Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
163
164 /*
165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166 * semaphore.
167 *
168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
171 * dev_base_head list, and hold dev_base_lock for writing when they do the
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 else
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 struct packet_offload *elem;
478
479 spin_lock(&offload_lock);
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
485 spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
507 spin_lock(&offload_lock);
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 spin_unlock(&offload_lock);
519 }
520
521 /**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 __dev_remove_offload(po);
536
537 synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543 Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
568 strlcpy(s[i].name, name, IFNAMSIZ);
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 !strcmp(dev->name, s[i].name)) {
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
628 if (__dev_get_by_name(&init_net, name))
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635 }
636
637 /*
638 * Saves at boot time configured settings for any netdevice.
639 */
640 int __init netdev_boot_setup(char *str)
641 {
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668 Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
685 return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716 * __dev_get_by_name - find a device by its name
717 * @net: the applicable net namespace
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
731
732 hlist_for_each_entry(dev, head, name_hlist)
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
735
736 return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
757 hlist_for_each_entry_rcu(dev, head, name_hlist)
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766 * dev_get_by_name - find a device by its name
767 * @net: the applicable net namespace
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 struct net_device *dev;
780
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
783 if (dev)
784 dev_hold(dev);
785 rcu_read_unlock();
786 return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791 * __dev_get_by_index - find a device by its ifindex
792 * @net: the applicable net namespace
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
806
807 hlist_for_each_entry(dev, head, index_hlist)
808 if (dev->ifindex == ifindex)
809 return dev;
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
831 hlist_for_each_entry_rcu(dev, head, index_hlist)
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841 * dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 struct net_device *dev;
854
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
857 if (dev)
858 dev_hold(dev);
859 rcu_read_unlock();
860 return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 struct net_device *dev;
877 unsigned int seq;
878
879 retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896 }
897
898 /**
899 * dev_getbyhwaddr_rcu - find a device by its hardware address
900 * @net: the applicable net namespace
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
907 * The returned device has not had its ref count increased
908 * and the caller must therefore be careful about locking
909 *
910 */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
914 {
915 struct net_device *dev;
916
917 for_each_netdev_rcu(net, dev)
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
920 return dev;
921
922 return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 struct net_device *dev;
929
930 ASSERT_RTNL();
931 for_each_netdev(net, dev)
932 if (dev->type == type)
933 return dev;
934
935 return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 struct net_device *dev, *ret = NULL;
942
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956 * __dev_get_by_flags - find any device with given flags
957 * @net: the applicable net namespace
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
962 * is not found or a pointer to the device. Must be called inside
963 * rtnl_lock(), and result refcount is unchanged.
964 */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
968 {
969 struct net_device *dev, *ret;
970
971 ASSERT_RTNL();
972
973 ret = NULL;
974 for_each_netdev(net, dev) {
975 if (((dev->flags ^ if_flags) & mask) == 0) {
976 ret = dev;
977 break;
978 }
979 }
980 return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
991 */
992 bool dev_valid_name(const char *name)
993 {
994 if (*name == '\0')
995 return false;
996 if (strlen(name) >= IFNAMSIZ)
997 return false;
998 if (!strcmp(name, ".") || !strcmp(name, ".."))
999 return false;
1000
1001 while (*name) {
1002 if (*name == '/' || *name == ':' || isspace(*name))
1003 return false;
1004 name++;
1005 }
1006 return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1013 * @name: name format string
1014 * @buf: scratch buffer and result name string
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1023 */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 int i = 0;
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
1030 unsigned long *inuse;
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 if (!inuse)
1046 return -ENOMEM;
1047
1048 for_each_netdev(net, d) {
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
1055 snprintf(buf, IFNAMSIZ, name, i);
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
1066 if (!__dev_get_by_name(net, buf))
1067 return i;
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074 }
1075
1076 /**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
1108 {
1109 char buf[IFNAMSIZ];
1110 int ret;
1111
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121 {
1122 BUG_ON(!net);
1123
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1127 if (strchr(name, '%'))
1128 return dev_alloc_name_ns(net, dev, name);
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134 return 0;
1135 }
1136
1137 /**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 unsigned char old_assign_type;
1148 char oldname[IFNAMSIZ];
1149 int err = 0;
1150 int ret;
1151 struct net *net;
1152
1153 ASSERT_RTNL();
1154 BUG_ON(!dev_net(dev));
1155
1156 net = dev_net(dev);
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
1160 write_seqcount_begin(&devnet_rename_seq);
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 write_seqcount_end(&devnet_rename_seq);
1164 return 0;
1165 }
1166
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169 err = dev_get_valid_name(net, dev, newname);
1170 if (err < 0) {
1171 write_seqcount_end(&devnet_rename_seq);
1172 return err;
1173 }
1174
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
1185 dev->name_assign_type = old_assign_type;
1186 write_seqcount_end(&devnet_rename_seq);
1187 return ret;
1188 }
1189
1190 write_seqcount_end(&devnet_rename_seq);
1191
1192 netdev_adjacent_rename_links(dev, oldname);
1193
1194 write_lock_bh(&dev_base_lock);
1195 hlist_del_rcu(&dev->name_hlist);
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 write_unlock_bh(&dev_base_lock);
1203
1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
1210 err = ret;
1211 write_seqcount_begin(&devnet_rename_seq);
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 memcpy(oldname, newname, IFNAMSIZ);
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
1216 goto rollback;
1217 } else {
1218 pr_err("%s: name change rollback failed: %d\n",
1219 dev->name, ret);
1220 }
1221 }
1222
1223 return err;
1224 }
1225
1226 /**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
1230 * @len: limit of bytes to copy from info
1231 *
1232 * Set ifalias for a device,
1233 */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 char *new_ifalias;
1237
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
1243 if (!len) {
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
1246 return 0;
1247 }
1248
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
1251 return -ENOMEM;
1252 dev->ifalias = new_ifalias;
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256 }
1257
1258
1259 /**
1260 * netdev_features_change - device changes features
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 if (dev->flags & IFF_UP) {
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 const struct net_device_ops *ops = dev->netdev_ops;
1313 int ret;
1314
1315 ASSERT_RTNL();
1316
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
1324 netpoll_poll_disable(dev);
1325
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1331 set_bit(__LINK_STATE_START, &dev->state);
1332
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
1335
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1338
1339 netpoll_poll_enable(dev);
1340
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1344 dev->flags |= IFF_UP;
1345 dev_set_rx_mode(dev);
1346 dev_activate(dev);
1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1348 }
1349
1350 return ret;
1351 }
1352
1353 /**
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1356 *
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1364 */
1365 int dev_open(struct net_device *dev)
1366 {
1367 int ret;
1368
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 struct net_device *dev;
1386
1387 ASSERT_RTNL();
1388 might_sleep();
1389
1390 list_for_each_entry(dev, head, close_list) {
1391 /* Temporarily disable netpoll until the interface is down */
1392 netpoll_poll_disable(dev);
1393
1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
1404 smp_mb__after_atomic(); /* Commit netif_running(). */
1405 }
1406
1407 dev_deactivate_many(head);
1408
1409 list_for_each_entry(dev, head, close_list) {
1410 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
1422 dev->flags &= ~IFF_UP;
1423 netpoll_poll_enable(dev);
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 int retval;
1432 LIST_HEAD(single);
1433
1434 list_add(&dev->close_list, &single);
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
1437
1438 return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 struct net_device *dev, *tmp;
1444
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
1447 if (!(dev->flags & IFF_UP))
1448 list_del_init(&dev->close_list);
1449
1450 __dev_close_many(head);
1451
1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 if (unlink)
1456 list_del_init(&dev->close_list);
1457 }
1458
1459 return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472 int dev_close(struct net_device *dev)
1473 {
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1476
1477 list_add(&dev->close_list, &single);
1478 dev_close_many(&single, true);
1479 list_del(&single);
1480 }
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
1498
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
1501
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512 {
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
1531 * to the new notifier to allow device to have a race free
1532 * view of the network device list.
1533 */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 struct net_device *dev;
1538 struct net_device *last;
1539 struct net *net;
1540 int err;
1541
1542 rtnl_lock();
1543 err = raw_notifier_chain_register(&netdev_chain, nb);
1544 if (err)
1545 goto unlock;
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1557
1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 }
1560 }
1561
1562 unlock:
1563 rtnl_unlock();
1564 return err;
1565
1566 rollback:
1567 last = dev;
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
1571 goto outroll;
1572
1573 if (dev->flags & IFF_UP) {
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 }
1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 }
1580 }
1581
1582 outroll:
1583 raw_notifier_chain_unregister(&netdev_chain, nb);
1584 goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1600 */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 struct net_device *dev;
1605 struct net *net;
1606 int err;
1607
1608 rtnl_lock();
1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 }
1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 }
1622 }
1623 unlock:
1624 rtnl_unlock();
1625 return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
1642 {
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
1651 * @dev: net_device pointer passed unmodified to notifier function
1652 *
1653 * Call all network notifier blocks. Parameters and return value
1654 * are as for raw_notifier_call_chain().
1655 */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670 static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676 static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686 static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692 static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700 * If net_disable_timestamp() is called from irq context, defer the
1701 * static_key_slow_dec() calls.
1702 */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
1713 static_key_slow_dec(&netstamp_needed);
1714 return;
1715 }
1716 #endif
1717 static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728 #endif
1729 static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 skb->tstamp.tv64 = 0;
1736 if (static_key_false(&netstamp_needed))
1737 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB) \
1741 if (static_key_false(&netstamp_needed)) { \
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
1777 skb->priority = 0;
1778 skb->protocol = eth_type_trans(skb, dev);
1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781 return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
1793 * NET_RX_DROP (packet was dropped, but freed)
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812 {
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
1821 struct net_device *orig_dev,
1822 __be16 type,
1823 struct list_head *ptype_list)
1824 {
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
1831 deliver_skb(skb, pt_prev, orig_dev);
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 if (!ptype->af_packet_priv || !skb->sk)
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848 }
1849
1850 /*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 struct packet_type *ptype;
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
1860 struct list_head *ptype_list = &ptype_all;
1861
1862 rcu_read_lock();
1863 again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
1870
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1876
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
1881
1882 net_timestamp_set(skb2);
1883
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1896 }
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1906 }
1907 out_unlock:
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
1959 {
1960 struct xps_map *map = NULL;
1961 int pos;
1962
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
1975 break;
1976 }
1977 }
1978
1979 return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 struct xps_dev_maps *dev_maps;
1985 int cpu, i;
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
2000 active = true;
2001 }
2002
2003 if (!active) {
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
2012 out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018 {
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
2053 {
2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 struct xps_map *map, *new_map;
2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
2073 return -ENOMEM;
2074 }
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
2089 for_each_possible_cpu(cpu) {
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
2105 #endif
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 }
2111
2112 }
2113
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116 /* Cleanup old maps */
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
2124
2125 kfree_rcu(dev_maps, rcu);
2126 }
2127
2128 dev_maps = new_dev_maps;
2129 active = true;
2130
2131 out_no_new_maps:
2132 /* update Tx queue numa node */
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155 out_no_maps:
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159 error:
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
2169 mutex_unlock(&xps_map_mutex);
2170
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 int rc;
2184
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
2187
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
2190 ASSERT_RTNL();
2191
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
2194 if (rc)
2195 return rc;
2196
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
2200 if (txq < dev->real_num_tx_queues) {
2201 qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 }
2206 }
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
2221 * negative error code. If called before registration, it always
2222 * succeeds.
2223 */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 int rc;
2227
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 struct softnet_data *sd;
2262 unsigned long flags;
2263
2264 local_irq_save(flags);
2265 sd = this_cpu_ptr(&softnet_data);
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 unsigned long flags;
2339
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
2345 }
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 if (in_irq() || irqs_disabled())
2358 __dev_kfree_skb_irq(skb, reason);
2359 else
2360 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
2375 netif_tx_stop_all_queues(dev);
2376 }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
2390 netif_tx_wake_all_queues(dev);
2391 __netdev_watchdog_up(dev);
2392 }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402 {
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 static const netdev_features_t null_features;
2427 struct net_device *dev = skb->dev;
2428 const char *name = "";
2429
2430 if (!net_ratelimit())
2431 return;
2432
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
2441 name, dev ? &dev->features : &null_features,
2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 __wsum csum;
2454 int ret = 0, offset;
2455
2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
2462 }
2463
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
2473 offset = skb_checksum_start_offset(skb);
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520 {
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585 ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622 need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625 cant_help:
2626 return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 __be16 type = skb->protocol;
2633
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
2645 return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655 {
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
2664 __skb_pull(skb, vlan_depth);
2665
2666 rcu_read_lock();
2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 segs = ptype->callbacks.gso_segment(skb, features);
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
2675 __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677 return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683 */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704 */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707 {
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
2715 return ERR_PTR(err);
2716 }
2717
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 if (net_ratelimit()) {
2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 dump_stack();
2751 }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 int i;
2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
2769 return 1;
2770 }
2771 }
2772
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
2775
2776 if (!pdev)
2777 return 0;
2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
2785 #endif
2786 return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796 {
2797 if (eth_p_mpls(type))
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806 {
2807 return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 netdev_features_t features)
2813 {
2814 int tmp;
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
2819
2820 if (skb->ip_summed != CHECKSUM_NONE &&
2821 !can_checksum_protocol(features, type)) {
2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 } else if (illegal_highdma(skb->dev, skb)) {
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833 {
2834 return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841 {
2842 return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848 {
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 struct net_device *dev = skb->dev;
2880 netdev_features_t features = dev->features;
2881
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
2884
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
2897
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
2901 else
2902 features &= dflt_features_check(skb, dev, features);
2903
2904 return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 struct netdev_queue *txq, bool more)
2910 {
2911 unsigned int len;
2912 int rc;
2913
2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 dev_queue_xmit_nit(skb, dev);
2916
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
2919 rc = netdev_start_xmit(skb, dev, txq, more);
2920 trace_net_dev_xmit(skb, rc, dev, len);
2921
2922 return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
2927 {
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
2930
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
2933
2934 skb->next = NULL;
2935 rc = xmit_one(skb, dev, txq, next != NULL);
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
2940
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
2945 }
2946 }
2947
2948 out:
2949 *ret = rc;
2950 return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
2955 {
2956 if (skb_vlan_tag_present(skb) &&
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
2959 return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 netdev_features_t features;
2965
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
2970
2971 if (netif_needs_gso(skb, features)) {
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
2975 if (IS_ERR(segs)) {
2976 goto out_kfree_skb;
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
2980 }
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
2985
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
2997 if (!(features & NETIF_F_CSUM_MASK) &&
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
3000 }
3001 }
3002
3003 return skb;
3004
3005 out_kfree_skb:
3006 kfree_skb(skb);
3007 out_null:
3008 atomic_long_inc(&dev->tx_dropped);
3009 return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 struct sk_buff *next, *head = NULL, *tail;
3015
3016 for (; skb != NULL; skb = next) {
3017 next = skb->next;
3018 skb->next = NULL;
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
3023 skb = validate_xmit_skb(skb, dev);
3024 if (!skb)
3025 continue;
3026
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
3035 }
3036 return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
3049 unsigned int hdr_len;
3050 u16 gso_segs = shinfo->gso_segs;
3051
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066 }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072 {
3073 spinlock_t *root_lock = qdisc_lock(q);
3074 struct sk_buff *to_free = NULL;
3075 bool contended;
3076 int rc;
3077
3078 qdisc_calculate_pkt_len(skb, q);
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
3082 * This permits qdisc->running owner to get the lock more
3083 * often and dequeue packets faster.
3084 */
3085 contended = qdisc_is_running(q);
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 __qdisc_drop(skb, &to_free);
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 qdisc_run_begin(q)) {
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
3100
3101 qdisc_bstats_update(q, skb);
3102
3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
3108 __qdisc_run(q);
3109 } else
3110 qdisc_run_end(q);
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
3122 }
3123 spin_unlock(root_lock);
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
3128 return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136 if (!skb->priority && skb->sk && map) {
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152 * dev_loopback_xmit - loop back @skb
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
3155 * @skb: buffer to transmit
3156 */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
3193 kfree_skb(skb);
3194 return NULL;
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
3198 consume_skb(skb);
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238 #else
3239 return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
3255 sk_fullsock(sk) &&
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268 {
3269 int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295 * __dev_queue_xmit - transmit a buffer
3296 * @skb: buffer to transmit
3297 * @accel_priv: private data used for L2 forwarding offload
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322 struct net_device *dev = skb->dev;
3323 struct netdev_queue *txq;
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
3327 skb_reset_mac_header(skb);
3328
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
3334 */
3335 rcu_read_lock_bh();
3336
3337 skb_update_prio(skb);
3338
3339 qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348 # endif
3349 #endif
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
3358 txq = netdev_pick_tx(dev, skb, accel_priv);
3359 q = rcu_dereference_bh(txq->qdisc);
3360
3361 trace_net_dev_queue(skb);
3362 if (q->enqueue) {
3363 rc = __dev_xmit_skb(skb, q, dev, txq);
3364 goto out;
3365 }
3366
3367 /* The device has no queue. Common case for software devices:
3368 loopback, all the sorts of tunnels...
3369
3370 Really, it is unlikely that netif_tx_lock protection is necessary
3371 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3372 counters.)
3373 However, it is possible, that they rely on protection
3374 made by us here.
3375
3376 Check this and shot the lock. It is not prone from deadlocks.
3377 Either shot noqueue qdisc, it is even simpler 8)
3378 */
3379 if (dev->flags & IFF_UP) {
3380 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
3382 if (txq->xmit_lock_owner != cpu) {
3383 if (unlikely(__this_cpu_read(xmit_recursion) >
3384 XMIT_RECURSION_LIMIT))
3385 goto recursion_alert;
3386
3387 skb = validate_xmit_skb(skb, dev);
3388 if (!skb)
3389 goto out;
3390
3391 HARD_TX_LOCK(dev, txq, cpu);
3392
3393 if (!netif_xmit_stopped(txq)) {
3394 __this_cpu_inc(xmit_recursion);
3395 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3396 __this_cpu_dec(xmit_recursion);
3397 if (dev_xmit_complete(rc)) {
3398 HARD_TX_UNLOCK(dev, txq);
3399 goto out;
3400 }
3401 }
3402 HARD_TX_UNLOCK(dev, txq);
3403 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404 dev->name);
3405 } else {
3406 /* Recursion is detected! It is possible,
3407 * unfortunately
3408 */
3409 recursion_alert:
3410 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 dev->name);
3412 }
3413 }
3414
3415 rc = -ENETDOWN;
3416 rcu_read_unlock_bh();
3417
3418 atomic_long_inc(&dev->tx_dropped);
3419 kfree_skb_list(skb);
3420 return rc;
3421 out:
3422 rcu_read_unlock_bh();
3423 return rc;
3424 }
3425
3426 int dev_queue_xmit(struct sk_buff *skb)
3427 {
3428 return __dev_queue_xmit(skb, NULL);
3429 }
3430 EXPORT_SYMBOL(dev_queue_xmit);
3431
3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433 {
3434 return __dev_queue_xmit(skb, accel_priv);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
3438
3439 /*=======================================================================
3440 Receiver routines
3441 =======================================================================*/
3442
3443 int netdev_max_backlog __read_mostly = 1000;
3444 EXPORT_SYMBOL(netdev_max_backlog);
3445
3446 int netdev_tstamp_prequeue __read_mostly = 1;
3447 int netdev_budget __read_mostly = 300;
3448 int weight_p __read_mostly = 64; /* old backlog weight */
3449
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3453 {
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457
3458 #ifdef CONFIG_RPS
3459
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468
3469 static struct rps_dev_flow *
3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471 struct rps_dev_flow *rflow, u16 next_cpu)
3472 {
3473 if (next_cpu < nr_cpu_ids) {
3474 #ifdef CONFIG_RFS_ACCEL
3475 struct netdev_rx_queue *rxqueue;
3476 struct rps_dev_flow_table *flow_table;
3477 struct rps_dev_flow *old_rflow;
3478 u32 flow_id;
3479 u16 rxq_index;
3480 int rc;
3481
3482 /* Should we steer this flow to a different hardware queue? */
3483 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484 !(dev->features & NETIF_F_NTUPLE))
3485 goto out;
3486 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487 if (rxq_index == skb_get_rx_queue(skb))
3488 goto out;
3489
3490 rxqueue = dev->_rx + rxq_index;
3491 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492 if (!flow_table)
3493 goto out;
3494 flow_id = skb_get_hash(skb) & flow_table->mask;
3495 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496 rxq_index, flow_id);
3497 if (rc < 0)
3498 goto out;
3499 old_rflow = rflow;
3500 rflow = &flow_table->flows[flow_id];
3501 rflow->filter = rc;
3502 if (old_rflow->filter == rflow->filter)
3503 old_rflow->filter = RPS_NO_FILTER;
3504 out:
3505 #endif
3506 rflow->last_qtail =
3507 per_cpu(softnet_data, next_cpu).input_queue_head;
3508 }
3509
3510 rflow->cpu = next_cpu;
3511 return rflow;
3512 }
3513
3514 /*
3515 * get_rps_cpu is called from netif_receive_skb and returns the target
3516 * CPU from the RPS map of the receiving queue for a given skb.
