense of any extra colouring.
2250 */
2251 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2252 flags &= ~CFLGS_OFF_SLAB;
2253 left_over -= freelist_size;
2254 }
2255
2256 if (flags & CFLGS_OFF_SLAB) {
2257 /* really off slab. No need for manual alignment */
2258 freelist_size = calculate_freelist_size(cachep->num, 0);
2259
2260 #ifdef CONFIG_PAGE_POISONING
2261 /* If we're going to use the generic kernel_map_pages()
2262 * poisoning, then it's going to smash the contents of
2263 * the redzone and userword anyhow, so switch them off.
2264 */
2265 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2266 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2267 #endif
2268 }
2269
2270 cachep->colour_off = cache_line_size();
2271 /* Offset must be a multiple of the alignment. */
2272 if (cachep->colour_off < cachep->align)
2273 cachep->colour_off = cachep->align;
2274 cachep->colour = left_over / cachep->colour_off;
2275 cachep->freelist_size = freelist_size;
2276 cachep->flags = flags;
2277 cachep->allocflags = __GFP_COMP;
2278 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2279 cachep->allocflags |= GFP_DMA;
2280 cachep->size = size;
2281 cachep->reciprocal_buffer_size = reciprocal_value(size);
2282
2283 if (flags & CFLGS_OFF_SLAB) {
2284 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2285 /*
2286 * This is a possibility for one of the kmalloc_{dma,}_caches.
2287 * But since we go off slab only for object size greater than
2288 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2289 * in ascending order,this should not happen at all.
2290 * But leave a BUG_ON for some lucky dude.
2291 */
2292 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2293 }
2294
2295 err = setup_cpu_cache(cachep, gfp);
2296 if (err) {
2297 __kmem_cache_shutdown(cachep);
2298 return err;
2299 }
2300
2301 return 0;
2302 }
2303
2304 #if DEBUG
2305 static void check_irq_off(void)
2306 {
2307 BUG_ON(!irqs_disabled());
2308 }
2309
2310 static void check_irq_on(void)
2311 {
2312 BUG_ON(irqs_disabled());
2313 }
2314
2315 static void check_spinlock_acquired(struct kmem_cache *cachep)
2316 {
2317 #ifdef CONFIG_SMP
2318 check_irq_off();
2319 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2320 #endif
2321 }
2322
2323 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2324 {
2325 #ifdef CONFIG_SMP
2326 check_irq_off();
2327 assert_spin_locked(&get_node(cachep, node)->list_lock);
2328 #endif
2329 }
2330
2331 #else
2332 #define check_irq_off() do { } while(0)
2333 #define check_irq_on() do { } while(0)
2334 #define check_spinlock_acquired(x) do { } while(0)
2335 #define check_spinlock_acquired_node(x, y) do { } while(0)
2336 #endif
2337
2338 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2339 struct array_cache *ac,
2340 int force, int node);
2341
2342 static void do_drain(void *arg)
2343 {
2344 struct kmem_cache *cachep = arg;
2345 struct array_cache *ac;
2346 int node = numa_mem_id();
2347 struct kmem_cache_node *n;
2348 LIST_HEAD(list);
2349
2350 check_irq_off();
2351 ac = cpu_cache_get(cachep);
2352 n = get_node(cachep, node);
2353 spin_lock(&n->list_lock);
2354 free_block(cachep, ac->entry, ac->avail, node, &list);
2355 spin_unlock(&n->list_lock);
2356 slabs_destroy(cachep, &list);
2357 ac->avail = 0;
2358 }
2359
2360 static void drain_cpu_caches(struct kmem_cache *cachep)
2361 {
2362 struct kmem_cache_node *n;
2363 int node;
2364
2365 on_each_cpu(do_drain, cachep, 1);
2366 check_irq_on();
2367 for_each_kmem_cache_node(cachep, node, n)
2368 if (n->alien)
2369 drain_alien_cache(cachep, n->alien);
2370
2371 for_each_kmem_cache_node(cachep, node, n)
2372 drain_array(cachep, n, n->shared, 1, node);
2373 }
2374
2375 /*
2376 * Remove slabs from the list of free slabs.
2377 * Specify the number of slabs to drain in tofree.
2378 *
2379 * Returns the actual number of slabs released.
2380 */
2381 static int drain_freelist(struct kmem_cache *cache,
2382 struct kmem_cache_node *n, int tofree)
2383 {
2384 struct list_head *p;
2385 int nr_freed;
2386 struct page *page;
2387
2388 nr_freed = 0;
2389 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2390
2391 spin_lock_irq(&n->list_lock);
2392 p = n->slabs_free.prev;
2393 if (p == &n->slabs_free) {
2394 spin_unlock_irq(&n->list_lock);
2395 goto out;
2396 }
2397
2398 page = list_entry(p, struct page, lru);
2399 #if DEBUG
2400 BUG_ON(page->active);
2401 #endif
2402 list_del(&page->lru);
2403 /*
2404 * Safe to drop the lock. The slab is no longer linked
2405 * to the cache.
2406 */
2407 n->free_objects -= cache->num;
2408 spin_unlock_irq(&n->list_lock);
2409 slab_destroy(cache, page);
2410 nr_freed++;
2411 }
2412 out:
2413 return nr_freed;
2414 }
2415
2416 int __kmem_cache_shrink(struct kmem_cache *cachep)
2417 {
2418 int ret = 0;
2419 int node;
2420 struct kmem_cache_node *n;
2421
2422 drain_cpu_caches(cachep);
2423
2424 check_irq_on();
2425 for_each_kmem_cache_node(cachep, node, n) {
2426 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2427
2428 ret += !list_empty(&n->slabs_full) ||
2429 !list_empty(&n->slabs_partial);
2430 }
2431 return (ret ? 1 : 0);
2432 }
2433
2434 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2435 {
2436 int i;
2437 struct kmem_cache_node *n;
2438 int rc = __kmem_cache_shrink(cachep);
2439
2440 if (rc)
2441 return rc;
2442
2443 for_each_online_cpu(i)
2444 kfree(cachep->array[i]);
2445
2446 /* NUMA: free the node structures */
2447 for_each_kmem_cache_node(cachep, i, n) {
2448 kfree(n->shared);
2449 free_alien_cache(n->alien);
2450 kfree(n);
2451 cachep->node[i] = NULL;
2452 }
2453 return 0;
2454 }
2455
2456 /*
2457 * Get the memory for a slab management obj.
2458 *
2459 * For a slab cache when the slab descriptor is off-slab, the
2460 * slab descriptor can't come from the same cache which is being created,
2461 * Because if it is the case, that means we defer the creation of
2462 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2463 * And we eventually call down to __kmem_cache_create(), which
2464 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2465 * This is a "chicken-and-egg" problem.
2466 *
2467 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2468 * which are all initialized during kmem_cache_init().
