tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_private2: identifies the last component page
28 * PG_owner_priv_1: indentifies the huge component page
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #define CREATE_TRACE_POINTS
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/bitops.h>
40 #include <linux/errno.h>
41 #include <linux/highmem.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <asm/tlbflush.h>
45 #include <asm/pgtable.h>
46 #include <linux/cpumask.h>
47 #include <linux/cpu.h>
48 #include <linux/vmalloc.h>
49 #include <linux/preempt.h>
50 #include <linux/spinlock.h>
51 #include <linux/types.h>
52 #include <linux/debugfs.h>
53 #include <linux/zsmalloc.h>
54 #include <linux/zpool.h>
55 #include <linux/mount.h>
56 #include <linux/migrate.h>
57 #include <linux/pagemap.h>
58 #include <trace/events/zsmalloc.h>
59
60 #define ZSPAGE_MAGIC 0x58
61
62 /*
63 * This must be power of 2 and greater than of equal to sizeof(link_free).
64 * These two conditions ensure that any 'struct link_free' itself doesn't
65 * span more than 1 page which avoids complex case of mapping 2 pages simply
66 * to restore link_free pointer values.
67 */
68 #define ZS_ALIGN 8
69
70 /*
71 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
72 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 */
74 #define ZS_MAX_ZSPAGE_ORDER 2
75 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76
77 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78
79 /*
80 * Object location (<PFN>, <obj_idx>) is encoded as
81 * as single (unsigned long) handle value.
82 *
83 * Note that object index <obj_idx> starts from 0.
84 *
85 * This is made more complicated by various memory models and PAE.
86 */
87
88 #ifndef MAX_PHYSMEM_BITS
89 #ifdef CONFIG_HIGHMEM64G
90 #define MAX_PHYSMEM_BITS 36
91 #else /* !CONFIG_HIGHMEM64G */
92 /*
93 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
94 * be PAGE_SHIFT
95 */
96 #define MAX_PHYSMEM_BITS BITS_PER_LONG
97 #endif
98 #endif
99 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
107 */
108 #define HANDLE_PIN_BIT 0
109
110 /*
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
116 */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
122 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
123 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
124 #define ZS_MIN_ALLOC_SIZE \
125 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
126 /* each chunk includes extra space to keep handle */
127 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
128
129 /*
130 * On systems with 4K page size, this gives 255 size classes! There is a
131 * trader-off here:
132 * - Large number of size classes is potentially wasteful as free page are
133 * spread across these classes
134 * - Small number of size classes causes large internal fragmentation
135 * - Probably its better to use specific size classes (empirically
136 * determined). NOTE: all those class sizes must be set as multiple of
137 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
138 *
139 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
140 * (reason above)
141 */
142 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
143
144 enum fullness_group {
145 ZS_EMPTY,
146 ZS_ALMOST_EMPTY,
147 ZS_ALMOST_FULL,
148 ZS_FULL,
149 NR_ZS_FULLNESS,
150 };
151
152 enum zs_stat_type {
153 CLASS_EMPTY,
154 CLASS_ALMOST_EMPTY,
155 CLASS_ALMOST_FULL,
156 CLASS_FULL,
157 OBJ_ALLOCATED,
158 OBJ_USED,
159 NR_ZS_STAT_TYPE,
160 };
161
162 struct zs_size_stat {
163 unsigned long objs[NR_ZS_STAT_TYPE];
164 };
165
166 #ifdef CONFIG_ZSMALLOC_STAT
167 static struct dentry *zs_stat_root;
168 #endif
169
170 #ifdef CONFIG_COMPACTION
171 static struct vfsmount *zsmalloc_mnt;
172 #endif
173
174 /*
175 * number of size_classes
176 */
177 static int zs_size_classes;
178
179 /*
180 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181 * n <= N / f, where
182 * n = number of allocated objects
183 * N = total number of objects zspage can store
184 * f = fullness_threshold_frac
185 *
186 * Similarly, we assign zspage to:
187 * ZS_ALMOST_FULL when n > N / f
188 * ZS_EMPTY when n == 0
189 * ZS_FULL when n == N
190 *
191 * (see: fix_fullness_group())
192 */
193 static const int fullness_threshold_frac = 4;
194
195 struct size_class {
196 spinlock_t lock;
197 struct list_head fullness_list[NR_ZS_FULLNESS];
198 /*
199 * Size of objects stored in this class. Must be multiple
200 * of ZS_ALIGN.
201 */
202 int size;
203 int objs_per_zspage;
204 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 int pages_per_zspage;
206
207 unsigned int index;
208 struct zs_size_stat stats;
209 };
210
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page *page)
213 {
214 SetPageOwnerPriv1(page);
215 }
216
217 static void ClearPageHugeObject(struct page *page)
218 {
219 ClearPageOwnerPriv1(page);
220 }
221
222 static int PageHugeObject(struct page *page)
223 {
224 return PageOwnerPriv1(page);
225 }
226
227 /*
228 * Placed within free objects to form a singly linked list.
229 * For every zspage, zspage->freeobj gives head of this list.
230 *
231 * This must be power of 2 and less than or equal to ZS_ALIGN
232 */
233 struct link_free {
234 union {
235 /*
236 * Free object index;
237 * It's valid for non-allocated object
238 */
239 unsigned long next;
240 /*
241 * Handle of allocated object.
242 */
243 unsigned long handle;
244 };
245 };
246
247 struct zs_pool {
248 const char *name;
249
250 struct size_class **size_class;
251 struct kmem_cache *handle_cachep;
252 struct kmem_cache *zspage_cachep;
253
254 atomic_long_t pages_allocated;
255
256 struct zs_pool_stats stats;
257
258 /* Compact classes */
259 struct shrinker shrinker;
260 /*
261 * To signify that register_shrinker() was successful
262 * and unregister_shrinker() will not Oops.
263 */
264 bool shrinker_enabled;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269 struct inode *inode;
270 struct work_struct free_work;
271 #endif
272 };
273
274 /*
275 * A zspage's class index and fullness group
276 * are encoded in its (first)page->mapping
277 */
278 #define FULLNESS_BITS 2
279 #define CLASS_BITS 8
280 #define ISOLATED_BITS 3
281 #define MAGIC_VAL_BITS 8
282
283 struct zspage {
284 struct {
285 unsigned int fullness:FULLNESS_BITS;
286 unsigned int class:CLASS_BITS;
287 unsigned int isolated:ISOLATED_BITS;
288 unsigned int magic:MAGIC_VAL_BITS;
289 };
290 unsigned int inuse;
291 unsigned int freeobj;
292 struct page *first_page;
293 struct list_head list; /* fullness list */
294 #ifdef CONFIG_COMPACTION
295 rwlock_t lock;
296 #endif
297 };
298
299 struct mapping_area {
300 #ifdef CONFIG_PGTABLE_MAPPING
301 struct vm_struct *vm; /* vm area for mapping object that span pages */
302 #else
303 char *vm_buf; /* copy buffer for objects that span pages */
304 #endif
305 char *vm_addr; /* address of kmap_atomic()'ed pages */
306 enum zs_mapmode vm_mm; /* mapping mode */
307 };
308
309 #ifdef CONFIG_COMPACTION
310 static int zs_register_migration(struct zs_pool *pool);
311 static void zs_unregister_migration(struct zs_pool *pool);
312 static void migrate_lock_init(struct zspage *zspage);
313 static void migrate_read_lock(struct zspage *zspage);
314 static void migrate_read_unlock(struct zspage *zspage);
315 static void kick_deferred_free(struct zs_pool *pool);
316 static void init_deferred_free(struct zs_pool *pool);
317 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
318 #else
319 static int zsmalloc_mount(void) { return 0; }
320 static void zsmalloc_unmount(void) {}
321 static int zs_register_migration(struct zs_pool *pool) { return 0; }
322 static void zs_unregister_migration(struct zs_pool *pool) {}
323 static void migrate_lock_init(struct zspage *zspage) {}
324 static void migrate_read_lock(struct zspage *zspage) {}
325 static void migrate_read_unlock(struct zspage *zspage) {}
326 static void kick_deferred_free(struct zs_pool *pool) {}
327 static void init_deferred_free(struct zs_pool *pool) {}
328 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
329 #endif
330
331 static int create_cache(struct zs_pool *pool)
332 {
333 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
334 0, 0, NULL);
335 if (!pool->handle_cachep)
336 return 1;
337
338 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
339 0, 0, NULL);
340 if (!pool->zspage_cachep) {
341 kmem_cache_destroy(pool->handle_cachep);
342 pool->handle_cachep = NULL;
343 return 1;
344 }
345
346 return 0;
347 }
348
349 static void destroy_cache(struct zs_pool *pool)
350 {
351 kmem_cache_destroy(pool->handle_cachep);
352 kmem_cache_destroy(pool->zspage_cachep);
353 }
354
355 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
356 {
357 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
358 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
359 }
360
361 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
362 {
363 kmem_cache_free(pool->handle_cachep, (void *)handle);
364 }
365
366 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
367 {
368 return kmem_cache_alloc(pool->zspage_cachep,
369 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
370 };
371
372 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
373 {
374 kmem_cache_free(pool->zspage_cachep, zspage);
375 }
376
377 static void record_obj(unsigned long handle, unsigned long obj)
378 {
379 /*
380 * lsb of @obj represents handle lock while other bits
381 * represent object value the handle is pointing so
382 * updating shouldn't do store tearing.
