d376c9ee3cc31ff7817d9a99146f88fd8e806c45
[lttng-tools.git] / src / bin / lttng-sessiond / consumer.c
1 /*
2 * Copyright (C) 2012 - David Goulet <dgoulet@efficios.com>
3 * 2018 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License, version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 51
16 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define _LGPL_SOURCE
20 #include <assert.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
27 #include <inttypes.h>
28
29 #include <common/common.h>
30 #include <common/defaults.h>
31 #include <common/uri.h>
32 #include <common/relayd/relayd.h>
33 #include <common/string-utils/format.h>
34
35 #include "consumer.h"
36 #include "health-sessiond.h"
37 #include "ust-app.h"
38 #include "utils.h"
39 #include "lttng-sessiond.h"
40
41 /*
42 * Return allocated full pathname of the session using the consumer trace path
43 * and subdir if available.
44 *
45 * The caller can safely free(3) the returned value. On error, NULL is
46 * returned.
47 */
48 char *setup_channel_trace_path(struct consumer_output *consumer,
49 const char *session_path)
50 {
51 int ret;
52 char *pathname;
53
54 assert(consumer);
55 assert(session_path);
56
57 health_code_update();
58
59 /*
60 * Allocate the string ourself to make sure we never exceed
61 * LTTNG_PATH_MAX.
62 */
63 pathname = zmalloc(LTTNG_PATH_MAX);
64 if (!pathname) {
65 goto error;
66 }
67
68 /* Get correct path name destination */
69 if (consumer->type == CONSUMER_DST_NET &&
70 consumer->relay_major_version == 2 &&
71 consumer->relay_minor_version < 11) {
72 ret = snprintf(pathname, LTTNG_PATH_MAX, "%s%s/%s%s",
73 consumer->dst.net.base_dir,
74 consumer->chunk_path, consumer->domain_subdir,
75 session_path);
76 } else {
77 ret = snprintf(pathname, LTTNG_PATH_MAX, "%s%s",
78 consumer->domain_subdir, session_path);
79 }
80 DBG3("Consumer trace path relative to current trace chunk: \"%s\"",
81 pathname);
82 if (ret < 0) {
83 PERROR("Failed to format channel path");
84 goto error;
85 } else if (ret >= LTTNG_PATH_MAX) {
86 ERR("Truncation occurred while formatting channel path");
87 goto error;
88 }
89
90 return pathname;
91 error:
92 free(pathname);
93 return NULL;
94 }
95
96 /*
97 * Send a data payload using a given consumer socket of size len.
98 *
99 * The consumer socket lock MUST be acquired before calling this since this
100 * function can change the fd value.
101 *
102 * Return 0 on success else a negative value on error.
103 */
104 int consumer_socket_send(struct consumer_socket *socket, void *msg, size_t len)
105 {
106 int fd;
107 ssize_t size;
108
109 assert(socket);
110 assert(socket->fd_ptr);
111 assert(msg);
112
113 /* Consumer socket is invalid. Stopping. */
114 fd = *socket->fd_ptr;
115 if (fd < 0) {
116 goto error;
117 }
118
119 size = lttcomm_send_unix_sock(fd, msg, len);
120 if (size < 0) {
121 /* The above call will print a PERROR on error. */
122 DBG("Error when sending data to consumer on sock %d", fd);
123 /*
124 * At this point, the socket is not usable anymore thus closing it and
125 * setting the file descriptor to -1 so it is not reused.
126 */
127
128 /* This call will PERROR on error. */
129 (void) lttcomm_close_unix_sock(fd);
130 *socket->fd_ptr = -1;
131 goto error;
132 }
133
134 return 0;
135
136 error:
137 return -1;
138 }
139
140 /*
141 * Receive a data payload using a given consumer socket of size len.
142 *
143 * The consumer socket lock MUST be acquired before calling this since this
144 * function can change the fd value.
145 *
146 * Return 0 on success else a negative value on error.
147 */
148 int consumer_socket_recv(struct consumer_socket *socket, void *msg, size_t len)
149 {
150 int fd;
151 ssize_t size;
152
153 assert(socket);
154 assert(socket->fd_ptr);
155 assert(msg);
156
157 /* Consumer socket is invalid. Stopping. */
158 fd = *socket->fd_ptr;
159 if (fd < 0) {
160 goto error;
161 }
162
163 size = lttcomm_recv_unix_sock(fd, msg, len);
164 if (size <= 0) {
165 /* The above call will print a PERROR on error. */
166 DBG("Error when receiving data from the consumer socket %d", fd);
167 /*
168 * At this point, the socket is not usable anymore thus closing it and
169 * setting the file descriptor to -1 so it is not reused.
170 */
171
172 /* This call will PERROR on error. */
173 (void) lttcomm_close_unix_sock(fd);
174 *socket->fd_ptr = -1;
175 goto error;
176 }
177
178 return 0;
179
180 error:
181 return -1;
182 }
183
184 /*
185 * Receive a reply command status message from the consumer. Consumer socket
186 * lock MUST be acquired before calling this function.
187 *
188 * Return 0 on success, -1 on recv error or a negative lttng error code which
189 * was possibly returned by the consumer.
190 */
191 int consumer_recv_status_reply(struct consumer_socket *sock)
192 {
193 int ret;
194 struct lttcomm_consumer_status_msg reply;
195
196 assert(sock);
197
198 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
199 if (ret < 0) {
200 goto end;
201 }
202
203 if (reply.ret_code == LTTCOMM_CONSUMERD_SUCCESS) {
204 /* All good. */
205 ret = 0;
206 } else {
207 ret = -reply.ret_code;
208 DBG("Consumer ret code %d", ret);
209 }
210
211 end:
212 return ret;
213 }
214
215 /*
216 * Once the ASK_CHANNEL command is sent to the consumer, the channel
217 * information are sent back. This call receives that data and populates key
218 * and stream_count.
219 *
220 * On success return 0 and both key and stream_count are set. On error, a
221 * negative value is sent back and both parameters are untouched.
222 */
223 int consumer_recv_status_channel(struct consumer_socket *sock,
224 uint64_t *key, unsigned int *stream_count)
225 {
226 int ret;
227 struct lttcomm_consumer_status_channel reply;
228
229 assert(sock);
230 assert(stream_count);
231 assert(key);
232
233 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
234 if (ret < 0) {
235 goto end;
236 }
237
238 /* An error is possible so don't touch the key and stream_count. */
239 if (reply.ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
240 ret = -1;
241 goto end;
242 }
243
244 *key = reply.key;
245 *stream_count = reply.stream_count;
246 ret = 0;
247
248 end:
249 return ret;
250 }
251
252 /*
253 * Send destroy relayd command to consumer.
254 *
255 * On success return positive value. On error, negative value.
256 */
257 int consumer_send_destroy_relayd(struct consumer_socket *sock,
258 struct consumer_output *consumer)
259 {
260 int ret;
261 struct lttcomm_consumer_msg msg;
262
263 assert(consumer);
264 assert(sock);
265
266 DBG2("Sending destroy relayd command to consumer sock %d", *sock->fd_ptr);
267
268 memset(&msg, 0, sizeof(msg));
269 msg.cmd_type = LTTNG_CONSUMER_DESTROY_RELAYD;
270 msg.u.destroy_relayd.net_seq_idx = consumer->net_seq_index;
271
272 pthread_mutex_lock(sock->lock);
273 ret = consumer_socket_send(sock, &msg, sizeof(msg));
274 if (ret < 0) {
275 goto error;
276 }
277
278 /* Don't check the return value. The caller will do it. */
279 ret = consumer_recv_status_reply(sock);
280
281 DBG2("Consumer send destroy relayd command done");
282
283 error:
284 pthread_mutex_unlock(sock->lock);
285 return ret;
286 }
287
288 /*
289 * For each consumer socket in the consumer output object, send a destroy
290 * relayd command.
291 */
292 void consumer_output_send_destroy_relayd(struct consumer_output *consumer)
293 {
294 struct lttng_ht_iter iter;
295 struct consumer_socket *socket;
296
297 assert(consumer);
298
299 /* Destroy any relayd connection */
300 if (consumer->type == CONSUMER_DST_NET) {
301 rcu_read_lock();
302 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
303 node.node) {
304 int ret;
305
306 /* Send destroy relayd command */
307 ret = consumer_send_destroy_relayd(socket, consumer);
308 if (ret < 0) {
309 DBG("Unable to send destroy relayd command to consumer");
310 /* Continue since we MUST delete everything at this point. */
311 }
312 }
313 rcu_read_unlock();
314 }
315 }
316
317 /*
318 * From a consumer_data structure, allocate and add a consumer socket to the
319 * consumer output.