2469 */
2470 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2471 struct page *page, int colour_off,
2472 gfp_t local_flags, int nodeid)
2473 {
2474 void *freelist;
2475 void *addr = page_address(page);
2476
2477 if (OFF_SLAB(cachep)) {
2478 /* Slab management obj is off-slab. */
2479 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2480 local_flags, nodeid);
2481 if (!freelist)
2482 return NULL;
2483 } else {
2484 freelist = addr + colour_off;
2485 colour_off += cachep->freelist_size;
2486 }
2487 page->active = 0;
2488 page->s_mem = addr + colour_off;
2489 return freelist;
2490 }
2491
2492 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2493 {
2494 return ((freelist_idx_t *)page->freelist)[idx];
2495 }
2496
2497 static inline void set_free_obj(struct page *page,
2498 unsigned int idx, freelist_idx_t val)
2499 {
2500 ((freelist_idx_t *)(page->freelist))[idx] = val;
2501 }
2502
2503 static void cache_init_objs(struct kmem_cache *cachep,
2504 struct page *page)
2505 {
2506 int i;
2507
2508 for (i = 0; i < cachep->num; i++) {
2509 void *objp = index_to_obj(cachep, page, i);
2510 #if DEBUG
2511 /* need to poison the objs? */
2512 if (cachep->flags & SLAB_POISON)
2513 poison_obj(cachep, objp, POISON_FREE);
2514 if (cachep->flags & SLAB_STORE_USER)
2515 *dbg_userword(cachep, objp) = NULL;
2516
2517 if (cachep->flags & SLAB_RED_ZONE) {
2518 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2519 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2520 }
2521 /*
2522 * Constructors are not allowed to allocate memory from the same
2523 * cache which they are a constructor for. Otherwise, deadlock.
2524 * They must also be threaded.
2525 */
2526 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2527 cachep->ctor(objp + obj_offset(cachep));
2528
2529 if (cachep->flags & SLAB_RED_ZONE) {
2530 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2531 slab_error(cachep, "constructor overwrote the"
2532 " end of an object");
2533 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2534 slab_error(cachep, "constructor overwrote the"
2535 " start of an object");
2536 }
2537 if ((cachep->size % PAGE_SIZE) == 0 &&
2538 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2539 kernel_map_pages(virt_to_page(objp),
2540 cachep->size / PAGE_SIZE, 0);
2541 #else
2542 if (cachep->ctor)
2543 cachep->ctor(objp);
2544 #endif
2545 set_obj_status(page, i, OBJECT_FREE);
2546 set_free_obj(page, i, i);
2547 }
2548 }
2549
2550 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2551 {
2552 if (CONFIG_ZONE_DMA_FLAG) {
2553 if (flags & GFP_DMA)
2554 BUG_ON(!(cachep->allocflags & GFP_DMA));
2555 else
2556 BUG_ON(cachep->allocflags & GFP_DMA);
2557 }
2558 }
2559
2560 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2561 int nodeid)
2562 {
2563 void *objp;
2564
2565 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2566 page->active++;
2567 #if DEBUG
2568 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2569 #endif
2570
2571 return objp;
2572 }
2573
2574 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2575 void *objp, int nodeid)
2576 {
2577 unsigned int objnr = obj_to_index(cachep, page, objp);
2578 #if DEBUG
2579 unsigned int i;
2580
2581 /* Verify that the slab belongs to the intended node */
2582 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2583
2584 /* Verify double free bug */
2585 for (i = page->active; i < cachep->num; i++) {
2586 if (get_free_obj(page, i) == objnr) {
2587 printk(KERN_ERR "slab: double free detected in cache "
2588 "'%s', objp %p\n", cachep->name, objp);
2589 BUG();
2590 }
2591 }
2592 #endif
2593 page->active--;
2594 set_free_obj(page, page->active, objnr);
2595 }
2596
2597 /*
2598 * Map pages beginning at addr to the given cache and slab. This is required
2599 * for the slab allocator to be able to lookup the cache and slab of a
2600 * virtual address for kfree, ksize, and slab debugging.
2601 */
2602 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2603 void *freelist)
2604 {
2605 page->slab_cache = cache;
2606 page->freelist = freelist;
2607 }
2608
2609 /*
2610 * Grow (by 1) the number of slabs within a cache. This is called by
2611 * kmem_cache_alloc() when there are no active objs left in a cache.
2612 */
2613 static int cache_grow(struct kmem_cache *cachep,
2614 gfp_t flags, int nodeid, struct page *page)
2615 {
2616 void *freelist;
2617 size_t offset;
2618 gfp_t local_flags;
2619 struct kmem_cache_node *n;
2620
2621 /*
2622 * Be lazy and only check for valid flags here, keeping it out of the
2623 * critical path in kmem_cache_alloc().
2624 */
2625 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2626 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2627
2628 /* Take the node list lock to change the colour_next on this node */
2629 check_irq_off();
2630 n = get_node(cachep, nodeid);
2631 spin_lock(&n->list_lock);
2632
2633 /* Get colour for the slab, and cal the next value. */
2634 offset = n->colour_next;
2635 n->colour_next++;
2636 if (n->colour_next >= cachep->colour)
2637 n->colour_next = 0;
2638 spin_unlock(&n->list_lock);
2639
2640 offset *= cachep->colour_off;
2641
2642 if (local_flags & __GFP_WAIT)
2643 local_irq_enable();
2644
2645 /*
2646 * The test for missing atomic flag is performed here, rather than
2647 * the more obvious place, simply to reduce the critical path length
2648 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2649 * will eventually be caught here (where it matters).
2650 */
2651 kmem_flagcheck(cachep, flags);
2652
2653 /*
2654 * Get mem for the objs. Attempt to allocate a physical page from
2655 * 'nodeid'.
2656 */
2657 if (!page)
2658 page = kmem_getpages(cachep, local_flags, nodeid);
2659 if (!page)
2660 goto failed;
2661
2662 /* Get slab management. */
2663 freelist = alloc_slabmgmt(cachep, page, offset,
2664 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2665 if (!freelist)
2666 goto opps1;
2667
2668 slab_map_pages(cachep, page, freelist);
2669
2670 cache_init_objs(cachep, page);
2671
2672 if (local_flags & __GFP_WAIT)
2673 local_irq_disable();
2674 check_irq_off();
2675 spin_lock(&n->list_lock);
2676
2677 /* Make slab active. */
2678 list_add_tail(&page->lru, &(n->slabs_free));
2679 STATS_INC_GROWN(cachep);
2680 n->free_objects += cachep->num;
2681 spin_unlock(&n->list_lock);
2682 return 1;
2683 opps1:
2684 kmem_freepages(cachep, page);
2685 failed:
2686 if (local_flags & __GFP_WAIT)
2687 local_irq_disable();
2688 return 0;
2689 }
2690
2691 #if DEBUG
2692
2693 /*
2694 * Perform extra freeing checks:
2695 * - detect bad pointers.
2696 * - POISON/RED_ZONE checking
2697 */
2698 static void kfree_debugcheck(const void *objp)
2699 {
2700 if (!virt_addr_valid(objp)) {
2701 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2702 (unsigned long)objp);
2703 BUG();
2704 }
2705 }
2706
2707 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2708 {
2709 unsigned long long redzone1, redzone2;
2710
2711 redzone1 = *dbg_redzone1(cache, obj);
2712 redzone2 = *dbg_redzone2(cache, obj);
2713
2714 /*
2715 * Redzone is ok.