383 */
384 WRITE_ONCE(*(unsigned long *)handle, obj);
385 }
386
387 /* zpool driver */
388
389 #ifdef CONFIG_ZPOOL
390
391 static void *zs_zpool_create(const char *name, gfp_t gfp,
392 const struct zpool_ops *zpool_ops,
393 struct zpool *zpool)
394 {
395 /*
396 * Ignore global gfp flags: zs_malloc() may be invoked from
397 * different contexts and its caller must provide a valid
398 * gfp mask.
399 */
400 return zs_create_pool(name);
401 }
402
403 static void zs_zpool_destroy(void *pool)
404 {
405 zs_destroy_pool(pool);
406 }
407
408 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
409 unsigned long *handle)
410 {
411 *handle = zs_malloc(pool, size, gfp);
412 return *handle ? 0 : -1;
413 }
414 static void zs_zpool_free(void *pool, unsigned long handle)
415 {
416 zs_free(pool, handle);
417 }
418
419 static int zs_zpool_shrink(void *pool, unsigned int pages,
420 unsigned int *reclaimed)
421 {
422 return -EINVAL;
423 }
424
425 static void *zs_zpool_map(void *pool, unsigned long handle,
426 enum zpool_mapmode mm)
427 {
428 enum zs_mapmode zs_mm;
429
430 switch (mm) {
431 case ZPOOL_MM_RO:
432 zs_mm = ZS_MM_RO;
433 break;
434 case ZPOOL_MM_WO:
435 zs_mm = ZS_MM_WO;
436 break;
437 case ZPOOL_MM_RW: /* fallthru */
438 default:
439 zs_mm = ZS_MM_RW;
440 break;
441 }
442
443 return zs_map_object(pool, handle, zs_mm);
444 }
445 static void zs_zpool_unmap(void *pool, unsigned long handle)
446 {
447 zs_unmap_object(pool, handle);
448 }
449
450 static u64 zs_zpool_total_size(void *pool)
451 {
452 return zs_get_total_pages(pool) << PAGE_SHIFT;
453 }
454
455 static struct zpool_driver zs_zpool_driver = {
456 .type = "zsmalloc",
457 .owner = THIS_MODULE,
458 .create = zs_zpool_create,
459 .destroy = zs_zpool_destroy,
460 .malloc = zs_zpool_malloc,
461 .free = zs_zpool_free,
462 .shrink = zs_zpool_shrink,
463 .map = zs_zpool_map,
464 .unmap = zs_zpool_unmap,
465 .total_size = zs_zpool_total_size,
466 };
467
468 MODULE_ALIAS("zpool-zsmalloc");
469 #endif /* CONFIG_ZPOOL */
470
471 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
472 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
473
474 static bool is_zspage_isolated(struct zspage *zspage)
475 {
476 return zspage->isolated;
477 }
478
479 static int is_first_page(struct page *page)
480 {
481 return PagePrivate(page);
482 }
483
484 /* Protected by class->lock */
485 static inline int get_zspage_inuse(struct zspage *zspage)
486 {
487 return zspage->inuse;
488 }
489
490 static inline void set_zspage_inuse(struct zspage *zspage, int val)
491 {
492 zspage->inuse = val;
493 }
494
495 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
496 {
497 zspage->inuse += val;
498 }
499
500 static inline struct page *get_first_page(struct zspage *zspage)
501 {
502 struct page *first_page = zspage->first_page;
503
504 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
505 return first_page;
506 }
507
508 static inline int get_first_obj_offset(struct page *page)
509 {
510 return page->units;
511 }
512
513 static inline void set_first_obj_offset(struct page *page, int offset)
514 {
515 page->units = offset;
516 }
517
518 static inline unsigned int get_freeobj(struct zspage *zspage)
519 {
520 return zspage->freeobj;
521 }
522
523 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
524 {
525 zspage->freeobj = obj;
526 }
527
528 static void get_zspage_mapping(struct zspage *zspage,
529 unsigned int *class_idx,
530 enum fullness_group *fullness)
531 {
532 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
533
534 *fullness = zspage->fullness;
535 *class_idx = zspage->class;
536 }
537
538 static void set_zspage_mapping(struct zspage *zspage,
539 unsigned int class_idx,
540 enum fullness_group fullness)
541 {
542 zspage->class = class_idx;
543 zspage->fullness = fullness;
544 }
545
546 /*
547 * zsmalloc divides the pool into various size classes where each
548 * class maintains a list of zspages where each zspage is divided
549 * into equal sized chunks. Each allocation falls into one of these
550 * classes depending on its size. This function returns index of the
551 * size class which has chunk size big enough to hold the give size.
552 */
553 static int get_size_class_index(int size)
554 {
555 int idx = 0;
556
557 if (likely(size > ZS_MIN_ALLOC_SIZE))
558 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
559 ZS_SIZE_CLASS_DELTA);
560
561 return min(zs_size_classes - 1, idx);
562 }
563
564 static inline void zs_stat_inc(struct size_class *class,
565 enum zs_stat_type type, unsigned long cnt)
566 {
567 class->stats.objs[type] += cnt;
568 }
569
570 static inline void zs_stat_dec(struct size_class *class,
571 enum zs_stat_type type, unsigned long cnt)
572 {
573 class->stats.objs[type] -= cnt;
574 }
575
576 static inline unsigned long zs_stat_get(struct size_class *class,
577 enum zs_stat_type type)
578 {
579 return class->stats.objs[type];
580 }
581
582 #ifdef CONFIG_ZSMALLOC_STAT
583
584 static void __init zs_stat_init(void)
585 {
586 if (!debugfs_initialized()) {
587 pr_warn("debugfs not available, stat dir not created\n");
588 return;
589 }
590
591 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
592 if (!zs_stat_root)
593 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
594 }
595
596 static void __exit zs_stat_exit(void)
597 {
598 debugfs_remove_recursive(zs_stat_root);
599 }
600
601 static unsigned long zs_can_compact(struct size_class *class);
602
603 static int zs_stats_size_show(struct seq_file *s, void *v)
604 {
605 int i;
606 struct zs_pool *pool = s->private;
607 struct size_class *class;
608 int objs_per_zspage;
609 unsigned long class_almost_full, class_almost_empty;
610 unsigned long obj_allocated, obj_used, pages_used, freeable;
611 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
612 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
613 unsigned long total_freeable = 0;
614
615 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
616 "class", "size", "almost_full", "almost_empty",
617 "obj_allocated", "obj_used", "pages_used",
618 "pages_per_zspage", "freeable");
619
620 for (i = 0; i < zs_size_classes; i++) {
621 class = pool->size_class[i];
622
623 if (class->index != i)
624 continue;
625
626 spin_lock(&class->lock);
627 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
628 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
629 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
630 obj_used = zs_stat_get(class, OBJ_USED);
631 freeable = zs_can_compact(class);
632 spin_unlock(&class->lock);
633
634 objs_per_zspage = class->objs_per_zspage;
635 pages_used = obj_allocated / objs_per_zspage *
636 class->pages_per_zspage;
637
638 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
639 " %10lu %10lu %16d %8lu\n",
640 i, class->size, class_almost_full, class_almost_empty,
641 obj_allocated, obj_used, pages_used,
642 class->pages_per_zspage, freeable);
643
644 total_class_almost_full += class_almost_full;
645 total_class_almost_empty += class_almost_empty;
646 total_objs += obj_allocated;
647 total_used_objs += obj_used;
648 total_pages += pages_used;
649 total_freeable += freeable;
650 }
651
652 seq_puts(s, "\n");
653 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
654 "Total", "", total_class_almost_full,
655 total_class_almost_empty, total_objs,
656 total_used_objs, total_pages, "", total_freeable);
657
658 return 0;
659 }
660
661 static int zs_stats_size_open(struct inode *inode, struct file *file)
662 {
663 return single_open(file, zs_stats_size_show, inode->i_private);
664 }
665
666 static const struct file_operations zs_stat_size_ops = {
667 .open = zs_stats_size_open,
668 .read = seq_read,
669 .llseek = seq_lseek,
670 .release = single_release,
671 };
672
673 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
674 {
675 struct dentry *entry;
676
677 if (!zs_stat_root) {
678 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
679 return;
680 }
681
682 entry = debugfs_create_dir(name, zs_stat_root);
683 if (!entry) {
684 pr_warn("debugfs dir <%s> creation failed\n", name);
685 return;
686 }
687 pool->stat_dentry = entry;
688
689 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
690 pool->stat_dentry, pool, &zs_stat_size_ops);
691 if (!entry) {
692 pr_warn("%s: debugfs file entry <%s> creation failed\n",
693 name, "classes");
694 debugfs_remove_recursive(pool->stat_dentry);
695 pool->stat_dentry = NULL;
696 }
697 }
698
699 static void zs_pool_stat_destroy(struct zs_pool *pool)
700 {
701 debugfs_remove_recursive(pool->stat_dentry);
702 }
703
704 #else /* CONFIG_ZSMALLOC_STAT */
705 static void __init zs_stat_init(void)
706 {
707 }
708
709 static void __exit zs_stat_exit(void)
710 {
711 }
712
713 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
714 {
715 }
716
717 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
718 {
719 }
720 #endif
721
722
723 /*
724 * For each size class, zspages are divided into different groups
725 * depending on how "full" they are. This was done so that we could
726 * easily find empty or nearly empty zspages when we try to shrink
727 * the pool (not yet implemented). This function returns fullness
728 * status of the given page.
