2 * Copyright (C) 2011 - David Goulet <david.goulet@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2013 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
32 #include <sys/mount.h>
33 #include <sys/resource.h>
34 #include <sys/socket.h>
36 #include <sys/types.h>
38 #include <urcu/uatomic.h>
42 #include <common/common.h>
43 #include <common/compat/socket.h>
44 #include <common/compat/getenv.h>
45 #include <common/defaults.h>
46 #include <common/kernel-consumer/kernel-consumer.h>
47 #include <common/futex.h>
48 #include <common/relayd/relayd.h>
49 #include <common/utils.h>
50 #include <common/daemonize.h>
51 #include <common/config/session-config.h>
52 #include <common/dynamic-buffer.h>
53 #include <lttng/userspace-probe-internal.h>
54 #include <lttng/event-internal.h>
56 #include "lttng-sessiond.h"
57 #include "buffer-registry.h"
64 #include "kernel-consumer.h"
68 #include "ust-consumer.h"
71 #include "health-sessiond.h"
72 #include "testpoint.h"
73 #include "ust-thread.h"
74 #include "agent-thread.h"
76 #include "load-session-thread.h"
77 #include "notification-thread.h"
78 #include "notification-thread-commands.h"
79 #include "rotation-thread.h"
80 #include "lttng-syscall.h"
82 #include "ht-cleanup.h"
83 #include "sessiond-config.h"
86 static const char *help_msg
=
87 #ifdef LTTNG_EMBED_HELP
88 #include <lttng-sessiond.8.h>
95 static pid_t ppid
; /* Parent PID for --sig-parent option */
96 static pid_t child_ppid
; /* Internal parent PID use with daemonize. */
97 static int lockfile_fd
= -1;
99 /* Set to 1 when a SIGUSR1 signal is received. */
100 static int recv_child_signal
;
102 static struct lttng_kernel_tracer_version kernel_tracer_version
;
103 static struct lttng_kernel_tracer_abi_version kernel_tracer_abi_version
;
106 * Consumer daemon specific control data. Every value not initialized here is
107 * set to 0 by the static definition.
109 static struct consumer_data kconsumer_data
= {
110 .type
= LTTNG_CONSUMER_KERNEL
,
113 .channel_monitor_pipe
= -1,
114 .pid_mutex
= PTHREAD_MUTEX_INITIALIZER
,
115 .lock
= PTHREAD_MUTEX_INITIALIZER
,
116 .cond
= PTHREAD_COND_INITIALIZER
,
117 .cond_mutex
= PTHREAD_MUTEX_INITIALIZER
,
119 static struct consumer_data ustconsumer64_data
= {
120 .type
= LTTNG_CONSUMER64_UST
,
123 .channel_monitor_pipe
= -1,
124 .pid_mutex
= PTHREAD_MUTEX_INITIALIZER
,
125 .lock
= PTHREAD_MUTEX_INITIALIZER
,
126 .cond
= PTHREAD_COND_INITIALIZER
,
127 .cond_mutex
= PTHREAD_MUTEX_INITIALIZER
,
129 static struct consumer_data ustconsumer32_data
= {
130 .type
= LTTNG_CONSUMER32_UST
,
133 .channel_monitor_pipe
= -1,
134 .pid_mutex
= PTHREAD_MUTEX_INITIALIZER
,
135 .lock
= PTHREAD_MUTEX_INITIALIZER
,
136 .cond
= PTHREAD_COND_INITIALIZER
,
137 .cond_mutex
= PTHREAD_MUTEX_INITIALIZER
,
140 /* Command line options */
141 static const struct option long_options
[] = {
142 { "client-sock", required_argument
, 0, 'c' },
143 { "apps-sock", required_argument
, 0, 'a' },
144 { "kconsumerd-cmd-sock", required_argument
, 0, '\0' },
145 { "kconsumerd-err-sock", required_argument
, 0, '\0' },
146 { "ustconsumerd32-cmd-sock", required_argument
, 0, '\0' },
147 { "ustconsumerd32-err-sock", required_argument
, 0, '\0' },
148 { "ustconsumerd64-cmd-sock", required_argument
, 0, '\0' },
149 { "ustconsumerd64-err-sock", required_argument
, 0, '\0' },
150 { "consumerd32-path", required_argument
, 0, '\0' },
151 { "consumerd32-libdir", required_argument
, 0, '\0' },
152 { "consumerd64-path", required_argument
, 0, '\0' },
153 { "consumerd64-libdir", required_argument
, 0, '\0' },
154 { "daemonize", no_argument
, 0, 'd' },
155 { "background", no_argument