3517 * rcu_read_lock must be held on entry.
3518 */
3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520 struct rps_dev_flow **rflowp)
3521 {
3522 const struct rps_sock_flow_table *sock_flow_table;
3523 struct netdev_rx_queue *rxqueue = dev->_rx;
3524 struct rps_dev_flow_table *flow_table;
3525 struct rps_map *map;
3526 int cpu = -1;
3527 u32 tcpu;
3528 u32 hash;
3529
3530 if (skb_rx_queue_recorded(skb)) {
3531 u16 index = skb_get_rx_queue(skb);
3532
3533 if (unlikely(index >= dev->real_num_rx_queues)) {
3534 WARN_ONCE(dev->real_num_rx_queues > 1,
3535 "%s received packet on queue %u, but number "
3536 "of RX queues is %u\n",
3537 dev->name, index, dev->real_num_rx_queues);
3538 goto done;
3539 }
3540 rxqueue += index;
3541 }
3542
3543 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3546 map = rcu_dereference(rxqueue->rps_map);
3547 if (!flow_table && !map)
3548 goto done;
3549
3550 skb_reset_network_header(skb);
3551 hash = skb_get_hash(skb);
3552 if (!hash)
3553 goto done;
3554
3555 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556 if (flow_table && sock_flow_table) {
3557 struct rps_dev_flow *rflow;
3558 u32 next_cpu;
3559 u32 ident;
3560
3561 /* First check into global flow table if there is a match */
3562 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563 if ((ident ^ hash) & ~rps_cpu_mask)
3564 goto try_rps;
3565
3566 next_cpu = ident & rps_cpu_mask;
3567
3568 /* OK, now we know there is a match,
3569 * we can look at the local (per receive queue) flow table
3570 */
3571 rflow = &flow_table->flows[hash & flow_table->mask];
3572 tcpu = rflow->cpu;
3573
3574 /*
3575 * If the desired CPU (where last recvmsg was done) is
3576 * different from current CPU (one in the rx-queue flow
3577 * table entry), switch if one of the following holds:
3578 * - Current CPU is unset (>= nr_cpu_ids).
3579 * - Current CPU is offline.
3580 * - The current CPU's queue tail has advanced beyond the
3581 * last packet that was enqueued using this table entry.
3582 * This guarantees that all previous packets for the flow
3583 * have been dequeued, thus preserving in order delivery.
3584 */
3585 if (unlikely(tcpu != next_cpu) &&
3586 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3587 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3588 rflow->last_qtail)) >= 0)) {
3589 tcpu = next_cpu;
3590 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3591 }
3592
3593 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3594 *rflowp = rflow;
3595 cpu = tcpu;
3596 goto done;
3597 }
3598 }
3599
3600 try_rps:
3601
3602 if (map) {
3603 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3604 if (cpu_online(tcpu)) {
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
3610 done:
3611 return cpu;
3612 }
3613
3614 #ifdef CONFIG_RFS_ACCEL
3615
3616 /**
3617 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618 * @dev: Device on which the filter was set
3619 * @rxq_index: RX queue index
3620 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622 *
3623 * Drivers that implement ndo_rx_flow_steer() should periodically call
3624 * this function for each installed filter and remove the filters for
3625 * which it returns %true.
3626 */
3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628 u32 flow_id, u16 filter_id)
3629 {
3630 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631 struct rps_dev_flow_table *flow_table;
3632 struct rps_dev_flow *rflow;
3633 bool expire = true;
3634 unsigned int cpu;
3635
3636 rcu_read_lock();
3637 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 if (flow_table && flow_id <= flow_table->mask) {
3639 rflow = &flow_table->flows[flow_id];
3640 cpu = ACCESS_ONCE(rflow->cpu);
3641 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3642 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643 rflow->last_qtail) <
3644 (int)(10 * flow_table->mask)))
3645 expire = false;
3646 }
3647 rcu_read_unlock();
3648 return expire;
3649 }
3650 EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652 #endif /* CONFIG_RFS_ACCEL */
3653
3654 /* Called from hardirq (IPI) context */
3655 static void rps_trigger_softirq(void *data)
3656 {
3657 struct softnet_data *sd = data;
3658
3659 ____napi_schedule(sd, &sd->backlog);
3660 sd->received_rps++;
3661 }
3662
3663 #endif /* CONFIG_RPS */
3664
3665 /*
3666 * Check if this softnet_data structure is another cpu one
3667 * If yes, queue it to our IPI list and return 1
3668 * If no, return 0
3669 */
3670 static int rps_ipi_queued(struct softnet_data *sd)
3671 {
3672 #ifdef CONFIG_RPS
3673 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3674
3675 if (sd != mysd) {
3676 sd->rps_ipi_next = mysd->rps_ipi_list;
3677 mysd->rps_ipi_list = sd;
3678
3679 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680 return 1;
3681 }
3682 #endif /* CONFIG_RPS */
3683 return 0;
3684 }
3685
3686 #ifdef CONFIG_NET_FLOW_LIMIT
3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688 #endif
3689
3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691 {
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693 struct sd_flow_limit *fl;
3694 struct softnet_data *sd;
3695 unsigned int old_flow, new_flow;
3696
3697 if (qlen < (netdev_max_backlog >> 1))
3698 return false;
3699
3700 sd = this_cpu_ptr(&softnet_data);
3701
3702 rcu_read_lock();
3703 fl = rcu_dereference(sd->flow_limit);
3704 if (fl) {
3705 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3706 old_flow = fl->history[fl->history_head];
3707 fl->history[fl->history_head] = new_flow;
3708
3709 fl->history_head++;
3710 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712 if (likely(fl->buckets[old_flow]))
3713 fl->buckets[old_flow]--;
3714
3715 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716 fl->count++;
3717 rcu_read_unlock();
3718 return true;
3719 }
3720 }
3721 rcu_read_unlock();
3722 #endif
3723 return false;
3724 }
3725
3726 /*
3727 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728 * queue (may be a remote CPU queue).
3729 */
3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731 unsigned int *qtail)
3732 {
3733 struct softnet_data *sd;
3734 unsigned long flags;
3735 unsigned int qlen;
3736
3737 sd = &per_cpu(softnet_data, cpu);
3738
3739 local_irq_save(flags);
3740
3741 rps_lock(sd);
3742 if (!netif_running(skb->dev))
3743 goto drop;
3744 qlen = skb_queue_len(&sd->input_pkt_queue);
3745 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3746 if (qlen) {
3747 enqueue:
3748 __skb_queue_tail(&sd->input_pkt_queue, skb);
3749 input_queue_tail_incr_save(sd, qtail);
3750 rps_unlock(sd);
3751 local_irq_restore(flags);
3752 return NET_RX_SUCCESS;
3753 }
3754
3755 /* Schedule NAPI for backlog device
3756 * We can use non atomic operation since we own the queue lock
3757 */
3758 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3759 if (!rps_ipi_queued(sd))
3760 ____napi_schedule(sd, &sd->backlog);
3761 }
3762 goto enqueue;
3763 }
3764
3765 drop:
3766 sd->dropped++;
3767 rps_unlock(sd);
3768
3769 local_irq_restore(flags);
3770
3771 atomic_long_inc(&skb->dev->rx_dropped);
3772 kfree_skb(skb);
3773 return NET_RX_DROP;
3774 }
3775
3776 static int netif_rx_internal(struct sk_buff *skb)
3777 {
3778 int ret;
3779
3780 net_timestamp_check(netdev_tstamp_prequeue, skb);
3781
3782 trace_netif_rx(skb);
3783 #ifdef CONFIG_RPS
3784 if (static_key_false(&rps_needed)) {
3785 struct rps_dev_flow voidflow, *rflow = &voidflow;
3786 int cpu;
3787
3788 preempt_disable();
3789 rcu_read_lock();
3790
3791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3792 if (cpu < 0)
3793 cpu = smp_processor_id();
3794
3795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
3797 rcu_read_unlock();
3798 preempt_enable();
3799 } else
3800 #endif
3801 {
3802 unsigned int qtail;
3803 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804 put_cpu();
3805 }
3806 return ret;
3807 }
3808
3809 /**
3810 * netif_rx - post buffer to the network code
3811 * @skb: buffer to post
3812 *
3813 * This function receives a packet from a device driver and queues it for
3814 * the upper (protocol) levels to process. It always succeeds. The buffer
3815 * may be dropped during processing for congestion control or by the
3816 * protocol layers.
3817 *
3818 * return values:
3819 * NET_RX_SUCCESS (no congestion)
3820 * NET_RX_DROP (packet was dropped)
3821 *
3822 */
3823
3824 int netif_rx(struct sk_buff *skb)
3825 {
3826 trace_netif_rx_entry(skb);
3827
3828 return netif_rx_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_rx);
3831
3832 int netif_rx_ni(struct sk_buff *skb)
3833 {
3834 int err;
3835
3836 trace_netif_rx_ni_entry(skb);
3837
3838 preempt_disable();
3839 err = netif_rx_internal(skb);
3840 if (local_softirq_pending())
3841 do_softirq();
3842 preempt_enable();
3843
3844 return err;
3845 }
3846 EXPORT_SYMBOL(netif_rx_ni);
3847
3848 static __latent_entropy void net_tx_action(struct softirq_action *h)
3849 {
3850 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3851
3852 if (sd->completion_queue) {
3853 struct sk_buff *clist;
3854
3855 local_irq_disable();
3856 clist = sd->completion_queue;
3857 sd->completion_queue = NULL;
3858 local_irq_enable();
3859
3860 while (clist) {
3861 struct sk_buff *skb = clist;
3862 clist = clist->next;
3863
3864 WARN_ON(atomic_read(&skb->users));
3865 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866 trace_consume_skb(skb);
3867 else
3868 trace_kfree_skb(skb, net_tx_action);
3869
3870 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871 __kfree_skb(skb);
3872 else
3873 __kfree_skb_defer(skb);
3874 }
3875
3876 __kfree_skb_flush();
3877 }
3878
3879 if (sd->output_queue) {
3880 struct Qdisc *head;
3881
3882 local_irq_disable();
3883 head = sd->output_queue;
3884 sd->output_queue = NULL;
3885 sd->output_queue_tailp = &sd->output_queue;
3886 local_irq_enable();
3887
3888 while (head) {
3889 struct Qdisc *q = head;
3890 spinlock_t *root_lock;
3891
3892 head = head->next_sched;
3893
3894 root_lock = qdisc_lock(q);
3895 spin_lock(root_lock);
3896 /* We need to make sure head->next_sched is read
3897 * before clearing __QDISC_STATE_SCHED
3898 */
3899 smp_mb__before_atomic();
3900 clear_bit(__QDISC_STATE_SCHED, &q->state);
3901 qdisc_run(q);
3902 spin_unlock(root_lock);
3903 }
3904 }
3905 }
3906
3907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3908 /* This hook is defined here for ATM LANE */
3909 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910 unsigned char *addr) __read_mostly;
3911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3912 #endif
3913
3914 static inline struct sk_buff *
3915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916 struct net_device *orig_dev)
3917 {
3918 #ifdef CONFIG_NET_CLS_ACT
3919 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920 struct tcf_result cl_res;
3921
3922 /* If there's at least one ingress present somewhere (so
3923 * we get here via enabled static key), remaining devices
3924 * that are not configured with an ingress qdisc will bail
3925 * out here.
3926 */
3927 if (!cl)
3928 return skb;
3929 if (*pt_prev) {
3930 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3931 *pt_prev = NULL;
3932 }
3933
3934 qdisc_skb_cb(skb)->pkt_len = skb->len;
3935 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3936 qdisc_bstats_cpu_update(cl->q, skb);
3937
3938 switch (tc_classify(skb, cl, &cl_res, false)) {
3939 case TC_ACT_OK:
3940 case TC_ACT_RECLASSIFY:
3941 skb->tc_index = TC_H_MIN(cl_res.classid);
3942 break;
3943 case TC_ACT_SHOT:
3944 qdisc_qstats_cpu_drop(cl->q);
3945 kfree_skb(skb);
3946 return NULL;
3947 case TC_ACT_STOLEN:
3948 case TC_ACT_QUEUED:
3949 consume_skb(skb);
3950 return NULL;
3951 case TC_ACT_REDIRECT:
3952 /* skb_mac_header check was done by cls/act_bpf, so
3953 * we can safely push the L2 header back before
3954 * redirecting to another netdev
3955 */
3956 __skb_push(skb, skb->mac_len);
3957 skb_do_redirect(skb);
3958 return NULL;
3959 default:
3960 break;
3961 }
3962 #endif /* CONFIG_NET_CLS_ACT */
3963 return skb;
3964 }
3965
3966 /**
3967 * netdev_is_rx_handler_busy - check if receive handler is registered
3968 * @dev: device to check
3969 *
3970 * Check if a receive handler is already registered for a given device.
3971 * Return true if there one.
3972 *
3973 * The caller must hold the rtnl_mutex.
3974 */
3975 bool netdev_is_rx_handler_busy(struct net_device *dev)
3976 {
3977 ASSERT_RTNL();
3978 return dev && rtnl_dereference(dev->rx_handler);
3979 }
3980 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3981
3982 /**
3983 * netdev_rx_handler_register - register receive handler
3984 * @dev: device to register a handler for
3985 * @rx_handler: receive handler to register
3986 * @rx_handler_data: data pointer that is used by rx handler
3987 *
3988 * Register a receive handler for a device. This handler will then be
3989 * called from __netif_receive_skb. A negative errno code is returned
3990 * on a failure.
3991 *
3992 * The caller must hold the rtnl_mutex.
3993 *
3994 * For a general description of rx_handler, see enum rx_handler_result.
3995 */
3996 int netdev_rx_handler_register(struct net_device *dev,
3997 rx_handler_func_t *rx_handler,
3998 void *rx_handler_data)
3999 {
4000 ASSERT_RTNL();
4001
4002 if (dev->rx_handler)
4003 return -EBUSY;
4004
4005 /* Note: rx_handler_data must be set before rx_handler */
4006 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4007 rcu_assign_pointer(dev->rx_handler, rx_handler);
4008
4009 return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4012
4013 /**
4014 * netdev_rx_handler_unregister - unregister receive handler
4015 * @dev: device to unregister a handler from
4016 *
4017 * Unregister a receive handler from a device.
4018 *
4019 * The caller must hold the rtnl_mutex.
4020 */
4021 void netdev_rx_handler_unregister(struct net_device *dev)
4022 {
4023
4024 ASSERT_RTNL();
4025 RCU_INIT_POINTER(dev->rx_handler, NULL);
4026 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4027 * section has a guarantee to see a non NULL rx_handler_data
4028 * as well.
4029 */
4030 synchronize_net();
4031 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4032 }
4033 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4034
4035 /*
4036 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4037 * the special handling of PFMEMALLOC skbs.
4038 */
4039 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4040 {
4041 switch (skb->protocol) {
4042 case htons(ETH_P_ARP):
4043 case htons(ETH_P_IP):
4044 case htons(ETH_P_IPV6):
4045 case htons(ETH_P_8021Q):
4046 case htons(ETH_P_8021AD):
4047 return true;
4048 default:
4049 return false;
4050 }
4051 }
4052
4053 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4054 int *ret, struct net_device *orig_dev)
4055 {
4056 #ifdef CONFIG_NETFILTER_INGRESS
4057 if (nf_hook_ingress_active(skb)) {
4058 if (*pt_prev) {
4059 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4060 *pt_prev = NULL;
4061 }
4062
4063 return nf_hook_ingress(skb);
4064 }
4065 #endif /* CONFIG_NETFILTER_INGRESS */
4066 return 0;
4067 }
4068
4069 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4070 {
4071 struct packet_type *ptype, *pt_prev;
4072 rx_handler_func_t *rx_handler;
4073 struct net_device *orig_dev;
4074 bool deliver_exact = false;
4075 int ret = NET_RX_DROP;
4076 __be16 type;
4077
4078 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4079
4080 trace_netif_receive_skb(skb);
4081
4082 orig_dev = skb->dev;
4083
4084 skb_reset_network_header(skb);
4085 if (!skb_transport_header_was_set(skb))
4086 skb_reset_transport_header(skb);
4087 skb_reset_mac_len(skb);
4088
4089 pt_prev = NULL;
4090
4091 another_round:
4092 skb->skb_iif = skb->dev->ifindex;
4093
4094 __this_cpu_inc(softnet_data.processed);
4095
4096 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4097 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4098 skb = skb_vlan_untag(skb);
4099 if (unlikely(!skb))
4100 goto out;
4101 }
4102
4103 #ifdef CONFIG_NET_CLS_ACT
4104 if (skb->tc_verd & TC_NCLS) {
4105 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4106 goto ncls;
4107 }
4108 #endif
4109
4110 if (pfmemalloc)
4111 goto skip_taps;
4112
4113 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4114 if (pt_prev)
4115 ret = deliver_skb(skb, pt_prev, orig_dev);
4116 pt_prev = ptype;
4117 }
4118
4119 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4120 if (pt_prev)
4121 ret = deliver_skb(skb, pt_prev, orig_dev);
4122 pt_prev = ptype;
4123 }
4124
4125 skip_taps:
4126 #ifdef CONFIG_NET_INGRESS
4127 if (static_key_false(&ingress_needed)) {
4128 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4129 if (!skb)
4130 goto out;
4131
4132 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4133 goto out;
4134 }
4135 #endif
4136 #ifdef CONFIG_NET_CLS_ACT
4137 skb->tc_verd = 0;
4138 ncls:
4139 #endif
4140 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4141 goto drop;
4142
4143 if (skb_vlan_tag_present(skb)) {
4144 if (pt_prev) {
4145 ret = deliver_skb(skb, pt_prev, orig_dev);
4146 pt_prev = NULL;
4147 }
4148 if (vlan_do_receive(&skb))
4149 goto another_round;
4150 else if (unlikely(!skb))
4151 goto out;
4152 }
4153
4154 rx_handler = rcu_dereference(skb->dev->rx_handler);
4155 if (rx_handler) {
4156 if (pt_prev) {
4157 ret = deliver_skb(skb, pt_prev, orig_dev);
4158 pt_prev = NULL;
4159 }
4160 switch (rx_handler(&skb)) {
4161 case RX_HANDLER_CONSUMED:
4162 ret = NET_RX_SUCCESS;
4163 goto out;
4164 case RX_HANDLER_ANOTHER:
4165 goto another_round;
4166 case RX_HANDLER_EXACT:
4167 deliver_exact = true;
4168 case RX_HANDLER_PASS:
4169 break;
4170 default:
4171 BUG();
4172 }
4173 }
4174
4175 if (unlikely(skb_vlan_tag_present(skb))) {
4176 if (skb_vlan_tag_get_id(skb))
4177 skb->pkt_type = PACKET_OTHERHOST;
4178 /* Note: we might in the future use prio bits
4179 * and set skb->priority like in vlan_do_receive()
4180 * For the time being, just ignore Priority Code Point
4181 */
4182 skb->vlan_tci = 0;
4183 }
4184
4185 type = skb->protocol;
4186
4187 /* deliver only exact match when indicated */
4188 if (likely(!deliver_exact)) {
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &ptype_base[ntohs(type) &
4191 PTYPE_HASH_MASK]);
4192 }
4193
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &orig_dev->ptype_specific);
4196
4197 if (unlikely(skb->dev != orig_dev)) {
4198 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199 &skb->dev->ptype_specific);
4200 }
4201
4202 if (pt_prev) {
4203 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4204 goto drop;
4205 else
4206 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4207 } else {
4208 drop:
4209 if (!deliver_exact)
4210 atomic_long_inc(&skb->dev->rx_dropped);
4211 else
4212 atomic_long_inc(&skb->dev->rx_nohandler);
4213 kfree_skb(skb);
4214 /* Jamal, now you will not able to escape explaining
4215 * me how you were going to use this. :-)
4216 */
4217 ret = NET_RX_DROP;
4218 }
4219
4220 out:
4221 return ret;
4222 }
4223
4224 static int __netif_receive_skb(struct sk_buff *skb)
4225 {
4226 int ret;
4227
4228 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4229 unsigned long pflags = current->flags;
4230
4231 /*
4232 * PFMEMALLOC skbs are special, they should
4233 * - be delivered to SOCK_MEMALLOC sockets only
4234 * - stay away from userspace
4235 * - have bounded memory usage
4236 *
4237 * Use PF_MEMALLOC as this saves us from propagating the allocation
4238 * context down to all allocation sites.