729 */
730 static enum fullness_group get_fullness_group(struct size_class *class,
731 struct zspage *zspage)
732 {
733 int inuse, objs_per_zspage;
734 enum fullness_group fg;
735
736 inuse = get_zspage_inuse(zspage);
737 objs_per_zspage = class->objs_per_zspage;
738
739 if (inuse == 0)
740 fg = ZS_EMPTY;
741 else if (inuse == objs_per_zspage)
742 fg = ZS_FULL;
743 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
744 fg = ZS_ALMOST_EMPTY;
745 else
746 fg = ZS_ALMOST_FULL;
747
748 return fg;
749 }
750
751 /*
752 * Each size class maintains various freelists and zspages are assigned
753 * to one of these freelists based on the number of live objects they
754 * have. This functions inserts the given zspage into the freelist
755 * identified by <class, fullness_group>.
756 */
757 static void insert_zspage(struct size_class *class,
758 struct zspage *zspage,
759 enum fullness_group fullness)
760 {
761 struct zspage *head;
762
763 zs_stat_inc(class, fullness, 1);
764 head = list_first_entry_or_null(&class->fullness_list[fullness],
765 struct zspage, list);
766 /*
767 * We want to see more ZS_FULL pages and less almost empty/full.
768 * Put pages with higher ->inuse first.
769 */
770 if (head) {
771 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
772 list_add(&zspage->list, &head->list);
773 return;
774 }
775 }
776 list_add(&zspage->list, &class->fullness_list[fullness]);
777 }
778
779 /*
780 * This function removes the given zspage from the freelist identified
781 * by <class, fullness_group>.
782 */
783 static void remove_zspage(struct size_class *class,
784 struct zspage *zspage,
785 enum fullness_group fullness)
786 {
787 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
788 VM_BUG_ON(is_zspage_isolated(zspage));
789
790 list_del_init(&zspage->list);
791 zs_stat_dec(class, fullness, 1);
792 }
793
794 /*
795 * Each size class maintains zspages in different fullness groups depending
796 * on the number of live objects they contain. When allocating or freeing
797 * objects, the fullness status of the page can change, say, from ALMOST_FULL
798 * to ALMOST_EMPTY when freeing an object. This function checks if such
799 * a status change has occurred for the given page and accordingly moves the
800 * page from the freelist of the old fullness group to that of the new
801 * fullness group.
802 */
803 static enum fullness_group fix_fullness_group(struct size_class *class,
804 struct zspage *zspage)
805 {
806 int class_idx;
807 enum fullness_group currfg, newfg;
808
809 get_zspage_mapping(zspage, &class_idx, &currfg);
810 newfg = get_fullness_group(class, zspage);
811 if (newfg == currfg)
812 goto out;
813
814 if (!is_zspage_isolated(zspage)) {
815 remove_zspage(class, zspage, currfg);
816 insert_zspage(class, zspage, newfg);
817 }
818
819 set_zspage_mapping(zspage, class_idx, newfg);
820
821 out:
822 return newfg;
823 }
824
825 /*
826 * We have to decide on how many pages to link together
827 * to form a zspage for each size class. This is important
828 * to reduce wastage due to unusable space left at end of
829 * each zspage which is given as:
830 * wastage = Zp % class_size
831 * usage = Zp - wastage
832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
833 *
834 * For example, for size class of 3/8 * PAGE_SIZE, we should
835 * link together 3 PAGE_SIZE sized pages to form a zspage
836 * since then we can perfectly fit in 8 such objects.
837 */
838 static int get_pages_per_zspage(int class_size)
839 {
840 int i, max_usedpc = 0;
841 /* zspage order which gives maximum used size per KB */
842 int max_usedpc_order = 1;
843
844 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
845 int zspage_size;
846 int waste, usedpc;
847
848 zspage_size = i * PAGE_SIZE;
849 waste = zspage_size % class_size;
850 usedpc = (zspage_size - waste) * 100 / zspage_size;
851
852 if (usedpc > max_usedpc) {
853 max_usedpc = usedpc;
854 max_usedpc_order = i;
855 }
856 }
857
858 return max_usedpc_order;
859 }
860
861 static struct zspage *get_zspage(struct page *page)
862 {
863 struct zspage *zspage = (struct zspage *)page->private;
864
865 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
866 return zspage;
867 }
868
869 static struct page *get_next_page(struct page *page)
870 {
871 if (unlikely(PageHugeObject(page)))
872 return NULL;
873
874 return page->freelist;
875 }
876
877 /**
878 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
879 * @page: page object resides in zspage
880 * @obj_idx: object index
881 */
882 static void obj_to_location(unsigned long obj, struct page **page,
883 unsigned int *obj_idx)
884 {
885 obj >>= OBJ_TAG_BITS;
886 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
887 *obj_idx = (obj & OBJ_INDEX_MASK);
888 }
889
890 /**
891 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
892 * @page: page object resides in zspage
893 * @obj_idx: object index
894 */
895 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
896 {
897 unsigned long obj;
898
899 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
900 obj |= obj_idx & OBJ_INDEX_MASK;
901 obj <<= OBJ_TAG_BITS;
902
903 return obj;
904 }
905
906 static unsigned long handle_to_obj(unsigned long handle)
907 {
908 return *(unsigned long *)handle;
909 }
910
911 static unsigned long obj_to_head(struct page *page, void *obj)
912 {
913 if (unlikely(PageHugeObject(page))) {
914 VM_BUG_ON_PAGE(!is_first_page(page), page);
915 return page->index;
916 } else
917 return *(unsigned long *)obj;
918 }
919
920 static inline int testpin_tag(unsigned long handle)
921 {
922 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
923 }
924
925 static inline int trypin_tag(unsigned long handle)
926 {
927 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
928 }
929
930 static void pin_tag(unsigned long handle)
931 {
932 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
933 }
934
935 static void unpin_tag(unsigned long handle)
936 {
937 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
938 }
939
940 static void reset_page(struct page *page)
941 {
942 __ClearPageMovable(page);
943 ClearPagePrivate(page);
944 ClearPagePrivate2(page);
945 set_page_private(page, 0);
946 page_mapcount_reset(page);
947 ClearPageHugeObject(page);
948 page->freelist = NULL;
949 }
950
951 /*
952 * To prevent zspage destroy during migration, zspage freeing should
953 * hold locks of all pages in the zspage.
954 */
955 void lock_zspage(struct zspage *zspage)
956 {
957 struct page *page = get_first_page(zspage);
958
959 do {
960 lock_page(page);
961 } while ((page = get_next_page(page)) != NULL);
962 }
963
964 int trylock_zspage(struct zspage *zspage)
965 {
966 struct page *cursor, *fail;
967
968 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
969 get_next_page(cursor)) {
970 if (!trylock_page(cursor)) {
971 fail = cursor;
972 goto unlock;
973 }
974 }
975
976 return 1;
977 unlock:
978 for (cursor = get_first_page(zspage); cursor != fail; cursor =
979 get_next_page(cursor))
980 unlock_page(cursor);
981
982 return 0;
983 }
984
985 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
986 struct zspage *zspage)
987 {
988 struct page *page, *next;
989 enum fullness_group fg;
990 unsigned int class_idx;
991
992 get_zspage_mapping(zspage, &class_idx, &fg);
993
994 assert_spin_locked(&class->lock);
995
996 VM_BUG_ON(get_zspage_inuse(zspage));
997 VM_BUG_ON(fg != ZS_EMPTY);
998
999 next = page = get_first_page(zspage);
1000 do {
1001 VM_BUG_ON_PAGE(!PageLocked(page), page);
1002 next = get_next_page(page);
1003 reset_page(page);
1004 unlock_page(page);
1005 dec_zone_page_state(page, NR_ZSPAGES);
1006 put_page(page);
1007 page = next;
1008 } while (page != NULL);
1009
1010 cache_free_zspage(pool, zspage);
1011
1012 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1013 atomic_long_sub(class->pages_per_zspage,
1014 &pool->pages_allocated);
1015 }
1016
1017 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1018 struct zspage *zspage)
1019 {
1020 VM_BUG_ON(get_zspage_inuse(zspage));
1021 VM_BUG_ON(list_empty(&zspage->list));
1022
1023 if (!trylock_zspage(zspage)) {
1024 kick_deferred_free(pool);
1025 return;
1026 }
1027
1028 remove_zspage(class, zspage, ZS_EMPTY);
1029 __free_zspage(pool, class, zspage);
1030 }
1031
1032 /* Initialize a newly allocated zspage */
1033 static void init_zspage(struct size_class *class, struct zspage *zspage)
1034 {
1035 unsigned int freeobj = 1;
1036 unsigned long off = 0;
1037 struct page *page = get_first_page(zspage);
1038
1039 while (page) {
1040 struct page *next_page;
1041 struct link_free *link;
1042 void *vaddr;
1043
1044 set_first_obj_offset(page, off);
1045
1046 vaddr = kmap_atomic(page);
1047 link = (struct link_free *)vaddr + off / sizeof(*link);
1048
1049 while ((off += class->size) < PAGE_SIZE) {
1050 link->next = freeobj++ << OBJ_TAG_BITS;
1051 link += class->size / sizeof(*link);
1052 }
1053
1054 /*
1055 * We now come to the last (full or partial) object on this
1056 * page, which must point to the first object on the next
1057 * page (if present)
1058 */
1059 next_page = get_next_page(page);
1060 if (next_page) {
1061 link->next = freeobj++ << OBJ_TAG_BITS;
1062 } else {
1063 /*
1064 * Reset OBJ_TAG_BITS bit to last link to tell
1065 * whether it's allocated object or not.