, 0, 'b' },
156 { "sig-parent", no_argument
, 0, 'S' },
157 { "help", no_argument
, 0, 'h' },
158 { "group", required_argument
, 0, 'g' },
159 { "version", no_argument
, 0, 'V' },
160 { "quiet", no_argument
, 0, 'q' },
161 { "verbose", no_argument
, 0, 'v' },
162 { "verbose-consumer", no_argument
, 0, '\0' },
163 { "no-kernel", no_argument
, 0, '\0' },
164 { "pidfile", required_argument
, 0, 'p' },
165 { "agent-tcp-port", required_argument
, 0, '\0' },
166 { "config", required_argument
, 0, 'f' },
167 { "load", required_argument
, 0, 'l' },
168 { "kmod-probes", required_argument
, 0, '\0' },
169 { "extra-kmod-probes", required_argument
, 0, '\0' },
173 struct sessiond_config config
;
175 /* Command line options to ignore from configuration file */
176 static const char *config_ignore_options
[] = { "help", "version", "config" };
178 /* Shared between threads */
179 static int dispatch_thread_exit
;
181 /* Sockets and FDs */
182 static int client_sock
= -1;
183 static int apps_sock
= -1;
184 int kernel_tracer_fd
= -1;
185 static int kernel_poll_pipe
[2] = { -1, -1 };
188 * Quit pipe for all threads. This permits a single cancellation point
189 * for all threads when receiving an event on the pipe.
191 static int thread_quit_pipe
[2] = { -1, -1 };
194 * This pipe is used to inform the thread managing application communication
195 * that a command is queued and ready to be processed.
197 static int apps_cmd_pipe
[2] = { -1, -1 };
199 int apps_cmd_notify_pipe
[2] = { -1, -1 };
201 /* Pthread, Mutexes and Semaphores */
202 static pthread_t apps_thread
;
203 static pthread_t apps_notify_thread
;
204 static pthread_t reg_apps_thread
;
205 static pthread_t client_thread
;
206 static pthread_t kernel_thread
;
207 static pthread_t dispatch_thread
;
208 static pthread_t health_thread
;
209 static pthread_t ht_cleanup_thread
;
210 static pthread_t agent_reg_thread
;
211 static pthread_t load_session_thread
;
212 static pthread_t notification_thread
;
213 static pthread_t rotation_thread
;
214 static pthread_t timer_thread
;
217 * UST registration command queue. This queue is tied with a futex and uses a N
218 * wakers / 1 waiter implemented and detailed in futex.c/.h
220 * The thread_registration_apps and thread_dispatch_ust_registration uses this
221 * queue along with the wait/wake scheme. The thread_manage_apps receives down
222 * the line new application socket and monitors it for any I/O error or clean
223 * close that triggers an unregistration of the application.
225 static struct ust_cmd_queue ust_cmd_queue
;
228 * Pointer initialized before thread creation.
230 * This points to the tracing session list containing the session count and a
231 * mutex lock. The lock MUST be taken if you iterate over the list. The lock
232 * MUST NOT be taken if you call a public function in session.c.
234 * The lock is nested inside the structure: session_list_ptr->lock. Please use
235 * session_lock_list and session_unlock_list for lock acquisition.
237 static struct ltt_session_list
*session_list_ptr
;
239 int ust_consumerd64_fd
= -1;
240 int ust_consumerd32_fd
= -1;
242 static const char *module_proc_lttng
= "/proc/lttng";
245 * Consumer daemon state which is changed when spawning it, killing it or in
246 * case of a fatal error.
248 enum consumerd_state
{
249 CONSUMER_STARTED
= 1,
250 CONSUMER_STOPPED
= 2,
255 * This consumer daemon state is used to validate if a client command will be
256 * able to reach the consumer. If not, the client is informed. For instance,
257 * doing a "lttng start" when the consumer state is set to ERROR will return an
258 * error to the client.