4239 */
4240 current->flags |= PF_MEMALLOC;
4241 ret = __netif_receive_skb_core(skb, true);
4242 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4243 } else
4244 ret = __netif_receive_skb_core(skb, false);
4245
4246 return ret;
4247 }
4248
4249 static int netif_receive_skb_internal(struct sk_buff *skb)
4250 {
4251 int ret;
4252
4253 net_timestamp_check(netdev_tstamp_prequeue, skb);
4254
4255 if (skb_defer_rx_timestamp(skb))
4256 return NET_RX_SUCCESS;
4257
4258 rcu_read_lock();
4259
4260 #ifdef CONFIG_RPS
4261 if (static_key_false(&rps_needed)) {
4262 struct rps_dev_flow voidflow, *rflow = &voidflow;
4263 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4264
4265 if (cpu >= 0) {
4266 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267 rcu_read_unlock();
4268 return ret;
4269 }
4270 }
4271 #endif
4272 ret = __netif_receive_skb(skb);
4273 rcu_read_unlock();
4274 return ret;
4275 }
4276
4277 /**
4278 * netif_receive_skb - process receive buffer from network
4279 * @skb: buffer to process
4280 *
4281 * netif_receive_skb() is the main receive data processing function.
4282 * It always succeeds. The buffer may be dropped during processing
4283 * for congestion control or by the protocol layers.
4284 *
4285 * This function may only be called from softirq context and interrupts
4286 * should be enabled.
4287 *
4288 * Return values (usually ignored):
4289 * NET_RX_SUCCESS: no congestion
4290 * NET_RX_DROP: packet was dropped
4291 */
4292 int netif_receive_skb(struct sk_buff *skb)
4293 {
4294 trace_netif_receive_skb_entry(skb);
4295
4296 return netif_receive_skb_internal(skb);
4297 }
4298 EXPORT_SYMBOL(netif_receive_skb);
4299
4300 DEFINE_PER_CPU(struct work_struct, flush_works);
4301
4302 /* Network device is going away, flush any packets still pending */
4303 static void flush_backlog(struct work_struct *work)
4304 {
4305 struct sk_buff *skb, *tmp;
4306 struct softnet_data *sd;
4307
4308 local_bh_disable();
4309 sd = this_cpu_ptr(&softnet_data);
4310
4311 local_irq_disable();
4312 rps_lock(sd);
4313 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4314 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4315 __skb_unlink(skb, &sd->input_pkt_queue);
4316 kfree_skb(skb);
4317 input_queue_head_incr(sd);
4318 }
4319 }
4320 rps_unlock(sd);
4321 local_irq_enable();
4322
4323 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4324 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4325 __skb_unlink(skb, &sd->process_queue);
4326 kfree_skb(skb);
4327 input_queue_head_incr(sd);
4328 }
4329 }
4330 local_bh_enable();
4331 }
4332
4333 static void flush_all_backlogs(void)
4334 {
4335 unsigned int cpu;
4336
4337 get_online_cpus();
4338
4339 for_each_online_cpu(cpu)
4340 queue_work_on(cpu, system_highpri_wq,
4341 per_cpu_ptr(&flush_works, cpu));
4342
4343 for_each_online_cpu(cpu)
4344 flush_work(per_cpu_ptr(&flush_works, cpu));
4345
4346 put_online_cpus();
4347 }
4348
4349 static int napi_gro_complete(struct sk_buff *skb)
4350 {
4351 struct packet_offload *ptype;
4352 __be16 type = skb->protocol;
4353 struct list_head *head = &offload_base;
4354 int err = -ENOENT;
4355
4356 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4357
4358 if (NAPI_GRO_CB(skb)->count == 1) {
4359 skb_shinfo(skb)->gso_size = 0;
4360 goto out;
4361 }
4362
4363 rcu_read_lock();
4364 list_for_each_entry_rcu(ptype, head, list) {
4365 if (ptype->type != type || !ptype->callbacks.gro_complete)
4366 continue;
4367
4368 err = ptype->callbacks.gro_complete(skb, 0);
4369 break;
4370 }
4371 rcu_read_unlock();
4372
4373 if (err) {
4374 WARN_ON(&ptype->list == head);
4375 kfree_skb(skb);
4376 return NET_RX_SUCCESS;
4377 }
4378
4379 out:
4380 return netif_receive_skb_internal(skb);
4381 }
4382
4383 /* napi->gro_list contains packets ordered by age.
4384 * youngest packets at the head of it.
4385 * Complete skbs in reverse order to reduce latencies.
4386 */
4387 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4388 {
4389 struct sk_buff *skb, *prev = NULL;
4390
4391 /* scan list and build reverse chain */
4392 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4393 skb->prev = prev;
4394 prev = skb;
4395 }
4396
4397 for (skb = prev; skb; skb = prev) {
4398 skb->next = NULL;
4399
4400 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4401 return;
4402
4403 prev = skb->prev;
4404 napi_gro_complete(skb);
4405 napi->gro_count--;
4406 }
4407
4408 napi->gro_list = NULL;
4409 }
4410 EXPORT_SYMBOL(napi_gro_flush);
4411
4412 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4413 {
4414 struct sk_buff *p;
4415 unsigned int maclen = skb->dev->hard_header_len;
4416 u32 hash = skb_get_hash_raw(skb);
4417
4418 for (p = napi->gro_list; p; p = p->next) {
4419 unsigned long diffs;
4420
4421 NAPI_GRO_CB(p)->flush = 0;
4422
4423 if (hash != skb_get_hash_raw(p)) {
4424 NAPI_GRO_CB(p)->same_flow = 0;
4425 continue;
4426 }
4427
4428 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4429 diffs |= p->vlan_tci ^ skb->vlan_tci;
4430 diffs |= skb_metadata_dst_cmp(p, skb);
4431 if (maclen == ETH_HLEN)
4432 diffs |= compare_ether_header(skb_mac_header(p),
4433 skb_mac_header(skb));
4434 else if (!diffs)
4435 diffs = memcmp(skb_mac_header(p),
4436 skb_mac_header(skb),
4437 maclen);
4438 NAPI_GRO_CB(p)->same_flow = !diffs;
4439 }
4440 }
4441
4442 static void skb_gro_reset_offset(struct sk_buff *skb)
4443 {
4444 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4445 const skb_frag_t *frag0 = &pinfo->frags[0];
4446
4447 NAPI_GRO_CB(skb)->data_offset = 0;
4448 NAPI_GRO_CB(skb)->frag0 = NULL;
4449 NAPI_GRO_CB(skb)->frag0_len = 0;
4450
4451 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4452 pinfo->nr_frags &&
4453 !PageHighMem(skb_frag_page(frag0))) {
4454 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4455 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4456 }
4457 }
4458
4459 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4460 {
4461 struct skb_shared_info *pinfo = skb_shinfo(skb);
4462
4463 BUG_ON(skb->end - skb->tail < grow);
4464
4465 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4466
4467 skb->data_len -= grow;
4468 skb->tail += grow;
4469
4470 pinfo->frags[0].page_offset += grow;
4471 skb_frag_size_sub(&pinfo->frags[0], grow);
4472
4473 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4474 skb_frag_unref(skb, 0);
4475 memmove(pinfo->frags, pinfo->frags + 1,
4476 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4477 }
4478 }
4479
4480 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4481 {
4482 struct sk_buff **pp = NULL;
4483 struct packet_offload *ptype;
4484 __be16 type = skb->protocol;
4485 struct list_head *head = &offload_base;
4486 int same_flow;
4487 enum gro_result ret;
4488 int grow;
4489
4490 if (!(skb->dev->features & NETIF_F_GRO))
4491 goto normal;
4492
4493 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4494 goto normal;
4495
4496 gro_list_prepare(napi, skb);
4497
4498 rcu_read_lock();
4499 list_for_each_entry_rcu(ptype, head, list) {
4500 if (ptype->type != type || !ptype->callbacks.gro_receive)
4501 continue;
4502
4503 skb_set_network_header(skb, skb_gro_offset(skb));
4504 skb_reset_mac_len(skb);
4505 NAPI_GRO_CB(skb)->same_flow = 0;
4506 NAPI_GRO_CB(skb)->flush = 0;
4507 NAPI_GRO_CB(skb)->free = 0;
4508 NAPI_GRO_CB(skb)->encap_mark = 0;
4509 NAPI_GRO_CB(skb)->is_fou = 0;
4510 NAPI_GRO_CB(skb)->is_atomic = 1;
4511 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4512
4513 /* Setup for GRO checksum validation */
4514 switch (skb->ip_summed) {
4515 case CHECKSUM_COMPLETE:
4516 NAPI_GRO_CB(skb)->csum = skb->csum;
4517 NAPI_GRO_CB(skb)->csum_valid = 1;
4518 NAPI_GRO_CB(skb)->csum_cnt = 0;
4519 break;
4520 case CHECKSUM_UNNECESSARY:
4521 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4522 NAPI_GRO_CB(skb)->csum_valid = 0;
4523 break;
4524 default:
4525 NAPI_GRO_CB(skb)->csum_cnt = 0;
4526 NAPI_GRO_CB(skb)->csum_valid = 0;
4527 }
4528
4529 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4530 break;
4531 }
4532 rcu_read_unlock();
4533
4534 if (&ptype->list == head)
4535 goto normal;
4536
4537 same_flow = NAPI_GRO_CB(skb)->same_flow;
4538 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4539
4540 if (pp) {
4541 struct sk_buff *nskb = *pp;
4542
4543 *pp = nskb->next;
4544 nskb->next = NULL;
4545 napi_gro_complete(nskb);
4546 napi->gro_count--;
4547 }
4548
4549 if (same_flow)
4550 goto ok;
4551
4552 if (NAPI_GRO_CB(skb)->flush)
4553 goto normal;
4554
4555 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4556 struct sk_buff *nskb = napi->gro_list;
4557
4558 /* locate the end of the list to select the 'oldest' flow */
4559 while (nskb->next) {
4560 pp = &nskb->next;
4561 nskb = *pp;
4562 }
4563 *pp = NULL;
4564 nskb->next = NULL;
4565 napi_gro_complete(nskb);
4566 } else {
4567 napi->gro_count++;
4568 }
4569 NAPI_GRO_CB(skb)->count = 1;
4570 NAPI_GRO_CB(skb)->age = jiffies;
4571 NAPI_GRO_CB(skb)->last = skb;
4572 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4573 skb->next = napi->gro_list;
4574 napi->gro_list = skb;
4575 ret = GRO_HELD;
4576
4577 pull:
4578 grow = skb_gro_offset(skb) - skb_headlen(skb);
4579 if (grow > 0)
4580 gro_pull_from_frag0(skb, grow);
4581 ok:
4582 return ret;
4583
4584 normal:
4585 ret = GRO_NORMAL;
4586 goto pull;
4587 }
4588
4589 struct packet_offload *gro_find_receive_by_type(__be16 type)
4590 {
4591 struct list_head *offload_head = &offload_base;
4592 struct packet_offload *ptype;
4593
4594 list_for_each_entry_rcu(ptype, offload_head, list) {
4595 if (ptype->type != type || !ptype->callbacks.gro_receive)
4596 continue;
4597 return ptype;
4598 }
4599 return NULL;
4600 }
4601 EXPORT_SYMBOL(gro_find_receive_by_type);
4602
4603 struct packet_offload *gro_find_complete_by_type(__be16 type)
4604 {
4605 struct list_head *offload_head = &offload_base;
4606 struct packet_offload *ptype;
4607
4608 list_for_each_entry_rcu(ptype, offload_head, list) {
4609 if (ptype->type != type || !ptype->callbacks.gro_complete)
4610 continue;
4611 return ptype;
4612 }
4613 return NULL;
4614 }
4615 EXPORT_SYMBOL(gro_find_complete_by_type);
4616
4617 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4618 {
4619 switch (ret) {
4620 case GRO_NORMAL:
4621 if (netif_receive_skb_internal(skb))
4622 ret = GRO_DROP;
4623 break;
4624
4625 case GRO_DROP:
4626 kfree_skb(skb);
4627 break;
4628
4629 case GRO_MERGED_FREE:
4630 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4631 skb_dst_drop(skb);
4632 kmem_cache_free(skbuff_head_cache, skb);
4633 } else {
4634 __kfree_skb(skb);
4635 }
4636 break;
4637
4638 case GRO_HELD:
4639 case GRO_MERGED:
4640 break;
4641 }
4642
4643 return ret;
4644 }
4645
4646 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4647 {
4648 skb_mark_napi_id(skb, napi);
4649 trace_napi_gro_receive_entry(skb);
4650
4651 skb_gro_reset_offset(skb);
4652
4653 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4654 }
4655 EXPORT_SYMBOL(napi_gro_receive);
4656
4657 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4658 {
4659 if (unlikely(skb->pfmemalloc)) {
4660 consume_skb(skb);
4661 return;
4662 }
4663 __skb_pull(skb, skb_headlen(skb));
4664 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4665 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4666 skb->vlan_tci = 0;
4667 skb->dev = napi->dev;
4668 skb->skb_iif = 0;
4669 skb->encapsulation = 0;
4670 skb_shinfo(skb)->gso_type = 0;
4671 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4672
4673 napi->skb = skb;
4674 }
4675
4676 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4677 {
4678 struct sk_buff *skb = napi->skb;
4679
4680 if (!skb) {
4681 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4682 if (skb) {
4683 napi->skb = skb;
4684 skb_mark_napi_id(skb, napi);
4685 }
4686 }
4687 return skb;
4688 }
4689 EXPORT_SYMBOL(napi_get_frags);
4690
4691 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4692 struct sk_buff *skb,
4693 gro_result_t ret)
4694 {
4695 switch (ret) {
4696 case GRO_NORMAL:
4697 case GRO_HELD:
4698 __skb_push(skb, ETH_HLEN);
4699 skb->protocol = eth_type_trans(skb, skb->dev);
4700 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4701 ret = GRO_DROP;
4702 break;
4703
4704 case GRO_DROP:
4705 case GRO_MERGED_FREE:
4706 napi_reuse_skb(napi, skb);
4707 break;
4708
4709 case GRO_MERGED:
4710 break;
4711 }
4712
4713 return ret;
4714 }
4715
4716 /* Upper GRO stack assumes network header starts at gro_offset=0
4717 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4718 * We copy ethernet header into skb->data to have a common layout.
4719 */
4720 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4721 {
4722 struct sk_buff *skb = napi->skb;
4723 const struct ethhdr *eth;
4724 unsigned int hlen = sizeof(*eth);
4725
4726 napi->skb = NULL;
4727
4728 skb_reset_mac_header(skb);
4729 skb_gro_reset_offset(skb);
4730
4731 eth = skb_gro_header_fast(skb, 0);
4732 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4733 eth = skb_gro_header_slow(skb, hlen, 0);
4734 if (unlikely(!eth)) {
4735 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4736 __func__, napi->dev->name);
4737 napi_reuse_skb(napi, skb);
4738 return NULL;
4739 }
4740 } else {
4741 gro_pull_from_frag0(skb, hlen);
4742 NAPI_GRO_CB(skb)->frag0 += hlen;
4743 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4744 }
4745 __skb_pull(skb, hlen);
4746
4747 /*
4748 * This works because the only protocols we care about don't require
4749 * special handling.
4750 * We'll fix it up properly in napi_frags_finish()
4751 */
4752 skb->protocol = eth->h_proto;
4753
4754 return skb;
4755 }
4756
4757 gro_result_t napi_gro_frags(struct napi_struct *napi)
4758 {
4759 struct sk_buff *skb = napi_frags_skb(napi);
4760
4761 if (!skb)
4762 return GRO_DROP;
4763
4764 trace_napi_gro_frags_entry(skb);
4765
4766 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4767 }
4768 EXPORT_SYMBOL(napi_gro_frags);
4769
4770 /* Compute the checksum from gro_offset and return the folded value
4771 * after adding in any pseudo checksum.
4772 */
4773 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4774 {
4775 __wsum wsum;
4776 __sum16 sum;
4777
4778 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4779
4780 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4781 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4782 if (likely(!sum)) {
4783 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4784 !skb->csum_complete_sw)
4785 netdev_rx_csum_fault(skb->dev);
4786 }
4787
4788 NAPI_GRO_CB(skb)->csum = wsum;
4789 NAPI_GRO_CB(skb)->csum_valid = 1;
4790
4791 return sum;
4792 }
4793 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4794
4795 /*
4796 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4797 * Note: called with local irq disabled, but exits with local irq enabled.
4798 */
4799 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4800 {
4801 #ifdef CONFIG_RPS
4802 struct softnet_data *remsd = sd->rps_ipi_list;
4803
4804 if (remsd) {
4805 sd->rps_ipi_list = NULL;
4806
4807 local_irq_enable();
4808
4809 /* Send pending IPI's to kick RPS processing on remote cpus. */
4810 while (remsd) {
4811 struct softnet_data *next = remsd->rps_ipi_next;
4812
4813 if (cpu_online(remsd->cpu))
4814 smp_call_function_single_async(remsd->cpu,
4815 &remsd->csd);
4816 remsd = next;
4817 }
4818 } else
4819 #endif
4820 local_irq_enable();
4821 }
4822
4823 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4824 {
4825 #ifdef CONFIG_RPS
4826 return sd->rps_ipi_list != NULL;
4827 #else
4828 return false;
4829 #endif
4830 }
4831
4832 static int process_backlog(struct napi_struct *napi, int quota)
4833 {
4834 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4835 bool again = true;
4836 int work = 0;
4837
4838 /* Check if we have pending ipi, its better to send them now,
4839 * not waiting net_rx_action() end.
4840 */
4841 if (sd_has_rps_ipi_waiting(sd)) {
4842 local_irq_disable();
4843 net_rps_action_and_irq_enable(sd);
4844 }
4845
4846 napi->weight = weight_p;
4847 while (again) {
4848 struct sk_buff *skb;
4849
4850 while ((skb = __skb_dequeue(&sd->process_queue))) {
4851 rcu_read_lock();
4852 __netif_receive_skb(skb);
4853 rcu_read_unlock();
4854 input_queue_head_incr(sd);
4855 if (++work >= quota)
4856 return work;
4857
4858 }
4859
4860 local_irq_disable();
4861 rps_lock(sd);
4862 if (skb_queue_empty(&sd->input_pkt_queue)) {
4863 /*
4864 * Inline a custom version of __napi_complete().
4865 * only current cpu owns and manipulates this napi,
4866 * and NAPI_STATE_SCHED is the only possible flag set
4867 * on backlog.
4868 * We can use a plain write instead of clear_bit(),
4869 * and we dont need an smp_mb() memory barrier.
4870 */
4871 napi->state = 0;
4872 again = false;
4873 } else {
4874 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4875 &sd->process_queue);
4876 }
4877 rps_unlock(sd);
4878 local_irq_enable();
4879 }
4880
4881 return work;
4882 }
4883
4884 /**
4885 * __napi_schedule - schedule for receive
4886 * @n: entry to schedule
4887 *
4888 * The entry's receive function will be scheduled to run.