1066 */
1067 link->next = -1 << OBJ_TAG_BITS;
1068 }
1069 kunmap_atomic(vaddr);
1070 page = next_page;
1071 off %= PAGE_SIZE;
1072 }
1073
1074 set_freeobj(zspage, 0);
1075 }
1076
1077 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1078 struct page *pages[])
1079 {
1080 int i;
1081 struct page *page;
1082 struct page *prev_page = NULL;
1083 int nr_pages = class->pages_per_zspage;
1084
1085 /*
1086 * Allocate individual pages and link them together as:
1087 * 1. all pages are linked together using page->freelist
1088 * 2. each sub-page point to zspage using page->private
1089 *
1090 * we set PG_private to identify the first page (i.e. no other sub-page
1091 * has this flag set) and PG_private_2 to identify the last page.
1092 */
1093 for (i = 0; i < nr_pages; i++) {
1094 page = pages[i];
1095 set_page_private(page, (unsigned long)zspage);
1096 page->freelist = NULL;
1097 if (i == 0) {
1098 zspage->first_page = page;
1099 SetPagePrivate(page);
1100 if (unlikely(class->objs_per_zspage == 1 &&
1101 class->pages_per_zspage == 1))
1102 SetPageHugeObject(page);
1103 } else {
1104 prev_page->freelist = page;
1105 }
1106 if (i == nr_pages - 1)
1107 SetPagePrivate2(page);
1108 prev_page = page;
1109 }
1110 }
1111
1112 /*
1113 * Allocate a zspage for the given size class
1114 */
1115 static struct zspage *alloc_zspage(struct zs_pool *pool,
1116 struct size_class *class,
1117 gfp_t gfp)
1118 {
1119 int i;
1120 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1121 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1122
1123 if (!zspage)
1124 return NULL;
1125
1126 memset(zspage, 0, sizeof(struct zspage));
1127 zspage->magic = ZSPAGE_MAGIC;
1128 migrate_lock_init(zspage);
1129
1130 for (i = 0; i < class->pages_per_zspage; i++) {
1131 struct page *page;
1132
1133 page = alloc_page(gfp);
1134 if (!page) {
1135 while (--i >= 0) {
1136 dec_zone_page_state(pages[i], NR_ZSPAGES);
1137 __free_page(pages[i]);
1138 }
1139 cache_free_zspage(pool, zspage);
1140 return NULL;
1141 }
1142
1143 inc_zone_page_state(page, NR_ZSPAGES);
1144 pages[i] = page;
1145 }
1146
1147 create_page_chain(class, zspage, pages);
1148 init_zspage(class, zspage);
1149
1150 return zspage;
1151 }
1152
1153 static struct zspage *find_get_zspage(struct size_class *class)
1154 {
1155 int i;
1156 struct zspage *zspage;
1157
1158 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1159 zspage = list_first_entry_or_null(&class->fullness_list[i],
1160 struct zspage, list);
1161 if (zspage)
1162 break;
1163 }
1164
1165 return zspage;
1166 }
1167
1168 #ifdef CONFIG_PGTABLE_MAPPING
1169 static inline int __zs_cpu_up(struct mapping_area *area)
1170 {
1171 /*
1172 * Make sure we don't leak memory if a cpu UP notification
1173 * and zs_init() race and both call zs_cpu_up() on the same cpu
1174 */
1175 if (area->vm)
1176 return 0;
1177 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1178 if (!area->vm)
1179 return -ENOMEM;
1180 return 0;
1181 }
1182
1183 static inline void __zs_cpu_down(struct mapping_area *area)
1184 {
1185 if (area->vm)
1186 free_vm_area(area->vm);
1187 area->vm = NULL;
1188 }
1189
1190 static inline void *__zs_map_object(struct mapping_area *area,
1191 struct page *pages[2], int off, int size)
1192 {
1193 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1194 area->vm_addr = area->vm->addr;
1195 return area->vm_addr + off;
1196 }
1197
1198 static inline void __zs_unmap_object(struct mapping_area *area,
1199 struct page *pages[2], int off, int size)
1200 {
1201 unsigned long addr = (unsigned long)area->vm_addr;
1202
1203 unmap_kernel_range(addr, PAGE_SIZE * 2);
1204 }
1205
1206 #else /* CONFIG_PGTABLE_MAPPING */
1207
1208 static inline int __zs_cpu_up(struct mapping_area *area)
1209 {
1210 /*
1211 * Make sure we don't leak memory if a cpu UP notification
1212 * and zs_init() race and both call zs_cpu_up() on the same cpu
1213 */
1214 if (area->vm_buf)
1215 return 0;
1216 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1217 if (!area->vm_buf)
1218 return -ENOMEM;
1219 return 0;
1220 }
1221
1222 static inline void __zs_cpu_down(struct mapping_area *area)
1223 {
1224 kfree(area->vm_buf);
1225 area->vm_buf = NULL;
1226 }
1227
1228 static void *__zs_map_object(struct mapping_area *area,
1229 struct page *pages[2], int off, int size)
1230 {
1231 int sizes[2];
1232 void *addr;
1233 char *buf = area->vm_buf;
1234
1235 /* disable page faults to match kmap_atomic() return conditions */
1236 pagefault_disable();
1237
1238 /* no read fastpath */
1239 if (area->vm_mm == ZS_MM_WO)
1240 goto out;
1241
1242 sizes[0] = PAGE_SIZE - off;
1243 sizes[1] = size - sizes[0];
1244
1245 /* copy object to per-cpu buffer */
1246 addr = kmap_atomic(pages[0]);
1247 memcpy(buf, addr + off, sizes[0]);
1248 kunmap_atomic(addr);
1249 addr = kmap_atomic(pages[1]);
1250 memcpy(buf + sizes[0], addr, sizes[1]);
1251 kunmap_atomic(addr);
1252 out:
1253 return area->vm_buf;
1254 }
1255
1256 static void __zs_unmap_object(struct mapping_area *area,
1257 struct page *pages[2], int off, int size)
1258 {
1259 int sizes[2];
1260 void *addr;
1261 char *buf;
1262
1263 /* no write fastpath */
1264 if (area->vm_mm == ZS_MM_RO)
1265 goto out;
1266
1267 buf = area->vm_buf;
1268 buf = buf + ZS_HANDLE_SIZE;
1269 size -= ZS_HANDLE_SIZE;
1270 off += ZS_HANDLE_SIZE;
1271
1272 sizes[0] = PAGE_SIZE - off;
1273 sizes[1] = size - sizes[0];
1274
1275 /* copy per-cpu buffer to object */
1276 addr = kmap_atomic(pages[0]);
1277 memcpy(addr + off, buf, sizes[0]);
1278 kunmap_atomic(addr);
1279 addr = kmap_atomic(pages[1]);
1280 memcpy(addr, buf + sizes[0], sizes[1]);
1281 kunmap_atomic(addr);
1282
1283 out:
1284 /* enable page faults to match kunmap_atomic() return conditions */
1285 pagefault_enable();
1286 }
1287
1288 #endif /* CONFIG_PGTABLE_MAPPING */
1289
1290 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1291 void *pcpu)
1292 {
1293 int ret, cpu = (long)pcpu;
1294 struct mapping_area *area;
1295
1296 switch (action) {
1297 case CPU_UP_PREPARE:
1298 area = &per_cpu(zs_map_area, cpu);
1299 ret = __zs_cpu_up(area);
1300 if (ret)
1301 return notifier_from_errno(ret);
1302 break;
1303 case CPU_DEAD:
1304 case CPU_UP_CANCELED:
1305 area = &per_cpu(zs_map_area, cpu);
1306 __zs_cpu_down(area);
1307 break;
1308 }
1309
1310 return NOTIFY_OK;
1311 }
1312
1313 static struct notifier_block zs_cpu_nb = {
1314 .notifier_call = zs_cpu_notifier
1315 };
1316
1317 static int zs_register_cpu_notifier(void)
1318 {
1319 int cpu, uninitialized_var(ret);
1320
1321 cpu_notifier_register_begin();
1322
1323 __register_cpu_notifier(&zs_cpu_nb);
1324 for_each_online_cpu(cpu) {
1325 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1326 if (notifier_to_errno(ret))
1327 break;
1328 }
1329
1330 cpu_notifier_register_done();
1331 return notifier_to_errno(ret);
1332 }
1333
1334 static void zs_unregister_cpu_notifier(void)
1335 {
1336 int cpu;
1337
1338 cpu_notifier_register_begin();
1339
1340 for_each_online_cpu(cpu)
1341 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1342 __unregister_cpu_notifier(&zs_cpu_nb);
1343
1344 cpu_notifier_register_done();
1345 }
1346
1347 static void __init init_zs_size_classes(void)
1348 {
1349 int nr;
1350
1351 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1352 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1353 nr += 1;
1354
1355 zs_size_classes = nr;
1356 }
1357
1358 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1359 int objs_per_zspage)
1360 {
1361 if (prev->pages_per_zspage == pages_per_zspage &&
1362 prev->objs_per_zspage == objs_per_zspage)
1363 return true;
1364
1365 return false;
1366 }
1367
1368 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1369 {
1370 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1371 }
1372
1373 unsigned long zs_get_total_pages(struct zs_pool *pool)
1374 {
1375 return atomic_long_read(&pool->pages_allocated);
1376 }
1377 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1378
1379 /**
1380 * zs_map_object - get address of allocated object from handle.