320 *
321 * Return 0 on success, else negative value on error
322 */
323 int consumer_create_socket(struct consumer_data *data,
324 struct consumer_output *output)
325 {
326 int ret = 0;
327 struct consumer_socket *socket;
328
329 assert(data);
330
331 if (output == NULL || data->cmd_sock < 0) {
332 /*
333 * Not an error. Possible there is simply not spawned consumer or it's
334 * disabled for the tracing session asking the socket.
335 */
336 goto error;
337 }
338
339 rcu_read_lock();
340 socket = consumer_find_socket(data->cmd_sock, output);
341 rcu_read_unlock();
342 if (socket == NULL) {
343 socket = consumer_allocate_socket(&data->cmd_sock);
344 if (socket == NULL) {
345 ret = -1;
346 goto error;
347 }
348
349 socket->registered = 0;
350 socket->lock = &data->lock;
351 rcu_read_lock();
352 consumer_add_socket(socket, output);
353 rcu_read_unlock();
354 }
355
356 socket->type = data->type;
357
358 DBG3("Consumer socket created (fd: %d) and added to output",
359 data->cmd_sock);
360
361 error:
362 return ret;
363 }
364
365 /*
366 * Return the consumer socket from the given consumer output with the right
367 * bitness. On error, returns NULL.
368 *
369 * The caller MUST acquire a rcu read side lock and keep it until the socket
370 * object reference is not needed anymore.
371 */
372 struct consumer_socket *consumer_find_socket_by_bitness(int bits,
373 const struct consumer_output *consumer)
374 {
375 int consumer_fd;
376 struct consumer_socket *socket = NULL;
377
378 switch (bits) {
379 case 64:
380 consumer_fd = uatomic_read(&ust_consumerd64_fd);
381 break;
382 case 32:
383 consumer_fd = uatomic_read(&ust_consumerd32_fd);
384 break;
385 default:
386 assert(0);
387 goto end;
388 }
389
390 socket = consumer_find_socket(consumer_fd, consumer);
391 if (!socket) {
392 ERR("Consumer socket fd %d not found in consumer obj %p",
393 consumer_fd, consumer);
394 }
395
396 end:
397 return socket;
398 }
399
400 /*
401 * Find a consumer_socket in a consumer_output hashtable. Read side lock must
402 * be acquired before calling this function and across use of the
403 * returned consumer_socket.
404 */
405 struct consumer_socket *consumer_find_socket(int key,
406 const struct consumer_output *consumer)
407 {
408 struct lttng_ht_iter iter;
409 struct lttng_ht_node_ulong *node;
410 struct consumer_socket *socket = NULL;
411
412 /* Negative keys are lookup failures */
413 if (key < 0 || consumer == NULL) {
414 return NULL;
415 }
416
417 lttng_ht_lookup(consumer->socks, (void *)((unsigned long) key),
418 &iter);
419 node = lttng_ht_iter_get_node_ulong(&iter);
420 if (node != NULL) {
421 socket = caa_container_of(node, struct consumer_socket, node);
422 }
423
424 return socket;
425 }
426
427 /*
428 * Allocate a new consumer_socket and return the pointer.
429 */
430 struct consumer_socket *consumer_allocate_socket(int *fd)
431 {
432 struct consumer_socket *socket = NULL;
433
434 assert(fd);
435
436 socket = zmalloc(sizeof(struct consumer_socket));
437 if (socket == NULL) {
438 PERROR("zmalloc consumer socket");
439 goto error;
440 }
441
442 socket->fd_ptr = fd;
443 lttng_ht_node_init_ulong(&socket->node, *fd);
444
445 error:
446 return socket;
447 }
448
449 /*
450 * Add consumer socket to consumer output object. Read side lock must be
451 * acquired before calling this function.
452 */
453 void consumer_add_socket(struct consumer_socket *sock,
454 struct consumer_output *consumer)
455 {
456 assert(sock);
457 assert(consumer);
458
459 lttng_ht_add_unique_ulong(consumer->socks, &sock->node);
460 }
461
462 /*
463 * Delete consumer socket to consumer output object. Read side lock must be
464 * acquired before calling this function.
465 */
466 void consumer_del_socket(struct consumer_socket *sock,
467 struct consumer_output *consumer)
468 {
469 int ret;
470 struct lttng_ht_iter iter;
471
472 assert(sock);
473 assert(consumer);
474
475 iter.iter.node = &sock->node.node;
476 ret = lttng_ht_del(consumer->socks, &iter);
477 assert(!ret);
478 }
479
480 /*
481 * RCU destroy call function.
482 */
483 static void destroy_socket_rcu(struct rcu_head *head)
484 {
485 struct lttng_ht_node_ulong *node =
486 caa_container_of(head, struct lttng_ht_node_ulong, head);
487 struct consumer_socket *socket =
488 caa_container_of(node, struct consumer_socket, node);
489
490 free(socket);
491 }
492
493 /*
494 * Destroy and free socket pointer in a call RCU. Read side lock must be
495 * acquired before calling this function.
496 */
497 void consumer_destroy_socket(struct consumer_socket *sock)
498 {
499 assert(sock);
500
501 /*
502 * We DO NOT close the file descriptor here since it is global to the
503 * session daemon and is closed only if the consumer dies or a custom
504 * consumer was registered,
505 */
506 if (sock->registered) {
507 DBG3("Consumer socket was registered. Closing fd %d", *sock->fd_ptr);
508 lttcomm_close_unix_sock(*sock->fd_ptr);
509 }
510
511 call_rcu(&sock->node.head, destroy_socket_rcu);
512 }
513
514 /*
515 * Allocate and assign data to a consumer_output object.
516 *
517 * Return pointer to structure.
518 */
519 struct consumer_output *consumer_create_output(enum consumer_dst_type type)
520 {
521 struct consumer_output *output = NULL;
522
523 output = zmalloc(sizeof(struct consumer_output));
524 if (output == NULL) {
525 PERROR("zmalloc consumer_output");
526 goto error;
527 }
528
529 /* By default, consumer output is enabled */
530 output->enabled = 1;
531 output->type = type;
532 output->net_seq_index = (uint64_t) -1ULL;
533 urcu_ref_init(&output->ref);
534
535 output->socks = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
536
537 error:
538 return output;
539 }
540
541 /*
542 * Iterate over the consumer output socket hash table and destroy them. The
543 * socket file descriptor are only closed if the consumer output was
544 * registered meaning it's an external consumer.
545 */
546 void consumer_destroy_output_sockets(struct consumer_output *obj)
547 {
548 struct lttng_ht_iter iter;
549 struct consumer_socket *socket;
550
551 if (!obj->socks) {
552 return;
553 }
554
555 rcu_read_lock();
556 cds_lfht_for_each_entry(obj->socks->ht, &iter.iter, socket, node.node) {
557 consumer_del_socket(socket, obj);
558 consumer_destroy_socket(socket);
559 }
560 rcu_read_unlock();
561 }
562
563 /*
564 * Delete the consumer_output object from the list and free the ptr.
565 *
566 * Should *NOT* be called with RCU read-side lock held.
567 */
568 static void consumer_release_output(struct urcu_ref *ref)
569 {
570 struct consumer_output *obj =
571 caa_container_of(ref, struct consumer_output, ref);
572
573 consumer_destroy_output_sockets(obj);
574
575 if (obj->socks) {
576 /* Finally destroy HT */
577 ht_cleanup_push(obj->socks);
578 }
579
580 free(obj);
581 }
582
583 /*
584 * Get the consumer_output object.
585 */
586 void consumer_output_get(struct consumer_output *obj)
587 {
588 urcu_ref_get(&obj->ref);
589 }
590
591 /*
592 * Put the consumer_output object.
593 *
594 * Should *NOT* be called with RCU read-side lock held.
595 */
596 void consumer_output_put(struct consumer_output *obj)
597 {
598 if (!obj) {
599 return;
600 }
601 urcu_ref_put(&obj->ref, consumer_release_output);
602 }
603
604 /*
605 * Copy consumer output and returned the newly allocated copy.
606 *
607 * Should *NOT* be called with RCU read-side lock held.
608 */
609 struct consumer_output *consumer_copy_output(struct consumer_output *src)
610 {
611 int ret;
612 struct consumer_output *output;
613
614 assert(src);
615
616 output = consumer_create_output(src->type);
617 if (output == NULL) {
618 goto end;
619 }
620 output->enabled = src->enabled;
621 output->net_seq_index = src->net_seq_index;
622 memcpy(output->domain_subdir, src->domain_subdir,
623 sizeof(output->domain_subdir));
624 output->snapshot = src->snapshot;
625 output->relay_major_version = src->relay_major_version;
626 output->relay_minor_version = src->relay_minor_version;
627 memcpy(&output->dst, &src->dst, sizeof(output->dst));
628 ret = consumer_copy_sockets(output, src);
629 if (ret < 0) {
630 goto error_put;
631 }
632 end:
633 return output;
634
635 error_put:
636 consumer_output_put(output);
637 return NULL;
638 }
639
640 /*
641 * Copy consumer sockets from src to dst.