2716 */
2717 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2718 return;
2719
2720 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2721 slab_error(cache, "double free detected");
2722 else
2723 slab_error(cache, "memory outside object was overwritten");
2724
2725 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2726 obj, redzone1, redzone2);
2727 }
2728
2729 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2730 unsigned long caller)
2731 {
2732 unsigned int objnr;
2733 struct page *page;
2734
2735 BUG_ON(virt_to_cache(objp) != cachep);
2736
2737 objp -= obj_offset(cachep);
2738 kfree_debugcheck(objp);
2739 page = virt_to_head_page(objp);
2740
2741 if (cachep->flags & SLAB_RED_ZONE) {
2742 verify_redzone_free(cachep, objp);
2743 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2744 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2745 }
2746 if (cachep->flags & SLAB_STORE_USER)
2747 *dbg_userword(cachep, objp) = (void *)caller;
2748
2749 objnr = obj_to_index(cachep, page, objp);
2750
2751 BUG_ON(objnr >= cachep->num);
2752 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2753
2754 set_obj_status(page, objnr, OBJECT_FREE);
2755 if (cachep->flags & SLAB_POISON) {
2756 #ifdef CONFIG_DEBUG_PAGEALLOC
2757 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2758 store_stackinfo(cachep, objp, caller);
2759 kernel_map_pages(virt_to_page(objp),
2760 cachep->size / PAGE_SIZE, 0);
2761 } else {
2762 poison_obj(cachep, objp, POISON_FREE);
2763 }
2764 #else
2765 poison_obj(cachep, objp, POISON_FREE);
2766 #endif
2767 }
2768 return objp;
2769 }
2770
2771 #else
2772 #define kfree_debugcheck(x) do { } while(0)
2773 #define cache_free_debugcheck(x,objp,z) (objp)
2774 #endif
2775
2776 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2777 bool force_refill)
2778 {
2779 int batchcount;
2780 struct kmem_cache_node *n;
2781 struct array_cache *ac;
2782 int node;
2783
2784 check_irq_off();
2785 node = numa_mem_id();
2786 if (unlikely(force_refill))
2787 goto force_grow;
2788 retry:
2789 ac = cpu_cache_get(cachep);
2790 batchcount = ac->batchcount;
2791 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2792 /*
2793 * If there was little recent activity on this cache, then
2794 * perform only a partial refill. Otherwise we could generate
2795 * refill bouncing.
2796 */
2797 batchcount = BATCHREFILL_LIMIT;
2798 }
2799 n = get_node(cachep, node);
2800
2801 BUG_ON(ac->avail > 0 || !n);
2802 spin_lock(&n->list_lock);
2803
2804 /* See if we can refill from the shared array */
2805 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2806 n->shared->touched = 1;
2807 goto alloc_done;
2808 }
2809
2810 while (batchcount > 0) {
2811 struct list_head *entry;
2812 struct page *page;
2813 /* Get slab alloc is to come from. */
2814 entry = n->slabs_partial.next;
2815 if (entry == &n->slabs_partial) {
2816 n->free_touched = 1;
2817 entry = n->slabs_free.next;
2818 if (entry == &n->slabs_free)
2819 goto must_grow;
2820 }
2821
2822 page = list_entry(entry, struct page, lru);
2823 check_spinlock_acquired(cachep);
2824
2825 /*
2826 * The slab was either on partial or free list so
2827 * there must be at least one object available for
2828 * allocation.
2829 */
2830 BUG_ON(page->active >= cachep->num);
2831
2832 while (page->active < cachep->num && batchcount--) {
2833 STATS_INC_ALLOCED(cachep);
2834 STATS_INC_ACTIVE(cachep);
2835 STATS_SET_HIGH(cachep);
2836
2837 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2838 node));
2839 }
2840
2841 /* move slabp to correct slabp list: */
2842 list_del(&page->lru);
2843 if (page->active == cachep->num)
2844 list_add(&page->lru, &n->slabs_full);
2845 else
2846 list_add(&page->lru, &n->slabs_partial);
2847 }
2848
2849 must_grow:
2850 n->free_objects -= ac->avail;
2851 alloc_done:
2852 spin_unlock(&n->list_lock);
2853
2854 if (unlikely(!ac->avail)) {
2855 int x;
2856 force_grow:
2857 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2858
2859 /* cache_grow can reenable interrupts, then ac could change. */
2860 ac = cpu_cache_get(cachep);
2861 node = numa_mem_id();
2862
2863 /* no objects in sight? abort */
2864 if (!x && (ac->avail == 0 || force_refill))
2865 return NULL;
2866
2867 if (!ac->avail) /* objects refilled by interrupt? */
2868 goto retry;
2869 }
2870 ac->touched = 1;
2871
2872 return ac_get_obj(cachep, ac, flags, force_refill);
2873 }
2874
2875 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2876 gfp_t flags)
2877 {
2878 might_sleep_if(flags & __GFP_WAIT);
2879 #if DEBUG
2880 kmem_flagcheck(cachep, flags);
2881 #endif
2882 }
2883
2884 #if DEBUG
2885 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2886 gfp_t flags, void *objp, unsigned long caller)
2887 {
2888 struct page *page;
2889
2890 if (!objp)
2891 return objp;
2892 if (cachep->flags & SLAB_POISON) {
2893 #ifdef CONFIG_DEBUG_PAGEALLOC
2894 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2895 kernel_map_pages(virt_to_page(objp),
2896 cachep->size / PAGE_SIZE, 1);
2897 else
2898 check_poison_obj(cachep, objp);
2899 #else
2900 check_poison_obj(cachep, objp);
2901 #endif
2902 poison_obj(cachep, objp, POISON_INUSE);
2903 }
2904 if (cachep->flags & SLAB_STORE_USER)
2905 *dbg_userword(cachep, objp) = (void *)caller;
2906
2907 if (cachep->flags & SLAB_RED_ZONE) {
2908 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2909 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2910 slab_error(cachep, "double free, or memory outside"
2911 " object was overwritten");
2912 printk(KERN_ERR
2913 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2914 objp, *dbg_redzone1(cachep, objp),
2915 *dbg_redzone2(cachep, objp));
2916 }
2917 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2918 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2919 }
2920
2921 page = virt_to_head_page(objp);
2922 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2923 objp += obj_offset(cachep);
2924 if (cachep->ctor && cachep->flags & SLAB_POISON)
2925 cachep->ctor(objp);
2926 if (ARCH_SLAB_MINALIGN &&
2927 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2928 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2929 objp, (int)ARCH_SLAB_MINALIGN);
2930 }
2931 return objp;
2932 }
2933 #else
2934 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2935 #endif
2936
2937 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2938 {
2939 if (unlikely(cachep == kmem_cache))
2940 return false;
2941
2942 return should_failslab(cachep->object_size, flags, cachep->flags);
2943 }
2944
2945 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2946 {
2947 void *objp;
2948 struct array_cache *ac;
2949 bool force_refill = false;
2950
2951 check_irq_off();
2952
2953 ac = cpu_cache_get(cachep);
2954 if (likely(ac->avail)) {
2955 ac->touched = 1;
2956 objp = ac_get_obj(cachep, ac, flags, false);
2957
2958 /*
2959 * Allow for the possibility all avail objects are not allowed
2960 * by the current flags
2961 */
2962 if (objp) {
2963 STATS_INC_ALLOCHIT(cachep);
2964 goto out;
2965 }
2966 force_refill = true;
2967 }
2968
2969 STATS_INC_ALLOCMISS(cachep);
2970 objp = cache_alloc_refill(cachep, flags, force_refill);
2971 /*
2972 * the 'ac' may be updated by cache_alloc_refill(),
2973 * and kmemleak_erase() requires its correct value.
2974 */
2975 ac = cpu_cache_get(cachep);
2976
2977 out:
2978 /*
2979 * To avoid a false negative, if an object that is in one of the
2980 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2981 * treat the array pointers as a reference to the object.
2982 */
2983 if (objp)
2984 kmemleak_erase(&ac->entry[ac->avail]);
2985 return objp;
2986 }
2987
2988 #ifdef CONFIG_NUMA
2989 /*
2990 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2991 *
2992 * If we are in_interrupt, then process context, including cpusets and
2993 * mempolicy, may not apply and should not be used for allocation policy.