1381 * @pool: pool from which the object was allocated
1382 * @handle: handle returned from zs_malloc
1383 *
1384 * Before using an object allocated from zs_malloc, it must be mapped using
1385 * this function. When done with the object, it must be unmapped using
1386 * zs_unmap_object.
1387 *
1388 * Only one object can be mapped per cpu at a time. There is no protection
1389 * against nested mappings.
1390 *
1391 * This function returns with preemption and page faults disabled.
1392 */
1393 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1394 enum zs_mapmode mm)
1395 {
1396 struct zspage *zspage;
1397 struct page *page;
1398 unsigned long obj, off;
1399 unsigned int obj_idx;
1400
1401 unsigned int class_idx;
1402 enum fullness_group fg;
1403 struct size_class *class;
1404 struct mapping_area *area;
1405 struct page *pages[2];
1406 void *ret;
1407
1408 /*
1409 * Because we use per-cpu mapping areas shared among the
1410 * pools/users, we can't allow mapping in interrupt context
1411 * because it can corrupt another users mappings.
1412 */
1413 WARN_ON_ONCE(in_interrupt());
1414
1415 /* From now on, migration cannot move the object */
1416 pin_tag(handle);
1417
1418 obj = handle_to_obj(handle);
1419 obj_to_location(obj, &page, &obj_idx);
1420 zspage = get_zspage(page);
1421
1422 /* migration cannot move any subpage in this zspage */
1423 migrate_read_lock(zspage);
1424
1425 get_zspage_mapping(zspage, &class_idx, &fg);
1426 class = pool->size_class[class_idx];
1427 off = (class->size * obj_idx) & ~PAGE_MASK;
1428
1429 area = &get_cpu_var(zs_map_area);
1430 area->vm_mm = mm;
1431 if (off + class->size <= PAGE_SIZE) {
1432 /* this object is contained entirely within a page */
1433 area->vm_addr = kmap_atomic(page);
1434 ret = area->vm_addr + off;
1435 goto out;
1436 }
1437
1438 /* this object spans two pages */
1439 pages[0] = page;
1440 pages[1] = get_next_page(page);
1441 BUG_ON(!pages[1]);
1442
1443 ret = __zs_map_object(area, pages, off, class->size);
1444 out:
1445 if (likely(!PageHugeObject(page)))
1446 ret += ZS_HANDLE_SIZE;
1447
1448 return ret;
1449 }
1450 EXPORT_SYMBOL_GPL(zs_map_object);
1451
1452 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1453 {
1454 struct zspage *zspage;
1455 struct page *page;
1456 unsigned long obj, off;
1457 unsigned int obj_idx;
1458
1459 unsigned int class_idx;
1460 enum fullness_group fg;
1461 struct size_class *class;
1462 struct mapping_area *area;
1463
1464 obj = handle_to_obj(handle);
1465 obj_to_location(obj, &page, &obj_idx);
1466 zspage = get_zspage(page);
1467 get_zspage_mapping(zspage, &class_idx, &fg);
1468 class = pool->size_class[class_idx];
1469 off = (class->size * obj_idx) & ~PAGE_MASK;
1470
1471 area = this_cpu_ptr(&zs_map_area);
1472 if (off + class->size <= PAGE_SIZE)
1473 kunmap_atomic(area->vm_addr);
1474 else {
1475 struct page *pages[2];
1476
1477 pages[0] = page;
1478 pages[1] = get_next_page(page);
1479 BUG_ON(!pages[1]);
1480
1481 __zs_unmap_object(area, pages, off, class->size);
1482 }
1483 put_cpu_var(zs_map_area);
1484
1485 migrate_read_unlock(zspage);
1486 unpin_tag(handle);
1487 }
1488 EXPORT_SYMBOL_GPL(zs_unmap_object);
1489
1490 static unsigned long obj_malloc(struct size_class *class,
1491 struct zspage *zspage, unsigned long handle)
1492 {
1493 int i, nr_page, offset;
1494 unsigned long obj;
1495 struct link_free *link;
1496
1497 struct page *m_page;
1498 unsigned long m_offset;
1499 void *vaddr;
1500
1501 handle |= OBJ_ALLOCATED_TAG;
1502 obj = get_freeobj(zspage);
1503
1504 offset = obj * class->size;
1505 nr_page = offset >> PAGE_SHIFT;
1506 m_offset = offset & ~PAGE_MASK;
1507 m_page = get_first_page(zspage);
1508
1509 for (i = 0; i < nr_page; i++)
1510 m_page = get_next_page(m_page);
1511
1512 vaddr = kmap_atomic(m_page);
1513 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1514 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1515 if (likely(!PageHugeObject(m_page)))
1516 /* record handle in the header of allocated chunk */
1517 link->handle = handle;
1518 else
1519 /* record handle to page->index */
1520 zspage->first_page->index = handle;
1521
1522 kunmap_atomic(vaddr);
1523 mod_zspage_inuse(zspage, 1);
1524 zs_stat_inc(class, OBJ_USED, 1);
1525
1526 obj = location_to_obj(m_page, obj);
1527
1528 return obj;
1529 }
1530
1531
1532 /**
1533 * zs_malloc - Allocate block of given size from pool.
1534 * @pool: pool to allocate from
1535 * @size: size of block to allocate
1536 * @gfp: gfp flags when allocating object
1537 *
1538 * On success, handle to the allocated object is returned,
1539 * otherwise 0.
1540 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1541 */
1542 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1543 {
1544 unsigned long handle, obj;
1545 struct size_class *class;
1546 enum fullness_group newfg;
1547 struct zspage *zspage;
1548
1549 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1550 return 0;
1551
1552 handle = cache_alloc_handle(pool, gfp);
1553 if (!handle)
1554 return 0;
1555
1556 /* extra space in chunk to keep the handle */
1557 size += ZS_HANDLE_SIZE;
1558 class = pool->size_class[get_size_class_index(size)];
1559
1560 spin_lock(&class->lock);
1561 zspage = find_get_zspage(class);
1562 if (likely(zspage)) {
1563 obj = obj_malloc(class, zspage, handle);
1564 /* Now move the zspage to another fullness group, if required */
1565 fix_fullness_group(class, zspage);
1566 record_obj(handle, obj);
1567 spin_unlock(&class->lock);
1568
1569 return handle;
1570 }
1571
1572 spin_unlock(&class->lock);
1573
1574 zspage = alloc_zspage(pool, class, gfp);
1575 if (!zspage) {
1576 cache_free_handle(pool, handle);
1577 return 0;
1578 }
1579
1580 spin_lock(&class->lock);
1581 obj = obj_malloc(class, zspage, handle);
1582 newfg = get_fullness_group(class, zspage);
1583 insert_zspage(class, zspage, newfg);
1584 set_zspage_mapping(zspage, class->index, newfg);
1585 record_obj(handle, obj);
1586 atomic_long_add(class->pages_per_zspage,
1587 &pool->pages_allocated);
1588 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1589
1590 /* We completely set up zspage so mark them as movable */
1591 SetZsPageMovable(pool, zspage);
1592 spin_unlock(&class->lock);
1593
1594 return handle;
1595 }
1596 EXPORT_SYMBOL_GPL(zs_malloc);
1597
1598 static void obj_free(struct size_class *class, unsigned long obj)
1599 {
1600 struct link_free *link;
1601 struct zspage *zspage;
1602 struct page *f_page;
1603 unsigned long f_offset;
1604 unsigned int f_objidx;
1605 void *vaddr;
1606
1607 obj &= ~OBJ_ALLOCATED_TAG;
1608 obj_to_location(obj, &f_page, &f_objidx);
1609 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1610 zspage = get_zspage(f_page);
1611
1612 vaddr = kmap_atomic(f_page);
1613
1614 /* Insert this object in containing zspage's freelist */
1615 link = (struct link_free *)(vaddr + f_offset);
1616 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1617 kunmap_atomic(vaddr);
1618 set_freeobj(zspage, f_objidx);
1619 mod_zspage_inuse(zspage, -1);
1620 zs_stat_dec(class, OBJ_USED, 1);
1621 }
1622
1623 void zs_free(struct zs_pool *pool, unsigned long handle)
1624 {
1625 struct zspage *zspage;
1626 struct page *f_page;
1627 unsigned long obj;
1628 unsigned int f_objidx;
1629 int class_idx;
1630 struct size_class *class;
1631 enum fullness_group fullness;
1632 bool isolated;
1633
1634 if (unlikely(!handle))
1635 return;
1636
1637 pin_tag(handle);
1638 obj = handle_to_obj(handle);
1639 obj_to_location(obj, &f_page, &f_objidx);
1640 zspage = get_zspage(f_page);
1641
1642 migrate_read_lock(zspage);
1643
1644 get_zspage_mapping(zspage, &class_idx, &fullness);
1645 class = pool->size_class[class_idx];
1646
1647 spin_lock(&class->lock);
1648 obj_free(class, obj);
1649 fullness = fix_fullness_group(class, zspage);
1650 if (fullness != ZS_EMPTY) {
1651 migrate_read_unlock(zspage);
1652 goto out;
1653 }
1654
1655 isolated = is_zspage_isolated(zspage);
1656 migrate_read_unlock(zspage);
1657 /* If zspage is isolated, zs_page_putback will free the zspage */
1658 if (likely(!isolated))
1659 free_zspage(pool, class, zspage);
1660 out:
1661
1662 spin_unlock(&class->lock);
1663 unpin_tag(handle);
1664 cache_free_handle(pool, handle);
1665 }
1666 EXPORT_SYMBOL_GPL(zs_free);
1667
1668 static void zs_object_copy(struct size_class *class, unsigned long dst,
1669 unsigned long src)
1670 {
1671 struct page *s_page, *d_page;
1672 unsigned int s_objidx, d_objidx;
1673 unsigned long s_off, d_off;
1674 void *s_addr, *d_addr;
1675 int s_size, d_size, size;
1676 int written = 0;
1677
1678 s_size = d_size = class->size;
1679
1680 obj_to_location(src, &s_page, &s_objidx);
1681 obj_to_location(dst, &d_page, &d_objidx);
1682
1683 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1684 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1685
1686 if (s_off + class->size > PAGE_SIZE)
1687 s_size = PAGE_SIZE - s_off;
1688
1689 if (d_off + class->size > PAGE_SIZE)
1690 d_size = PAGE_SIZE - d_off;
1691
1692 s_addr = kmap_atomic(s_page);
1693 d_addr = kmap_atomic(d_page);
1694
1695 while (1) {
1696 size = min(s_size, d_size);
1697 memcpy(d_addr + d_off, s_addr + s_off, size);
1698 written += size;
1699
1700 if (written == class->size)
1701 break;
1702
1703 s_off += size;
1704 s_size -= size;
1705 d_off += size;
1706 d_size -= size;
1707
1708 if (s_off >= PAGE_SIZE) {
1709 kunmap_atomic(d_addr);
1710 kunmap_atomic(s_addr);
1711 s_page = get_next_page(s_page);
1712 s_addr = kmap_atomic(s_page);
1713 d_addr = kmap_atomic(d_page);
1714 s_size = class->size - written;
1715 s_off = 0;
1716 }
1717
1718 if (d_off >= PAGE_SIZE) {
1719 kunmap_atomic(d_addr);
1720 d_page = get_next_page(d_page);
1721 d_addr = kmap_atomic(d_page);
1722 d_size = class->size - written;
1723 d_off = 0;
1724 }
1725 }
1726
1727 kunmap_atomic(d_addr);
1728 kunmap_atomic(s_addr);
1729 }
1730
1731 /*
1732 * Find alloced object in zspage from index object and
1733 * return handle.