642 *
643 * Return 0 on success or else a negative value.
644 */
645 int consumer_copy_sockets(struct consumer_output *dst,
646 struct consumer_output *src)
647 {
648 int ret = 0;
649 struct lttng_ht_iter iter;
650 struct consumer_socket *socket, *copy_sock;
651
652 assert(dst);
653 assert(src);
654
655 rcu_read_lock();
656 cds_lfht_for_each_entry(src->socks->ht, &iter.iter, socket, node.node) {
657 /* Ignore socket that are already there. */
658 copy_sock = consumer_find_socket(*socket->fd_ptr, dst);
659 if (copy_sock) {
660 continue;
661 }
662
663 /* Create new socket object. */
664 copy_sock = consumer_allocate_socket(socket->fd_ptr);
665 if (copy_sock == NULL) {
666 rcu_read_unlock();
667 ret = -ENOMEM;
668 goto error;
669 }
670
671 copy_sock->registered = socket->registered;
672 /*
673 * This is valid because this lock is shared accross all consumer
674 * object being the global lock of the consumer data structure of the
675 * session daemon.
676 */
677 copy_sock->lock = socket->lock;
678 consumer_add_socket(copy_sock, dst);
679 }
680 rcu_read_unlock();
681
682 error:
683 return ret;
684 }
685
686 /*
687 * Set network URI to the consumer output.
688 *
689 * Return 0 on success. Return 1 if the URI were equal. Else, negative value on
690 * error.
691 */
692 int consumer_set_network_uri(const struct ltt_session *session,
693 struct consumer_output *output,
694 struct lttng_uri *uri)
695 {
696 int ret;
697 struct lttng_uri *dst_uri = NULL;
698
699 /* Code flow error safety net. */
700 assert(output);
701 assert(uri);
702
703 switch (uri->stype) {
704 case LTTNG_STREAM_CONTROL:
705 dst_uri = &output->dst.net.control;
706 output->dst.net.control_isset = 1;
707 if (uri->port == 0) {
708 /* Assign default port. */
709 uri->port = DEFAULT_NETWORK_CONTROL_PORT;
710 } else {
711 if (output->dst.net.data_isset && uri->port ==
712 output->dst.net.data.port) {
713 ret = -LTTNG_ERR_INVALID;
714 goto error;
715 }
716 }
717 DBG3("Consumer control URI set with port %d", uri->port);
718 break;
719 case LTTNG_STREAM_DATA:
720 dst_uri = &output->dst.net.data;
721 output->dst.net.data_isset = 1;
722 if (uri->port == 0) {
723 /* Assign default port. */
724 uri->port = DEFAULT_NETWORK_DATA_PORT;
725 } else {
726 if (output->dst.net.control_isset && uri->port ==
727 output->dst.net.control.port) {
728 ret = -LTTNG_ERR_INVALID;
729 goto error;
730 }
731 }
732 DBG3("Consumer data URI set with port %d", uri->port);
733 break;
734 default:
735 ERR("Set network uri type unknown %d", uri->stype);
736 ret = -LTTNG_ERR_INVALID;
737 goto error;
738 }
739
740 ret = uri_compare(dst_uri, uri);
741 if (!ret) {
742 /* Same URI, don't touch it and return success. */
743 DBG3("URI network compare are the same");
744 goto equal;
745 }
746
747 /* URIs were not equal, replacing it. */
748 memcpy(dst_uri, uri, sizeof(struct lttng_uri));
749 output->type = CONSUMER_DST_NET;
750 if (dst_uri->stype != LTTNG_STREAM_CONTROL) {
751 /* Only the control uri needs to contain the path. */
752 goto end;
753 }
754
755 /*
756 * If the user has specified a subdir as part of the control
757 * URL, the session's base output directory is:
758 * /RELAYD_OUTPUT_PATH/HOSTNAME/USER_SPECIFIED_DIR
759 *
760 * Hence, the "base_dir" from which all stream files and
761 * session rotation chunks are created takes the form
762 * /HOSTNAME/USER_SPECIFIED_DIR
763 *
764 * If the user has not specified an output directory as part of
765 * the control URL, the base output directory has the form:
766 * /RELAYD_OUTPUT_PATH/HOSTNAME/SESSION_NAME-CREATION_TIME
767 *
768 * Hence, the "base_dir" from which all stream files and
769 * session rotation chunks are created takes the form
770 * /HOSTNAME/SESSION_NAME-CREATION_TIME
771 *
772 * Note that automatically generated session names already
773 * contain the session's creation time. In that case, the
774 * creation time is omitted to prevent it from being duplicated
775 * in the final directory hierarchy.
776 */
777 if (*uri->subdir) {
778 if (strstr(uri->subdir, "../")) {
779 ERR("Network URI subdirs are not allowed to walk up the path hierarchy");
780 ret = -LTTNG_ERR_INVALID;
781 goto error;
782 }
783 ret = snprintf(output->dst.net.base_dir,
784 sizeof(output->dst.net.base_dir),
785 "/%s/%s/", session->hostname, uri->subdir);
786 } else {
787 if (session->has_auto_generated_name) {
788 ret = snprintf(output->dst.net.base_dir,
789 sizeof(output->dst.net.base_dir),
790 "/%s/%s/", session->hostname,
791 session->name);
792 } else {
793 char session_creation_datetime[16];
794 size_t strftime_ret;
795 struct tm *timeinfo;
796
797 timeinfo = localtime(&session->creation_time);
798 if (!timeinfo) {
799 ret = -LTTNG_ERR_FATAL;
800 goto error;
801 }
802 strftime_ret = strftime(session_creation_datetime,
803 sizeof(session_creation_datetime),
804 "%Y%m%d-%H%M%S", timeinfo);
805 if (strftime_ret == 0) {
806 ERR("Failed to format session creation timestamp while setting network URI");
807 ret = -LTTNG_ERR_FATAL;
808 goto error;
809 }
810 ret = snprintf(output->dst.net.base_dir,
811 sizeof(output->dst.net.base_dir),
812 "/%s/%s-%s/", session->hostname,
813 session->name,
814 session_creation_datetime);
815 }
816 }
817 if (ret >= sizeof(output->dst.net.base_dir)) {
818 ret = -LTTNG_ERR_INVALID;
819 ERR("Truncation occurred while setting network output base directory");
820 goto error;
821 } else if (ret == -1) {
822 ret = -LTTNG_ERR_INVALID;
823 PERROR("Error occurred while setting network output base directory");
824 goto error;
825 }
826
827 DBG3("Consumer set network uri base_dir path %s",
828 output->dst.net.base_dir);
829
830 end:
831 return 0;
832 equal:
833 return 1;
834 error:
835 return ret;
836 }
837
838 /*
839 * Send file descriptor to consumer via sock.
840 *
841 * The consumer socket lock must be held by the caller.
842 */
843 int consumer_send_fds(struct consumer_socket *sock, const int *fds,
844 size_t nb_fd)
845 {
846 int ret;
847
848 assert(fds);
849 assert(sock);
850 assert(nb_fd > 0);
851 assert(pthread_mutex_trylock(sock->lock) == EBUSY);
852
853 ret = lttcomm_send_fds_unix_sock(*sock->fd_ptr, fds, nb_fd);
854 if (ret < 0) {
855 /* The above call will print a PERROR on error. */
856 DBG("Error when sending consumer fds on sock %d", *sock->fd_ptr);
857 goto error;
858 }
859
860 ret = consumer_recv_status_reply(sock);
861 error:
862 return ret;
863 }
864
865 /*
866 * Consumer send communication message structure to consumer.
867 *
868 * The consumer socket lock must be held by the caller.
869 */
870 int consumer_send_msg(struct consumer_socket *sock,
871 struct lttcomm_consumer_msg *msg)
872 {
873 int ret;
874
875 assert(msg);
876 assert(sock);
877 assert(pthread_mutex_trylock(sock->lock) == EBUSY);
878
879 ret = consumer_socket_send(sock, msg, sizeof(struct lttcomm_consumer_msg));
880 if (ret < 0) {
881 goto error;
882 }
883
884 ret = consumer_recv_status_reply(sock);
885
886 error:
887 return ret;
888 }
889
890 /*
891 * Consumer send channel communication message structure to consumer.
892 *
893 * The consumer socket lock must be held by the caller.