4889 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4890 */
4891 void __napi_schedule(struct napi_struct *n)
4892 {
4893 unsigned long flags;
4894
4895 local_irq_save(flags);
4896 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4897 local_irq_restore(flags);
4898 }
4899 EXPORT_SYMBOL(__napi_schedule);
4900
4901 /**
4902 * __napi_schedule_irqoff - schedule for receive
4903 * @n: entry to schedule
4904 *
4905 * Variant of __napi_schedule() assuming hard irqs are masked
4906 */
4907 void __napi_schedule_irqoff(struct napi_struct *n)
4908 {
4909 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4910 }
4911 EXPORT_SYMBOL(__napi_schedule_irqoff);
4912
4913 void __napi_complete(struct napi_struct *n)
4914 {
4915 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4916
4917 list_del_init(&n->poll_list);
4918 smp_mb__before_atomic();
4919 clear_bit(NAPI_STATE_SCHED, &n->state);
4920 }
4921 EXPORT_SYMBOL(__napi_complete);
4922
4923 void napi_complete_done(struct napi_struct *n, int work_done)
4924 {
4925 unsigned long flags;
4926
4927 /*
4928 * don't let napi dequeue from the cpu poll list
4929 * just in case its running on a different cpu
4930 */
4931 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4932 return;
4933
4934 if (n->gro_list) {
4935 unsigned long timeout = 0;
4936
4937 if (work_done)
4938 timeout = n->dev->gro_flush_timeout;
4939
4940 if (timeout)
4941 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4942 HRTIMER_MODE_REL_PINNED);
4943 else
4944 napi_gro_flush(n, false);
4945 }
4946 if (likely(list_empty(&n->poll_list))) {
4947 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4948 } else {
4949 /* If n->poll_list is not empty, we need to mask irqs */
4950 local_irq_save(flags);
4951 __napi_complete(n);
4952 local_irq_restore(flags);
4953 }
4954 }
4955 EXPORT_SYMBOL(napi_complete_done);
4956
4957 /* must be called under rcu_read_lock(), as we dont take a reference */
4958 static struct napi_struct *napi_by_id(unsigned int napi_id)
4959 {
4960 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4961 struct napi_struct *napi;
4962
4963 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4964 if (napi->napi_id == napi_id)
4965 return napi;
4966
4967 return NULL;
4968 }
4969
4970 #if defined(CONFIG_NET_RX_BUSY_POLL)
4971 #define BUSY_POLL_BUDGET 8
4972 bool sk_busy_loop(struct sock *sk, int nonblock)
4973 {
4974 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4975 int (*busy_poll)(struct napi_struct *dev);
4976 struct napi_struct *napi;
4977 int rc = false;
4978
4979 rcu_read_lock();
4980
4981 napi = napi_by_id(sk->sk_napi_id);
4982 if (!napi)
4983 goto out;
4984
4985 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4986 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4987
4988 do {
4989 rc = 0;
4990 local_bh_disable();
4991 if (busy_poll) {
4992 rc = busy_poll(napi);
4993 } else if (napi_schedule_prep(napi)) {
4994 void *have = netpoll_poll_lock(napi);
4995
4996 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4997 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4998 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4999 if (rc == BUSY_POLL_BUDGET) {
5000 napi_complete_done(napi, rc);
5001 napi_schedule(napi);
5002 }
5003 }
5004 netpoll_poll_unlock(have);
5005 }
5006 if (rc > 0)
5007 __NET_ADD_STATS(sock_net(sk),
5008 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5009 local_bh_enable();
5010
5011 if (rc == LL_FLUSH_FAILED)
5012 break; /* permanent failure */
5013
5014 cpu_relax();
5015 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5016 !need_resched() && !busy_loop_timeout(end_time));
5017
5018 rc = !skb_queue_empty(&sk->sk_receive_queue);
5019 out:
5020 rcu_read_unlock();
5021 return rc;
5022 }
5023 EXPORT_SYMBOL(sk_busy_loop);
5024
5025 #endif /* CONFIG_NET_RX_BUSY_POLL */
5026
5027 void napi_hash_add(struct napi_struct *napi)
5028 {
5029 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5030 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5031 return;
5032
5033 spin_lock(&napi_hash_lock);
5034
5035 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5036 do {
5037 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5038 napi_gen_id = NR_CPUS + 1;
5039 } while (napi_by_id(napi_gen_id));
5040 napi->napi_id = napi_gen_id;
5041
5042 hlist_add_head_rcu(&napi->napi_hash_node,
5043 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5044
5045 spin_unlock(&napi_hash_lock);
5046 }
5047 EXPORT_SYMBOL_GPL(napi_hash_add);
5048
5049 /* Warning : caller is responsible to make sure rcu grace period
5050 * is respected before freeing memory containing @napi
5051 */
5052 bool napi_hash_del(struct napi_struct *napi)
5053 {
5054 bool rcu_sync_needed = false;
5055
5056 spin_lock(&napi_hash_lock);
5057
5058 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5059 rcu_sync_needed = true;
5060 hlist_del_rcu(&napi->napi_hash_node);
5061 }
5062 spin_unlock(&napi_hash_lock);
5063 return rcu_sync_needed;
5064 }
5065 EXPORT_SYMBOL_GPL(napi_hash_del);
5066
5067 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5068 {
5069 struct napi_struct *napi;
5070
5071 napi = container_of(timer, struct napi_struct, timer);
5072 if (napi->gro_list)
5073 napi_schedule(napi);
5074
5075 return HRTIMER_NORESTART;
5076 }
5077
5078 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5079 int (*poll)(struct napi_struct *, int), int weight)
5080 {
5081 INIT_LIST_HEAD(&napi->poll_list);
5082 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5083 napi->timer.function = napi_watchdog;
5084 napi->gro_count = 0;
5085 napi->gro_list = NULL;
5086 napi->skb = NULL;
5087 napi->poll = poll;
5088 if (weight > NAPI_POLL_WEIGHT)
5089 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5090 weight, dev->name);
5091 napi->weight = weight;
5092 list_add(&napi->dev_list, &dev->napi_list);
5093 napi->dev = dev;
5094 #ifdef CONFIG_NETPOLL
5095 spin_lock_init(&napi->poll_lock);
5096 napi->poll_owner = -1;
5097 #endif
5098 set_bit(NAPI_STATE_SCHED, &napi->state);
5099 napi_hash_add(napi);
5100 }
5101 EXPORT_SYMBOL(netif_napi_add);
5102
5103 void napi_disable(struct napi_struct *n)
5104 {
5105 might_sleep();
5106 set_bit(NAPI_STATE_DISABLE, &n->state);
5107
5108 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5109 msleep(1);
5110 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5111 msleep(1);
5112
5113 hrtimer_cancel(&n->timer);
5114
5115 clear_bit(NAPI_STATE_DISABLE, &n->state);
5116 }
5117 EXPORT_SYMBOL(napi_disable);
5118
5119 /* Must be called in process context */
5120 void netif_napi_del(struct napi_struct *napi)
5121 {
5122 might_sleep();
5123 if (napi_hash_del(napi))
5124 synchronize_net();
5125 list_del_init(&napi->dev_list);
5126 napi_free_frags(napi);
5127
5128 kfree_skb_list(napi->gro_list);
5129 napi->gro_list = NULL;
5130 napi->gro_count = 0;
5131 }
5132 EXPORT_SYMBOL(netif_napi_del);
5133
5134 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5135 {
5136 void *have;
5137 int work, weight;
5138
5139 list_del_init(&n->poll_list);
5140
5141 have = netpoll_poll_lock(n);
5142
5143 weight = n->weight;
5144
5145 /* This NAPI_STATE_SCHED test is for avoiding a race
5146 * with netpoll's poll_napi(). Only the entity which
5147 * obtains the lock and sees NAPI_STATE_SCHED set will
5148 * actually make the ->poll() call. Therefore we avoid
5149 * accidentally calling ->poll() when NAPI is not scheduled.
5150 */
5151 work = 0;
5152 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5153 work = n->poll(n, weight);
5154 trace_napi_poll(n, work, weight);
5155 }
5156
5157 WARN_ON_ONCE(work > weight);
5158
5159 if (likely(work < weight))
5160 goto out_unlock;
5161
5162 /* Drivers must not modify the NAPI state if they
5163 * consume the entire weight. In such cases this code
5164 * still "owns" the NAPI instance and therefore can
5165 * move the instance around on the list at-will.
5166 */
5167 if (unlikely(napi_disable_pending(n))) {
5168 napi_complete(n);
5169 goto out_unlock;
5170 }
5171
5172 if (n->gro_list) {
5173 /* flush too old packets
5174 * If HZ < 1000, flush all packets.
5175 */
5176 napi_gro_flush(n, HZ >= 1000);
5177 }
5178
5179 /* Some drivers may have called napi_schedule
5180 * prior to exhausting their budget.
5181 */
5182 if (unlikely(!list_empty(&n->poll_list))) {
5183 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5184 n->dev ? n->dev->name : "backlog");
5185 goto out_unlock;
5186 }
5187
5188 list_add_tail(&n->poll_list, repoll);
5189
5190 out_unlock:
5191 netpoll_poll_unlock(have);
5192
5193 return work;
5194 }
5195
5196 static __latent_entropy void net_rx_action(struct softirq_action *h)
5197 {
5198 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5199 unsigned long time_limit = jiffies + 2;
5200 int budget = netdev_budget;
5201 LIST_HEAD(list);
5202 LIST_HEAD(repoll);
5203
5204 local_irq_disable();
5205 list_splice_init(&sd->poll_list, &list);
5206 local_irq_enable();
5207
5208 for (;;) {
5209 struct napi_struct *n;
5210
5211 if (list_empty(&list)) {
5212 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5213 return;
5214 break;
5215 }
5216
5217 n = list_first_entry(&list, struct napi_struct, poll_list);
5218 budget -= napi_poll(n, &repoll);
5219
5220 /* If softirq window is exhausted then punt.
5221 * Allow this to run for 2 jiffies since which will allow
5222 * an average latency of 1.5/HZ.
5223 */
5224 if (unlikely(budget <= 0 ||
5225 time_after_eq(jiffies, time_limit))) {
5226 sd->time_squeeze++;
5227 break;
5228 }
5229 }
5230
5231 __kfree_skb_flush();
5232 local_irq_disable();
5233
5234 list_splice_tail_init(&sd->poll_list, &list);
5235 list_splice_tail(&repoll, &list);
5236 list_splice(&list, &sd->poll_list);
5237 if (!list_empty(&sd->poll_list))
5238 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5239
5240 net_rps_action_and_irq_enable(sd);
5241 }
5242
5243 struct netdev_adjacent {
5244 struct net_device *dev;
5245
5246 /* upper master flag, there can only be one master device per list */
5247 bool master;
5248
5249 /* counter for the number of times this device was added to us */
5250 u16 ref_nr;
5251
5252 /* private field for the users */
5253 void *private;
5254
5255 struct list_head list;
5256 struct rcu_head rcu;
5257 };
5258
5259 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5260 struct list_head *adj_list)
5261 {
5262 struct netdev_adjacent *adj;
5263
5264 list_for_each_entry(adj, adj_list, list) {
5265 if (adj->dev == adj_dev)
5266 return adj;
5267 }
5268 return NULL;
5269 }
5270
5271 /**
5272 * netdev_has_upper_dev - Check if device is linked to an upper device
5273 * @dev: device
5274 * @upper_dev: upper device to check
5275 *
5276 * Find out if a device is linked to specified upper device and return true
5277 * in case it is. Note that this checks only immediate upper device,
5278 * not through a complete stack of devices. The caller must hold the RTNL lock.
5279 */
5280 bool netdev_has_upper_dev(struct net_device *dev,
5281 struct net_device *upper_dev)
5282 {
5283 ASSERT_RTNL();
5284
5285 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5286 }
5287 EXPORT_SYMBOL(netdev_has_upper_dev);
5288
5289 /**
5290 * netdev_has_any_upper_dev - Check if device is linked to some device
5291 * @dev: device
5292 *
5293 * Find out if a device is linked to an upper device and return true in case
5294 * it is. The caller must hold the RTNL lock.
5295 */
5296 static bool netdev_has_any_upper_dev(struct net_device *dev)
5297 {
5298 ASSERT_RTNL();
5299
5300 return !list_empty(&dev->all_adj_list.upper);
5301 }
5302
5303 /**
5304 * netdev_master_upper_dev_get - Get master upper device
5305 * @dev: device
5306 *
5307 * Find a master upper device and return pointer to it or NULL in case
5308 * it's not there. The caller must hold the RTNL lock.
5309 */
5310 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5311 {
5312 struct netdev_adjacent *upper;
5313
5314 ASSERT_RTNL();
5315
5316 if (list_empty(&dev->adj_list.upper))
5317 return NULL;
5318
5319 upper = list_first_entry(&dev->adj_list.upper,
5320 struct netdev_adjacent, list);
5321 if (likely(upper->master))
5322 return upper->dev;
5323 return NULL;
5324 }
5325 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5326
5327 void *netdev_adjacent_get_private(struct list_head *adj_list)
5328 {
5329 struct netdev_adjacent *adj;
5330
5331 adj = list_entry(adj_list, struct netdev_adjacent, list);
5332
5333 return adj->private;
5334 }
5335 EXPORT_SYMBOL(netdev_adjacent_get_private);
5336
5337 /**
5338 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5339 * @dev: device
5340 * @iter: list_head ** of the current position
5341 *
5342 * Gets the next device from the dev's upper list, starting from iter
5343 * position. The caller must hold RCU read lock.
5344 */
5345 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5346 struct list_head **iter)
5347 {
5348 struct netdev_adjacent *upper;
5349
5350 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5351
5352 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5353
5354 if (&upper->list == &dev->adj_list.upper)
5355 return NULL;
5356
5357 *iter = &upper->list;
5358
5359 return upper->dev;
5360 }
5361 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5362
5363 /**
5364 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5365 * @dev: device
5366 * @iter: list_head ** of the current position
5367 *
5368 * Gets the next device from the dev's upper list, starting from iter
5369 * position. The caller must hold RCU read lock.
5370 */
5371 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5372 struct list_head **iter)
5373 {
5374 struct netdev_adjacent *upper;
5375
5376 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5377
5378 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5379
5380 if (&upper->list == &dev->all_adj_list.upper)
5381 return NULL;
5382
5383 *iter = &upper->list;
5384
5385 return upper->dev;
5386 }
5387 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5388
5389 /**
5390 * netdev_lower_get_next_private - Get the next ->private from the
5391 * lower neighbour list
5392 * @dev: device
5393 * @iter: list_head ** of the current position
5394 *
5395 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5396 * list, starting from iter position. The caller must hold either hold the
5397 * RTNL lock or its own locking that guarantees that the neighbour lower
5398 * list will remain unchanged.
5399 */
5400 void *netdev_lower_get_next_private(struct net_device *dev,
5401 struct list_head **iter)
5402 {
5403 struct netdev_adjacent *lower;
5404
5405 lower = list_entry(*iter, struct netdev_adjacent, list);
5406
5407 if (&lower->list == &dev->adj_list.lower)
5408 return NULL;
5409
5410 *iter = lower->list.next;
5411
5412 return lower->private;
5413 }
5414 EXPORT_SYMBOL(netdev_lower_get_next_private);
5415
5416 /**
5417 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5418 * lower neighbour list, RCU
5419 * variant
5420 * @dev: device
5421 * @iter: list_head ** of the current position
5422 *
5423 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5424 * list, starting from iter position. The caller must hold RCU read lock.
5425 */
5426 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5427 struct list_head **iter)
5428 {
5429 struct netdev_adjacent *lower;
5430
5431 WARN_ON_ONCE(!rcu_read_lock_held());
5432
5433 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5434
5435 if (&lower->list == &dev->adj_list.lower)
5436 return NULL;
5437
5438 *iter = &lower->list;
5439
5440 return lower->private;
5441 }
5442 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5443
5444 /**
5445 * netdev_lower_get_next - Get the next device from the lower neighbour
5446 * list
5447 * @dev: device
5448 * @iter: list_head ** of the current position
5449 *
5450 * Gets the next netdev_adjacent from the dev's lower neighbour
5451 * list, starting from iter position. The caller must hold RTNL lock or
5452 * its own locking that guarantees that the neighbour lower
5453 * list will remain unchanged.
5454 */
5455 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5456 {
5457 struct netdev_adjacent *lower;
5458
5459 lower = list_entry(*iter, struct netdev_adjacent, list);
5460
5461 if (&lower->list == &dev->adj_list.lower)
5462 return NULL;
5463
5464 *iter = lower->list.next;
5465
5466 return lower->dev;
5467 }
5468 EXPORT_SYMBOL(netdev_lower_get_next);
5469
5470 /**
5471 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5472 * @dev: device
5473 * @iter: list_head ** of the current position
5474 *
5475 * Gets the next netdev_adjacent from the dev's all lower neighbour
5476 * list, starting from iter position. The caller must hold RTNL lock or
5477 * its own locking that guarantees that the neighbour all lower
5478 * list will remain unchanged.
5479 */
5480 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5481 {
5482 struct netdev_adjacent *lower;
5483
5484 lower = list_entry(*iter, struct netdev_adjacent, list);
5485
5486 if (&lower->list == &dev->all_adj_list.lower)
5487 return NULL;
5488
5489 *iter = lower->list.next;
5490
5491 return lower->dev;
5492 }
5493 EXPORT_SYMBOL(netdev_all_lower_get_next);
5494
5495 /**
5496 * netdev_all_lower_get_next_rcu - Get the next device from all
5497 * lower neighbour list, RCU variant
5498 * @dev: device
5499 * @iter: list_head ** of the current position
5500 *
5501 * Gets the next netdev_adjacent from the dev's all lower neighbour
5502 * list, starting from iter position. The caller must hold RCU read lock.
5503 */
5504 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5505 struct list_head **iter)
5506 {
5507 struct netdev_adjacent *lower;
5508
5509 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5510 struct netdev_adjacent, list);
5511
5512 return lower ? lower->dev : NULL;
5513 }
5514 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5515
5516 /**
5517 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5518 * lower neighbour list, RCU
5519 * variant
5520 * @dev: device
5521 *
5522 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5523 * list. The caller must hold RCU read lock.
5524 */
5525 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5526 {
5527 struct netdev_adjacent *lower;
5528
5529 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5530 struct netdev_adjacent, list);
5531 if (lower)
5532 return lower->private;
5533 return NULL;
5534 }
5535 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5536
5537 /**
5538 * netdev_master_upper_dev_get_rcu - Get master upper device
5539 * @dev: device
5540 *
5541 * Find a master upper device and return pointer to it or NULL in case
5542 * it's not there. The caller must hold the RCU read lock.