1734 */
1735 static unsigned long find_alloced_obj(struct size_class *class,
1736 struct page *page, int *obj_idx)
1737 {
1738 unsigned long head;
1739 int offset = 0;
1740 int index = *obj_idx;
1741 unsigned long handle = 0;
1742 void *addr = kmap_atomic(page);
1743
1744 offset = get_first_obj_offset(page);
1745 offset += class->size * index;
1746
1747 while (offset < PAGE_SIZE) {
1748 head = obj_to_head(page, addr + offset);
1749 if (head & OBJ_ALLOCATED_TAG) {
1750 handle = head & ~OBJ_ALLOCATED_TAG;
1751 if (trypin_tag(handle))
1752 break;
1753 handle = 0;
1754 }
1755
1756 offset += class->size;
1757 index++;
1758 }
1759
1760 kunmap_atomic(addr);
1761
1762 *obj_idx = index;
1763
1764 return handle;
1765 }
1766
1767 struct zs_compact_control {
1768 /* Source spage for migration which could be a subpage of zspage */
1769 struct page *s_page;
1770 /* Destination page for migration which should be a first page
1771 * of zspage. */
1772 struct page *d_page;
1773 /* Starting object index within @s_page which used for live object
1774 * in the subpage. */
1775 int obj_idx;
1776
1777 unsigned long nr_migrated_obj;
1778 unsigned long nr_freed_pages;
1779 };
1780
1781 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1782 struct zs_compact_control *cc)
1783 {
1784 unsigned long used_obj, free_obj;
1785 unsigned long handle;
1786 struct page *s_page = cc->s_page;
1787 struct page *d_page = cc->d_page;
1788 int obj_idx = cc->obj_idx;
1789 int ret = 0;
1790
1791 while (1) {
1792 handle = find_alloced_obj(class, s_page, &obj_idx);
1793 if (!handle) {
1794 s_page = get_next_page(s_page);
1795 if (!s_page)
1796 break;
1797 obj_idx = 0;
1798 continue;
1799 }
1800
1801 /* Stop if there is no more space */
1802 if (zspage_full(class, get_zspage(d_page))) {
1803 unpin_tag(handle);
1804 ret = -ENOMEM;
1805 break;
1806 }
1807
1808 used_obj = handle_to_obj(handle);
1809 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1810 zs_object_copy(class, free_obj, used_obj);
1811 obj_idx++;
1812 cc->nr_migrated_obj++;
1813 /*
1814 * record_obj updates handle's value to free_obj and it will
1815 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1816 * breaks synchronization using pin_tag(e,g, zs_free) so
1817 * let's keep the lock bit.
1818 */
1819 free_obj |= BIT(HANDLE_PIN_BIT);
1820 record_obj(handle, free_obj);
1821 unpin_tag(handle);
1822 obj_free(class, used_obj);
1823 }
1824
1825 /* Remember last position in this iteration */
1826 cc->s_page = s_page;
1827 cc->obj_idx = obj_idx;
1828
1829 return ret;
1830 }
1831
1832 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1833 {
1834 int i;
1835 struct zspage *zspage;
1836 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1837
1838 if (!source) {
1839 fg[0] = ZS_ALMOST_FULL;
1840 fg[1] = ZS_ALMOST_EMPTY;
1841 }
1842
1843 for (i = 0; i < 2; i++) {
1844 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1845 struct zspage, list);
1846 if (zspage) {
1847 VM_BUG_ON(is_zspage_isolated(zspage));
1848 remove_zspage(class, zspage, fg[i]);
1849 return zspage;
1850 }
1851 }
1852
1853 return zspage;
1854 }
1855
1856 /*
1857 * putback_zspage - add @zspage into right class's fullness list
1858 * @class: destination class
1859 * @zspage: target page
1860 *
1861 * Return @zspage's fullness_group
1862 */
1863 static enum fullness_group putback_zspage(struct size_class *class,
1864 struct zspage *zspage)
1865 {
1866 enum fullness_group fullness;
1867
1868 VM_BUG_ON(is_zspage_isolated(zspage));
1869
1870 fullness = get_fullness_group(class, zspage);
1871 insert_zspage(class, zspage, fullness);
1872 set_zspage_mapping(zspage, class->index, fullness);
1873
1874 return fullness;
1875 }
1876
1877 #ifdef CONFIG_COMPACTION
1878 static struct dentry *zs_mount(struct file_system_type *fs_type,
1879 int flags, const char *dev_name, void *data)
1880 {
1881 static const struct dentry_operations ops = {
1882 .d_dname = simple_dname,
1883 };
1884
1885 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1886 }
1887
1888 static struct file_system_type zsmalloc_fs = {
1889 .name = "zsmalloc",
1890 .mount = zs_mount,
1891 .kill_sb = kill_anon_super,
1892 };
1893
1894 static int zsmalloc_mount(void)
1895 {
1896 int ret = 0;
1897
1898 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1899 if (IS_ERR(zsmalloc_mnt))
1900 ret = PTR_ERR(zsmalloc_mnt);
1901
1902 return ret;
1903 }
1904
1905 static void zsmalloc_unmount(void)
1906 {
1907 kern_unmount(zsmalloc_mnt);
1908 }
1909
1910 static void migrate_lock_init(struct zspage *zspage)
1911 {
1912 rwlock_init(&zspage->lock);
1913 }
1914
1915 static void migrate_read_lock(struct zspage *zspage)
1916 {
1917 read_lock(&zspage->lock);
1918 }
1919
1920 static void migrate_read_unlock(struct zspage *zspage)
1921 {
1922 read_unlock(&zspage->lock);
1923 }
1924
1925 static void migrate_write_lock(struct zspage *zspage)
1926 {
1927 write_lock(&zspage->lock);
1928 }
1929
1930 static void migrate_write_unlock(struct zspage *zspage)
1931 {
1932 write_unlock(&zspage->lock);
1933 }
1934
1935 /* Number of isolated subpage for *page migration* in this zspage */
1936 static void inc_zspage_isolation(struct zspage *zspage)
1937 {
1938 zspage->isolated++;
1939 }
1940
1941 static void dec_zspage_isolation(struct zspage *zspage)
1942 {
1943 zspage->isolated--;
1944 }
1945
1946 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1947 struct page *newpage, struct page *oldpage)
1948 {
1949 struct page *page;
1950 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1951 int idx = 0;
1952
1953 page = get_first_page(zspage);
1954 do {
1955 if (page == oldpage)
1956 pages[idx] = newpage;
1957 else
1958 pages[idx] = page;
1959 idx++;
1960 } while ((page = get_next_page(page)) != NULL);
1961
1962 create_page_chain(class, zspage, pages);
1963 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1964 if (unlikely(PageHugeObject(oldpage)))
1965 newpage->index = oldpage->index;
1966 __SetPageMovable(newpage, page_mapping(oldpage));
1967 }
1968
1969 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1970 {
1971 struct zs_pool *pool;
1972 struct size_class *class;
1973 int class_idx;
1974 enum fullness_group fullness;
1975 struct zspage *zspage;
1976 struct address_space *mapping;
1977
1978 /*
1979 * Page is locked so zspage couldn't be destroyed. For detail, look at
1980 * lock_zspage in free_zspage.