894 */
895 int consumer_send_channel(struct consumer_socket *sock,
896 struct lttcomm_consumer_msg *msg)
897 {
898 int ret;
899
900 assert(msg);
901 assert(sock);
902
903 ret = consumer_send_msg(sock, msg);
904 if (ret < 0) {
905 goto error;
906 }
907
908 error:
909 return ret;
910 }
911
912 /*
913 * Populate the given consumer msg structure with the ask_channel command
914 * information.
915 */
916 void consumer_init_ask_channel_comm_msg(struct lttcomm_consumer_msg *msg,
917 uint64_t subbuf_size,
918 uint64_t num_subbuf,
919 int overwrite,
920 unsigned int switch_timer_interval,
921 unsigned int read_timer_interval,
922 unsigned int live_timer_interval,
923 unsigned int monitor_timer_interval,
924 int output,
925 int type,
926 uint64_t session_id,
927 const char *pathname,
928 const char *name,
929 uint64_t relayd_id,
930 uint64_t key,
931 unsigned char *uuid,
932 uint32_t chan_id,
933 uint64_t tracefile_size,
934 uint64_t tracefile_count,
935 uint64_t session_id_per_pid,
936 unsigned int monitor,
937 uint32_t ust_app_uid,
938 int64_t blocking_timeout,
939 const char *root_shm_path,
940 const char *shm_path,
941 struct lttng_trace_chunk *trace_chunk,
942 const struct lttng_credentials *buffer_credentials)
943 {
944 assert(msg);
945
946 /* Zeroed structure */
947 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
948 msg->u.ask_channel.buffer_credentials.uid = UINT32_MAX;
949 msg->u.ask_channel.buffer_credentials.gid = UINT32_MAX;
950
951 if (trace_chunk) {
952 uint64_t chunk_id;
953 enum lttng_trace_chunk_status chunk_status;
954
955 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
956 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
957 LTTNG_OPTIONAL_SET(&msg->u.ask_channel.chunk_id, chunk_id);
958 }
959 msg->u.ask_channel.buffer_credentials.uid = buffer_credentials->uid;
960 msg->u.ask_channel.buffer_credentials.gid = buffer_credentials->gid;
961
962 msg->cmd_type = LTTNG_CONSUMER_ASK_CHANNEL_CREATION;
963 msg->u.ask_channel.subbuf_size = subbuf_size;
964 msg->u.ask_channel.num_subbuf = num_subbuf ;
965 msg->u.ask_channel.overwrite = overwrite;
966 msg->u.ask_channel.switch_timer_interval = switch_timer_interval;
967 msg->u.ask_channel.read_timer_interval = read_timer_interval;
968 msg->u.ask_channel.live_timer_interval = live_timer_interval;
969 msg->u.ask_channel.monitor_timer_interval = monitor_timer_interval;
970 msg->u.ask_channel.output = output;
971 msg->u.ask_channel.type = type;
972 msg->u.ask_channel.session_id = session_id;
973 msg->u.ask_channel.session_id_per_pid = session_id_per_pid;
974 msg->u.ask_channel.relayd_id = relayd_id;
975 msg->u.ask_channel.key = key;
976 msg->u.ask_channel.chan_id = chan_id;
977 msg->u.ask_channel.tracefile_size = tracefile_size;
978 msg->u.ask_channel.tracefile_count = tracefile_count;
979 msg->u.ask_channel.monitor = monitor;
980 msg->u.ask_channel.ust_app_uid = ust_app_uid;
981 msg->u.ask_channel.blocking_timeout = blocking_timeout;
982
983 memcpy(msg->u.ask_channel.uuid, uuid, sizeof(msg->u.ask_channel.uuid));
984
985 if (pathname) {
986 strncpy(msg->u.ask_channel.pathname, pathname,
987 sizeof(msg->u.ask_channel.pathname));
988 msg->u.ask_channel.pathname[sizeof(msg->u.ask_channel.pathname)-1] = '\0';
989 }
990
991 strncpy(msg->u.ask_channel.name, name, sizeof(msg->u.ask_channel.name));
992 msg->u.ask_channel.name[sizeof(msg->u.ask_channel.name) - 1] = '\0';
993
994 if (root_shm_path) {
995 strncpy(msg->u.ask_channel.root_shm_path, root_shm_path,
996 sizeof(msg->u.ask_channel.root_shm_path));
997 msg->u.ask_channel.root_shm_path[sizeof(msg->u.ask_channel.root_shm_path) - 1] = '\0';
998 }
999 if (shm_path) {
1000 strncpy(msg->u.ask_channel.shm_path, shm_path,
1001 sizeof(msg->u.ask_channel.shm_path));
1002 msg->u.ask_channel.shm_path[sizeof(msg->u.ask_channel.shm_path) - 1] = '\0';
1003 }
1004 }
1005
1006 /*
1007 * Init channel communication message structure.
1008 */
1009 void consumer_init_add_channel_comm_msg(struct lttcomm_consumer_msg *msg,
1010 uint64_t channel_key,
1011 uint64_t session_id,
1012 const char *pathname,
1013 uid_t uid,
1014 gid_t gid,
1015 uint64_t relayd_id,
1016 const char *name,
1017 unsigned int nb_init_streams,
1018 enum lttng_event_output output,
1019 int type,
1020 uint64_t tracefile_size,
1021 uint64_t tracefile_count,
1022 unsigned int monitor,
1023 unsigned int live_timer_interval,
1024 unsigned int monitor_timer_interval,
1025 struct lttng_trace_chunk *trace_chunk)
1026 {
1027 assert(msg);
1028
1029 /* Zeroed structure */
1030 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1031
1032 if (trace_chunk) {
1033 uint64_t chunk_id;
1034 enum lttng_trace_chunk_status chunk_status;
1035
1036 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
1037 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1038 LTTNG_OPTIONAL_SET(&msg->u.channel.chunk_id, chunk_id);
1039 }
1040
1041 /* Send channel */
1042 msg->cmd_type = LTTNG_CONSUMER_ADD_CHANNEL;
1043 msg->u.channel.channel_key = channel_key;
1044 msg->u.channel.session_id = session_id;
1045 msg->u.channel.relayd_id = relayd_id;
1046 msg->u.channel.nb_init_streams = nb_init_streams;
1047 msg->u.channel.output = output;
1048 msg->u.channel.type = type;
1049 msg->u.channel.tracefile_size = tracefile_size;
1050 msg->u.channel.tracefile_count = tracefile_count;
1051 msg->u.channel.monitor = monitor;
1052 msg->u.channel.live_timer_interval = live_timer_interval;
1053 msg->u.channel.monitor_timer_interval = monitor_timer_interval;
1054
1055 strncpy(msg->u.channel.pathname, pathname,
1056 sizeof(msg->u.channel.pathname));
1057 msg->u.channel.pathname[sizeof(msg->u.channel.pathname) - 1] = '\0';
1058
1059 strncpy(msg->u.channel.name, name, sizeof(msg->u.channel.name));
1060 msg->u.channel.name[sizeof(msg->u.channel.name) - 1] = '\0';
1061 }
1062
1063 /*
1064 * Init stream communication message structure.
1065 */
1066 void consumer_init_add_stream_comm_msg(struct lttcomm_consumer_msg *msg,
1067 uint64_t channel_key,
1068 uint64_t stream_key,
1069 int32_t cpu)
1070 {
1071 assert(msg);
1072
1073 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1074
1075 msg->cmd_type = LTTNG_CONSUMER_ADD_STREAM;
1076 msg->u.stream.channel_key = channel_key;
1077 msg->u.stream.stream_key = stream_key;
1078 msg->u.stream.cpu = cpu;
1079 }
1080
1081 void consumer_init_streams_sent_comm_msg(struct lttcomm_consumer_msg *msg,
1082 enum lttng_consumer_command cmd,
1083 uint64_t channel_key, uint64_t net_seq_idx)
1084 {
1085 assert(msg);
1086
1087 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1088
1089 msg->cmd_type = cmd;
1090 msg->u.sent_streams.channel_key = channel_key;
1091 msg->u.sent_streams.net_seq_idx = net_seq_idx;
1092 }
1093
1094 /*
1095 * Send stream communication structure to the consumer.
1096 */
1097 int consumer_send_stream(struct consumer_socket *sock,
1098 struct consumer_output *dst, struct lttcomm_consumer_msg *msg,
1099 const int *fds, size_t nb_fd)
1100 {
1101 int ret;
1102
1103 assert(msg);
1104 assert(dst);
1105 assert(sock);
1106 assert(fds);
1107
1108 ret = consumer_send_msg(sock, msg);
1109 if (ret < 0) {
1110 goto error;
1111 }
1112
1113 ret = consumer_send_fds(sock, fds, nb_fd);
1114 if (ret < 0) {
1115 goto error;
1116 }
1117
1118 error:
1119 return ret;
1120 }
1121
1122 /*
1123 * Send relayd socket to consumer associated with a session name.