2994 */
2995 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2996 {
2997 int nid_alloc, nid_here;
2998
2999 if (in_interrupt() || (flags & __GFP_THISNODE))
3000 return NULL;
3001 nid_alloc = nid_here = numa_mem_id();
3002 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3003 nid_alloc = cpuset_slab_spread_node();
3004 else if (current->mempolicy)
3005 nid_alloc = mempolicy_slab_node();
3006 if (nid_alloc != nid_here)
3007 return ____cache_alloc_node(cachep, flags, nid_alloc);
3008 return NULL;
3009 }
3010
3011 /*
3012 * Fallback function if there was no memory available and no objects on a
3013 * certain node and fall back is permitted. First we scan all the
3014 * available node for available objects. If that fails then we
3015 * perform an allocation without specifying a node. This allows the page
3016 * allocator to do its reclaim / fallback magic. We then insert the
3017 * slab into the proper nodelist and then allocate from it.
3018 */
3019 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3020 {
3021 struct zonelist *zonelist;
3022 gfp_t local_flags;
3023 struct zoneref *z;
3024 struct zone *zone;
3025 enum zone_type high_zoneidx = gfp_zone(flags);
3026 void *obj = NULL;
3027 int nid;
3028 unsigned int cpuset_mems_cookie;
3029
3030 if (flags & __GFP_THISNODE)
3031 return NULL;
3032
3033 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3034
3035 retry_cpuset:
3036 cpuset_mems_cookie = read_mems_allowed_begin();
3037 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3038
3039 retry:
3040 /*
3041 * Look through allowed nodes for objects available
3042 * from existing per node queues.
3043 */
3044 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3045 nid = zone_to_nid(zone);
3046
3047 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3048 get_node(cache, nid) &&
3049 get_node(cache, nid)->free_objects) {
3050 obj = ____cache_alloc_node(cache,
3051 flags | GFP_THISNODE, nid);
3052 if (obj)
3053 break;
3054 }
3055 }
3056
3057 if (!obj) {
3058 /*
3059 * This allocation will be performed within the constraints
3060 * of the current cpuset / memory policy requirements.
3061 * We may trigger various forms of reclaim on the allowed
3062 * set and go into memory reserves if necessary.
3063 */
3064 struct page *page;
3065
3066 if (local_flags & __GFP_WAIT)
3067 local_irq_enable();
3068 kmem_flagcheck(cache, flags);
3069 page = kmem_getpages(cache, local_flags, numa_mem_id());
3070 if (local_flags & __GFP_WAIT)
3071 local_irq_disable();
3072 if (page) {
3073 /*
3074 * Insert into the appropriate per node queues
3075 */
3076 nid = page_to_nid(page);
3077 if (cache_grow(cache, flags, nid, page)) {
3078 obj = ____cache_alloc_node(cache,
3079 flags | GFP_THISNODE, nid);
3080 if (!obj)
3081 /*
3082 * Another processor may allocate the
3083 * objects in the slab since we are
3084 * not holding any locks.
3085 */
3086 goto retry;
3087 } else {
3088 /* cache_grow already freed obj */
3089 obj = NULL;
3090 }
3091 }
3092 }
3093
3094 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3095 goto retry_cpuset;
3096 return obj;
3097 }
3098
3099 /*
3100 * A interface to enable slab creation on nodeid
3101 */
3102 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3103 int nodeid)
3104 {
3105 struct list_head *entry;
3106 struct page *page;
3107 struct kmem_cache_node *n;
3108 void *obj;
3109 int x;
3110
3111 VM_BUG_ON(nodeid > num_online_nodes());
3112 n = get_node(cachep, nodeid);
3113 BUG_ON(!n);
3114
3115 retry:
3116 check_irq_off();
3117 spin_lock(&n->list_lock);
3118 entry = n->slabs_partial.next;
3119 if (entry == &n->slabs_partial) {
3120 n->free_touched = 1;
3121 entry = n->slabs_free.next;
3122 if (entry == &n->slabs_free)
3123 goto must_grow;
3124 }
3125
3126 page = list_entry(entry, struct page, lru);
3127 check_spinlock_acquired_node(cachep, nodeid);
3128
3129 STATS_INC_NODEALLOCS(cachep);
3130 STATS_INC_ACTIVE(cachep);
3131 STATS_SET_HIGH(cachep);
3132
3133 BUG_ON(page->active == cachep->num);
3134
3135 obj = slab_get_obj(cachep, page, nodeid);
3136 n->free_objects--;
3137 /* move slabp to correct slabp list: */
3138 list_del(&page->lru);
3139
3140 if (page->active == cachep->num)
3141 list_add(&page->lru, &n->slabs_full);
3142 else
3143 list_add(&page->lru, &n->slabs_partial);
3144
3145 spin_unlock(&n->list_lock);
3146 goto done;
3147
3148 must_grow:
3149 spin_unlock(&n->list_lock);
3150 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3151 if (x)
3152 goto retry;
3153
3154 return fallback_alloc(cachep, flags);
3155
3156 done:
3157 return obj;
3158 }
3159
3160 static __always_inline void *
3161 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3162 unsigned long caller)
3163 {
3164 unsigned long save_flags;
3165 void *ptr;
3166 int slab_node = numa_mem_id();
3167
3168 flags &= gfp_allowed_mask;
3169
3170 lockdep_trace_alloc(flags);
3171
3172 if (slab_should_failslab(cachep, flags))
3173 return NULL;
3174
3175 cachep = memcg_kmem_get_cache(cachep, flags);
3176
3177 cache_alloc_debugcheck_before(cachep, flags);
3178 local_irq_save(save_flags);
3179
3180 if (nodeid == NUMA_NO_NODE)
3181 nodeid = slab_node;
3182
3183 if (unlikely(!get_node(cachep, nodeid))) {
3184 /* Node not bootstrapped yet */
3185 ptr = fallback_alloc(cachep, flags);
3186 goto out;
3187 }
3188
3189 if (nodeid == slab_node) {
3190 /*
3191 * Use the locally cached objects if possible.
3192 * However ____cache_alloc does not allow fallback
3193 * to other nodes. It may fail while we still have
3194 * objects on other nodes available.
3195 */
3196 ptr = ____cache_alloc(cachep, flags);
3197 if (ptr)
3198 goto out;
3199 }
3200 /* ___cache_alloc_node can fall back to other nodes */
3201 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3202 out:
3203 local_irq_restore(save_flags);
3204 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3205 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3206 flags);
3207
3208 if (likely(ptr)) {
3209 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3210 if (unlikely(flags & __GFP_ZERO))
3211 memset(ptr, 0, cachep->object_size);
3212 }
3213
3214 return ptr;
3215 }
3216
3217 static __always_inline void *
3218 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3219 {
3220 void *objp;
3221
3222 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3223 objp = alternate_node_alloc(cache, flags);
3224 if (objp)
3225 goto out;
3226 }
3227 objp = ____cache_alloc(cache, flags);
3228
3229 /*
3230 * We may just have run out of memory on the local node.