5543 */
5544 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5545 {
5546 struct netdev_adjacent *upper;
5547
5548 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5549 struct netdev_adjacent, list);
5550 if (upper && likely(upper->master))
5551 return upper->dev;
5552 return NULL;
5553 }
5554 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5555
5556 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5557 struct net_device *adj_dev,
5558 struct list_head *dev_list)
5559 {
5560 char linkname[IFNAMSIZ+7];
5561 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5562 "upper_%s" : "lower_%s", adj_dev->name);
5563 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5564 linkname);
5565 }
5566 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5567 char *name,
5568 struct list_head *dev_list)
5569 {
5570 char linkname[IFNAMSIZ+7];
5571 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5572 "upper_%s" : "lower_%s", name);
5573 sysfs_remove_link(&(dev->dev.kobj), linkname);
5574 }
5575
5576 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5577 struct net_device *adj_dev,
5578 struct list_head *dev_list)
5579 {
5580 return (dev_list == &dev->adj_list.upper ||
5581 dev_list == &dev->adj_list.lower) &&
5582 net_eq(dev_net(dev), dev_net(adj_dev));
5583 }
5584
5585 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5586 struct net_device *adj_dev,
5587 struct list_head *dev_list,
5588 void *private, bool master)
5589 {
5590 struct netdev_adjacent *adj;
5591 int ret;
5592
5593 adj = __netdev_find_adj(adj_dev, dev_list);
5594
5595 if (adj) {
5596 adj->ref_nr++;
5597 return 0;
5598 }
5599
5600 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5601 if (!adj)
5602 return -ENOMEM;
5603
5604 adj->dev = adj_dev;
5605 adj->master = master;
5606 adj->ref_nr = 1;
5607 adj->private = private;
5608 dev_hold(adj_dev);
5609
5610 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5611 adj_dev->name, dev->name, adj_dev->name);
5612
5613 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5614 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5615 if (ret)
5616 goto free_adj;
5617 }
5618
5619 /* Ensure that master link is always the first item in list. */
5620 if (master) {
5621 ret = sysfs_create_link(&(dev->dev.kobj),
5622 &(adj_dev->dev.kobj), "master");
5623 if (ret)
5624 goto remove_symlinks;
5625
5626 list_add_rcu(&adj->list, dev_list);
5627 } else {
5628 list_add_tail_rcu(&adj->list, dev_list);
5629 }
5630
5631 return 0;
5632
5633 remove_symlinks:
5634 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5635 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5636 free_adj:
5637 kfree(adj);
5638 dev_put(adj_dev);
5639
5640 return ret;
5641 }
5642
5643 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5644 struct net_device *adj_dev,
5645 struct list_head *dev_list)
5646 {
5647 struct netdev_adjacent *adj;
5648
5649 adj = __netdev_find_adj(adj_dev, dev_list);
5650
5651 if (!adj) {
5652 pr_err("tried to remove device %s from %s\n",
5653 dev->name, adj_dev->name);
5654 BUG();
5655 }
5656
5657 if (adj->ref_nr > 1) {
5658 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5659 adj->ref_nr-1);
5660 adj->ref_nr--;
5661 return;
5662 }
5663
5664 if (adj->master)
5665 sysfs_remove_link(&(dev->dev.kobj), "master");
5666
5667 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5668 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5669
5670 list_del_rcu(&adj->list);
5671 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5672 adj_dev->name, dev->name, adj_dev->name);
5673 dev_put(adj_dev);
5674 kfree_rcu(adj, rcu);
5675 }
5676
5677 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5678 struct net_device *upper_dev,
5679 struct list_head *up_list,
5680 struct list_head *down_list,
5681 void *private, bool master)
5682 {
5683 int ret;
5684
5685 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5686 master);
5687 if (ret)
5688 return ret;
5689
5690 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5691 false);
5692 if (ret) {
5693 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5694 return ret;
5695 }
5696
5697 return 0;
5698 }
5699
5700 static int __netdev_adjacent_dev_link(struct net_device *dev,
5701 struct net_device *upper_dev)
5702 {
5703 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5704 &dev->all_adj_list.upper,
5705 &upper_dev->all_adj_list.lower,
5706 NULL, false);
5707 }
5708
5709 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5710 struct net_device *upper_dev,
5711 struct list_head *up_list,
5712 struct list_head *down_list)
5713 {
5714 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5715 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5716 }
5717
5718 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5719 struct net_device *upper_dev)
5720 {
5721 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5722 &dev->all_adj_list.upper,
5723 &upper_dev->all_adj_list.lower);
5724 }
5725
5726 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5727 struct net_device *upper_dev,
5728 void *private, bool master)
5729 {
5730 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5731
5732 if (ret)
5733 return ret;
5734
5735 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5736 &dev->adj_list.upper,
5737 &upper_dev->adj_list.lower,
5738 private, master);
5739 if (ret) {
5740 __netdev_adjacent_dev_unlink(dev, upper_dev);
5741 return ret;
5742 }
5743
5744 return 0;
5745 }
5746
5747 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5748 struct net_device *upper_dev)
5749 {
5750 __netdev_adjacent_dev_unlink(dev, upper_dev);
5751 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5752 &dev->adj_list.upper,
5753 &upper_dev->adj_list.lower);
5754 }
5755
5756 static int __netdev_upper_dev_link(struct net_device *dev,
5757 struct net_device *upper_dev, bool master,
5758 void *upper_priv, void *upper_info)
5759 {
5760 struct netdev_notifier_changeupper_info changeupper_info;
5761 struct netdev_adjacent *i, *j, *to_i, *to_j;
5762 int ret = 0;
5763
5764 ASSERT_RTNL();
5765
5766 if (dev == upper_dev)
5767 return -EBUSY;
5768
5769 /* To prevent loops, check if dev is not upper device to upper_dev. */
5770 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5771 return -EBUSY;
5772
5773 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5774 return -EEXIST;
5775
5776 if (master && netdev_master_upper_dev_get(dev))
5777 return -EBUSY;
5778
5779 changeupper_info.upper_dev = upper_dev;
5780 changeupper_info.master = master;
5781 changeupper_info.linking = true;
5782 changeupper_info.upper_info = upper_info;
5783
5784 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5785 &changeupper_info.info);
5786 ret = notifier_to_errno(ret);
5787 if (ret)
5788 return ret;
5789
5790 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5791 master);
5792 if (ret)
5793 return ret;
5794
5795 /* Now that we linked these devs, make all the upper_dev's
5796 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5797 * versa, and don't forget the devices itself. All of these
5798 * links are non-neighbours.
5799 */
5800 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5801 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5802 pr_debug("Interlinking %s with %s, non-neighbour\n",
5803 i->dev->name, j->dev->name);
5804 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5805 if (ret)
5806 goto rollback_mesh;
5807 }
5808 }
5809
5810 /* add dev to every upper_dev's upper device */
5811 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5812 pr_debug("linking %s's upper device %s with %s\n",
5813 upper_dev->name, i->dev->name, dev->name);
5814 ret = __netdev_adjacent_dev_link(dev, i->dev);
5815 if (ret)
5816 goto rollback_upper_mesh;
5817 }
5818
5819 /* add upper_dev to every dev's lower device */
5820 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5821 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5822 i->dev->name, upper_dev->name);
5823 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5824 if (ret)
5825 goto rollback_lower_mesh;
5826 }
5827
5828 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5829 &changeupper_info.info);
5830 ret = notifier_to_errno(ret);
5831 if (ret)
5832 goto rollback_lower_mesh;
5833
5834 return 0;
5835
5836 rollback_lower_mesh:
5837 to_i = i;
5838 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5839 if (i == to_i)
5840 break;
5841 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5842 }
5843
5844 i = NULL;
5845
5846 rollback_upper_mesh:
5847 to_i = i;
5848 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5849 if (i == to_i)
5850 break;
5851 __netdev_adjacent_dev_unlink(dev, i->dev);
5852 }
5853
5854 i = j = NULL;
5855
5856 rollback_mesh:
5857 to_i = i;
5858 to_j = j;
5859 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5860 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5861 if (i == to_i && j == to_j)
5862 break;
5863 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5864 }
5865 if (i == to_i)
5866 break;
5867 }
5868
5869 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5870
5871 return ret;
5872 }
5873
5874 /**
5875 * netdev_upper_dev_link - Add a link to the upper device
5876 * @dev: device
5877 * @upper_dev: new upper device
5878 *
5879 * Adds a link to device which is upper to this one. The caller must hold
5880 * the RTNL lock. On a failure a negative errno code is returned.
5881 * On success the reference counts are adjusted and the function
5882 * returns zero.
5883 */
5884 int netdev_upper_dev_link(struct net_device *dev,
5885 struct net_device *upper_dev)
5886 {
5887 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5888 }
5889 EXPORT_SYMBOL(netdev_upper_dev_link);
5890
5891 /**
5892 * netdev_master_upper_dev_link - Add a master link to the upper device
5893 * @dev: device
5894 * @upper_dev: new upper device
5895 * @upper_priv: upper device private
5896 * @upper_info: upper info to be passed down via notifier
5897 *
5898 * Adds a link to device which is upper to this one. In this case, only
5899 * one master upper device can be linked, although other non-master devices
5900 * might be linked as well. The caller must hold the RTNL lock.
5901 * On a failure a negative errno code is returned. On success the reference
5902 * counts are adjusted and the function returns zero.
5903 */
5904 int netdev_master_upper_dev_link(struct net_device *dev,
5905 struct net_device *upper_dev,
5906 void *upper_priv, void *upper_info)
5907 {
5908 return __netdev_upper_dev_link(dev, upper_dev, true,
5909 upper_priv, upper_info);
5910 }
5911 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5912
5913 /**
5914 * netdev_upper_dev_unlink - Removes a link to upper device
5915 * @dev: device
5916 * @upper_dev: new upper device
5917 *
5918 * Removes a link to device which is upper to this one. The caller must hold
5919 * the RTNL lock.
5920 */
5921 void netdev_upper_dev_unlink(struct net_device *dev,
5922 struct net_device *upper_dev)
5923 {
5924 struct netdev_notifier_changeupper_info changeupper_info;
5925 struct netdev_adjacent *i, *j;
5926 ASSERT_RTNL();
5927
5928 changeupper_info.upper_dev = upper_dev;
5929 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5930 changeupper_info.linking = false;
5931
5932 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5933 &changeupper_info.info);
5934
5935 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5936
5937 /* Here is the tricky part. We must remove all dev's lower
5938 * devices from all upper_dev's upper devices and vice
5939 * versa, to maintain the graph relationship.
5940 */
5941 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5942 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5943 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5944
5945 /* remove also the devices itself from lower/upper device
5946 * list
5947 */
5948 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5949 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5950
5951 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5952 __netdev_adjacent_dev_unlink(dev, i->dev);
5953
5954 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5955 &changeupper_info.info);
5956 }
5957 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5958
5959 /**
5960 * netdev_bonding_info_change - Dispatch event about slave change
5961 * @dev: device
5962 * @bonding_info: info to dispatch
5963 *
5964 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5965 * The caller must hold the RTNL lock.
5966 */
5967 void netdev_bonding_info_change(struct net_device *dev,
5968 struct netdev_bonding_info *bonding_info)
5969 {
5970 struct netdev_notifier_bonding_info info;
5971
5972 memcpy(&info.bonding_info, bonding_info,
5973 sizeof(struct netdev_bonding_info));
5974 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5975 &info.info);
5976 }
5977 EXPORT_SYMBOL(netdev_bonding_info_change);
5978
5979 static void netdev_adjacent_add_links(struct net_device *dev)
5980 {
5981 struct netdev_adjacent *iter;
5982
5983 struct net *net = dev_net(dev);
5984
5985 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5986 if (!net_eq(net, dev_net(iter->dev)))
5987 continue;
5988 netdev_adjacent_sysfs_add(iter->dev, dev,
5989 &iter->dev->adj_list.lower);
5990 netdev_adjacent_sysfs_add(dev, iter->dev,
5991 &dev->adj_list.upper);
5992 }
5993
5994 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5995 if (!net_eq(net, dev_net(iter->dev)))
5996 continue;
5997 netdev_adjacent_sysfs_add(iter->dev, dev,
5998 &iter->dev->adj_list.upper);
5999 netdev_adjacent_sysfs_add(dev, iter->dev,
6000 &dev->adj_list.lower);
6001 }
6002 }
6003
6004 static void netdev_adjacent_del_links(struct net_device *dev)
6005 {
6006 struct netdev_adjacent *iter;
6007
6008 struct net *net = dev_net(dev);
6009
6010 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6011 if (!net_eq(net, dev_net(iter->dev)))
6012 continue;
6013 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6014 &iter->dev->adj_list.lower);
6015 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6016 &dev->adj_list.upper);
6017 }
6018
6019 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6020 if (!net_eq(net, dev_net(iter->dev)))
6021 continue;
6022 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6023 &iter->dev->adj_list.upper);
6024 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6025 &dev->adj_list.lower);
6026 }
6027 }
6028
6029 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6030 {
6031 struct netdev_adjacent *iter;
6032
6033 struct net *net = dev_net(dev);
6034
6035 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6036 if (!net_eq(net, dev_net(iter->dev)))
6037 continue;
6038 netdev_adjacent_sysfs_del(iter->dev, oldname,
6039 &iter->dev->adj_list.lower);
6040 netdev_adjacent_sysfs_add(iter->dev, dev,
6041 &iter->dev->adj_list.lower);
6042 }
6043
6044 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6045 if (!net_eq(net, dev_net(iter->dev)))
6046 continue;
6047 netdev_adjacent_sysfs_del(iter->dev, oldname,
6048 &iter->dev->adj_list.upper);
6049 netdev_adjacent_sysfs_add(iter->dev, dev,
6050 &iter->dev->adj_list.upper);
6051 }
6052 }
6053
6054 void *netdev_lower_dev_get_private(struct net_device *dev,
6055 struct net_device *lower_dev)
6056 {
6057 struct netdev_adjacent *lower;
6058
6059 if (!lower_dev)
6060 return NULL;
6061 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6062 if (!lower)
6063 return NULL;
6064
6065 return lower->private;
6066 }
6067 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6068
6069
6070 int dev_get_nest_level(struct net_device *dev)
6071 {
6072 struct net_device *lower = NULL;
6073 struct list_head *iter;
6074 int max_nest = -1;
6075 int nest;
6076
6077 ASSERT_RTNL();
6078
6079 netdev_for_each_lower_dev(dev, lower, iter) {
6080 nest = dev_get_nest_level(lower);
6081 if (max_nest < nest)
6082 max_nest = nest;
6083 }
6084
6085 return max_nest + 1;
6086 }
6087 EXPORT_SYMBOL(dev_get_nest_level);
6088
6089 /**
6090 * netdev_lower_change - Dispatch event about lower device state change
6091 * @lower_dev: device
6092 * @lower_state_info: state to dispatch
6093 *
6094 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6095 * The caller must hold the RTNL lock.
6096 */
6097 void netdev_lower_state_changed(struct net_device *lower_dev,
6098 void *lower_state_info)
6099 {
6100 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6101
6102 ASSERT_RTNL();
6103 changelowerstate_info.lower_state_info = lower_state_info;
6104 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6105 &changelowerstate_info.info);
6106 }
6107 EXPORT_SYMBOL(netdev_lower_state_changed);
6108
6109 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6110 struct neighbour *n)
6111 {
6112 struct net_device *lower_dev, *stop_dev;
6113 struct list_head *iter;
6114 int err;
6115
6116 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6117 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6118 continue;
6119 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6120 if (err) {
6121 stop_dev = lower_dev;
6122 goto rollback;
6123 }
6124 }
6125 return 0;
6126
6127 rollback:
6128 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6129 if (lower_dev == stop_dev)
6130 break;
6131 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6132 continue;
6133 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6134 }
6135 return err;
6136 }
6137 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6138
6139 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6140 struct neighbour *n)
6141 {
6142 struct net_device *lower_dev;
6143 struct list_head *iter;
6144
6145 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6146 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6147 continue;
6148 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6149 }
6150 }
6151 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6152
6153 static void dev_change_rx_flags(struct net_device *dev, int flags)
6154 {
6155 const struct net_device_ops *ops = dev->netdev_ops;
6156
6157 if (ops->ndo_change_rx_flags)
6158 ops->ndo_change_rx_flags(dev, flags);
6159 }
6160
6161 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6162 {
6163 unsigned int old_flags = dev->flags;
6164 kuid_t uid;
6165 kgid_t gid;
6166
6167 ASSERT_RTNL();
6168
6169 dev->flags |= IFF_PROMISC;
6170 dev->promiscuity += inc;
6171 if (dev->promiscuity == 0) {
6172 /*
6173 * Avoid overflow.
6174 * If inc causes overflow, untouch promisc and return error.
6175 */
6176 if (inc < 0)
6177 dev->flags &= ~IFF_PROMISC;
6178 else {
6179 dev->promiscuity -= inc;
6180 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6181 dev->name);
6182 return -EOVERFLOW;
6183 }
6184 }
6185 if (dev->flags != old_flags) {
6186 pr_info("device %s %s promiscuous mode\n",
6187 dev->name,
6188 dev->flags & IFF_PROMISC ? "entered" : "left");
6189 if (audit_enabled) {
6190 current_uid_gid(&uid, &gid);
6191 audit_log(current->audit_context, GFP_ATOMIC,
6192 AUDIT_ANOM_PROMISCUOUS,
6193 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6194 dev->name, (dev->flags & IFF_PROMISC),
6195 (old_flags & IFF_PROMISC),
6196 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6197 from_kuid(&init_user_ns, uid),
6198 from_kgid(&init_user_ns, gid),
6199 audit_get_sessionid(current));
6200 }
6201
6202 dev_change_rx_flags(dev, IFF_PROMISC);
6203 }
6204 if (notify)
6205 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6206 return 0;
6207 }
6208
6209 /**
6210 * dev_set_promiscuity - update promiscuity count on a device
6211 * @dev: device
6212 * @inc: modifier
6213 *
6214 * Add or remove promiscuity from a device. While the count in the device
6215 * remains above zero the interface remains promiscuous. Once it hits zero
6216 * the device reverts back to normal filtering operation. A negative inc
6217 * value is used to drop promiscuity on the device.
6218 * Return 0 if successful or a negative errno code on error.
6219 */
6220 int dev_set_promiscuity(struct net_device *dev, int inc)
6221 {
6222 unsigned int old_flags = dev->flags;
6223 int err;
6224
6225 err = __dev_set_promiscuity(dev, inc, true);
6226 if (err < 0)
6227 return err;
6228 if (dev->flags != old_flags)
6229 dev_set_rx_mode(dev);
6230 return err;
6231 }
6232 EXPORT_SYMBOL(dev_set_promiscuity);
6233
6234 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6235 {
6236 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6237
6238 ASSERT_RTNL();
6239
6240 dev->flags |= IFF_ALLMULTI;
6241 dev->allmulti += inc;
6242 if (dev->allmulti == 0) {
6243 /*
6244 * Avoid overflow.
6245 * If inc causes overflow, untouch allmulti and return error.
6246 */
6247 if (inc < 0)
6248 dev->flags &= ~IFF_ALLMULTI;
6249 else {
6250 dev->allmulti -= inc;
6251 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6252 dev->name);
6253 return -EOVERFLOW;
6254 }
6255 }
6256 if (dev->flags ^ old_flags) {
6257 dev_change_rx_flags(dev, IFF_ALLMULTI);
6258 dev_set_rx_mode(dev);
6259 if (notify)
6260 __dev_notify_flags(dev, old_flags,
6261 dev->gflags ^ old_gflags);
6262 }
6263 return 0;
6264 }
6265
6266 /**
6267 * dev_set_allmulti - update allmulti count on a device
6268 * @dev: device
6269 * @inc: modifier
6270 *
6271 * Add or remove reception of all multicast frames to a device. While the
6272 * count in the device remains above zero the interface remains listening
6273 * to all interfaces. Once it hits zero the device reverts back to normal
6274 * filtering operation. A negative @inc value is used to drop the counter
6275 * when releasing a resource needing all multicasts.
6276 * Return 0 if successful or a negative errno code on error.
6277 */
6278
6279 int dev_set_allmulti(struct net_device *dev, int inc)
6280 {
6281 return __dev_set_allmulti(dev, inc, true);
6282 }
6283 EXPORT_SYMBOL(dev_set_allmulti);
6284
6285 /*
6286 * Upload unicast and multicast address lists to device and
6287 * configure RX filtering. When the device doesn't support unicast
6288 * filtering it is put in promiscuous mode while unicast addresses
6289 * are present.
6290 */
6291 void __dev_set_rx_mode(struct net_device *dev)
6292 {
6293 const struct net_device_ops *ops = dev->netdev_ops;
6294
6295 /* dev_open will call this function so the list will stay sane. */
6296 if (!(dev->flags&IFF_UP))
6297 return;
6298
6299 if (!netif_device_present(dev))
6300 return;
6301
6302 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6303 /* Unicast addresses changes may only happen under the rtnl,
6304 * therefore calling __dev_set_promiscuity here is safe.
6305 */
6306 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6307 __dev_set_promiscuity(dev, 1, false);
6308 dev->uc_promisc = true;
6309 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6310 __dev_set_promiscuity(dev, -1, false);
6311 dev->uc_promisc = false;
6312 }
6313 }
6314
6315 if (ops->ndo_set_rx_mode)
6316 ops->ndo_set_rx_mode(dev);
6317 }
6318
6319 void dev_set_rx_mode(struct net_device *dev)
6320 {
6321 netif_addr_lock_bh(dev);
6322 __dev_set_rx_mode(dev);
6323 netif_addr_unlock_bh(dev);
6324 }
6325
6326 /**
6327 * dev_get_flags - get flags reported to userspace
6328 * @dev: device
6329 *
6330 * Get the combination of flag bits exported through APIs to userspace.