1124 *
1125 * The consumer socket lock must be held by the caller.
1126 *
1127 * On success return positive value. On error, negative value.
1128 */
1129 int consumer_send_relayd_socket(struct consumer_socket *consumer_sock,
1130 struct lttcomm_relayd_sock *rsock, struct consumer_output *consumer,
1131 enum lttng_stream_type type, uint64_t session_id,
1132 const char *session_name, const char *hostname,
1133 const char *base_path, int session_live_timer,
1134 const uint64_t *current_chunk_id, time_t session_creation_time,
1135 bool session_name_contains_creation_time)
1136 {
1137 int ret;
1138 struct lttcomm_consumer_msg msg;
1139
1140 /* Code flow error. Safety net. */
1141 assert(rsock);
1142 assert(consumer);
1143 assert(consumer_sock);
1144
1145 memset(&msg, 0, sizeof(msg));
1146 /* Bail out if consumer is disabled */
1147 if (!consumer->enabled) {
1148 ret = LTTNG_OK;
1149 goto error;
1150 }
1151
1152 if (type == LTTNG_STREAM_CONTROL) {
1153 char output_path[LTTNG_PATH_MAX] = {};
1154 uint64_t relayd_session_id;
1155
1156 ret = relayd_create_session(rsock,
1157 &relayd_session_id,
1158 session_name, hostname, base_path,
1159 session_live_timer,
1160 consumer->snapshot, session_id,
1161 sessiond_uuid, current_chunk_id,
1162 session_creation_time,
1163 session_name_contains_creation_time,
1164 output_path);
1165 if (ret < 0) {
1166 /* Close the control socket. */
1167 (void) relayd_close(rsock);
1168 goto error;
1169 }
1170 msg.u.relayd_sock.relayd_session_id = relayd_session_id;
1171 DBG("Created session on relay, output path reply: %s",
1172 output_path);
1173 }
1174
1175 msg.cmd_type = LTTNG_CONSUMER_ADD_RELAYD_SOCKET;
1176 /*
1177 * Assign network consumer output index using the temporary consumer since
1178 * this call should only be made from within a set_consumer_uri() function
1179 * call in the session daemon.
1180 */
1181 msg.u.relayd_sock.net_index = consumer->net_seq_index;
1182 msg.u.relayd_sock.type = type;
1183 msg.u.relayd_sock.session_id = session_id;
1184 memcpy(&msg.u.relayd_sock.sock, rsock, sizeof(msg.u.relayd_sock.sock));
1185
1186 DBG3("Sending relayd sock info to consumer on %d", *consumer_sock->fd_ptr);
1187 ret = consumer_send_msg(consumer_sock, &msg);
1188 if (ret < 0) {
1189 goto error;
1190 }
1191
1192 DBG3("Sending relayd socket file descriptor to consumer");
1193 ret = consumer_send_fds(consumer_sock, ALIGNED_CONST_PTR(rsock->sock.fd), 1);
1194 if (ret < 0) {
1195 goto error;
1196 }
1197
1198 DBG2("Consumer relayd socket sent");
1199
1200 error:
1201 return ret;
1202 }
1203
1204 static
1205 int consumer_send_pipe(struct consumer_socket *consumer_sock,
1206 enum lttng_consumer_command cmd, int pipe)
1207 {
1208 int ret;
1209 struct lttcomm_consumer_msg msg;
1210 const char *pipe_name;
1211 const char *command_name;
1212
1213 switch (cmd) {
1214 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1215 pipe_name = "channel monitor";
1216 command_name = "SET_CHANNEL_MONITOR_PIPE";
1217 break;
1218 default:
1219 ERR("Unexpected command received in %s (cmd = %d)", __func__,
1220 (int) cmd);
1221 abort();
1222 }
1223
1224 /* Code flow error. Safety net. */
1225
1226 memset(&msg, 0, sizeof(msg));
1227 msg.cmd_type = cmd;
1228
1229 pthread_mutex_lock(consumer_sock->lock);
1230 DBG3("Sending %s command to consumer", command_name);
1231 ret = consumer_send_msg(consumer_sock, &msg);
1232 if (ret < 0) {
1233 goto error;
1234 }
1235
1236 DBG3("Sending %s pipe %d to consumer on socket %d",
1237 pipe_name,
1238 pipe, *consumer_sock->fd_ptr);
1239 ret = consumer_send_fds(consumer_sock, &pipe, 1);
1240 if (ret < 0) {
1241 goto error;
1242 }
1243
1244 DBG2("%s pipe successfully sent", pipe_name);
1245 error:
1246 pthread_mutex_unlock(consumer_sock->lock);
1247 return ret;
1248 }
1249
1250 int consumer_send_channel_monitor_pipe(struct consumer_socket *consumer_sock,
1251 int pipe)
1252 {
1253 return consumer_send_pipe(consumer_sock,
1254 LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE, pipe);
1255 }
1256
1257 /*
1258 * Ask the consumer if the data is pending for the specific session id.
1259 * Returns 1 if data is pending, 0 otherwise, or < 0 on error.
1260 */
1261 int consumer_is_data_pending(uint64_t session_id,
1262 struct consumer_output *consumer)
1263 {
1264 int ret;
1265 int32_t ret_code = 0; /* Default is that the data is NOT pending */
1266 struct consumer_socket *socket;
1267 struct lttng_ht_iter iter;
1268 struct lttcomm_consumer_msg msg;
1269
1270 assert(consumer);
1271
1272 DBG3("Consumer data pending for id %" PRIu64, session_id);
1273
1274 memset(&msg, 0, sizeof(msg));
1275 msg.cmd_type = LTTNG_CONSUMER_DATA_PENDING;
1276 msg.u.data_pending.session_id = session_id;
1277
1278 /* Send command for each consumer */
1279 rcu_read_lock();
1280 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1281 node.node) {
1282 pthread_mutex_lock(socket->lock);
1283 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1284 if (ret < 0) {
1285 pthread_mutex_unlock(socket->lock);
1286 goto error_unlock;
1287 }
1288
1289 /*
1290 * No need for a recv reply status because the answer to the command is
1291 * the reply status message.
1292 */
1293
1294 ret = consumer_socket_recv(socket, &ret_code, sizeof(ret_code));
1295 if (ret < 0) {
1296 pthread_mutex_unlock(socket->lock);
1297 goto error_unlock;
1298 }
1299 pthread_mutex_unlock(socket->lock);
1300
1301 if (ret_code == 1) {
1302 break;
1303 }
1304 }
1305 rcu_read_unlock();
1306
1307 DBG("Consumer data is %s pending for session id %" PRIu64,
1308 ret_code == 1 ? "" : "NOT", session_id);
1309 return ret_code;
1310
1311 error_unlock:
1312 rcu_read_unlock();
1313 return -1;
1314 }
1315
1316 /*
1317 * Send a flush command to consumer using the given channel key.
1318 *
1319 * Return 0 on success else a negative value.
1320 */
1321 int consumer_flush_channel(struct consumer_socket *socket, uint64_t key)
1322 {
1323 int ret;
1324 struct lttcomm_consumer_msg msg;
1325
1326 assert(socket);
1327
1328 DBG2("Consumer flush channel key %" PRIu64, key);
1329
1330 memset(&msg, 0, sizeof(msg));
1331 msg.cmd_type = LTTNG_CONSUMER_FLUSH_CHANNEL;
1332 msg.u.flush_channel.key = key;
1333
1334 pthread_mutex_lock(socket->lock);
1335 health_code_update();
1336
1337 ret = consumer_send_msg(socket, &msg);
1338 if (ret < 0) {
1339 goto end;
1340 }
1341
1342 end:
1343 health_code_update();
1344 pthread_mutex_unlock(socket->lock);
1345 return ret;
1346 }
1347
1348 /*
1349 * Send a clear quiescent command to consumer using the given channel key.
1350 *
1351 * Return 0 on success else a negative value.
1352 */
1353 int consumer_clear_quiescent_channel(struct consumer_socket *socket, uint64_t key)
1354 {
1355 int ret;
1356 struct lttcomm_consumer_msg msg;
1357
1358 assert(socket);
1359
1360 DBG2("Consumer clear quiescent channel key %" PRIu64, key);
1361
1362 memset(&msg, 0, sizeof(msg));
1363 msg.cmd_type = LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL;
1364 msg.u.clear_quiescent_channel.key = key;
1365
1366 pthread_mutex_lock(socket->lock);
1367 health_code_update();
1368
1369 ret = consumer_send_msg(socket, &msg);
1370 if (ret < 0) {
1371 goto end;
1372 }
1373
1374 end:
1375 health_code_update();
1376 pthread_mutex_unlock(socket->lock);
1377 return ret;
1378 }
1379
1380 /*
1381 * Send a close metadata command to consumer using the given channel key.