3231 * ____cache_alloc_node() knows how to locate memory on other nodes
3232 */
3233 if (!objp)
3234 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3235
3236 out:
3237 return objp;
3238 }
3239 #else
3240
3241 static __always_inline void *
3242 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3243 {
3244 return ____cache_alloc(cachep, flags);
3245 }
3246
3247 #endif /* CONFIG_NUMA */
3248
3249 static __always_inline void *
3250 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3251 {
3252 unsigned long save_flags;
3253 void *objp;
3254
3255 flags &= gfp_allowed_mask;
3256
3257 lockdep_trace_alloc(flags);
3258
3259 if (slab_should_failslab(cachep, flags))
3260 return NULL;
3261
3262 cachep = memcg_kmem_get_cache(cachep, flags);
3263
3264 cache_alloc_debugcheck_before(cachep, flags);
3265 local_irq_save(save_flags);
3266 objp = __do_cache_alloc(cachep, flags);
3267 local_irq_restore(save_flags);
3268 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3269 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3270 flags);
3271 prefetchw(objp);
3272
3273 if (likely(objp)) {
3274 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3275 if (unlikely(flags & __GFP_ZERO))
3276 memset(objp, 0, cachep->object_size);
3277 }
3278
3279 return objp;
3280 }
3281
3282 /*
3283 * Caller needs to acquire correct kmem_cache_node's list_lock
3284 * @list: List of detached free slabs should be freed by caller
3285 */
3286 static void free_block(struct kmem_cache *cachep, void **objpp,
3287 int nr_objects, int node, struct list_head *list)
3288 {
3289 int i;
3290 struct kmem_cache_node *n = get_node(cachep, node);
3291
3292 for (i = 0; i < nr_objects; i++) {
3293 void *objp;
3294 struct page *page;
3295
3296 clear_obj_pfmemalloc(&objpp[i]);
3297 objp = objpp[i];
3298
3299 page = virt_to_head_page(objp);
3300 list_del(&page->lru);
3301 check_spinlock_acquired_node(cachep, node);
3302 slab_put_obj(cachep, page, objp, node);
3303 STATS_DEC_ACTIVE(cachep);
3304 n->free_objects++;
3305
3306 /* fixup slab chains */
3307 if (page->active == 0) {
3308 if (n->free_objects > n->free_limit) {
3309 n->free_objects -= cachep->num;
3310 list_add_tail(&page->lru, list);
3311 } else {
3312 list_add(&page->lru, &n->slabs_free);
3313 }
3314 } else {
3315 /* Unconditionally move a slab to the end of the
3316 * partial list on free - maximum time for the
3317 * other objects to be freed, too.
3318 */
3319 list_add_tail(&page->lru, &n->slabs_partial);
3320 }
3321 }
3322 }
3323
3324 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3325 {
3326 int batchcount;
3327 struct kmem_cache_node *n;
3328 int node = numa_mem_id();
3329 LIST_HEAD(list);
3330
3331 batchcount = ac->batchcount;
3332 #if DEBUG
3333 BUG_ON(!batchcount || batchcount > ac->avail);
3334 #endif
3335 check_irq_off();
3336 n = get_node(cachep, node);
3337 spin_lock(&n->list_lock);
3338 if (n->shared) {
3339 struct array_cache *shared_array = n->shared;
3340 int max = shared_array->limit - shared_array->avail;
3341 if (max) {
3342 if (batchcount > max)
3343 batchcount = max;
3344 memcpy(&(shared_array->entry[shared_array->avail]),
3345 ac->entry, sizeof(void *) * batchcount);
3346 shared_array->avail += batchcount;
3347 goto free_done;
3348 }
3349 }
3350
3351 free_block(cachep, ac->entry, batchcount, node, &list);
3352 free_done:
3353 #if STATS
3354 {
3355 int i = 0;
3356 struct list_head *p;
3357
3358 p = n->slabs_free.next;
3359 while (p != &(n->slabs_free)) {
3360 struct page *page;
3361
3362 page = list_entry(p, struct page, lru);
3363 BUG_ON(page->active);
3364
3365 i++;
3366 p = p->next;
3367 }
3368 STATS_SET_FREEABLE(cachep, i);
3369 }
3370 #endif
3371 spin_unlock(&n->list_lock);
3372 slabs_destroy(cachep, &list);
3373 ac->avail -= batchcount;
3374 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3375 }
3376
3377 /*
3378 * Release an obj back to its cache. If the obj has a constructed state, it must
3379 * be in this state _before_ it is released. Called with disabled ints.
3380 */
3381 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3382 unsigned long caller)
3383 {
3384 struct array_cache *ac = cpu_cache_get(cachep);
3385
3386 check_irq_off();
3387 kmemleak_free_recursive(objp, cachep->flags);
3388 objp = cache_free_debugcheck(cachep, objp, caller);
3389
3390 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3391
3392 /*
3393 * Skip calling cache_free_alien() when the platform is not numa.
3394 * This will avoid cache misses that happen while accessing slabp (which
3395 * is per page memory reference) to get nodeid. Instead use a global
3396 * variable to skip the call, which is mostly likely to be present in
3397 * the cache.
3398 */
3399 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3400 return;
3401
3402 if (likely(ac->avail < ac->limit)) {
3403 STATS_INC_FREEHIT(cachep);
3404 } else {
3405 STATS_INC_FREEMISS(cachep);
3406 cache_flusharray(cachep, ac);
3407 }
3408
3409 ac_put_obj(cachep, ac, objp);
3410 }
3411
3412 /**
3413 * kmem_cache_alloc - Allocate an object
3414 * @cachep: The cache to allocate from.
3415 * @flags: See kmalloc().
3416 *
3417 * Allocate an object from this cache. The flags are only relevant
3418 * if the cache has no available objects.
3419 */
3420 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3421 {
3422 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3423
3424 trace_kmem_cache_alloc(_RET_IP_, ret,
3425 cachep->object_size, cachep->size, flags);
3426
3427 return ret;
3428 }
3429 EXPORT_SYMBOL(kmem_cache_alloc);
3430
3431 #ifdef CONFIG_TRACING
3432 void *
3433 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3434 {
3435 void *ret;
3436
3437 ret = slab_alloc(cachep, flags, _RET_IP_);
3438
3439 trace_kmalloc(_RET_IP_, ret,
3440 size, cachep->size, flags);
3441 return ret;
3442 }
3443 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3444 #endif
3445
3446 #ifdef CONFIG_NUMA
3447 /**
3448 * kmem_cache_alloc_node - Allocate an object on the specified node
3449 * @cachep: The cache to allocate from.
3450 * @flags: See kmalloc().
3451 * @nodeid: node number of the target node.
3452 *
3453 * Identical to kmem_cache_alloc but it will allocate memory on the given
3454 * node, which can improve the performance for cpu bound structures.
3455 *
3456 * Fallback to other node is possible if __GFP_THISNODE is not set.
3457 */
3458 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3459 {
3460 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3461
3462 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3463 cachep->object_size, cachep->size,
3464 flags, nodeid);
3465
3466 return ret;
3467 }
3468 EXPORT_SYMBOL(kmem_cache_alloc_node);
3469
3470 #ifdef CONFIG_TRACING
3471 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3472 gfp_t flags,
3473 int nodeid,
3474 size_t size)
3475 {
3476 void *ret;
3477
3478 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3479
3480 trace_kmalloc_node(_RET_IP_, ret,
3481 size, cachep->size,
3482 flags, nodeid);
3483 return ret;
3484 }
3485 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3486 #endif
3487
3488 static __always_inline void *
3489 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3490 {
3491 struct kmem_cache *cachep;
3492
3493 cachep = kmalloc_slab(size, flags);
3494 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3495 return cachep;
3496 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3497 }
3498
3499 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3500 {
3501 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3502 }
3503 EXPORT_SYMBOL(__kmalloc_node);
3504
3505 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3506 int node, unsigned long caller)
3507 {
3508 return __do_kmalloc_node(size, flags, node, caller);
3509 }
3510 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3511 #endif /* CONFIG_NUMA */
3512
3513 /**
3514 * __do_kmalloc - allocate memory
3515 * @size: how many bytes of memory are required.
3516 * @flags: the type of memory to allocate (see kmalloc).