260 * The following example shows a possible race condition of this scheme:
262 * consumer thread error happens
264 * client cmd checks state -> still OK
265 * consumer thread exit, sets error
266 * client cmd try to talk to consumer
269 * However, since the consumer is a different daemon, we have no way of making
270 * sure the command will reach it safely even with this state flag. This is why
271 * we consider that up to the state validation during command processing, the
272 * command is safe. After that, we can not guarantee the correctness of the
273 * client request vis-a-vis the consumer.
275 static enum consumerd_state ust_consumerd_state
;
276 static enum consumerd_state kernel_consumerd_state
;
278 /* Set in main() with the current page size. */
281 /* Application health monitoring */
282 struct health_app
*health_sessiond
;
284 /* Am I root or not. */
285 int is_root
; /* Set to 1 if the daemon is running as root */
287 const char * const config_section_name
= "sessiond";
289 /* Load session thread information to operate. */
290 struct load_session_thread_data
*load_info
;
292 /* Notification thread handle. */
293 struct notification_thread_handle
*notification_thread_handle
;
295 /* Rotation thread handle. */
296 struct rotation_thread_handle
*rotation_thread_handle
;
298 /* Global hash tables */
299 struct lttng_ht
*agent_apps_ht_by_sock
= NULL
;
302 * The initialization of the session daemon is done in multiple phases.
304 * While all threads are launched near-simultaneously, only some of them
305 * are needed to ensure the session daemon can start to respond to client
308 * There are two important guarantees that we wish to offer with respect
309 * to the initialisation of the session daemon:
310 * - When the daemonize/background launcher process exits, the sessiond
311 * is fully able to respond to client requests,
312 * - Auto-loaded sessions are visible to clients.
314 * In order to achieve this, a number of support threads have to be launched
315 * to allow the "client" thread to function properly. Moreover, since the
316 * "load session" thread needs the client thread, we must provide a way
317 * for the "load session" thread to know that the "client" thread is up
320 * Hence, the support threads decrement the lttng_sessiond_ready counter
321 * while the "client" threads waits for it to reach 0. Once the "client" thread
322 * unblocks, it posts the message_thread_ready semaphore which allows the
323 * "load session" thread to progress.
325 * This implies that the "load session" thread is the last to be initialized
326 * and will explicitly call sessiond_signal_parents(), which signals the parents
327 * that the session daemon is fully initialized.
329 * The four (4) support threads are:
331 * - notification_thread
335 #define NR_LTTNG_SESSIOND_SUPPORT_THREADS 4
336 int lttng_sessiond_ready
= NR_LTTNG_SESSIOND_SUPPORT_THREADS
;
338 int sessiond_check_thread_quit_pipe(int fd
, uint32_t events
)
340 return (fd
== thread_quit_pipe
[0] && (events
& LPOLLIN
)) ? 1 : 0;
343 /* Notify parents that we are ready for cmd and health check */
345 void sessiond_signal_parents(void)
348 * Notify parent pid that we are ready to accept command
349 * for client side. This ppid is the one from the
350 * external process that spawned us.
352 if (config
.sig_parent
) {
357 * Notify the parent of the fork() process that we are
360 if (config
.daemonize
|| config
.background
) {
361 kill(child_ppid
, SIGUSR1
);
366 void sessiond_notify_ready(void)
369 * This memory barrier is paired with the one performed by
370 * the client thread after it has seen that 'lttng_sessiond_ready' is 0.
372 * The purpose of these memory barriers is to ensure that all
373 * initialization operations of the various threads that call this
374 * function to signal that they are ready are commited/published
375 * before the client thread can see the 'lttng_sessiond_ready' counter
378 * Note that this could be a 'write' memory barrier, but a full barrier
379 * is used in case the code using this utility changes. The performance
380 * implications of this choice are minimal since this is a slow path.
383 uatomic_sub(<tng_sessiond_ready
, 1);
387 int __sessiond_set_thread_pollset(struct lttng_poll_event
*events
, size_t size
,
394 ret
= lttng_poll_create(events
, size
, LTTNG_CLOEXEC
);
400 ret
= lttng_poll_add(events
, a_pipe
[0], LPOLLIN
| LPOLLERR
);
412 * Create a poll set with O_CLOEXEC and add the thread quit pipe to the set.