1981 */
1982 VM_BUG_ON_PAGE(!PageMovable(page), page);
1983 VM_BUG_ON_PAGE(PageIsolated(page), page);
1984
1985 zspage = get_zspage(page);
1986
1987 /*
1988 * Without class lock, fullness could be stale while class_idx is okay
1989 * because class_idx is constant unless page is freed so we should get
1990 * fullness again under class lock.
1991 */
1992 get_zspage_mapping(zspage, &class_idx, &fullness);
1993 mapping = page_mapping(page);
1994 pool = mapping->private_data;
1995 class = pool->size_class[class_idx];
1996
1997 spin_lock(&class->lock);
1998 if (get_zspage_inuse(zspage) == 0) {
1999 spin_unlock(&class->lock);
2000 return false;
2001 }
2002
2003 /* zspage is isolated for object migration */
2004 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2005 spin_unlock(&class->lock);
2006 return false;
2007 }
2008
2009 /*
2010 * If this is first time isolation for the zspage, isolate zspage from
2011 * size_class to prevent further object allocation from the zspage.
2012 */
2013 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2014 get_zspage_mapping(zspage, &class_idx, &fullness);
2015 remove_zspage(class, zspage, fullness);
2016 }
2017
2018 inc_zspage_isolation(zspage);
2019 spin_unlock(&class->lock);
2020
2021 return true;
2022 }
2023
2024 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2025 struct page *page, enum migrate_mode mode)
2026 {
2027 struct zs_pool *pool;
2028 struct size_class *class;
2029 int class_idx;
2030 enum fullness_group fullness;
2031 struct zspage *zspage;
2032 struct page *dummy;
2033 void *s_addr, *d_addr, *addr;
2034 int offset, pos;
2035 unsigned long handle, head;
2036 unsigned long old_obj, new_obj;
2037 unsigned int obj_idx;
2038 int ret = -EAGAIN;
2039
2040 VM_BUG_ON_PAGE(!PageMovable(page), page);
2041 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2042
2043 zspage = get_zspage(page);
2044
2045 /* Concurrent compactor cannot migrate any subpage in zspage */
2046 migrate_write_lock(zspage);
2047 get_zspage_mapping(zspage, &class_idx, &fullness);
2048 pool = mapping->private_data;
2049 class = pool->size_class[class_idx];
2050 offset = get_first_obj_offset(page);
2051
2052 spin_lock(&class->lock);
2053 if (!get_zspage_inuse(zspage)) {
2054 ret = -EBUSY;
2055 goto unlock_class;
2056 }
2057
2058 pos = offset;
2059 s_addr = kmap_atomic(page);
2060 while (pos < PAGE_SIZE) {
2061 head = obj_to_head(page, s_addr + pos);
2062 if (head & OBJ_ALLOCATED_TAG) {
2063 handle = head & ~OBJ_ALLOCATED_TAG;
2064 if (!trypin_tag(handle))
2065 goto unpin_objects;
2066 }
2067 pos += class->size;
2068 }
2069
2070 /*
2071 * Here, any user cannot access all objects in the zspage so let's move.
2072 */
2073 d_addr = kmap_atomic(newpage);
2074 memcpy(d_addr, s_addr, PAGE_SIZE);
2075 kunmap_atomic(d_addr);
2076
2077 for (addr = s_addr + offset; addr < s_addr + pos;
2078 addr += class->size) {
2079 head = obj_to_head(page, addr);
2080 if (head & OBJ_ALLOCATED_TAG) {
2081 handle = head & ~OBJ_ALLOCATED_TAG;
2082 if (!testpin_tag(handle))
2083 BUG();
2084
2085 old_obj = handle_to_obj(handle);
2086 obj_to_location(old_obj, &dummy, &obj_idx);
2087 new_obj = (unsigned long)location_to_obj(newpage,
2088 obj_idx);
2089 new_obj |= BIT(HANDLE_PIN_BIT);
2090 record_obj(handle, new_obj);
2091 }
2092 }
2093
2094 replace_sub_page(class, zspage, newpage, page);
2095 get_page(newpage);
2096
2097 dec_zspage_isolation(zspage);
2098
2099 /*
2100 * Page migration is done so let's putback isolated zspage to
2101 * the list if @page is final isolated subpage in the zspage.
2102 */
2103 if (!is_zspage_isolated(zspage))
2104 putback_zspage(class, zspage);
2105
2106 reset_page(page);
2107 put_page(page);
2108 page = newpage;
2109
2110 ret = MIGRATEPAGE_SUCCESS;
2111 unpin_objects:
2112 for (addr = s_addr + offset; addr < s_addr + pos;
2113 addr += class->size) {
2114 head = obj_to_head(page, addr);
2115 if (head & OBJ_ALLOCATED_TAG) {
2116 handle = head & ~OBJ_ALLOCATED_TAG;
2117 if (!testpin_tag(handle))
2118 BUG();
2119 unpin_tag(handle);
2120 }
2121 }
2122 kunmap_atomic(s_addr);
2123 unlock_class:
2124 spin_unlock(&class->lock);
2125 migrate_write_unlock(zspage);
2126
2127 return ret;
2128 }
2129
2130 void zs_page_putback(struct page *page)
2131 {
2132 struct zs_pool *pool;
2133 struct size_class *class;
2134 int class_idx;
2135 enum fullness_group fg;
2136 struct address_space *mapping;
2137 struct zspage *zspage;
2138
2139 VM_BUG_ON_PAGE(!PageMovable(page), page);
2140 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2141
2142 zspage = get_zspage(page);
2143 get_zspage_mapping(zspage, &class_idx, &fg);
2144 mapping = page_mapping(page);
2145 pool = mapping->private_data;
2146 class = pool->size_class[class_idx];
2147
2148 spin_lock(&class->lock);
2149 dec_zspage_isolation(zspage);
2150 if (!is_zspage_isolated(zspage)) {
2151 fg = putback_zspage(class, zspage);
2152 /*
2153 * Due to page_lock, we cannot free zspage immediately
2154 * so let's defer.
2155 */
2156 if (fg == ZS_EMPTY)
2157 schedule_work(&pool->free_work);
2158 }
2159 spin_unlock(&class->lock);
2160 }
2161
2162 const struct address_space_operations zsmalloc_aops = {
2163 .isolate_page = zs_page_isolate,
2164 .migratepage = zs_page_migrate,
2165 .putback_page = zs_page_putback,
2166 };
2167
2168 static int zs_register_migration(struct zs_pool *pool)
2169 {
2170 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2171 if (IS_ERR(pool->inode)) {
2172 pool->inode = NULL;
2173 return 1;
2174 }
2175
2176 pool->inode->i_mapping->private_data = pool;
2177 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2178 return 0;
2179 }
2180
2181 static void zs_unregister_migration(struct zs_pool *pool)
2182 {
2183 flush_work(&pool->free_work);
2184 iput(pool->inode);
2185 }
2186
2187 /*
2188 * Caller should hold page_lock of all pages in the zspage
2189 * In here, we cannot use zspage meta data.
2190 */
2191 static void async_free_zspage(struct work_struct *work)
2192 {
2193 int i;
2194 struct size_class *class;
2195 unsigned int class_idx;
2196 enum fullness_group fullness;
2197 struct zspage *zspage, *tmp;
2198 LIST_HEAD(free_pages);
2199 struct zs_pool *pool = container_of(work, struct zs_pool,
2200 free_work);
2201
2202 for (i = 0; i < zs_size_classes; i++) {
2203 class = pool->size_class[i];
2204 if (class->index != i)
2205 continue;
2206
2207 spin_lock(&class->lock);
2208 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2209 spin_unlock(&class->lock);
2210 }
2211
2212
2213 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2214 list_del(&zspage->list);
2215 lock_zspage(zspage);
2216
2217 get_zspage_mapping(zspage, &class_idx, &fullness);
2218 VM_BUG_ON(fullness != ZS_EMPTY);
2219 class = pool->size_class[class_idx];
2220 spin_lock(&class->lock);
2221 __free_zspage(pool, pool->size_class[class_idx], zspage);
2222 spin_unlock(&class->lock);
2223 }
2224 };
2225
2226 static void kick_deferred_free(struct zs_pool *pool)
2227 {
2228 schedule_work(&pool->free_work);
2229 }
2230
2231 static void init_deferred_free(struct zs_pool *pool)
2232 {
2233 INIT_WORK(&pool->free_work, async_free_zspage);
2234 }
2235
2236 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2237 {
2238 struct page *page = get_first_page(zspage);
2239
2240 do {
2241 WARN_ON(!trylock_page(page));
2242 __SetPageMovable(page, pool->inode->i_mapping);
2243 unlock_page(page);
2244 } while ((page = get_next_page(page)) != NULL);
2245 }
2246 #endif
2247
2248 /*
2249 *
2250 * Based on the number of unused allocated objects calculate
2251 * and return the number of pages that we can free.