3517 * @caller: function caller for debug tracking of the caller
3518 */
3519 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3520 unsigned long caller)
3521 {
3522 struct kmem_cache *cachep;
3523 void *ret;
3524
3525 cachep = kmalloc_slab(size, flags);
3526 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3527 return cachep;
3528 ret = slab_alloc(cachep, flags, caller);
3529
3530 trace_kmalloc(caller, ret,
3531 size, cachep->size, flags);
3532
3533 return ret;
3534 }
3535
3536 void *__kmalloc(size_t size, gfp_t flags)
3537 {
3538 return __do_kmalloc(size, flags, _RET_IP_);
3539 }
3540 EXPORT_SYMBOL(__kmalloc);
3541
3542 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3543 {
3544 return __do_kmalloc(size, flags, caller);
3545 }
3546 EXPORT_SYMBOL(__kmalloc_track_caller);
3547
3548 /**
3549 * kmem_cache_free - Deallocate an object
3550 * @cachep: The cache the allocation was from.
3551 * @objp: The previously allocated object.
3552 *
3553 * Free an object which was previously allocated from this
3554 * cache.
3555 */
3556 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3557 {
3558 unsigned long flags;
3559 cachep = cache_from_obj(cachep, objp);
3560 if (!cachep)
3561 return;
3562
3563 local_irq_save(flags);
3564 debug_check_no_locks_freed(objp, cachep->object_size);
3565 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3566 debug_check_no_obj_freed(objp, cachep->object_size);
3567 __cache_free(cachep, objp, _RET_IP_);
3568 local_irq_restore(flags);
3569
3570 trace_kmem_cache_free(_RET_IP_, objp);
3571 }
3572 EXPORT_SYMBOL(kmem_cache_free);
3573
3574 /**
3575 * kfree - free previously allocated memory
3576 * @objp: pointer returned by kmalloc.
3577 *
3578 * If @objp is NULL, no operation is performed.
3579 *
3580 * Don't free memory not originally allocated by kmalloc()
3581 * or you will run into trouble.
3582 */
3583 void kfree(const void *objp)
3584 {
3585 struct kmem_cache *c;
3586 unsigned long flags;
3587
3588 trace_kfree(_RET_IP_, objp);
3589
3590 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3591 return;
3592 local_irq_save(flags);
3593 kfree_debugcheck(objp);
3594 c = virt_to_cache(objp);
3595 debug_check_no_locks_freed(objp, c->object_size);
3596
3597 debug_check_no_obj_freed(objp, c->object_size);
3598 __cache_free(c, (void *)objp, _RET_IP_);
3599 local_irq_restore(flags);
3600 }
3601 EXPORT_SYMBOL(kfree);
3602
3603 /*
3604 * This initializes kmem_cache_node or resizes various caches for all nodes.
3605 */
3606 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3607 {
3608 int node;
3609 struct kmem_cache_node *n;
3610 struct array_cache *new_shared;
3611 struct alien_cache **new_alien = NULL;
3612
3613 for_each_online_node(node) {
3614
3615 if (use_alien_caches) {
3616 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3617 if (!new_alien)
3618 goto fail;
3619 }
3620
3621 new_shared = NULL;
3622 if (cachep->shared) {
3623 new_shared = alloc_arraycache(node,
3624 cachep->shared*cachep->batchcount,
3625 0xbaadf00d, gfp);
3626 if (!new_shared) {
3627 free_alien_cache(new_alien);
3628 goto fail;
3629 }
3630 }
3631
3632 n = get_node(cachep, node);
3633 if (n) {
3634 struct array_cache *shared = n->shared;
3635 LIST_HEAD(list);
3636
3637 spin_lock_irq(&n->list_lock);
3638
3639 if (shared)
3640 free_block(cachep, shared->entry,
3641 shared->avail, node, &list);
3642
3643 n->shared = new_shared;
3644 if (!n->alien) {
3645 n->alien = new_alien;
3646 new_alien = NULL;
3647 }
3648 n->free_limit = (1 + nr_cpus_node(node)) *
3649 cachep->batchcount + cachep->num;
3650 spin_unlock_irq(&n->list_lock);
3651 slabs_destroy(cachep, &list);
3652 kfree(shared);
3653 free_alien_cache(new_alien);
3654 continue;
3655 }
3656 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3657 if (!n) {
3658 free_alien_cache(new_alien);
3659 kfree(new_shared);
3660 goto fail;
3661 }
3662
3663 kmem_cache_node_init(n);
3664 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3665 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3666 n->shared = new_shared;
3667 n->alien = new_alien;
3668 n->free_limit = (1 + nr_cpus_node(node)) *
3669 cachep->batchcount + cachep->num;
3670 cachep->node[node] = n;
3671 }
3672 return 0;
3673
3674 fail:
3675 if (!cachep->list.next) {
3676 /* Cache is not active yet. Roll back what we did */
3677 node--;
3678 while (node >= 0) {
3679 n = get_node(cachep, node);
3680 if (n) {
3681 kfree(n->shared);
3682 free_alien_cache(n->alien);
3683 kfree(n);
3684 cachep->node[node] = NULL;
3685 }
3686 node--;
3687 }
3688 }
3689 return -ENOMEM;
3690 }
3691
3692 struct ccupdate_struct {
3693 struct kmem_cache *cachep;
3694 struct array_cache *new[0];
3695 };
3696
3697 static void do_ccupdate_local(void *info)
3698 {
3699 struct ccupdate_struct *new = info;
3700 struct array_cache *old;
3701
3702 check_irq_off();
3703 old = cpu_cache_get(new->cachep);
3704
3705 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3706 new->new[smp_processor_id()] = old;
3707 }
3708
3709 /* Always called with the slab_mutex held */
3710 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3711 int batchcount, int shared, gfp_t gfp)
3712 {
3713 struct ccupdate_struct *new;
3714 int i;
3715
3716 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3717 gfp);
3718 if (!new)
3719 return -ENOMEM;
3720
3721 for_each_online_cpu(i) {
3722 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3723 batchcount, gfp);
3724 if (!new->new[i]) {
3725 for (i--; i >= 0; i--)
3726 kfree(new->new[i]);
3727 kfree(new);
3728 return -ENOMEM;
3729 }
3730 }
3731 new->cachep = cachep;
3732
3733 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3734
3735 check_irq_on();
3736 cachep->batchcount = batchcount;
3737 cachep->limit = limit;
3738 cachep->shared = shared;
3739
3740 for_each_online_cpu(i) {
3741 LIST_HEAD(list);
3742 struct array_cache *ccold = new->new[i];
3743 int node;
3744 struct kmem_cache_node *n;
3745
3746 if (!ccold)
3747 continue;
3748
3749 node = cpu_to_mem(i);
3750 n = get_node(cachep, node);
3751 spin_lock_irq(&n->list_lock);
3752 free_block(cachep, ccold->entry, ccold->avail, node, &list);
3753 spin_unlock_irq(&n->list_lock);
3754 slabs_destroy(cachep, &list);
3755 kfree(ccold);
3756 }
3757 kfree(new);
3758 return alloc_kmem_cache_node(cachep, gfp);
3759 }
3760
3761 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3762 int batchcount, int shared, gfp_t gfp)
3763 {
3764 int ret;
3765 struct kmem_cache *c = NULL;
3766 int i = 0;
3767
3768 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3769
3770 if (slab_state < FULL)
3771 return ret;
3772
3773 if ((ret < 0) || !is_root_cache(cachep))
3774 return ret;
3775
3776 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3777 for_each_memcg_cache_index(i) {
3778 c = cache_from_memcg_idx(cachep, i);
3779 if (c)
3780 /* return value determined by the parent cache only */
3781 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3782 }
3783
3784 return ret;
3785 }
3786
3787 /* Called with slab_mutex held always */
3788 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3789 {
3790 int err;
3791 int limit = 0;
3792 int shared = 0;
3793 int batchcount = 0;
3794
3795 if (!is_root_cache(cachep)) {
3796 struct kmem_cache *root = memcg_root_cache(cachep);
3797 limit = root->limit;
3798 shared = root->shared;
3799 batchcount = root->batchcount;
3800 }
3801
3802 if (limit && shared && batchcount)
3803 goto skip_setup;
3804 /*
3805 * The head array serves three purposes:
3806 * - create a LIFO ordering, i.e. return objects that are cache-warm
3807 * - reduce the number of spinlock operations.