414 int sessiond_set_thread_pollset(struct lttng_poll_event
*events
, size_t size
)
416 return __sessiond_set_thread_pollset(events
, size
, thread_quit_pipe
);
420 * Init thread quit pipe.
422 * Return -1 on error or 0 if all pipes are created.
424 static int __init_thread_quit_pipe(int *a_pipe
)
430 PERROR("thread quit pipe");
434 for (i
= 0; i
< 2; i
++) {
435 ret
= fcntl(a_pipe
[i
], F_SETFD
, FD_CLOEXEC
);
446 static int init_thread_quit_pipe(void)
448 return __init_thread_quit_pipe(thread_quit_pipe
);
452 * Stop all threads by closing the thread quit pipe.
454 static void stop_threads(void)
458 /* Stopping all threads */
459 DBG("Terminating all threads");
460 ret
= notify_thread_pipe(thread_quit_pipe
[1]);
462 ERR("write error on thread quit pipe");
465 /* Dispatch thread */
466 CMM_STORE_SHARED(dispatch_thread_exit
, 1);
467 futex_nto1_wake(&ust_cmd_queue
.futex
);
471 * Close every consumer sockets.
473 static void close_consumer_sockets(void)
477 if (kconsumer_data
.err_sock
>= 0) {
478 ret
= close(kconsumer_data
.err_sock
);
480 PERROR("kernel consumer err_sock close");
483 if (ustconsumer32_data
.err_sock
>= 0) {
484 ret
= close(ustconsumer32_data
.err_sock
);
486 PERROR("UST consumerd32 err_sock close");
489 if (ustconsumer64_data
.err_sock
>= 0) {
490 ret
= close(ustconsumer64_data
.err_sock
);
492 PERROR("UST consumerd64 err_sock close");
495 if (kconsumer_data
.cmd_sock
>= 0) {
496 ret
= close(kconsumer_data
.cmd_sock
);
498 PERROR("kernel consumer cmd_sock close");
501 if (ustconsumer32_data
.cmd_sock
>= 0) {
502 ret
= close(ustconsumer32_data
.cmd_sock
);
504 PERROR("UST consumerd32 cmd_sock close");
507 if (ustconsumer64_data
.cmd_sock
>= 0) {
508 ret
= close(ustconsumer64_data
.cmd_sock
);
510 PERROR("UST consumerd64 cmd_sock close");
513 if (kconsumer_data
.channel_monitor_pipe
>= 0) {
514 ret
= close(kconsumer_data
.channel_monitor_pipe
);
516 PERROR("kernel consumer channel monitor pipe close");
519 if (ustconsumer32_data
.channel_monitor_pipe
>= 0) {
520 ret
= close(ustconsumer32_data
.channel_monitor_pipe
);
522 PERROR("UST consumerd32 channel monitor pipe close");
525 if (ustconsumer64_data
.channel_monitor_pipe
>= 0) {
526 ret
= close(ustconsumer64_data
.channel_monitor_pipe
);
528 PERROR("UST consumerd64 channel monitor pipe close");
534 * Wait on consumer process termination.
536 * Need to be called with the consumer data lock held or from a context
537 * ensuring no concurrent access to data (e.g: cleanup).
539 static void wait_consumer(struct consumer_data
*consumer_data
)
544 if (consumer_data
->pid
<= 0) {
548 DBG("Waiting for complete teardown of consumerd (PID: %d)",
550 ret
= waitpid(consumer_data
->pid
, &status
, 0);
552 PERROR("consumerd waitpid pid: %d", consumer_data
->pid
)
553 } else if (!WIFEXITED(status
)) {
554 ERR("consumerd termination with error: %d",
557 consumer_data
->pid
= 0;
561 * Cleanup the session daemon's data structures.
563 static void sessiond_cleanup(void)
566 struct ltt_session
*sess
, *stmp
;
568 DBG("Cleanup sessiond");
571 * Close the thread quit pipe. It has already done its job,
572 * since we are now called.