1382 * Called with registry lock held.
1383 *
1384 * Return 0 on success else a negative value.
1385 */
1386 int consumer_close_metadata(struct consumer_socket *socket,
1387 uint64_t metadata_key)
1388 {
1389 int ret;
1390 struct lttcomm_consumer_msg msg;
1391
1392 assert(socket);
1393
1394 DBG2("Consumer close metadata channel key %" PRIu64, metadata_key);
1395
1396 memset(&msg, 0, sizeof(msg));
1397 msg.cmd_type = LTTNG_CONSUMER_CLOSE_METADATA;
1398 msg.u.close_metadata.key = metadata_key;
1399
1400 pthread_mutex_lock(socket->lock);
1401 health_code_update();
1402
1403 ret = consumer_send_msg(socket, &msg);
1404 if (ret < 0) {
1405 goto end;
1406 }
1407
1408 end:
1409 health_code_update();
1410 pthread_mutex_unlock(socket->lock);
1411 return ret;
1412 }
1413
1414 /*
1415 * Send a setup metdata command to consumer using the given channel key.
1416 *
1417 * Return 0 on success else a negative value.
1418 */
1419 int consumer_setup_metadata(struct consumer_socket *socket,
1420 uint64_t metadata_key)
1421 {
1422 int ret;
1423 struct lttcomm_consumer_msg msg;
1424
1425 assert(socket);
1426
1427 DBG2("Consumer setup metadata channel key %" PRIu64, metadata_key);
1428
1429 memset(&msg, 0, sizeof(msg));
1430 msg.cmd_type = LTTNG_CONSUMER_SETUP_METADATA;
1431 msg.u.setup_metadata.key = metadata_key;
1432
1433 pthread_mutex_lock(socket->lock);
1434 health_code_update();
1435
1436 ret = consumer_send_msg(socket, &msg);
1437 if (ret < 0) {
1438 goto end;
1439 }
1440
1441 end:
1442 health_code_update();
1443 pthread_mutex_unlock(socket->lock);
1444 return ret;
1445 }
1446
1447 /*
1448 * Send metadata string to consumer.
1449 * RCU read-side lock must be held to guarantee existence of socket.
1450 *
1451 * Return 0 on success else a negative value.
1452 */
1453 int consumer_push_metadata(struct consumer_socket *socket,
1454 uint64_t metadata_key, char *metadata_str, size_t len,
1455 size_t target_offset, uint64_t version)
1456 {
1457 int ret;
1458 struct lttcomm_consumer_msg msg;
1459
1460 assert(socket);
1461
1462 DBG2("Consumer push metadata to consumer socket %d", *socket->fd_ptr);
1463
1464 pthread_mutex_lock(socket->lock);
1465
1466 memset(&msg, 0, sizeof(msg));
1467 msg.cmd_type = LTTNG_CONSUMER_PUSH_METADATA;
1468 msg.u.push_metadata.key = metadata_key;
1469 msg.u.push_metadata.target_offset = target_offset;
1470 msg.u.push_metadata.len = len;
1471 msg.u.push_metadata.version = version;
1472
1473 health_code_update();
1474 ret = consumer_send_msg(socket, &msg);
1475 if (ret < 0 || len == 0) {
1476 goto end;
1477 }
1478
1479 DBG3("Consumer pushing metadata on sock %d of len %zu", *socket->fd_ptr,
1480 len);
1481
1482 ret = consumer_socket_send(socket, metadata_str, len);
1483 if (ret < 0) {
1484 goto end;
1485 }
1486
1487 health_code_update();
1488 ret = consumer_recv_status_reply(socket);
1489 if (ret < 0) {
1490 goto end;
1491 }
1492
1493 end:
1494 pthread_mutex_unlock(socket->lock);
1495 health_code_update();
1496 return ret;
1497 }
1498
1499 /*
1500 * Ask the consumer to snapshot a specific channel using the key.
1501 *
1502 * Returns LTTNG_OK on success or else an LTTng error code.
1503 */
1504 enum lttng_error_code consumer_snapshot_channel(struct consumer_socket *socket,
1505 uint64_t key, const struct consumer_output *output, int metadata,
1506 uid_t uid, gid_t gid, const char *channel_path, int wait,
1507 uint64_t nb_packets_per_stream)
1508 {
1509 int ret;
1510 enum lttng_error_code status = LTTNG_OK;
1511 struct lttcomm_consumer_msg msg;
1512
1513 assert(socket);
1514 assert(output);
1515
1516 DBG("Consumer snapshot channel key %" PRIu64, key);
1517
1518 memset(&msg, 0, sizeof(msg));
1519 msg.cmd_type = LTTNG_CONSUMER_SNAPSHOT_CHANNEL;
1520 msg.u.snapshot_channel.key = key;
1521 msg.u.snapshot_channel.nb_packets_per_stream = nb_packets_per_stream;
1522 msg.u.snapshot_channel.metadata = metadata;
1523
1524 if (output->type == CONSUMER_DST_NET) {
1525 msg.u.snapshot_channel.relayd_id =
1526 output->net_seq_index;
1527 msg.u.snapshot_channel.use_relayd = 1;
1528 } else {
1529 msg.u.snapshot_channel.relayd_id = (uint64_t) -1ULL;
1530 }
1531 ret = lttng_strncpy(msg.u.snapshot_channel.pathname,
1532 channel_path,
1533 sizeof(msg.u.snapshot_channel.pathname));
1534 if (ret < 0) {
1535 ERR("Snapshot path exceeds the maximal allowed length of %zu bytes (%zu bytes required) with path \"%s\"",
1536 sizeof(msg.u.snapshot_channel.pathname),
1537 strlen(channel_path),
1538 channel_path);
1539 status = LTTNG_ERR_SNAPSHOT_FAIL;
1540 goto error;
1541 }
1542
1543 health_code_update();
1544 pthread_mutex_lock(socket->lock);
1545 ret = consumer_send_msg(socket, &msg);
1546 pthread_mutex_unlock(socket->lock);
1547 if (ret < 0) {
1548 switch (-ret) {
1549 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1550 status = LTTNG_ERR_CHAN_NOT_FOUND;
1551 break;
1552 default:
1553 status = LTTNG_ERR_SNAPSHOT_FAIL;
1554 break;
1555 }
1556 goto error;
1557 }
1558
1559 error:
1560 health_code_update();
1561 return status;
1562 }
1563
1564 /*
1565 * Ask the consumer the number of discarded events for a channel.
1566 */
1567 int consumer_get_discarded_events(uint64_t session_id, uint64_t channel_key,
1568 struct consumer_output *consumer, uint64_t *discarded)
1569 {
1570 int ret;
1571 struct consumer_socket *socket;
1572 struct lttng_ht_iter iter;
1573 struct lttcomm_consumer_msg msg;
1574
1575 assert(consumer);
1576
1577 DBG3("Consumer discarded events id %" PRIu64, session_id);
1578
1579 memset(&msg, 0, sizeof(msg));
1580 msg.cmd_type = LTTNG_CONSUMER_DISCARDED_EVENTS;
1581 msg.u.discarded_events.session_id = session_id;
1582 msg.u.discarded_events.channel_key = channel_key;
1583
1584 *discarded = 0;
1585
1586 /* Send command for each consumer */
1587 rcu_read_lock();
1588 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1589 node.node) {
1590 uint64_t consumer_discarded = 0;
1591 pthread_mutex_lock(socket->lock);
1592 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1593 if (ret < 0) {
1594 pthread_mutex_unlock(socket->lock);
1595 goto end;
1596 }
1597
1598 /*
1599 * No need for a recv reply status because the answer to the
1600 * command is the reply status message.
1601 */
1602 ret = consumer_socket_recv(socket, &consumer_discarded,
1603 sizeof(consumer_discarded));
1604 if (ret < 0) {
1605 ERR("get discarded events");
1606 pthread_mutex_unlock(socket->lock);
1607 goto end;
1608 }
1609 pthread_mutex_unlock(socket->lock);
1610 *discarded += consumer_discarded;
1611 }
1612 ret = 0;
1613 DBG("Consumer discarded %" PRIu64 " events in session id %" PRIu64,
1614 *discarded, session_id);
1615
1616 end:
1617 rcu_read_unlock();
1618 return ret;
1619 }
1620
1621 /*
1622 * Ask the consumer the number of lost packets for a channel.