3808 * - reduce the number of linked list operations on the slab and
3809 * bufctl chains: array operations are cheaper.
3810 * The numbers are guessed, we should auto-tune as described by
3811 * Bonwick.
3812 */
3813 if (cachep->size > 131072)
3814 limit = 1;
3815 else if (cachep->size > PAGE_SIZE)
3816 limit = 8;
3817 else if (cachep->size > 1024)
3818 limit = 24;
3819 else if (cachep->size > 256)
3820 limit = 54;
3821 else
3822 limit = 120;
3823
3824 /*
3825 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3826 * allocation behaviour: Most allocs on one cpu, most free operations
3827 * on another cpu. For these cases, an efficient object passing between
3828 * cpus is necessary. This is provided by a shared array. The array
3829 * replaces Bonwick's magazine layer.
3830 * On uniprocessor, it's functionally equivalent (but less efficient)
3831 * to a larger limit. Thus disabled by default.
3832 */
3833 shared = 0;
3834 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3835 shared = 8;
3836
3837 #if DEBUG
3838 /*
3839 * With debugging enabled, large batchcount lead to excessively long
3840 * periods with disabled local interrupts. Limit the batchcount
3841 */
3842 if (limit > 32)
3843 limit = 32;
3844 #endif
3845 batchcount = (limit + 1) / 2;
3846 skip_setup:
3847 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3848 if (err)
3849 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3850 cachep->name, -err);
3851 return err;
3852 }
3853
3854 /*
3855 * Drain an array if it contains any elements taking the node lock only if
3856 * necessary. Note that the node listlock also protects the array_cache
3857 * if drain_array() is used on the shared array.
3858 */
3859 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3860 struct array_cache *ac, int force, int node)
3861 {
3862 LIST_HEAD(list);
3863 int tofree;
3864
3865 if (!ac || !ac->avail)
3866 return;
3867 if (ac->touched && !force) {
3868 ac->touched = 0;
3869 } else {
3870 spin_lock_irq(&n->list_lock);
3871 if (ac->avail) {
3872 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3873 if (tofree > ac->avail)
3874 tofree = (ac->avail + 1) / 2;
3875 free_block(cachep, ac->entry, tofree, node, &list);
3876 ac->avail -= tofree;
3877 memmove(ac->entry, &(ac->entry[tofree]),
3878 sizeof(void *) * ac->avail);
3879 }
3880 spin_unlock_irq(&n->list_lock);
3881 slabs_destroy(cachep, &list);
3882 }
3883 }
3884
3885 /**
3886 * cache_reap - Reclaim memory from caches.
3887 * @w: work descriptor
3888 *
3889 * Called from workqueue/eventd every few seconds.
3890 * Purpose:
3891 * - clear the per-cpu caches for this CPU.
3892 * - return freeable pages to the main free memory pool.
3893 *
3894 * If we cannot acquire the cache chain mutex then just give up - we'll try
3895 * again on the next iteration.
3896 */
3897 static void cache_reap(struct work_struct *w)
3898 {
3899 struct kmem_cache *searchp;
3900 struct kmem_cache_node *n;
3901 int node = numa_mem_id();
3902 struct delayed_work *work = to_delayed_work(w);
3903
3904 if (!mutex_trylock(&slab_mutex))
3905 /* Give up. Setup the next iteration. */
3906 goto out;
3907
3908 list_for_each_entry(searchp, &slab_caches, list) {
3909 check_irq_on();
3910
3911 /*
3912 * We only take the node lock if absolutely necessary and we
3913 * have established with reasonable certainty that
3914 * we can do some work if the lock was obtained.
3915 */
3916 n = get_node(searchp, node);
3917
3918 reap_alien(searchp, n);
3919
3920 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3921
3922 /*
3923 * These are racy checks but it does not matter
3924 * if we skip one check or scan twice.
3925 */
3926 if (time_after(n->next_reap, jiffies))
3927 goto next;
3928
3929 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3930
3931 drain_array(searchp, n, n->shared, 0, node);
3932
3933 if (n->free_touched)
3934 n->free_touched = 0;
3935 else {
3936 int freed;
3937
3938 freed = drain_freelist(searchp, n, (n->free_limit +
3939 5 * searchp->num - 1) / (5 * searchp->num));
3940 STATS_ADD_REAPED(searchp, freed);
3941 }
3942 next:
3943 cond_resched();
3944 }
3945 check_irq_on();
3946 mutex_unlock(&slab_mutex);
3947 next_reap_node();
3948 out:
3949 /* Set up the next iteration */
3950 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3951 }
3952
3953 #ifdef CONFIG_SLABINFO
3954 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3955 {
3956 struct page *page;
3957 unsigned long active_objs;
3958 unsigned long num_objs;
3959 unsigned long active_slabs = 0;
3960 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3961 const char *name;
3962 char *error = NULL;
3963 int node;
3964 struct kmem_cache_node *n;
3965
3966 active_objs = 0;
3967 num_slabs = 0;
3968 for_each_kmem_cache_node(cachep, node, n) {
3969
3970 check_irq_on();
3971 spin_lock_irq(&n->list_lock);
3972
3973 list_for_each_entry(page, &n->slabs_full, lru) {
3974 if (page->active != cachep->num && !error)
3975 error = "slabs_full accounting error";
3976 active_objs += cachep->num;
3977 active_slabs++;
3978 }
3979 list_for_each_entry(page, &n->slabs_partial, lru) {
3980 if (page->active == cachep->num && !error)
3981 error = "slabs_partial accounting error";
3982 if (!page->active && !error)
3983 error = "slabs_partial accounting error";
3984 active_objs += page->active;
3985 active_slabs++;
3986 }
3987 list_for_each_entry(page, &n->slabs_free, lru) {
3988 if (page->active && !error)
3989 error = "slabs_free accounting error";
3990 num_slabs++;
3991 }
3992 free_objects += n->free_objects;
3993 if (n->shared)
3994 shared_avail += n->shared->avail;
3995
3996 spin_unlock_irq(&n->list_lock);
3997 }
3998 num_slabs += active_slabs;
3999 num_objs = num_slabs * cachep->num;
4000 if (num_objs - active_objs != free_objects && !error)
4001 error = "free_objects accounting error";
4002
4003 name = cachep->name;
4004 if (error)
4005 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4006
4007 sinfo->active_objs = active_objs;
4008 sinfo->num_objs = num_objs;
4009 sinfo->active_slabs = active_slabs;
4010 sinfo->num_slabs = num_slabs;
4011 sinfo->shared_avail = shared_avail;
4012 sinfo->limit = cachep->limit;
4013 sinfo->batchcount = cachep->batchcount;
4014 sinfo->shared = cachep->shared;
4015 sinfo->objects_per_slab = cachep->num;
4016 sinfo->cache_order = cachep->gfporder;
4017 }
4018
4019 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4020 {
4021 #if STATS
4022 { /* node stats */
4023 unsigned long high = cachep->high_mark;
4024 unsigned long allocs = cachep->num_allocations;
4025 unsigned long grown = cachep->grown;
4026 unsigned long reaped = cachep->reaped;
4027 unsigned long errors = cachep->errors;
4028 unsigned long max_freeable = cachep->max_freeable;
4029 unsigned long node_allocs = cachep->node_allocs;
4030 unsigned long node_frees = cachep->node_frees;
4031 unsigned long overflows = cachep->node_overflow;
4032