574 utils_close_pipe(thread_quit_pipe
);
576 ret
= remove(config
.pid_file_path
.value
);
578 PERROR("remove pidfile %s", config
.pid_file_path
.value
);
581 DBG("Removing sessiond and consumerd content of directory %s",
582 config
.rundir
.value
);
585 DBG("Removing %s", config
.pid_file_path
.value
);
586 (void) unlink(config
.pid_file_path
.value
);
588 DBG("Removing %s", config
.agent_port_file_path
.value
);
589 (void) unlink(config
.agent_port_file_path
.value
);
592 DBG("Removing %s", kconsumer_data
.err_unix_sock_path
);
593 (void) unlink(kconsumer_data
.err_unix_sock_path
);
595 DBG("Removing directory %s", config
.kconsumerd_path
.value
);
596 (void) rmdir(config
.kconsumerd_path
.value
);
598 /* ust consumerd 32 */
599 DBG("Removing %s", config
.consumerd32_err_unix_sock_path
.value
);
600 (void) unlink(config
.consumerd32_err_unix_sock_path
.value
);
602 DBG("Removing directory %s", config
.consumerd32_path
.value
);
603 (void) rmdir(config
.consumerd32_path
.value
);
605 /* ust consumerd 64 */
606 DBG("Removing %s", config
.consumerd64_err_unix_sock_path
.value
);
607 (void) unlink(config
.consumerd64_err_unix_sock_path
.value
);
609 DBG("Removing directory %s", config
.consumerd64_path
.value
);
610 (void) rmdir(config
.consumerd64_path
.value
);
612 DBG("Cleaning up all sessions");
614 /* Destroy session list mutex */
615 if (session_list_ptr
!= NULL
) {
616 pthread_mutex_destroy(&session_list_ptr
->lock
);
618 /* Cleanup ALL session */
619 cds_list_for_each_entry_safe(sess
, stmp
,
620 &session_list_ptr
->head
, list
) {
621 cmd_destroy_session(sess
, kernel_poll_pipe
[1],
622 notification_thread_handle
);
626 wait_consumer(&kconsumer_data
);
627 wait_consumer(&ustconsumer64_data
);
628 wait_consumer(&ustconsumer32_data
);
630 DBG("Cleaning up all agent apps");
631 agent_app_ht_clean();
633 DBG("Closing all UST sockets");
634 ust_app_clean_list();
635 buffer_reg_destroy_registries();
637 if (is_root
&& !config
.no_kernel
) {
638 DBG2("Closing kernel fd");
639 if (kernel_tracer_fd
>= 0) {
640 ret
= close(kernel_tracer_fd
);
645 DBG("Unloading kernel modules");
646 modprobe_remove_lttng_all();
650 close_consumer_sockets();
653 load_session_destroy_data(load_info
);
658 * We do NOT rmdir rundir because there are other processes
659 * using it, for instance lttng-relayd, which can start in
660 * parallel with this teardown.
665 * Cleanup the daemon's option data structures.
667 static void sessiond_cleanup_options(void)
669 DBG("Cleaning up options");
671 sessiond_config_fini(&config
);
673 run_as_destroy_worker();
677 * Send data on a unix socket using the liblttsessiondcomm API.
679 * Return lttcomm error code.
681 static int send_unix_sock(int sock
, void *buf
, size_t len
)
683 /* Check valid length */
688 return lttcomm_send_unix_sock(sock
, buf
, len
);
692 * Free memory of a command context structure.
694 static void clean_command_ctx(struct command_ctx
**cmd_ctx
)
696 DBG("Clean command context structure");
698 if ((*cmd_ctx
)->llm
) {
699 free((*cmd_ctx
)->llm
);
701 if ((*cmd_ctx
)->lsm
) {
702 free((*cmd_ctx
)->lsm
);
710 * Notify UST applications using the shm mmap futex.
712 static int notify_ust_apps(int active
)
716 DBG("Notifying applications of session daemon state: %d", active
);
718 /* See shm.c for this call implying mmap, shm and futex calls */
719 wait_shm_mmap
= shm_ust_get_mmap(config
.wait_shm_path
.value
, is_root
);
720 if (wait_shm_mmap
== NULL
) {
724 /* Wake waiting process */
725 futex_wait_update((int32_t *) wait_shm_mmap
, active
);
727 /* Apps notified successfully */
735 * Setup the outgoing data buffer for the response (llm) by allocating the
736 * right amount of memory and copying the original information from the lsm
739 * Return 0 on success, negative value on error.