1623 */
1624 int consumer_get_lost_packets(uint64_t session_id, uint64_t channel_key,
1625 struct consumer_output *consumer, uint64_t *lost)
1626 {
1627 int ret;
1628 struct consumer_socket *socket;
1629 struct lttng_ht_iter iter;
1630 struct lttcomm_consumer_msg msg;
1631
1632 assert(consumer);
1633
1634 DBG3("Consumer lost packets id %" PRIu64, session_id);
1635
1636 memset(&msg, 0, sizeof(msg));
1637 msg.cmd_type = LTTNG_CONSUMER_LOST_PACKETS;
1638 msg.u.lost_packets.session_id = session_id;
1639 msg.u.lost_packets.channel_key = channel_key;
1640
1641 *lost = 0;
1642
1643 /* Send command for each consumer */
1644 rcu_read_lock();
1645 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1646 node.node) {
1647 uint64_t consumer_lost = 0;
1648 pthread_mutex_lock(socket->lock);
1649 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1650 if (ret < 0) {
1651 pthread_mutex_unlock(socket->lock);
1652 goto end;
1653 }
1654
1655 /*
1656 * No need for a recv reply status because the answer to the
1657 * command is the reply status message.
1658 */
1659 ret = consumer_socket_recv(socket, &consumer_lost,
1660 sizeof(consumer_lost));
1661 if (ret < 0) {
1662 ERR("get lost packets");
1663 pthread_mutex_unlock(socket->lock);
1664 goto end;
1665 }
1666 pthread_mutex_unlock(socket->lock);
1667 *lost += consumer_lost;
1668 }
1669 ret = 0;
1670 DBG("Consumer lost %" PRIu64 " packets in session id %" PRIu64,
1671 *lost, session_id);
1672
1673 end:
1674 rcu_read_unlock();
1675 return ret;
1676 }
1677
1678 /*
1679 * Ask the consumer to rotate a channel.
1680 *
1681 * The new_chunk_id is the session->rotate_count that has been incremented
1682 * when the rotation started. On the relay, this allows to keep track in which
1683 * chunk each stream is currently writing to (for the rotate_pending operation).
1684 */
1685 int consumer_rotate_channel(struct consumer_socket *socket, uint64_t key,
1686 uid_t uid, gid_t gid, struct consumer_output *output,
1687 bool is_metadata_channel)
1688 {
1689 int ret;
1690 struct lttcomm_consumer_msg msg;
1691
1692 assert(socket);
1693
1694 DBG("Consumer rotate channel key %" PRIu64, key);
1695
1696 pthread_mutex_lock(socket->lock);
1697 memset(&msg, 0, sizeof(msg));
1698 msg.cmd_type = LTTNG_CONSUMER_ROTATE_CHANNEL;
1699 msg.u.rotate_channel.key = key;
1700 msg.u.rotate_channel.metadata = !!is_metadata_channel;
1701
1702 if (output->type == CONSUMER_DST_NET) {
1703 msg.u.rotate_channel.relayd_id = output->net_seq_index;
1704 } else {
1705 msg.u.rotate_channel.relayd_id = (uint64_t) -1ULL;
1706 }
1707
1708 health_code_update();
1709 ret = consumer_send_msg(socket, &msg);
1710 if (ret < 0) {
1711 switch (-ret) {
1712 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1713 ret = -LTTNG_ERR_CHAN_NOT_FOUND;
1714 break;
1715 default:
1716 ret = -LTTNG_ERR_ROTATION_FAIL_CONSUMER;
1717 break;
1718 }
1719 goto error;
1720 }
1721 error:
1722 pthread_mutex_unlock(socket->lock);
1723 health_code_update();
1724 return ret;
1725 }
1726
1727 int consumer_init(struct consumer_socket *socket,
1728 const lttng_uuid sessiond_uuid)
1729 {
1730 int ret;
1731 struct lttcomm_consumer_msg msg = {
1732 .cmd_type = LTTNG_CONSUMER_INIT,
1733 };
1734
1735 assert(socket);
1736
1737 DBG("Sending consumer initialization command");
1738 lttng_uuid_copy(msg.u.init.sessiond_uuid, sessiond_uuid);
1739
1740 health_code_update();
1741 ret = consumer_send_msg(socket, &msg);
1742 if (ret < 0) {
1743 goto error;
1744 }
1745
1746 error:
1747 health_code_update();
1748 return ret;
1749 }
1750
1751 /*
1752 * Ask the consumer to create a new chunk for a given session.
1753 *
1754 * Called with the consumer socket lock held.
1755 */
1756 int consumer_create_trace_chunk(struct consumer_socket *socket,
1757 uint64_t relayd_id, uint64_t session_id,
1758 struct lttng_trace_chunk *chunk)
1759 {
1760 int ret;
1761 enum lttng_trace_chunk_status chunk_status;
1762 struct lttng_credentials chunk_credentials;
1763 const struct lttng_directory_handle *chunk_directory_handle;
1764 int chunk_dirfd;
1765 const char *chunk_name;
1766 bool chunk_name_overridden;
1767 uint64_t chunk_id;
1768 time_t creation_timestamp;
1769 char creation_timestamp_buffer[ISO8601_STR_LEN];
1770 const char *creation_timestamp_str = "(none)";
1771 const bool chunk_has_local_output = relayd_id == -1ULL;
1772 struct lttcomm_consumer_msg msg = {
1773 .cmd_type = LTTNG_CONSUMER_CREATE_TRACE_CHUNK,
1774 .u.create_trace_chunk.session_id = session_id,
1775 };
1776
1777 assert(socket);
1778 assert(chunk);
1779
1780 if (relayd_id != -1ULL) {
1781 LTTNG_OPTIONAL_SET(&msg.u.create_trace_chunk.relayd_id,
1782 relayd_id);
1783 }
1784
1785 chunk_status = lttng_trace_chunk_get_name(chunk, &chunk_name,
1786 &chunk_name_overridden);
1787 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK &&
1788 chunk_status != LTTNG_TRACE_CHUNK_STATUS_NONE) {
1789 ERR("Failed to get name of trace chunk");
1790 ret = -LTTNG_ERR_FATAL;
1791 goto error;
1792 }
1793 if (chunk_name_overridden) {
1794 ret = lttng_strncpy(msg.u.create_trace_chunk.override_name,
1795 chunk_name,
1796 sizeof(msg.u.create_trace_chunk.override_name));
1797 if (ret) {
1798 ERR("Trace chunk name \"%s\" exceeds the maximal length allowed by the consumer protocol",
1799 chunk_name);
1800 ret = -LTTNG_ERR_FATAL;
1801 goto error;
1802 }
1803 }
1804
1805 chunk_status = lttng_trace_chunk_get_creation_timestamp(chunk,
1806 &creation_timestamp);
1807 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1808 ret = -LTTNG_ERR_FATAL;
1809 goto error;
1810 }
1811 msg.u.create_trace_chunk.creation_timestamp =
1812 (uint64_t) creation_timestamp;
1813 /* Only used for logging purposes. */
1814 ret = time_to_iso8601_str(creation_timestamp,
1815 creation_timestamp_buffer,
1816 sizeof(creation_timestamp_buffer));
1817 creation_timestamp_str = !ret ? creation_timestamp_buffer :
1818 "(formatting error)";
1819
1820 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1821 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1822 /*
1823 * Anonymous trace chunks should never be transmitted
1824 * to remote peers (consumerd and relayd). They are used
1825 * internally for backward-compatibility purposes.
1826 */
1827 ret = -LTTNG_ERR_FATAL;
1828 goto error;
1829 }
1830 msg.u.create_trace_chunk.chunk_id = chunk_id;
1831
1832 if (chunk_has_local_output) {
1833 chunk_status = lttng_trace_chunk_get_chunk_directory_handle(
1834 chunk, &chunk_directory_handle);
1835 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1836 ret = -LTTNG_ERR_FATAL;
1837 goto error;
1838 }
1839
1840 /*
1841 * This will only compile on platforms that support
1842 * dirfd (POSIX.2008). This is fine as the session daemon
1843 * is only built for such platforms.
1844 *
1845 * The ownership of the chunk directory handle's is maintained
1846 * by the trace chunk.
1847 */
1848 chunk_dirfd = lttng_directory_handle_get_dirfd(
1849 chunk_directory_handle);
1850 assert(chunk_dirfd >= 0);
1851
1852 chunk_status = lttng_trace_chunk_get_credentials(
1853 chunk, &chunk_credentials);
1854 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1855 /*
1856 * Not associating credentials to a sessiond chunk is a
1857 * fatal internal error.