6331 */
6332 unsigned int dev_get_flags(const struct net_device *dev)
6333 {
6334 unsigned int flags;
6335
6336 flags = (dev->flags & ~(IFF_PROMISC |
6337 IFF_ALLMULTI |
6338 IFF_RUNNING |
6339 IFF_LOWER_UP |
6340 IFF_DORMANT)) |
6341 (dev->gflags & (IFF_PROMISC |
6342 IFF_ALLMULTI));
6343
6344 if (netif_running(dev)) {
6345 if (netif_oper_up(dev))
6346 flags |= IFF_RUNNING;
6347 if (netif_carrier_ok(dev))
6348 flags |= IFF_LOWER_UP;
6349 if (netif_dormant(dev))
6350 flags |= IFF_DORMANT;
6351 }
6352
6353 return flags;
6354 }
6355 EXPORT_SYMBOL(dev_get_flags);
6356
6357 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6358 {
6359 unsigned int old_flags = dev->flags;
6360 int ret;
6361
6362 ASSERT_RTNL();
6363
6364 /*
6365 * Set the flags on our device.
6366 */
6367
6368 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6369 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6370 IFF_AUTOMEDIA)) |
6371 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6372 IFF_ALLMULTI));
6373
6374 /*
6375 * Load in the correct multicast list now the flags have changed.
6376 */
6377
6378 if ((old_flags ^ flags) & IFF_MULTICAST)
6379 dev_change_rx_flags(dev, IFF_MULTICAST);
6380
6381 dev_set_rx_mode(dev);
6382
6383 /*
6384 * Have we downed the interface. We handle IFF_UP ourselves
6385 * according to user attempts to set it, rather than blindly
6386 * setting it.
6387 */
6388
6389 ret = 0;
6390 if ((old_flags ^ flags) & IFF_UP)
6391 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6392
6393 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6394 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6395 unsigned int old_flags = dev->flags;
6396
6397 dev->gflags ^= IFF_PROMISC;
6398
6399 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6400 if (dev->flags != old_flags)
6401 dev_set_rx_mode(dev);
6402 }
6403
6404 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6405 is important. Some (broken) drivers set IFF_PROMISC, when
6406 IFF_ALLMULTI is requested not asking us and not reporting.
6407 */
6408 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6409 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6410
6411 dev->gflags ^= IFF_ALLMULTI;
6412 __dev_set_allmulti(dev, inc, false);
6413 }
6414
6415 return ret;
6416 }
6417
6418 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6419 unsigned int gchanges)
6420 {
6421 unsigned int changes = dev->flags ^ old_flags;
6422
6423 if (gchanges)
6424 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6425
6426 if (changes & IFF_UP) {
6427 if (dev->flags & IFF_UP)
6428 call_netdevice_notifiers(NETDEV_UP, dev);
6429 else
6430 call_netdevice_notifiers(NETDEV_DOWN, dev);
6431 }
6432
6433 if (dev->flags & IFF_UP &&
6434 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6435 struct netdev_notifier_change_info change_info;
6436
6437 change_info.flags_changed = changes;
6438 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6439 &change_info.info);
6440 }
6441 }
6442
6443 /**
6444 * dev_change_flags - change device settings
6445 * @dev: device
6446 * @flags: device state flags
6447 *
6448 * Change settings on device based state flags. The flags are
6449 * in the userspace exported format.
6450 */
6451 int dev_change_flags(struct net_device *dev, unsigned int flags)
6452 {
6453 int ret;
6454 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6455
6456 ret = __dev_change_flags(dev, flags);
6457 if (ret < 0)
6458 return ret;
6459
6460 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6461 __dev_notify_flags(dev, old_flags, changes);
6462 return ret;
6463 }
6464 EXPORT_SYMBOL(dev_change_flags);
6465
6466 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6467 {
6468 const struct net_device_ops *ops = dev->netdev_ops;
6469
6470 if (ops->ndo_change_mtu)
6471 return ops->ndo_change_mtu(dev, new_mtu);
6472
6473 dev->mtu = new_mtu;
6474 return 0;
6475 }
6476
6477 /**
6478 * dev_set_mtu - Change maximum transfer unit
6479 * @dev: device
6480 * @new_mtu: new transfer unit
6481 *
6482 * Change the maximum transfer size of the network device.
6483 */
6484 int dev_set_mtu(struct net_device *dev, int new_mtu)
6485 {
6486 int err, orig_mtu;
6487
6488 if (new_mtu == dev->mtu)
6489 return 0;
6490
6491 /* MTU must be positive. */
6492 if (new_mtu < 0)
6493 return -EINVAL;
6494
6495 if (!netif_device_present(dev))
6496 return -ENODEV;
6497
6498 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6499 err = notifier_to_errno(err);
6500 if (err)
6501 return err;
6502
6503 orig_mtu = dev->mtu;
6504 err = __dev_set_mtu(dev, new_mtu);
6505
6506 if (!err) {
6507 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6508 err = notifier_to_errno(err);
6509 if (err) {
6510 /* setting mtu back and notifying everyone again,
6511 * so that they have a chance to revert changes.
6512 */
6513 __dev_set_mtu(dev, orig_mtu);
6514 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6515 }
6516 }
6517 return err;
6518 }
6519 EXPORT_SYMBOL(dev_set_mtu);
6520
6521 /**
6522 * dev_set_group - Change group this device belongs to
6523 * @dev: device
6524 * @new_group: group this device should belong to
6525 */
6526 void dev_set_group(struct net_device *dev, int new_group)
6527 {
6528 dev->group = new_group;
6529 }
6530 EXPORT_SYMBOL(dev_set_group);
6531
6532 /**
6533 * dev_set_mac_address - Change Media Access Control Address
6534 * @dev: device
6535 * @sa: new address
6536 *
6537 * Change the hardware (MAC) address of the device
6538 */
6539 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6540 {
6541 const struct net_device_ops *ops = dev->netdev_ops;
6542 int err;
6543
6544 if (!ops->ndo_set_mac_address)
6545 return -EOPNOTSUPP;
6546 if (sa->sa_family != dev->type)
6547 return -EINVAL;
6548 if (!netif_device_present(dev))
6549 return -ENODEV;
6550 err = ops->ndo_set_mac_address(dev, sa);
6551 if (err)
6552 return err;
6553 dev->addr_assign_type = NET_ADDR_SET;
6554 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6555 add_device_randomness(dev->dev_addr, dev->addr_len);
6556 return 0;
6557 }
6558 EXPORT_SYMBOL(dev_set_mac_address);
6559
6560 /**
6561 * dev_change_carrier - Change device carrier
6562 * @dev: device
6563 * @new_carrier: new value
6564 *
6565 * Change device carrier
6566 */
6567 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6568 {
6569 const struct net_device_ops *ops = dev->netdev_ops;
6570
6571 if (!ops->ndo_change_carrier)
6572 return -EOPNOTSUPP;
6573 if (!netif_device_present(dev))
6574 return -ENODEV;
6575 return ops->ndo_change_carrier(dev, new_carrier);
6576 }
6577 EXPORT_SYMBOL(dev_change_carrier);
6578
6579 /**
6580 * dev_get_phys_port_id - Get device physical port ID
6581 * @dev: device
6582 * @ppid: port ID
6583 *
6584 * Get device physical port ID
6585 */
6586 int dev_get_phys_port_id(struct net_device *dev,
6587 struct netdev_phys_item_id *ppid)
6588 {
6589 const struct net_device_ops *ops = dev->netdev_ops;
6590
6591 if (!ops->ndo_get_phys_port_id)
6592 return -EOPNOTSUPP;
6593 return ops->ndo_get_phys_port_id(dev, ppid);
6594 }
6595 EXPORT_SYMBOL(dev_get_phys_port_id);
6596
6597 /**
6598 * dev_get_phys_port_name - Get device physical port name
6599 * @dev: device
6600 * @name: port name
6601 * @len: limit of bytes to copy to name
6602 *
6603 * Get device physical port name
6604 */
6605 int dev_get_phys_port_name(struct net_device *dev,
6606 char *name, size_t len)
6607 {
6608 const struct net_device_ops *ops = dev->netdev_ops;
6609
6610 if (!ops->ndo_get_phys_port_name)
6611 return -EOPNOTSUPP;
6612 return ops->ndo_get_phys_port_name(dev, name, len);
6613 }
6614 EXPORT_SYMBOL(dev_get_phys_port_name);
6615
6616 /**
6617 * dev_change_proto_down - update protocol port state information
6618 * @dev: device
6619 * @proto_down: new value
6620 *
6621 * This info can be used by switch drivers to set the phys state of the
6622 * port.
6623 */
6624 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6625 {
6626 const struct net_device_ops *ops = dev->netdev_ops;
6627
6628 if (!ops->ndo_change_proto_down)
6629 return -EOPNOTSUPP;
6630 if (!netif_device_present(dev))
6631 return -ENODEV;
6632 return ops->ndo_change_proto_down(dev, proto_down);
6633 }
6634 EXPORT_SYMBOL(dev_change_proto_down);
6635
6636 /**
6637 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6638 * @dev: device
6639 * @fd: new program fd or negative value to clear
6640 *
6641 * Set or clear a bpf program for a device
6642 */
6643 int dev_change_xdp_fd(struct net_device *dev, int fd)
6644 {
6645 const struct net_device_ops *ops = dev->netdev_ops;
6646 struct bpf_prog *prog = NULL;
6647 struct netdev_xdp xdp = {};
6648 int err;
6649
6650 if (!ops->ndo_xdp)
6651 return -EOPNOTSUPP;
6652 if (fd >= 0) {
6653 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6654 if (IS_ERR(prog))
6655 return PTR_ERR(prog);
6656 }
6657
6658 xdp.command = XDP_SETUP_PROG;
6659 xdp.prog = prog;
6660 err = ops->ndo_xdp(dev, &xdp);
6661 if (err < 0 && prog)
6662 bpf_prog_put(prog);
6663
6664 return err;
6665 }
6666 EXPORT_SYMBOL(dev_change_xdp_fd);
6667
6668 /**
6669 * dev_new_index - allocate an ifindex
6670 * @net: the applicable net namespace
6671 *
6672 * Returns a suitable unique value for a new device interface
6673 * number. The caller must hold the rtnl semaphore or the
6674 * dev_base_lock to be sure it remains unique.
6675 */
6676 static int dev_new_index(struct net *net)
6677 {
6678 int ifindex = net->ifindex;
6679 for (;;) {
6680 if (++ifindex <= 0)
6681 ifindex = 1;
6682 if (!__dev_get_by_index(net, ifindex))
6683 return net->ifindex = ifindex;
6684 }
6685 }
6686
6687 /* Delayed registration/unregisteration */
6688 static LIST_HEAD(net_todo_list);
6689 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6690
6691 static void net_set_todo(struct net_device *dev)
6692 {
6693 list_add_tail(&dev->todo_list, &net_todo_list);
6694 dev_net(dev)->dev_unreg_count++;
6695 }
6696
6697 static void rollback_registered_many(struct list_head *head)
6698 {
6699 struct net_device *dev, *tmp;
6700 LIST_HEAD(close_head);
6701
6702 BUG_ON(dev_boot_phase);
6703 ASSERT_RTNL();
6704
6705 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6706 /* Some devices call without registering
6707 * for initialization unwind. Remove those
6708 * devices and proceed with the remaining.
6709 */
6710 if (dev->reg_state == NETREG_UNINITIALIZED) {
6711 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6712 dev->name, dev);
6713
6714 WARN_ON(1);
6715 list_del(&dev->unreg_list);
6716 continue;
6717 }
6718 dev->dismantle = true;
6719 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6720 }
6721
6722 /* If device is running, close it first. */
6723 list_for_each_entry(dev, head, unreg_list)
6724 list_add_tail(&dev->close_list, &close_head);
6725 dev_close_many(&close_head, true);
6726
6727 list_for_each_entry(dev, head, unreg_list) {
6728 /* And unlink it from device chain. */
6729 unlist_netdevice(dev);
6730
6731 dev->reg_state = NETREG_UNREGISTERING;
6732 }
6733 flush_all_backlogs();
6734
6735 synchronize_net();
6736
6737 list_for_each_entry(dev, head, unreg_list) {
6738 struct sk_buff *skb = NULL;
6739
6740 /* Shutdown queueing discipline. */
6741 dev_shutdown(dev);
6742
6743
6744 /* Notify protocols, that we are about to destroy
6745 this device. They should clean all the things.
6746 */
6747 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6748
6749 if (!dev->rtnl_link_ops ||
6750 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6751 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6752 GFP_KERNEL);
6753
6754 /*
6755 * Flush the unicast and multicast chains
6756 */
6757 dev_uc_flush(dev);
6758 dev_mc_flush(dev);
6759
6760 if (dev->netdev_ops->ndo_uninit)
6761 dev->netdev_ops->ndo_uninit(dev);
6762
6763 if (skb)
6764 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6765
6766 /* Notifier chain MUST detach us all upper devices. */
6767 WARN_ON(netdev_has_any_upper_dev(dev));
6768
6769 /* Remove entries from kobject tree */
6770 netdev_unregister_kobject(dev);
6771 #ifdef CONFIG_XPS
6772 /* Remove XPS queueing entries */
6773 netif_reset_xps_queues_gt(dev, 0);
6774 #endif
6775 }
6776
6777 synchronize_net();
6778
6779 list_for_each_entry(dev, head, unreg_list)
6780 dev_put(dev);
6781 }
6782
6783 static void rollback_registered(struct net_device *dev)
6784 {
6785 LIST_HEAD(single);
6786
6787 list_add(&dev->unreg_list, &single);
6788 rollback_registered_many(&single);
6789 list_del(&single);
6790 }
6791
6792 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6793 struct net_device *upper, netdev_features_t features)
6794 {
6795 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6796 netdev_features_t feature;
6797 int feature_bit;
6798
6799 for_each_netdev_feature(&upper_disables, feature_bit) {
6800 feature = __NETIF_F_BIT(feature_bit);
6801 if (!(upper->wanted_features & feature)
6802 && (features & feature)) {
6803 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6804 &feature, upper->name);
6805 features &= ~feature;
6806 }
6807 }
6808
6809 return features;
6810 }
6811
6812 static void netdev_sync_lower_features(struct net_device *upper,
6813 struct net_device *lower, netdev_features_t features)
6814 {
6815 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6816 netdev_features_t feature;
6817 int feature_bit;
6818
6819 for_each_netdev_feature(&upper_disables, feature_bit) {
6820 feature = __NETIF_F_BIT(feature_bit);
6821 if (!(features & feature) && (lower->features & feature)) {
6822 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6823 &feature, lower->name);
6824 lower->wanted_features &= ~feature;
6825 netdev_update_features(lower);
6826
6827 if (unlikely(lower->features & feature))
6828 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6829 &feature, lower->name);
6830 }
6831 }
6832 }
6833
6834 static netdev_features_t netdev_fix_features(struct net_device *dev,
6835 netdev_features_t features)
6836 {
6837 /* Fix illegal checksum combinations */
6838 if ((features & NETIF_F_HW_CSUM) &&
6839 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6840 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6841 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6842 }
6843
6844 /* TSO requires that SG is present as well. */
6845 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6846 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6847 features &= ~NETIF_F_ALL_TSO;
6848 }
6849
6850 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6851 !(features & NETIF_F_IP_CSUM)) {
6852 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6853 features &= ~NETIF_F_TSO;
6854 features &= ~NETIF_F_TSO_ECN;
6855 }
6856
6857 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6858 !(features & NETIF_F_IPV6_CSUM)) {
6859 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6860 features &= ~NETIF_F_TSO6;
6861 }
6862
6863 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6864 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6865 features &= ~NETIF_F_TSO_MANGLEID;
6866
6867 /* TSO ECN requires that TSO is present as well. */
6868 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6869 features &= ~NETIF_F_TSO_ECN;
6870
6871 /* Software GSO depends on SG. */
6872 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6873 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6874 features &= ~NETIF_F_GSO;
6875 }
6876
6877 /* UFO needs SG and checksumming */
6878 if (features & NETIF_F_UFO) {
6879 /* maybe split UFO into V4 and V6? */
6880 if (!(features & NETIF_F_HW_CSUM) &&
6881 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6882 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6883 netdev_dbg(dev,
6884 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6885 features &= ~NETIF_F_UFO;
6886 }
6887
6888 if (!(features & NETIF_F_SG)) {
6889 netdev_dbg(dev,
6890 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6891 features &= ~NETIF_F_UFO;
6892 }
6893 }
6894
6895 /* GSO partial features require GSO partial be set */
6896 if ((features & dev->gso_partial_features) &&
6897 !(features & NETIF_F_GSO_PARTIAL)) {
6898 netdev_dbg(dev,
6899 "Dropping partially supported GSO features since no GSO partial.\n");
6900 features &= ~dev->gso_partial_features;
6901 }
6902
6903 #ifdef CONFIG_NET_RX_BUSY_POLL
6904 if (dev->netdev_ops->ndo_busy_poll)
6905 features |= NETIF_F_BUSY_POLL;
6906 else
6907 #endif
6908 features &= ~NETIF_F_BUSY_POLL;
6909
6910 return features;
6911 }
6912
6913 int __netdev_update_features(struct net_device *dev)
6914 {
6915 struct net_device *upper, *lower;
6916 netdev_features_t features;
6917 struct list_head *iter;
6918 int err = -1;
6919
6920 ASSERT_RTNL();
6921
6922 features = netdev_get_wanted_features(dev);
6923
6924 if (dev->netdev_ops->ndo_fix_features)
6925 features = dev->netdev_ops->ndo_fix_features(dev, features);
6926
6927 /* driver might be less strict about feature dependencies */
6928 features = netdev_fix_features(dev, features);
6929
6930 /* some features can't be enabled if they're off an an upper device */
6931 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6932 features = netdev_sync_upper_features(dev, upper, features);
6933
6934 if (dev->features == features)
6935 goto sync_lower;
6936
6937 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6938 &dev->features, &features);
6939
6940 if (dev->netdev_ops->ndo_set_features)
6941 err = dev->netdev_ops->ndo_set_features(dev, features);
6942 else
6943 err = 0;
6944
6945 if (unlikely(err < 0)) {
6946 netdev_err(dev,
6947 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6948 err, &features, &dev->features);
6949 /* return non-0 since some features might have changed and
6950 * it's better to fire a spurious notification than miss it
6951 */
6952 return -1;
6953 }
6954
6955 sync_lower:
6956 /* some features must be disabled on lower devices when disabled
6957 * on an upper device (think: bonding master or bridge)
6958 */
6959 netdev_for_each_lower_dev(dev, lower, iter)
6960 netdev_sync_lower_features(dev, lower, features);
6961
6962 if (!err)
6963 dev->features = features;
6964
6965 return err < 0 ? 0 : 1;
6966 }
6967
6968 /**
6969 * netdev_update_features - recalculate device features
6970 * @dev: the device to check
6971 *
6972 * Recalculate dev->features set and send notifications if it
6973 * has changed. Should be called after driver or hardware dependent
6974 * conditions might have changed that influence the features.
6975 */
6976 void netdev_update_features(struct net_device *dev)
6977 {
6978 if (__netdev_update_features(dev))
6979 netdev_features_change(dev);
6980 }
6981 EXPORT_SYMBOL(netdev_update_features);
6982
6983 /**
6984 * netdev_change_features - recalculate device features
6985 * @dev: the device to check
6986 *
6987 * Recalculate dev->features set and send notifications even
6988 * if they have not changed. Should be called instead of
6989 * netdev_update_features() if also dev->vlan_features might
6990 * have changed to allow the changes to be propagated to stacked
6991 * VLAN devices.
6992 */
6993 void netdev_change_features(struct net_device *dev)
6994 {
6995 __netdev_update_features(dev);
6996 netdev_features_change(dev);
6997 }
6998 EXPORT_SYMBOL(netdev_change_features);
6999
7000 /**
7001 * netif_stacked_transfer_operstate - transfer operstate
7002 * @rootdev: the root or lower level device to transfer state from
7003 * @dev: the device to transfer operstate to
7004 *
7005 * Transfer operational state from root to device. This is normally
7006 * called when a stacking relationship exists between the root
7007 * device and the device(a leaf device).