2252 */
2253 static unsigned long zs_can_compact(struct size_class *class)
2254 {
2255 unsigned long obj_wasted;
2256 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2257 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2258
2259 if (obj_allocated <= obj_used)
2260 return 0;
2261
2262 obj_wasted = obj_allocated - obj_used;
2263 obj_wasted /= class->objs_per_zspage;
2264
2265 return obj_wasted * class->pages_per_zspage;
2266 }
2267
2268 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2269 {
2270 struct zs_compact_control cc = {
2271 .nr_migrated_obj = 0,
2272 .nr_freed_pages = 0,
2273 };
2274 struct zspage *src_zspage;
2275 struct zspage *dst_zspage = NULL;
2276
2277 spin_lock(&class->lock);
2278 while ((src_zspage = isolate_zspage(class, true))) {
2279
2280 if (!zs_can_compact(class))
2281 break;
2282
2283 cc.obj_idx = 0;
2284 cc.s_page = get_first_page(src_zspage);
2285
2286 while ((dst_zspage = isolate_zspage(class, false))) {
2287 cc.d_page = get_first_page(dst_zspage);
2288 /*
2289 * If there is no more space in dst_page, resched
2290 * and see if anyone had allocated another zspage.
2291 */
2292 if (!migrate_zspage(pool, class, &cc))
2293 break;
2294
2295 putback_zspage(class, dst_zspage);
2296 }
2297
2298 /* Stop if we couldn't find slot */
2299 if (dst_zspage == NULL)
2300 break;
2301
2302 putback_zspage(class, dst_zspage);
2303 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2304 free_zspage(pool, class, src_zspage);
2305 cc.nr_freed_pages += class->pages_per_zspage;
2306 }
2307 spin_unlock(&class->lock);
2308 cond_resched();
2309 spin_lock(&class->lock);
2310 }
2311
2312 if (src_zspage)
2313 putback_zspage(class, src_zspage);
2314
2315 spin_unlock(&class->lock);
2316
2317 pool->stats.pages_compacted += cc.nr_freed_pages;
2318 trace_zs_compact(class->index, cc.nr_migrated_obj, cc.nr_freed_pages);
2319 }
2320
2321 unsigned long zs_compact(struct zs_pool *pool)
2322 {
2323 int i;
2324 struct size_class *class;
2325 unsigned long pages_compacted_before = pool->stats.pages_compacted;
2326
2327 trace_zs_compact_start(pool->name);
2328
2329 for (i = zs_size_classes - 1; i >= 0; i--) {
2330 class = pool->size_class[i];
2331 if (!class)
2332 continue;
2333 if (class->index != i)
2334 continue;
2335 __zs_compact(pool, class);
2336 }
2337
2338 trace_zs_compact_end(pool->name,
2339 pool->stats.pages_compacted - pages_compacted_before);
2340
2341 return pool->stats.pages_compacted;
2342 }
2343 EXPORT_SYMBOL_GPL(zs_compact);
2344
2345 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2346 {
2347 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2348 }
2349 EXPORT_SYMBOL_GPL(zs_pool_stats);
2350
2351 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2352 struct shrink_control *sc)
2353 {
2354 unsigned long pages_freed;
2355 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2356 shrinker);
2357
2358 pages_freed = pool->stats.pages_compacted;
2359 /*
2360 * Compact classes and calculate compaction delta.
2361 * Can run concurrently with a manually triggered
2362 * (by user) compaction.
2363 */
2364 pages_freed = zs_compact(pool) - pages_freed;
2365
2366 return pages_freed ? pages_freed : SHRINK_STOP;
2367 }
2368
2369 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2370 struct shrink_control *sc)
2371 {
2372 int i;
2373 struct size_class *class;
2374 unsigned long pages_to_free = 0;
2375 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2376 shrinker);
2377
2378 for (i = zs_size_classes - 1; i >= 0; i--) {
2379 class = pool->size_class[i];
2380 if (!class)
2381 continue;
2382 if (class->index != i)
2383 continue;
2384
2385 pages_to_free += zs_can_compact(class);
2386 }
2387
2388 return pages_to_free;
2389 }
2390
2391 static void zs_unregister_shrinker(struct zs_pool *pool)
2392 {
2393 if (pool->shrinker_enabled) {
2394 unregister_shrinker(&pool->shrinker);
2395 pool->shrinker_enabled = false;
2396 }
2397 }
2398
2399 static int zs_register_shrinker(struct zs_pool *pool)
2400 {
2401 pool->shrinker.scan_objects = zs_shrinker_scan;
2402 pool->shrinker.count_objects = zs_shrinker_count;
2403 pool->shrinker.batch = 0;
2404 pool->shrinker.seeks = DEFAULT_SEEKS;
2405
2406 return register_shrinker(&pool->shrinker);
2407 }
2408
2409 /**
2410 * zs_create_pool - Creates an allocation pool to work from.
2411 * @name: pool name to be created
2412 *
2413 * This function must be called before anything when using
2414 * the zsmalloc allocator.
2415 *
2416 * On success, a pointer to the newly created pool is returned,
2417 * otherwise NULL.
2418 */
2419 struct zs_pool *zs_create_pool(const char *name)
2420 {
2421 int i;
2422 struct zs_pool *pool;
2423 struct size_class *prev_class = NULL;
2424
2425 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2426 if (!pool)
2427 return NULL;
2428
2429 init_deferred_free(pool);
2430 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2431 GFP_KERNEL);
2432 if (!pool->size_class) {
2433 kfree(pool);
2434 return NULL;
2435 }
2436
2437 pool->name = kstrdup(name, GFP_KERNEL);
2438 if (!pool->name)
2439 goto err;
2440
2441 if (create_cache(pool))
2442 goto err;
2443
2444 /*
2445 * Iterate reversly, because, size of size_class that we want to use
2446 * for merging should be larger or equal to current size.
2447 */
2448 for (i = zs_size_classes - 1; i >= 0; i--) {
2449 int size;
2450 int pages_per_zspage;
2451 int objs_per_zspage;
2452 struct size_class *class;
2453 int fullness = 0;
2454
2455 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2456 if (size > ZS_MAX_ALLOC_SIZE)
2457 size = ZS_MAX_ALLOC_SIZE;
2458 pages_per_zspage = get_pages_per_zspage(size);
2459 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2460
2461 /*
2462 * size_class is used for normal zsmalloc operation such
2463 * as alloc/free for that size. Although it is natural that we
2464 * have one size_class for each size, there is a chance that we
2465 * can get more memory utilization if we use one size_class for
2466 * many different sizes whose size_class have same
2467 * characteristics. So, we makes size_class point to
2468 * previous size_class if possible.
2469 */
2470 if (prev_class) {
2471 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2472 pool->size_class[i] = prev_class;
2473 continue;
2474 }
2475 }
2476
2477 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2478 if (!class)
2479 goto err;
2480
2481 class->size = size;
2482 class->index = i;
2483 class->pages_per_zspage = pages_per_zspage;
2484 class->objs_per_zspage = objs_per_zspage;
2485 spin_lock_init(&class->lock);
2486 pool->size_class[i] = class;
2487 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2488 fullness++)
2489 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2490
2491 prev_class = class;
2492 }
2493
2494 /* debug only, don't abort if it fails */
2495 zs_pool_stat_create(pool, name);
2496
2497 if (zs_register_migration(pool))
2498 goto err;
2499
2500 /*
2501 * Not critical, we still can use the pool
2502 * and user can trigger compaction manually.
2503 */
2504 if (zs_register_shrinker(pool) == 0)
2505 pool->shrinker_enabled = true;
2506 return pool;
2507
2508 err:
2509 zs_destroy_pool(pool);
2510 return NULL;
2511 }
2512 EXPORT_SYMBOL_GPL(zs_create_pool);
2513
2514 void zs_destroy_pool(struct zs_pool *pool)
2515 {
2516 int i;
2517
2518 zs_unregister_shrinker(pool);
2519 zs_unregister_migration(pool);
2520 zs_pool_stat_destroy(pool);
2521
2522 for (i = 0; i < zs_size_classes; i++) {
2523 int fg;
2524 struct size_class *class = pool->size_class[i];
2525
2526 if (!class)
2527 continue;
2528
2529 if (class->index != i)
2530 continue;
2531
2532 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2533 if (!list_empty(&class->fullness_list[fg])) {
2534 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2535 class->size, fg);
2536 }
2537 }
2538 kfree(class);
2539 }
2540
2541 destroy_cache(pool);
2542 kfree(pool->size_class);
2543 kfree(pool->name);
2544 kfree(pool);
2545 }
2546 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2547
2548 static int __init zs_init(void)
2549 {
2550 int ret;
2551
2552 ret = zsmalloc_mount();
2553 if (ret)
2554 goto out;
2555
2556 ret = zs_register_cpu_notifier();
2557
2558 if (ret)
2559 goto notifier_fail;
2560
2561 init_zs_size_classes();
2562
2563 #ifdef CONFIG_ZPOOL
2564 zpool_register_driver(&zs_zpool_driver);
2565 #endif
2566
2567 zs_stat_init();
2568
2569 return 0;
2570
2571 notifier_fail:
2572 zs_unregister_cpu_notifier();
2573 zsmalloc_unmount();
2574 out:
2575 return ret;
2576 }
2577
2578 static void __exit zs_exit(void)
2579 {
2580 #ifdef CONFIG_ZPOOL
2581 zpool_unregister_driver(&zs_zpool_driver);
2582 #endif
2583 zsmalloc_unmount();
2584 zs_unregister_cpu_notifier();
2585
2586 zs_stat_exit();
2587 }
2588
2589 module_init(zs_init);
2590 module_exit(zs_exit);
2591
2592 MODULE_LICENSE("Dual BSD/GPL");
2593 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.084457 seconds and 5 git commands to generate.