1858 */
1859 ret = -LTTNG_ERR_FATAL;
1860 goto error;
1861 }
1862 msg.u.create_trace_chunk.credentials.value.uid =
1863 chunk_credentials.uid;
1864 msg.u.create_trace_chunk.credentials.value.gid =
1865 chunk_credentials.gid;
1866 msg.u.create_trace_chunk.credentials.is_set = 1;
1867 }
1868
1869 DBG("Sending consumer create trace chunk command: relayd_id = %" PRId64
1870 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
1871 ", creation_timestamp = %s",
1872 relayd_id, session_id, chunk_id,
1873 creation_timestamp_str);
1874 health_code_update();
1875 ret = consumer_send_msg(socket, &msg);
1876 health_code_update();
1877 if (ret < 0) {
1878 ERR("Trace chunk creation error on consumer");
1879 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1880 goto error;
1881 }
1882
1883 if (chunk_has_local_output) {
1884 DBG("Sending trace chunk directory fd to consumer");
1885 health_code_update();
1886 ret = consumer_send_fds(socket, &chunk_dirfd, 1);
1887 health_code_update();
1888 if (ret < 0) {
1889 ERR("Trace chunk creation error on consumer");
1890 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1891 goto error;
1892 }
1893 }
1894 error:
1895 return ret;
1896 }
1897
1898 /*
1899 * Ask the consumer to close a trace chunk for a given session.
1900 *
1901 * Called with the consumer socket lock held.
1902 */
1903 int consumer_close_trace_chunk(struct consumer_socket *socket,
1904 uint64_t relayd_id, uint64_t session_id,
1905 struct lttng_trace_chunk *chunk,
1906 char *closed_trace_chunk_path)
1907 {
1908 int ret;
1909 enum lttng_trace_chunk_status chunk_status;
1910 struct lttcomm_consumer_msg msg = {
1911 .cmd_type = LTTNG_CONSUMER_CLOSE_TRACE_CHUNK,
1912 .u.close_trace_chunk.session_id = session_id,
1913 };
1914 struct lttcomm_consumer_close_trace_chunk_reply reply;
1915 uint64_t chunk_id;
1916 time_t close_timestamp;
1917 enum lttng_trace_chunk_command_type close_command;
1918 const char *close_command_name = "none";
1919 struct lttng_dynamic_buffer path_reception_buffer;
1920
1921 assert(socket);
1922 lttng_dynamic_buffer_init(&path_reception_buffer);
1923
1924 if (relayd_id != -1ULL) {
1925 LTTNG_OPTIONAL_SET(
1926 &msg.u.close_trace_chunk.relayd_id, relayd_id);
1927 }
1928
1929 chunk_status = lttng_trace_chunk_get_close_command(
1930 chunk, &close_command);
1931 switch (chunk_status) {
1932 case LTTNG_TRACE_CHUNK_STATUS_OK:
1933 LTTNG_OPTIONAL_SET(&msg.u.close_trace_chunk.close_command,
1934 (uint32_t) close_command);
1935 break;
1936 case LTTNG_TRACE_CHUNK_STATUS_NONE:
1937 break;
1938 default:
1939 ERR("Failed to get trace chunk close command");
1940 ret = -1;
1941 goto error;
1942 }
1943
1944 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1945 /*
1946 * Anonymous trace chunks should never be transmitted to remote peers
1947 * (consumerd and relayd). They are used internally for
1948 * backward-compatibility purposes.
1949 */
1950 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1951 msg.u.close_trace_chunk.chunk_id = chunk_id;
1952
1953 chunk_status = lttng_trace_chunk_get_close_timestamp(chunk,
1954 &close_timestamp);
1955 /*
1956 * A trace chunk should be closed locally before being closed remotely.
1957 * Otherwise, the close timestamp would never be transmitted to the
1958 * peers.
1959 */
1960 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1961 msg.u.close_trace_chunk.close_timestamp = (uint64_t) close_timestamp;
1962
1963 if (msg.u.close_trace_chunk.close_command.is_set) {
1964 close_command_name = lttng_trace_chunk_command_type_get_name(
1965 close_command);
1966 }
1967 DBG("Sending consumer close trace chunk command: relayd_id = %" PRId64
1968 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
1969 ", close command = \"%s\"",
1970 relayd_id, session_id, chunk_id, close_command_name);
1971
1972 health_code_update();
1973 ret = consumer_socket_send(socket, &msg, sizeof(struct lttcomm_consumer_msg));
1974 if (ret < 0) {
1975 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1976 goto error;
1977 }
1978 ret = consumer_socket_recv(socket, &reply, sizeof(reply));
1979 if (ret < 0) {
1980 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1981 goto error;
1982 }
1983 if (reply.path_length >= LTTNG_PATH_MAX) {
1984 ERR("Invalid path returned by relay daemon: %" PRIu32 "bytes exceeds maximal allowed length of %d bytes",
1985 reply.path_length, LTTNG_PATH_MAX);
1986 ret = -LTTNG_ERR_INVALID_PROTOCOL;
1987 goto error;
1988 }
1989 ret = lttng_dynamic_buffer_set_size(&path_reception_buffer,
1990 reply.path_length);
1991 if (ret) {
1992 ERR("Failed to allocate reception buffer of path returned by the \"close trace chunk\" command");
1993 ret = -LTTNG_ERR_NOMEM;
1994 goto error;
1995 }
1996 ret = consumer_socket_recv(socket, path_reception_buffer.data,
1997 path_reception_buffer.size);
1998 if (ret < 0) {
1999 ERR("Communication error while receiving path of closed trace chunk");
2000 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
2001 goto error;
2002 }
2003 if (path_reception_buffer.data[path_reception_buffer.size - 1] != '\0') {
2004 ERR("Invalid path returned by relay daemon: not null-terminated");
2005 ret = -LTTNG_ERR_INVALID_PROTOCOL;
2006 goto error;
2007 }
2008 if (closed_trace_chunk_path) {
2009 /*
2010 * closed_trace_chunk_path is assumed to have a length >=
2011 * LTTNG_PATH_MAX
2012 */
2013 memcpy(closed_trace_chunk_path, path_reception_buffer.data,
2014 path_reception_buffer.size);
2015 }
2016 error:
2017 lttng_dynamic_buffer_reset(&path_reception_buffer);
2018 health_code_update();
2019 return ret;
2020 }
2021
2022 /*
2023 * Ask the consumer if a trace chunk exists.
2024 *
2025 * Called with the consumer socket lock held.
2026 * Returns 0 on success, or a negative value on error.
2027 */
2028 int consumer_trace_chunk_exists(struct consumer_socket *socket,
2029 uint64_t relayd_id, uint64_t session_id,
2030 struct lttng_trace_chunk *chunk,
2031 enum consumer_trace_chunk_exists_status *result)
2032 {
2033 int ret;
2034 enum lttng_trace_chunk_status chunk_status;
2035 struct lttcomm_consumer_msg msg = {
2036 .cmd_type = LTTNG_CONSUMER_TRACE_CHUNK_EXISTS,
2037 .u.trace_chunk_exists.session_id = session_id,
2038 };
2039 uint64_t chunk_id;
2040 const char *consumer_reply_str;
2041
2042 assert(socket);
2043
2044 if (relayd_id != -1ULL) {
2045 LTTNG_OPTIONAL_SET(&msg.u.trace_chunk_exists.relayd_id,
2046 relayd_id);
2047 }
2048
2049 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
2050 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
2051 /*
2052 * Anonymous trace chunks should never be transmitted
2053 * to remote peers (consumerd and relayd). They are used
2054 * internally for backward-compatibility purposes.
2055 */
2056 ret = -LTTNG_ERR_FATAL;
2057 goto error;
2058 }
2059 msg.u.trace_chunk_exists.chunk_id = chunk_id;
2060
2061 DBG("Sending consumer trace chunk exists command: relayd_id = %" PRId64
2062 ", session_id = %" PRIu64
2063 ", chunk_id = %" PRIu64, relayd_id, session_id, chunk_id);
2064
2065 health_code_update();
2066 ret = consumer_send_msg(socket, &msg);
2067 switch (-ret) {
2068 case LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK:
2069 consumer_reply_str = "unknown trace chunk";
2070 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_UNKNOWN_CHUNK;
2071 break;
2072 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL:
2073 consumer_reply_str = "trace chunk exists locally";
2074 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_LOCAL;
2075 break;
2076 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE:
2077 consumer_reply_str = "trace chunk exists on remote peer";
2078 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_REMOTE;
2079 break;
2080 default:
2081 ERR("Consumer returned an error from TRACE_CHUNK_EXISTS command");
2082 ret = -1;
2083 goto error;
2084 }
2085 DBG("Consumer reply to TRACE_CHUNK_EXISTS command: %s",
2086 consumer_reply_str);
2087 ret = 0;
2088 error:
2089 health_code_update();
2090 return ret;
2091 }
This page took 0.127262 seconds and 4 git commands to generate.