7008 */
7009 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7010 struct net_device *dev)
7011 {
7012 if (rootdev->operstate == IF_OPER_DORMANT)
7013 netif_dormant_on(dev);
7014 else
7015 netif_dormant_off(dev);
7016
7017 if (netif_carrier_ok(rootdev)) {
7018 if (!netif_carrier_ok(dev))
7019 netif_carrier_on(dev);
7020 } else {
7021 if (netif_carrier_ok(dev))
7022 netif_carrier_off(dev);
7023 }
7024 }
7025 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7026
7027 #ifdef CONFIG_SYSFS
7028 static int netif_alloc_rx_queues(struct net_device *dev)
7029 {
7030 unsigned int i, count = dev->num_rx_queues;
7031 struct netdev_rx_queue *rx;
7032 size_t sz = count * sizeof(*rx);
7033
7034 BUG_ON(count < 1);
7035
7036 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7037 if (!rx) {
7038 rx = vzalloc(sz);
7039 if (!rx)
7040 return -ENOMEM;
7041 }
7042 dev->_rx = rx;
7043
7044 for (i = 0; i < count; i++)
7045 rx[i].dev = dev;
7046 return 0;
7047 }
7048 #endif
7049
7050 static void netdev_init_one_queue(struct net_device *dev,
7051 struct netdev_queue *queue, void *_unused)
7052 {
7053 /* Initialize queue lock */
7054 spin_lock_init(&queue->_xmit_lock);
7055 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7056 queue->xmit_lock_owner = -1;
7057 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7058 queue->dev = dev;
7059 #ifdef CONFIG_BQL
7060 dql_init(&queue->dql, HZ);
7061 #endif
7062 }
7063
7064 static void netif_free_tx_queues(struct net_device *dev)
7065 {
7066 kvfree(dev->_tx);
7067 }
7068
7069 static int netif_alloc_netdev_queues(struct net_device *dev)
7070 {
7071 unsigned int count = dev->num_tx_queues;
7072 struct netdev_queue *tx;
7073 size_t sz = count * sizeof(*tx);
7074
7075 if (count < 1 || count > 0xffff)
7076 return -EINVAL;
7077
7078 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7079 if (!tx) {
7080 tx = vzalloc(sz);
7081 if (!tx)
7082 return -ENOMEM;
7083 }
7084 dev->_tx = tx;
7085
7086 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7087 spin_lock_init(&dev->tx_global_lock);
7088
7089 return 0;
7090 }
7091
7092 void netif_tx_stop_all_queues(struct net_device *dev)
7093 {
7094 unsigned int i;
7095
7096 for (i = 0; i < dev->num_tx_queues; i++) {
7097 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7098 netif_tx_stop_queue(txq);
7099 }
7100 }
7101 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7102
7103 /**
7104 * register_netdevice - register a network device
7105 * @dev: device to register
7106 *
7107 * Take a completed network device structure and add it to the kernel
7108 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7109 * chain. 0 is returned on success. A negative errno code is returned
7110 * on a failure to set up the device, or if the name is a duplicate.
7111 *
7112 * Callers must hold the rtnl semaphore. You may want
7113 * register_netdev() instead of this.
7114 *
7115 * BUGS:
7116 * The locking appears insufficient to guarantee two parallel registers
7117 * will not get the same name.
7118 */
7119
7120 int register_netdevice(struct net_device *dev)
7121 {
7122 int ret;
7123 struct net *net = dev_net(dev);
7124
7125 BUG_ON(dev_boot_phase);
7126 ASSERT_RTNL();
7127
7128 might_sleep();
7129
7130 /* When net_device's are persistent, this will be fatal. */
7131 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7132 BUG_ON(!net);
7133
7134 spin_lock_init(&dev->addr_list_lock);
7135 netdev_set_addr_lockdep_class(dev);
7136
7137 ret = dev_get_valid_name(net, dev, dev->name);
7138 if (ret < 0)
7139 goto out;
7140
7141 /* Init, if this function is available */
7142 if (dev->netdev_ops->ndo_init) {
7143 ret = dev->netdev_ops->ndo_init(dev);
7144 if (ret) {
7145 if (ret > 0)
7146 ret = -EIO;
7147 goto out;
7148 }
7149 }
7150
7151 if (((dev->hw_features | dev->features) &
7152 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7153 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7154 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7155 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7156 ret = -EINVAL;
7157 goto err_uninit;
7158 }
7159
7160 ret = -EBUSY;
7161 if (!dev->ifindex)
7162 dev->ifindex = dev_new_index(net);
7163 else if (__dev_get_by_index(net, dev->ifindex))
7164 goto err_uninit;
7165
7166 /* Transfer changeable features to wanted_features and enable
7167 * software offloads (GSO and GRO).
7168 */
7169 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7170 dev->features |= NETIF_F_SOFT_FEATURES;
7171 dev->wanted_features = dev->features & dev->hw_features;
7172
7173 if (!(dev->flags & IFF_LOOPBACK))
7174 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7175
7176 /* If IPv4 TCP segmentation offload is supported we should also
7177 * allow the device to enable segmenting the frame with the option
7178 * of ignoring a static IP ID value. This doesn't enable the
7179 * feature itself but allows the user to enable it later.
7180 */
7181 if (dev->hw_features & NETIF_F_TSO)
7182 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7183 if (dev->vlan_features & NETIF_F_TSO)
7184 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7185 if (dev->mpls_features & NETIF_F_TSO)
7186 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7187 if (dev->hw_enc_features & NETIF_F_TSO)
7188 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7189
7190 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7191 */
7192 dev->vlan_features |= NETIF_F_HIGHDMA;
7193
7194 /* Make NETIF_F_SG inheritable to tunnel devices.
7195 */
7196 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7197
7198 /* Make NETIF_F_SG inheritable to MPLS.
7199 */
7200 dev->mpls_features |= NETIF_F_SG;
7201
7202 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7203 ret = notifier_to_errno(ret);
7204 if (ret)
7205 goto err_uninit;
7206
7207 ret = netdev_register_kobject(dev);
7208 if (ret)
7209 goto err_uninit;
7210 dev->reg_state = NETREG_REGISTERED;
7211
7212 __netdev_update_features(dev);
7213
7214 /*
7215 * Default initial state at registry is that the
7216 * device is present.
7217 */
7218
7219 set_bit(__LINK_STATE_PRESENT, &dev->state);
7220
7221 linkwatch_init_dev(dev);
7222
7223 dev_init_scheduler(dev);
7224 dev_hold(dev);
7225 list_netdevice(dev);
7226 add_device_randomness(dev->dev_addr, dev->addr_len);
7227
7228 /* If the device has permanent device address, driver should
7229 * set dev_addr and also addr_assign_type should be set to
7230 * NET_ADDR_PERM (default value).
7231 */
7232 if (dev->addr_assign_type == NET_ADDR_PERM)
7233 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7234
7235 /* Notify protocols, that a new device appeared. */
7236 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7237 ret = notifier_to_errno(ret);
7238 if (ret) {
7239 rollback_registered(dev);
7240 dev->reg_state = NETREG_UNREGISTERED;
7241 }
7242 /*
7243 * Prevent userspace races by waiting until the network
7244 * device is fully setup before sending notifications.
7245 */
7246 if (!dev->rtnl_link_ops ||
7247 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7249
7250 out:
7251 return ret;
7252
7253 err_uninit:
7254 if (dev->netdev_ops->ndo_uninit)
7255 dev->netdev_ops->ndo_uninit(dev);
7256 goto out;
7257 }
7258 EXPORT_SYMBOL(register_netdevice);
7259
7260 /**
7261 * init_dummy_netdev - init a dummy network device for NAPI
7262 * @dev: device to init
7263 *
7264 * This takes a network device structure and initialize the minimum
7265 * amount of fields so it can be used to schedule NAPI polls without
7266 * registering a full blown interface. This is to be used by drivers
7267 * that need to tie several hardware interfaces to a single NAPI
7268 * poll scheduler due to HW limitations.
7269 */
7270 int init_dummy_netdev(struct net_device *dev)
7271 {
7272 /* Clear everything. Note we don't initialize spinlocks
7273 * are they aren't supposed to be taken by any of the
7274 * NAPI code and this dummy netdev is supposed to be
7275 * only ever used for NAPI polls
7276 */
7277 memset(dev, 0, sizeof(struct net_device));
7278
7279 /* make sure we BUG if trying to hit standard
7280 * register/unregister code path
7281 */
7282 dev->reg_state = NETREG_DUMMY;
7283
7284 /* NAPI wants this */
7285 INIT_LIST_HEAD(&dev->napi_list);
7286
7287 /* a dummy interface is started by default */
7288 set_bit(__LINK_STATE_PRESENT, &dev->state);
7289 set_bit(__LINK_STATE_START, &dev->state);
7290
7291 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7292 * because users of this 'device' dont need to change
7293 * its refcount.
7294 */
7295
7296 return 0;
7297 }
7298 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7299
7300
7301 /**
7302 * register_netdev - register a network device
7303 * @dev: device to register
7304 *
7305 * Take a completed network device structure and add it to the kernel
7306 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7307 * chain. 0 is returned on success. A negative errno code is returned
7308 * on a failure to set up the device, or if the name is a duplicate.
7309 *
7310 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7311 * and expands the device name if you passed a format string to
7312 * alloc_netdev.
7313 */
7314 int register_netdev(struct net_device *dev)
7315 {
7316 int err;
7317
7318 rtnl_lock();
7319 err = register_netdevice(dev);
7320 rtnl_unlock();
7321 return err;
7322 }
7323 EXPORT_SYMBOL(register_netdev);
7324
7325 int netdev_refcnt_read(const struct net_device *dev)
7326 {
7327 int i, refcnt = 0;
7328
7329 for_each_possible_cpu(i)
7330 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7331 return refcnt;
7332 }
7333 EXPORT_SYMBOL(netdev_refcnt_read);
7334
7335 /**
7336 * netdev_wait_allrefs - wait until all references are gone.
7337 * @dev: target net_device
7338 *
7339 * This is called when unregistering network devices.
7340 *
7341 * Any protocol or device that holds a reference should register
7342 * for netdevice notification, and cleanup and put back the
7343 * reference if they receive an UNREGISTER event.
7344 * We can get stuck here if buggy protocols don't correctly
7345 * call dev_put.
7346 */
7347 static void netdev_wait_allrefs(struct net_device *dev)
7348 {
7349 unsigned long rebroadcast_time, warning_time;
7350 int refcnt;
7351
7352 linkwatch_forget_dev(dev);
7353
7354 rebroadcast_time = warning_time = jiffies;
7355 refcnt = netdev_refcnt_read(dev);
7356
7357 while (refcnt != 0) {
7358 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7359 rtnl_lock();
7360
7361 /* Rebroadcast unregister notification */
7362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7363
7364 __rtnl_unlock();
7365 rcu_barrier();
7366 rtnl_lock();
7367
7368 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7369 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7370 &dev->state)) {
7371 /* We must not have linkwatch events
7372 * pending on unregister. If this
7373 * happens, we simply run the queue
7374 * unscheduled, resulting in a noop
7375 * for this device.
7376 */
7377 linkwatch_run_queue();
7378 }
7379
7380 __rtnl_unlock();
7381
7382 rebroadcast_time = jiffies;
7383 }
7384
7385 msleep(250);
7386
7387 refcnt = netdev_refcnt_read(dev);
7388
7389 if (time_after(jiffies, warning_time + 10 * HZ)) {
7390 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7391 dev->name, refcnt);
7392 warning_time = jiffies;
7393 }
7394 }
7395 }
7396
7397 /* The sequence is:
7398 *
7399 * rtnl_lock();
7400 * ...
7401 * register_netdevice(x1);
7402 * register_netdevice(x2);
7403 * ...
7404 * unregister_netdevice(y1);
7405 * unregister_netdevice(y2);
7406 * ...
7407 * rtnl_unlock();
7408 * free_netdev(y1);
7409 * free_netdev(y2);
7410 *
7411 * We are invoked by rtnl_unlock().
7412 * This allows us to deal with problems:
7413 * 1) We can delete sysfs objects which invoke hotplug
7414 * without deadlocking with linkwatch via keventd.
7415 * 2) Since we run with the RTNL semaphore not held, we can sleep
7416 * safely in order to wait for the netdev refcnt to drop to zero.
7417 *
7418 * We must not return until all unregister events added during
7419 * the interval the lock was held have been completed.
7420 */
7421 void netdev_run_todo(void)
7422 {
7423 struct list_head list;
7424
7425 /* Snapshot list, allow later requests */
7426 list_replace_init(&net_todo_list, &list);
7427
7428 __rtnl_unlock();
7429
7430
7431 /* Wait for rcu callbacks to finish before next phase */
7432 if (!list_empty(&list))
7433 rcu_barrier();
7434
7435 while (!list_empty(&list)) {
7436 struct net_device *dev
7437 = list_first_entry(&list, struct net_device, todo_list);
7438 list_del(&dev->todo_list);
7439
7440 rtnl_lock();
7441 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7442 __rtnl_unlock();
7443
7444 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7445 pr_err("network todo '%s' but state %d\n",
7446 dev->name, dev->reg_state);
7447 dump_stack();
7448 continue;
7449 }
7450
7451 dev->reg_state = NETREG_UNREGISTERED;
7452
7453 netdev_wait_allrefs(dev);
7454
7455 /* paranoia */
7456 BUG_ON(netdev_refcnt_read(dev));
7457 BUG_ON(!list_empty(&dev->ptype_all));
7458 BUG_ON(!list_empty(&dev->ptype_specific));
7459 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7460 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7461 WARN_ON(dev->dn_ptr);
7462
7463 if (dev->destructor)
7464 dev->destructor(dev);
7465
7466 /* Report a network device has been unregistered */
7467 rtnl_lock();
7468 dev_net(dev)->dev_unreg_count--;
7469 __rtnl_unlock();
7470 wake_up(&netdev_unregistering_wq);
7471
7472 /* Free network device */
7473 kobject_put(&dev->dev.kobj);
7474 }
7475 }
7476
7477 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7478 * all the same fields in the same order as net_device_stats, with only
7479 * the type differing, but rtnl_link_stats64 may have additional fields
7480 * at the end for newer counters.
7481 */
7482 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7483 const struct net_device_stats *netdev_stats)
7484 {
7485 #if BITS_PER_LONG == 64
7486 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7487 memcpy(stats64, netdev_stats, sizeof(*stats64));
7488 /* zero out counters that only exist in rtnl_link_stats64 */
7489 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7490 sizeof(*stats64) - sizeof(*netdev_stats));
7491 #else
7492 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7493 const unsigned long *src = (const unsigned long *)netdev_stats;
7494 u64 *dst = (u64 *)stats64;
7495
7496 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7497 for (i = 0; i < n; i++)
7498 dst[i] = src[i];
7499 /* zero out counters that only exist in rtnl_link_stats64 */
7500 memset((char *)stats64 + n * sizeof(u64), 0,
7501 sizeof(*stats64) - n * sizeof(u64));
7502 #endif
7503 }
7504 EXPORT_SYMBOL(netdev_stats_to_stats64);
7505
7506 /**
7507 * dev_get_stats - get network device statistics
7508 * @dev: device to get statistics from
7509 * @storage: place to store stats
7510 *
7511 * Get network statistics from device. Return @storage.
7512 * The device driver may provide its own method by setting
7513 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7514 * otherwise the internal statistics structure is used.
7515 */
7516 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7517 struct rtnl_link_stats64 *storage)
7518 {
7519 const struct net_device_ops *ops = dev->netdev_ops;
7520
7521 if (ops->ndo_get_stats64) {
7522 memset(storage, 0, sizeof(*storage));
7523 ops->ndo_get_stats64(dev, storage);
7524 } else if (ops->ndo_get_stats) {
7525 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7526 } else {
7527 netdev_stats_to_stats64(storage, &dev->stats);
7528 }
7529 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7530 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7531 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7532 return storage;
7533 }
7534 EXPORT_SYMBOL(dev_get_stats);
7535
7536 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7537 {
7538 struct netdev_queue *queue = dev_ingress_queue(dev);
7539
7540 #ifdef CONFIG_NET_CLS_ACT
7541 if (queue)
7542 return queue;
7543 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7544 if (!queue)
7545 return NULL;
7546 netdev_init_one_queue(dev, queue, NULL);
7547 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7548 queue->qdisc_sleeping = &noop_qdisc;
7549 rcu_assign_pointer(dev->ingress_queue, queue);
7550 #endif
7551 return queue;
7552 }
7553
7554 static const struct ethtool_ops default_ethtool_ops;
7555
7556 void netdev_set_default_ethtool_ops(struct net_device *dev,
7557 const struct ethtool_ops *ops)
7558 {
7559 if (dev->ethtool_ops == &default_ethtool_ops)
7560 dev->ethtool_ops = ops;
7561 }
7562 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7563
7564 void netdev_freemem(struct net_device *dev)
7565 {
7566 char *addr = (char *)dev - dev->padded;
7567
7568 kvfree(addr);
7569 }
7570
7571 /**
7572 * alloc_netdev_mqs - allocate network device
7573 * @sizeof_priv: size of private data to allocate space for
7574 * @name: device name format string
7575 * @name_assign_type: origin of device name
7576 * @setup: callback to initialize device
7577 * @txqs: the number of TX subqueues to allocate
7578 * @rxqs: the number of RX subqueues to allocate
7579 *
7580 * Allocates a struct net_device with private data area for driver use
7581 * and performs basic initialization. Also allocates subqueue structs
7582 * for each queue on the device.
7583 */
7584 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7585 unsigned char name_assign_type,
7586 void (*setup)(struct net_device *),
7587 unsigned int txqs, unsigned int rxqs)
7588 {
7589 struct net_device *dev;
7590 size_t alloc_size;
7591 struct net_device *p;
7592
7593 BUG_ON(strlen(name) >= sizeof(dev->name));
7594
7595 if (txqs < 1) {
7596 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7597 return NULL;
7598 }
7599
7600 #ifdef CONFIG_SYSFS
7601 if (rxqs < 1) {
7602 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7603 return NULL;
7604 }
7605 #endif
7606
7607 alloc_size = sizeof(struct net_device);
7608 if (sizeof_priv) {
7609 /* ensure 32-byte alignment of private area */
7610 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7611 alloc_size += sizeof_priv;
7612 }
7613 /* ensure 32-byte alignment of whole construct */
7614 alloc_size += NETDEV_ALIGN - 1;
7615
7616 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7617 if (!p)
7618 p = vzalloc(alloc_size);
7619 if (!p)
7620 return NULL;
7621
7622 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7623 dev->padded = (char *)dev - (char *)p;
7624
7625 dev->pcpu_refcnt = alloc_percpu(int);
7626 if (!dev->pcpu_refcnt)
7627 goto free_dev;
7628
7629 if (dev_addr_init(dev))
7630 goto free_pcpu;
7631
7632 dev_mc_init(dev);
7633 dev_uc_init(dev);
7634
7635 dev_net_set(dev, &init_net);
7636
7637 dev->gso_max_size = GSO_MAX_SIZE;
7638 dev->gso_max_segs = GSO_MAX_SEGS;
7639
7640 INIT_LIST_HEAD(&dev->napi_list);
7641 INIT_LIST_HEAD(&dev->unreg_list);
7642 INIT_LIST_HEAD(&dev->close_list);
7643 INIT_LIST_HEAD(&dev->link_watch_list);
7644 INIT_LIST_HEAD(&dev->adj_list.upper);
7645 INIT_LIST_HEAD(&dev->adj_list.lower);
7646 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7647 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7648 INIT_LIST_HEAD(&dev->ptype_all);
7649 INIT_LIST_HEAD(&dev->ptype_specific);
7650 #ifdef CONFIG_NET_SCHED
7651 hash_init(dev->qdisc_hash);
7652 #endif
7653 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7654 setup(dev);
7655
7656 if (!dev->tx_queue_len) {
7657 dev->priv_flags |= IFF_NO_QUEUE;
7658 dev->tx_queue_len = 1;
7659 }
7660
7661 dev->num_tx_queues = txqs;
7662 dev->real_num_tx_queues = txqs;
7663 if (netif_alloc_netdev_queues(dev))
7664 goto free_all;
7665
7666 #ifdef CONFIG_SYSFS
7667 dev->num_rx_queues = rxqs;
7668 dev->real_num_rx_queues = rxqs;
7669 if (netif_alloc_rx_queues(dev))
7670 goto free_all;
7671 #endif
7672
7673 strcpy(dev->name, name);
7674 dev->name_assign_type = name_assign_type;
7675 dev->group = INIT_NETDEV_GROUP;
7676 if (!dev->ethtool_ops)
7677 dev->ethtool_ops = &default_ethtool_ops;
7678
7679 nf_hook_ingress_init(dev);
7680
7681 return dev;
7682
7683 free_all:
7684 free_netdev(dev);
7685 return NULL;
7686
7687 free_pcpu:
7688 free_percpu(dev->pcpu_refcnt);
7689 free_dev:
7690 netdev_freemem(dev);
7691 return NULL;
7692 }
7693 EXPORT_SYMBOL(alloc_netdev_mqs);
7694
7695 /**
7696 * free_netdev - free network device
7697 * @dev: device
7698 *
7699 * This function does the last stage of destroying an allocated device
7700 * interface. The reference to the device object is released.