741 static int setup_lttng_msg(struct command_ctx
*cmd_ctx
,
742 const void *payload_buf
, size_t payload_len
,
743 const void *cmd_header_buf
, size_t cmd_header_len
)
746 const size_t header_len
= sizeof(struct lttcomm_lttng_msg
);
747 const size_t cmd_header_offset
= header_len
;
748 const size_t payload_offset
= cmd_header_offset
+ cmd_header_len
;
749 const size_t total_msg_size
= header_len
+ cmd_header_len
+ payload_len
;
751 cmd_ctx
->llm
= zmalloc(total_msg_size
);
753 if (cmd_ctx
->llm
== NULL
) {
759 /* Copy common data */
760 cmd_ctx
->llm
->cmd_type
= cmd_ctx
->lsm
->cmd_type
;
761 cmd_ctx
->llm
->pid
= cmd_ctx
->lsm
->domain
.attr
.pid
;
762 cmd_ctx
->llm
->cmd_header_size
= cmd_header_len
;
763 cmd_ctx
->llm
->data_size
= payload_len
;
764 cmd_ctx
->lttng_msg_size
= total_msg_size
;
766 /* Copy command header */
767 if (cmd_header_len
) {
768 memcpy(((uint8_t *) cmd_ctx
->llm
) + cmd_header_offset
, cmd_header_buf
,
774 memcpy(((uint8_t *) cmd_ctx
->llm
) + payload_offset
, payload_buf
,
783 * Version of setup_lttng_msg() without command header.
785 static int setup_lttng_msg_no_cmd_header(struct command_ctx
*cmd_ctx
,
786 void *payload_buf
, size_t payload_len
)
788 return setup_lttng_msg(cmd_ctx
, payload_buf
, payload_len
, NULL
, 0);
791 * Update the kernel poll set of all channel fd available over all tracing
792 * session. Add the wakeup pipe at the end of the set.
794 static int update_kernel_poll(struct lttng_poll_event
*events
)
797 struct ltt_session
*session
;
798 struct ltt_kernel_channel
*channel
;
800 DBG("Updating kernel poll set");
803 cds_list_for_each_entry(session
, &session_list_ptr
->head
, list
) {
804 session_lock(session
);
805 if (session
->kernel_session
== NULL
) {
806 session_unlock(session
);
810 cds_list_for_each_entry(channel
,
811 &session
->kernel_session
->channel_list
.head
, list
) {
812 /* Add channel fd to the kernel poll set */
813 ret
= lttng_poll_add(events
, channel
->fd
, LPOLLIN
| LPOLLRDNORM
);
815 session_unlock(session
);
818 DBG("Channel fd %d added to kernel set", channel
->fd
);
820 session_unlock(session
);
822 session_unlock_list();
827 session_unlock_list();
832 * Find the channel fd from 'fd' over all tracing session. When found, check
833 * for new channel stream and send those stream fds to the kernel consumer.
835 * Useful for CPU hotplug feature.
837 static int update_kernel_stream(int fd
)
840 struct ltt_session
*session
;
841 struct ltt_kernel_session
*ksess
;
842 struct ltt_kernel_channel
*channel
;
844 DBG("Updating kernel streams for channel fd %d", fd
);
847 cds_list_for_each_entry(session
, &session_list_ptr
->head
, list
) {
848 session_lock(session
);
849 if (session
->kernel_session
== NULL
) {
850 session_unlock(session
);
853 ksess
= session
->kernel_session
;
855 cds_list_for_each_entry(channel
,
856 &ksess
->channel_list
.head
, list
) {
857 struct lttng_ht_iter iter
;
858 struct consumer_socket
*socket
;
860 if (channel
->fd
!= fd
) {
863 DBG("Channel found, updating kernel streams");
864 ret
= kernel_open_channel_stream(channel
);
868 /* Update the stream global counter */
869 ksess
->stream_count_global
+= ret
;
872 * Have we already sent fds to the consumer? If yes, it
873 * means that tracing is started so it is safe to send
874 * our updated stream fds.