4033 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4034 "%4lu %4lu %4lu %4lu %4lu",
4035 allocs, high, grown,
4036 reaped, errors, max_freeable, node_allocs,
4037 node_frees, overflows);
4038 }
4039 /* cpu stats */
4040 {
4041 unsigned long allochit = atomic_read(&cachep->allochit);
4042 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4043 unsigned long freehit = atomic_read(&cachep->freehit);
4044 unsigned long freemiss = atomic_read(&cachep->freemiss);
4045
4046 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4047 allochit, allocmiss, freehit, freemiss);
4048 }
4049 #endif
4050 }
4051
4052 #define MAX_SLABINFO_WRITE 128
4053 /**
4054 * slabinfo_write - Tuning for the slab allocator
4055 * @file: unused
4056 * @buffer: user buffer
4057 * @count: data length
4058 * @ppos: unused
4059 */
4060 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4061 size_t count, loff_t *ppos)
4062 {
4063 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4064 int limit, batchcount, shared, res;
4065 struct kmem_cache *cachep;
4066
4067 if (count > MAX_SLABINFO_WRITE)
4068 return -EINVAL;
4069 if (copy_from_user(&kbuf, buffer, count))
4070 return -EFAULT;
4071 kbuf[MAX_SLABINFO_WRITE] = '\0';
4072
4073 tmp = strchr(kbuf, ' ');
4074 if (!tmp)
4075 return -EINVAL;
4076 *tmp = '\0';
4077 tmp++;
4078 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4079 return -EINVAL;
4080
4081 /* Find the cache in the chain of caches. */
4082 mutex_lock(&slab_mutex);
4083 res = -EINVAL;
4084 list_for_each_entry(cachep, &slab_caches, list) {
4085 if (!strcmp(cachep->name, kbuf)) {
4086 if (limit < 1 || batchcount < 1 ||
4087 batchcount > limit || shared < 0) {
4088 res = 0;
4089 } else {
4090 res = do_tune_cpucache(cachep, limit,
4091 batchcount, shared,
4092 GFP_KERNEL);
4093 }
4094 break;
4095 }
4096 }
4097 mutex_unlock(&slab_mutex);
4098 if (res >= 0)
4099 res = count;
4100 return res;
4101 }
4102
4103 #ifdef CONFIG_DEBUG_SLAB_LEAK
4104
4105 static void *leaks_start(struct seq_file *m, loff_t *pos)
4106 {
4107 mutex_lock(&slab_mutex);
4108 return seq_list_start(&slab_caches, *pos);
4109 }
4110
4111 static inline int add_caller(unsigned long *n, unsigned long v)
4112 {
4113 unsigned long *p;
4114 int l;
4115 if (!v)
4116 return 1;
4117 l = n[1];
4118 p = n + 2;
4119 while (l) {
4120 int i = l/2;
4121 unsigned long *q = p + 2 * i;
4122 if (*q == v) {
4123 q[1]++;
4124 return 1;
4125 }
4126 if (*q > v) {
4127 l = i;
4128 } else {
4129 p = q + 2;
4130 l -= i + 1;
4131 }
4132 }
4133 if (++n[1] == n[0])
4134 return 0;
4135 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4136 p[0] = v;
4137 p[1] = 1;
4138 return 1;
4139 }
4140
4141 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4142 struct page *page)
4143 {
4144 void *p;
4145 int i;
4146
4147 if (n[0] == n[1])
4148 return;
4149 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4150 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4151 continue;
4152
4153 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4154 return;
4155 }
4156 }
4157
4158 static void show_symbol(struct seq_file *m, unsigned long address)
4159 {
4160 #ifdef CONFIG_KALLSYMS
4161 unsigned long offset, size;
4162 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4163
4164 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4165 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4166 if (modname[0])
4167 seq_printf(m, " [%s]", modname);
4168 return;
4169 }
4170 #endif
4171 seq_printf(m, "%p", (void *)address);
4172 }
4173
4174 static int leaks_show(struct seq_file *m, void *p)
4175 {
4176 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4177 struct page *page;
4178 struct kmem_cache_node *n;
4179 const char *name;
4180 unsigned long *x = m->private;
4181 int node;
4182 int i;
4183
4184 if (!(cachep->flags & SLAB_STORE_USER))
4185 return 0;
4186 if (!(cachep->flags & SLAB_RED_ZONE))
4187 return 0;
4188
4189 /* OK, we can do it */
4190
4191 x[1] = 0;
4192
4193 for_each_kmem_cache_node(cachep, node, n) {
4194
4195 check_irq_on();
4196 spin_lock_irq(&n->list_lock);
4197
4198 list_for_each_entry(page, &n->slabs_full, lru)
4199 handle_slab(x, cachep, page);
4200 list_for_each_entry(page, &n->slabs_partial, lru)
4201 handle_slab(x, cachep, page);
4202 spin_unlock_irq(&n->list_lock);
4203 }
4204 name = cachep->name;
4205 if (x[0] == x[1]) {
4206 /* Increase the buffer size */
4207 mutex_unlock(&slab_mutex);
4208 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4209 if (!m->private) {
4210 /* Too bad, we are really out */
4211 m->private = x;
4212 mutex_lock(&slab_mutex);
4213 return -ENOMEM;
4214 }
4215 *(unsigned long *)m->private = x[0] * 2;
4216 kfree(x);
4217 mutex_lock(&slab_mutex);
4218 /* Now make sure this entry will be retried */
4219 m->count = m->size;
4220 return 0;
4221 }
4222 for (i = 0; i < x[1]; i++) {
4223 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4224 show_symbol(m, x[2*i+2]);
4225 seq_putc(m, '\n');
4226 }
4227
4228 return 0;
4229 }
4230
4231 static const struct seq_operations slabstats_op = {
4232 .start = leaks_start,
4233 .next = slab_next,
4234 .stop = slab_stop,
4235 .show = leaks_show,
4236 };
4237
4238 static int slabstats_open(struct inode *inode, struct file *file)
4239 {
4240 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4241 int ret = -ENOMEM;
4242 if (n) {
4243 ret = seq_open(file, &slabstats_op);
4244 if (!ret) {
4245 struct seq_file *m = file->private_data;
4246 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4247 m->private = n;
4248 n = NULL;
4249 }
4250 kfree(n);
4251 }
4252 return ret;
4253 }
4254
4255 static const struct file_operations proc_slabstats_operations = {
4256 .open = slabstats_open,
4257 .read = seq_read,
4258 .llseek = seq_lseek,
4259 .release = seq_release_private,
4260 };
4261 #endif
4262
4263 static int __init slab_proc_init(void)
4264 {
4265 #ifdef CONFIG_DEBUG_SLAB_LEAK
4266 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4267 #endif
4268 return 0;
4269 }
4270 module_init(slab_proc_init);
4271 #endif
4272
4273 /**
4274 * ksize - get the actual amount of memory allocated for a given object
4275 * @objp: Pointer to the object
4276 *
4277 * kmalloc may internally round up allocations and return more memory
4278 * than requested. ksize() can be used to determine the actual amount of
4279 * memory allocated. The caller may use this additional memory, even though
4280 * a smaller amount of memory was initially specified with the kmalloc call.
4281 * The caller must guarantee that objp points to a valid object previously
4282 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4283 * must not be freed during the duration of the call.
4284 */
4285 size_t ksize(const void *objp)
4286 {
4287 BUG_ON(!objp);
4288 if (unlikely(objp == ZERO_SIZE_PTR))
4289 return 0;
4290
4291 return virt_to_cache(objp)->object_size;
4292 }
4293 EXPORT_SYMBOL(ksize);
This page took 0.111573 seconds and 4 git commands to generate.