7701 * If this is the last reference then it will be freed.
7702 * Must be called in process context.
7703 */
7704 void free_netdev(struct net_device *dev)
7705 {
7706 struct napi_struct *p, *n;
7707
7708 might_sleep();
7709 netif_free_tx_queues(dev);
7710 #ifdef CONFIG_SYSFS
7711 kvfree(dev->_rx);
7712 #endif
7713
7714 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7715
7716 /* Flush device addresses */
7717 dev_addr_flush(dev);
7718
7719 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7720 netif_napi_del(p);
7721
7722 free_percpu(dev->pcpu_refcnt);
7723 dev->pcpu_refcnt = NULL;
7724
7725 /* Compatibility with error handling in drivers */
7726 if (dev->reg_state == NETREG_UNINITIALIZED) {
7727 netdev_freemem(dev);
7728 return;
7729 }
7730
7731 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7732 dev->reg_state = NETREG_RELEASED;
7733
7734 /* will free via device release */
7735 put_device(&dev->dev);
7736 }
7737 EXPORT_SYMBOL(free_netdev);
7738
7739 /**
7740 * synchronize_net - Synchronize with packet receive processing
7741 *
7742 * Wait for packets currently being received to be done.
7743 * Does not block later packets from starting.
7744 */
7745 void synchronize_net(void)
7746 {
7747 might_sleep();
7748 if (rtnl_is_locked())
7749 synchronize_rcu_expedited();
7750 else
7751 synchronize_rcu();
7752 }
7753 EXPORT_SYMBOL(synchronize_net);
7754
7755 /**
7756 * unregister_netdevice_queue - remove device from the kernel
7757 * @dev: device
7758 * @head: list
7759 *
7760 * This function shuts down a device interface and removes it
7761 * from the kernel tables.
7762 * If head not NULL, device is queued to be unregistered later.
7763 *
7764 * Callers must hold the rtnl semaphore. You may want
7765 * unregister_netdev() instead of this.
7766 */
7767
7768 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7769 {
7770 ASSERT_RTNL();
7771
7772 if (head) {
7773 list_move_tail(&dev->unreg_list, head);
7774 } else {
7775 rollback_registered(dev);
7776 /* Finish processing unregister after unlock */
7777 net_set_todo(dev);
7778 }
7779 }
7780 EXPORT_SYMBOL(unregister_netdevice_queue);
7781
7782 /**
7783 * unregister_netdevice_many - unregister many devices
7784 * @head: list of devices
7785 *
7786 * Note: As most callers use a stack allocated list_head,
7787 * we force a list_del() to make sure stack wont be corrupted later.
7788 */
7789 void unregister_netdevice_many(struct list_head *head)
7790 {
7791 struct net_device *dev;
7792
7793 if (!list_empty(head)) {
7794 rollback_registered_many(head);
7795 list_for_each_entry(dev, head, unreg_list)
7796 net_set_todo(dev);
7797 list_del(head);
7798 }
7799 }
7800 EXPORT_SYMBOL(unregister_netdevice_many);
7801
7802 /**
7803 * unregister_netdev - remove device from the kernel
7804 * @dev: device
7805 *
7806 * This function shuts down a device interface and removes it
7807 * from the kernel tables.
7808 *
7809 * This is just a wrapper for unregister_netdevice that takes
7810 * the rtnl semaphore. In general you want to use this and not
7811 * unregister_netdevice.
7812 */
7813 void unregister_netdev(struct net_device *dev)
7814 {
7815 rtnl_lock();
7816 unregister_netdevice(dev);
7817 rtnl_unlock();
7818 }
7819 EXPORT_SYMBOL(unregister_netdev);
7820
7821 /**
7822 * dev_change_net_namespace - move device to different nethost namespace
7823 * @dev: device
7824 * @net: network namespace
7825 * @pat: If not NULL name pattern to try if the current device name
7826 * is already taken in the destination network namespace.
7827 *
7828 * This function shuts down a device interface and moves it
7829 * to a new network namespace. On success 0 is returned, on
7830 * a failure a netagive errno code is returned.
7831 *
7832 * Callers must hold the rtnl semaphore.
7833 */
7834
7835 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7836 {
7837 int err;
7838
7839 ASSERT_RTNL();
7840
7841 /* Don't allow namespace local devices to be moved. */
7842 err = -EINVAL;
7843 if (dev->features & NETIF_F_NETNS_LOCAL)
7844 goto out;
7845
7846 /* Ensure the device has been registrered */
7847 if (dev->reg_state != NETREG_REGISTERED)
7848 goto out;
7849
7850 /* Get out if there is nothing todo */
7851 err = 0;
7852 if (net_eq(dev_net(dev), net))
7853 goto out;
7854
7855 /* Pick the destination device name, and ensure
7856 * we can use it in the destination network namespace.
7857 */
7858 err = -EEXIST;
7859 if (__dev_get_by_name(net, dev->name)) {
7860 /* We get here if we can't use the current device name */
7861 if (!pat)
7862 goto out;
7863 if (dev_get_valid_name(net, dev, pat) < 0)
7864 goto out;
7865 }
7866
7867 /*
7868 * And now a mini version of register_netdevice unregister_netdevice.
7869 */
7870
7871 /* If device is running close it first. */
7872 dev_close(dev);
7873
7874 /* And unlink it from device chain */
7875 err = -ENODEV;
7876 unlist_netdevice(dev);
7877
7878 synchronize_net();
7879
7880 /* Shutdown queueing discipline. */
7881 dev_shutdown(dev);
7882
7883 /* Notify protocols, that we are about to destroy
7884 this device. They should clean all the things.
7885
7886 Note that dev->reg_state stays at NETREG_REGISTERED.
7887 This is wanted because this way 8021q and macvlan know
7888 the device is just moving and can keep their slaves up.
7889 */
7890 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7891 rcu_barrier();
7892 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7893 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7894
7895 /*
7896 * Flush the unicast and multicast chains
7897 */
7898 dev_uc_flush(dev);
7899 dev_mc_flush(dev);
7900
7901 /* Send a netdev-removed uevent to the old namespace */
7902 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7903 netdev_adjacent_del_links(dev);
7904
7905 /* Actually switch the network namespace */
7906 dev_net_set(dev, net);
7907
7908 /* If there is an ifindex conflict assign a new one */
7909 if (__dev_get_by_index(net, dev->ifindex))
7910 dev->ifindex = dev_new_index(net);
7911
7912 /* Send a netdev-add uevent to the new namespace */
7913 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7914 netdev_adjacent_add_links(dev);
7915
7916 /* Fixup kobjects */
7917 err = device_rename(&dev->dev, dev->name);
7918 WARN_ON(err);
7919
7920 /* Add the device back in the hashes */
7921 list_netdevice(dev);
7922
7923 /* Notify protocols, that a new device appeared. */
7924 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7925
7926 /*
7927 * Prevent userspace races by waiting until the network
7928 * device is fully setup before sending notifications.
7929 */
7930 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7931
7932 synchronize_net();
7933 err = 0;
7934 out:
7935 return err;
7936 }
7937 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7938
7939 static int dev_cpu_callback(struct notifier_block *nfb,
7940 unsigned long action,
7941 void *ocpu)
7942 {
7943 struct sk_buff **list_skb;
7944 struct sk_buff *skb;
7945 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7946 struct softnet_data *sd, *oldsd;
7947
7948 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7949 return NOTIFY_OK;
7950
7951 local_irq_disable();
7952 cpu = smp_processor_id();
7953 sd = &per_cpu(softnet_data, cpu);
7954 oldsd = &per_cpu(softnet_data, oldcpu);
7955
7956 /* Find end of our completion_queue. */
7957 list_skb = &sd->completion_queue;
7958 while (*list_skb)
7959 list_skb = &(*list_skb)->next;
7960 /* Append completion queue from offline CPU. */
7961 *list_skb = oldsd->completion_queue;
7962 oldsd->completion_queue = NULL;
7963
7964 /* Append output queue from offline CPU. */
7965 if (oldsd->output_queue) {
7966 *sd->output_queue_tailp = oldsd->output_queue;
7967 sd->output_queue_tailp = oldsd->output_queue_tailp;
7968 oldsd->output_queue = NULL;
7969 oldsd->output_queue_tailp = &oldsd->output_queue;
7970 }
7971 /* Append NAPI poll list from offline CPU, with one exception :
7972 * process_backlog() must be called by cpu owning percpu backlog.
7973 * We properly handle process_queue & input_pkt_queue later.
7974 */
7975 while (!list_empty(&oldsd->poll_list)) {
7976 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7977 struct napi_struct,
7978 poll_list);
7979
7980 list_del_init(&napi->poll_list);
7981 if (napi->poll == process_backlog)
7982 napi->state = 0;
7983 else
7984 ____napi_schedule(sd, napi);
7985 }
7986
7987 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7988 local_irq_enable();
7989
7990 /* Process offline CPU's input_pkt_queue */
7991 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7992 netif_rx_ni(skb);
7993 input_queue_head_incr(oldsd);
7994 }
7995 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7996 netif_rx_ni(skb);
7997 input_queue_head_incr(oldsd);
7998 }
7999
8000 return NOTIFY_OK;
8001 }
8002
8003
8004 /**
8005 * netdev_increment_features - increment feature set by one
8006 * @all: current feature set
8007 * @one: new feature set
8008 * @mask: mask feature set
8009 *
8010 * Computes a new feature set after adding a device with feature set
8011 * @one to the master device with current feature set @all. Will not
8012 * enable anything that is off in @mask. Returns the new feature set.
8013 */
8014 netdev_features_t netdev_increment_features(netdev_features_t all,
8015 netdev_features_t one, netdev_features_t mask)
8016 {
8017 if (mask & NETIF_F_HW_CSUM)
8018 mask |= NETIF_F_CSUM_MASK;
8019 mask |= NETIF_F_VLAN_CHALLENGED;
8020
8021 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8022 all &= one | ~NETIF_F_ALL_FOR_ALL;
8023
8024 /* If one device supports hw checksumming, set for all. */
8025 if (all & NETIF_F_HW_CSUM)
8026 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8027
8028 return all;
8029 }
8030 EXPORT_SYMBOL(netdev_increment_features);
8031
8032 static struct hlist_head * __net_init netdev_create_hash(void)
8033 {
8034 int i;
8035 struct hlist_head *hash;
8036
8037 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8038 if (hash != NULL)
8039 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8040 INIT_HLIST_HEAD(&hash[i]);
8041
8042 return hash;
8043 }
8044
8045 /* Initialize per network namespace state */
8046 static int __net_init netdev_init(struct net *net)
8047 {
8048 if (net != &init_net)
8049 INIT_LIST_HEAD(&net->dev_base_head);
8050
8051 net->dev_name_head = netdev_create_hash();
8052 if (net->dev_name_head == NULL)
8053 goto err_name;
8054
8055 net->dev_index_head = netdev_create_hash();
8056 if (net->dev_index_head == NULL)
8057 goto err_idx;
8058
8059 return 0;
8060
8061 err_idx:
8062 kfree(net->dev_name_head);
8063 err_name:
8064 return -ENOMEM;
8065 }
8066
8067 /**
8068 * netdev_drivername - network driver for the device
8069 * @dev: network device
8070 *
8071 * Determine network driver for device.
8072 */
8073 const char *netdev_drivername(const struct net_device *dev)
8074 {
8075 const struct device_driver *driver;
8076 const struct device *parent;
8077 const char *empty = "";
8078
8079 parent = dev->dev.parent;
8080 if (!parent)
8081 return empty;
8082
8083 driver = parent->driver;
8084 if (driver && driver->name)
8085 return driver->name;
8086 return empty;
8087 }
8088
8089 static void __netdev_printk(const char *level, const struct net_device *dev,
8090 struct va_format *vaf)
8091 {
8092 if (dev && dev->dev.parent) {
8093 dev_printk_emit(level[1] - '0',
8094 dev->dev.parent,
8095 "%s %s %s%s: %pV",
8096 dev_driver_string(dev->dev.parent),
8097 dev_name(dev->dev.parent),
8098 netdev_name(dev), netdev_reg_state(dev),
8099 vaf);
8100 } else if (dev) {
8101 printk("%s%s%s: %pV",
8102 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8103 } else {
8104 printk("%s(NULL net_device): %pV", level, vaf);
8105 }
8106 }
8107
8108 void netdev_printk(const char *level, const struct net_device *dev,
8109 const char *format, ...)
8110 {
8111 struct va_format vaf;
8112 va_list args;
8113
8114 va_start(args, format);
8115
8116 vaf.fmt = format;
8117 vaf.va = &args;
8118
8119 __netdev_printk(level, dev, &vaf);
8120
8121 va_end(args);
8122 }
8123 EXPORT_SYMBOL(netdev_printk);
8124
8125 #define define_netdev_printk_level(func, level) \
8126 void func(const struct net_device *dev, const char *fmt, ...) \
8127 { \
8128 struct va_format vaf; \
8129 va_list args; \
8130 \
8131 va_start(args, fmt); \
8132 \
8133 vaf.fmt = fmt; \
8134 vaf.va = &args; \
8135 \
8136 __netdev_printk(level, dev, &vaf); \
8137 \
8138 va_end(args); \
8139 } \
8140 EXPORT_SYMBOL(func);
8141
8142 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8143 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8144 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8145 define_netdev_printk_level(netdev_err, KERN_ERR);
8146 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8147 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8148 define_netdev_printk_level(netdev_info, KERN_INFO);
8149
8150 static void __net_exit netdev_exit(struct net *net)
8151 {
8152 kfree(net->dev_name_head);
8153 kfree(net->dev_index_head);
8154 }
8155
8156 static struct pernet_operations __net_initdata netdev_net_ops = {
8157 .init = netdev_init,
8158 .exit = netdev_exit,
8159 };
8160
8161 static void __net_exit default_device_exit(struct net *net)
8162 {
8163 struct net_device *dev, *aux;
8164 /*
8165 * Push all migratable network devices back to the
8166 * initial network namespace
8167 */
8168 rtnl_lock();
8169 for_each_netdev_safe(net, dev, aux) {
8170 int err;
8171 char fb_name[IFNAMSIZ];
8172
8173 /* Ignore unmoveable devices (i.e. loopback) */
8174 if (dev->features & NETIF_F_NETNS_LOCAL)
8175 continue;
8176
8177 /* Leave virtual devices for the generic cleanup */
8178 if (dev->rtnl_link_ops)
8179 continue;
8180
8181 /* Push remaining network devices to init_net */
8182 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8183 err = dev_change_net_namespace(dev, &init_net, fb_name);
8184 if (err) {
8185 pr_emerg("%s: failed to move %s to init_net: %d\n",
8186 __func__, dev->name, err);
8187 BUG();
8188 }
8189 }
8190 rtnl_unlock();
8191 }
8192
8193 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8194 {
8195 /* Return with the rtnl_lock held when there are no network
8196 * devices unregistering in any network namespace in net_list.
8197 */
8198 struct net *net;
8199 bool unregistering;
8200 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8201
8202 add_wait_queue(&netdev_unregistering_wq, &wait);
8203 for (;;) {
8204 unregistering = false;
8205 rtnl_lock();
8206 list_for_each_entry(net, net_list, exit_list) {
8207 if (net->dev_unreg_count > 0) {
8208 unregistering = true;
8209 break;
8210 }
8211 }
8212 if (!unregistering)
8213 break;
8214 __rtnl_unlock();
8215
8216 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8217 }
8218 remove_wait_queue(&netdev_unregistering_wq, &wait);
8219 }
8220
8221 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8222 {
8223 /* At exit all network devices most be removed from a network
8224 * namespace. Do this in the reverse order of registration.
8225 * Do this across as many network namespaces as possible to
8226 * improve batching efficiency.
8227 */
8228 struct net_device *dev;
8229 struct net *net;
8230 LIST_HEAD(dev_kill_list);
8231
8232 /* To prevent network device cleanup code from dereferencing
8233 * loopback devices or network devices that have been freed
8234 * wait here for all pending unregistrations to complete,
8235 * before unregistring the loopback device and allowing the
8236 * network namespace be freed.
8237 *
8238 * The netdev todo list containing all network devices
8239 * unregistrations that happen in default_device_exit_batch
8240 * will run in the rtnl_unlock() at the end of
8241 * default_device_exit_batch.
8242 */
8243 rtnl_lock_unregistering(net_list);
8244 list_for_each_entry(net, net_list, exit_list) {
8245 for_each_netdev_reverse(net, dev) {
8246 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8247 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8248 else
8249 unregister_netdevice_queue(dev, &dev_kill_list);
8250 }
8251 }
8252 unregister_netdevice_many(&dev_kill_list);
8253 rtnl_unlock();
8254 }
8255
8256 static struct pernet_operations __net_initdata default_device_ops = {
8257 .exit = default_device_exit,
8258 .exit_batch = default_device_exit_batch,
8259 };
8260
8261 /*
8262 * Initialize the DEV module. At boot time this walks the device list and
8263 * unhooks any devices that fail to initialise (normally hardware not
8264 * present) and leaves us with a valid list of present and active devices.
8265 *
8266 */
8267
8268 /*
8269 * This is called single threaded during boot, so no need
8270 * to take the rtnl semaphore.
8271 */
8272 static int __init net_dev_init(void)
8273 {
8274 int i, rc = -ENOMEM;
8275
8276 BUG_ON(!dev_boot_phase);
8277
8278 if (dev_proc_init())
8279 goto out;
8280
8281 if (netdev_kobject_init())
8282 goto out;
8283
8284 INIT_LIST_HEAD(&ptype_all);
8285 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8286 INIT_LIST_HEAD(&ptype_base[i]);
8287
8288 INIT_LIST_HEAD(&offload_base);
8289
8290 if (register_pernet_subsys(&netdev_net_ops))
8291 goto out;
8292
8293 /*
8294 * Initialise the packet receive queues.
8295 */
8296
8297 for_each_possible_cpu(i) {
8298 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8299 struct softnet_data *sd = &per_cpu(softnet_data, i);
8300
8301 INIT_WORK(flush, flush_backlog);
8302
8303 skb_queue_head_init(&sd->input_pkt_queue);
8304 skb_queue_head_init(&sd->process_queue);
8305 INIT_LIST_HEAD(&sd->poll_list);
8306 sd->output_queue_tailp = &sd->output_queue;
8307 #ifdef CONFIG_RPS
8308 sd->csd.func = rps_trigger_softirq;
8309 sd->csd.info = sd;
8310 sd->cpu = i;
8311 #endif
8312
8313 sd->backlog.poll = process_backlog;
8314 sd->backlog.weight = weight_p;
8315 }
8316
8317 dev_boot_phase = 0;
8318
8319 /* The loopback device is special if any other network devices
8320 * is present in a network namespace the loopback device must
8321 * be present. Since we now dynamically allocate and free the
8322 * loopback device ensure this invariant is maintained by
8323 * keeping the loopback device as the first device on the
8324 * list of network devices. Ensuring the loopback devices
8325 * is the first device that appears and the last network device
8326 * that disappears.
8327 */
8328 if (register_pernet_device(&loopback_net_ops))
8329 goto out;
8330
8331 if (register_pernet_device(&default_device_ops))
8332 goto out;
8333
8334 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8335 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8336
8337 hotcpu_notifier(dev_cpu_callback, 0);
8338 dst_subsys_init();
8339 rc = 0;
8340 out:
8341 return rc;
8342 }
8343
8344 subsys_initcall(net_dev_init);
This page took 0.255728 seconds and 5 git commands to generate.