876 if (ksess
->consumer_fds_sent
!= 1
877 || ksess
->consumer
== NULL
) {
883 cds_lfht_for_each_entry(ksess
->consumer
->socks
->ht
,
884 &iter
.iter
, socket
, node
.node
) {
885 pthread_mutex_lock(socket
->lock
);
886 ret
= kernel_consumer_send_channel_streams(socket
,
888 session
->output_traces
? 1 : 0);
889 pthread_mutex_unlock(socket
->lock
);
897 session_unlock(session
);
899 session_unlock_list();
903 session_unlock(session
);
904 session_unlock_list();
909 * For each tracing session, update newly registered apps. The session list
910 * lock MUST be acquired before calling this.
912 static void update_ust_app(int app_sock
)
914 struct ltt_session
*sess
, *stmp
;
916 /* Consumer is in an ERROR state. Stop any application update. */
917 if (uatomic_read(&ust_consumerd_state
) == CONSUMER_ERROR
) {
918 /* Stop the update process since the consumer is dead. */
922 /* For all tracing session(s) */
923 cds_list_for_each_entry_safe(sess
, stmp
, &session_list_ptr
->head
, list
) {
927 if (!sess
->ust_session
) {
932 assert(app_sock
>= 0);
933 app
= ust_app_find_by_sock(app_sock
);
936 * Application can be unregistered before so
937 * this is possible hence simply stopping the
940 DBG3("UST app update failed to find app sock %d",
944 ust_app_global_update(sess
->ust_session
, app
);
948 session_unlock(sess
);
953 * This thread manage event coming from the kernel.
955 * Features supported in this thread:
958 static void *thread_manage_kernel(void *data
)
960 int ret
, i
, pollfd
, update_poll_flag
= 1, err
= -1;
961 uint32_t revents
, nb_fd
;
963 struct lttng_poll_event events
;
965 DBG("[thread] Thread manage kernel started");
967 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_KERNEL
);
970 * This first step of the while is to clean this structure which could free
971 * non NULL pointers so initialize it before the loop.
973 lttng_poll_init(&events
);
975 if (testpoint(sessiond_thread_manage_kernel
)) {
976 goto error_testpoint
;
979 health_code_update();
981 if (testpoint(sessiond_thread_manage_kernel_before_loop
)) {
982 goto error_testpoint
;
986 health_code_update();
988 if (update_poll_flag
== 1) {
989 /* Clean events object. We are about to populate it again. */
990 lttng_poll_clean(&events
);
992 ret
= sessiond_set_thread_pollset(&events
, 2);
994 goto error_poll_create
;
997 ret
= lttng_poll_add(&events
, kernel_poll_pipe
[0], LPOLLIN
);
1002 /* This will add the available kernel channel if any. */
1003 ret
= update_kernel_poll(&events
);
1007 update_poll_flag
= 0;
1010 DBG("Thread kernel polling");
1012 /* Poll infinite value of time */
1014 health_poll_entry();
1015 ret
= lttng_poll_wait(&events
, -1);
1016 DBG("Thread kernel return from poll on %d fds",
1017 LTTNG_POLL_GETNB(&events
));
1021 * Restart interrupted system call.
1023 if (errno
== EINTR
) {
1027 } else if (ret
== 0) {
1028 /* Should not happen since timeout is infinite */
1029 ERR("Return value of poll is 0 with an infinite timeout.\n"
1030 "This should not have happened! Continuing...");
1036 for (i
= 0; i
< nb_fd
; i
++) {
1037 /* Fetch once the poll data */
1038 revents
= LTTNG_POLL_GETEV(&events
, i
);
1039 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1041 health_code_update();
1044 /* No activity for this FD (poll implementation). */
1048 /* Thread quit pipe has been closed. Killing thread. */
1049 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1055 /* Check for data on kernel pipe */
1056 if (revents
& LPOLLIN
) {
1057 if (pollfd
== kernel_poll_pipe
[0]) {
1058 (void) lttng_read(kernel_poll_pipe
[0],
1061 * Ret value is useless here, if this pipe gets any actions an
1062 * update is required anyway.
1064 update_poll_flag
= 1;
1068 * New CPU detected by the kernel. Adding kernel stream to
1069 * kernel session and updating the kernel consumer
1071 ret
= update_kernel_stream(pollfd
);
1077 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1078 update_poll_flag
= 1;
1081 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1089 lttng_poll_clean(&events
);
1092 utils_close_pipe(kernel_poll_pipe
);
1093 kernel_poll_pipe
[0] = kernel_poll_pipe
[1] = -1;
1096 ERR("Health error occurred in %s", __func__
);
1097 WARN("Kernel thread died unexpectedly. "
1098 "Kernel tracing can continue but CPU hotplug is disabled.");
1100 health_unregister(health_sessiond
);
1101 DBG("Kernel thread dying");
1106 * Signal pthread condition of the consumer data that the thread.
1108 static void signal_consumer_condition(struct consumer_data
*data
, int state
)
1110 pthread_mutex_lock(&data
->cond_mutex
);
1113 * The state is set before signaling. It can be any value, it's the waiter
1114 * job to correctly interpret this condition variable associated to the
1115 * consumer pthread_cond.
1117 * A value of 0 means that the corresponding thread of the consumer data
1118 * was not started. 1 indicates that the thread has started and is ready
1119 * for action. A negative value means that there was an error during the
1122 data
->consumer_thread_is_ready
= state
;
1123 (void) pthread_cond_signal(&data
->cond
);
1125 pthread_mutex_unlock(&data
->cond_mutex
);
1129 * This thread manage the consumer error sent back to the session daemon.
1131 static void *thread_manage_consumer(void *data
)
1133 int sock
= -1, i
, ret
, pollfd
, err
= -1, should_quit
= 0;
1134 uint32_t revents
, nb_fd
;
1135 enum lttcomm_return_code code
;
1136 struct lttng_poll_event events
;
1137 struct consumer_data
*consumer_data
= data
;
1138 struct consumer_socket
*cmd_socket_wrapper
= NULL
;
1140 DBG("[thread] Manage consumer started");
1142 rcu_register_thread();
1143 rcu_thread_online();
1145 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_CONSUMER
);
1147 health_code_update();
1150 * Pass 3 as size here for the thread quit pipe, consumerd_err_sock and the
1151 * metadata_sock. Nothing more will be added to this poll set.
1153 ret
= sessiond_set_thread_pollset(&events
, 3);
1159 * The error socket here is already in a listening state which was done
1160 * just before spawning this thread to avoid a race between the consumer
1161 * daemon exec trying to connect and the listen() call.
1163 ret
= lttng_poll_add(&events
, consumer_data
->err_sock
, LPOLLIN
| LPOLLRDHUP
);
1168 health_code_update();
1170 /* Infinite blocking call, waiting for transmission */
1172 health_poll_entry();
1174 if (testpoint(sessiond_thread_manage_consumer
)) {
1178 ret
= lttng_poll_wait(&events
, -1);
1182 * Restart interrupted system call.
1184 if (errno
== EINTR
) {
1192 for (i
= 0; i
< nb_fd
; i
++) {
1193 /* Fetch once the poll data */
1194 revents
= LTTNG_POLL_GETEV(&events
, i
);
1195 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1197 health_code_update();
1200 /* No activity for this FD (poll implementation). */
1204 /* Thread quit pipe has been closed. Killing thread. */
1205 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1211 /* Event on the registration socket */
1212 if (pollfd
== consumer_data
->err_sock
) {
1213 if (revents
& LPOLLIN
) {
1215 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1216 ERR("consumer err socket poll error");
1219 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1225 sock
= lttcomm_accept_unix_sock(consumer_data
->err_sock
);
1231 * Set the CLOEXEC flag. Return code is useless because either way, the
1234 (void) utils_set_fd_cloexec(sock
);
1236 health_code_update();
1238 DBG2("Receiving code from consumer err_sock");
1240 /* Getting status code from kconsumerd */
1241 ret
= lttcomm_recv_unix_sock(sock
, &code
,
1242 sizeof(enum lttcomm_return_code
));
1247 health_code_update();
1248 if (code
!= LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
) {
1249 ERR("consumer error when waiting for SOCK_READY : %s",
1250 lttcomm_get_readable_code(-code
));
1254 /* Connect both command and metadata sockets. */
1255 consumer_data
->cmd_sock
=
1256 lttcomm_connect_unix_sock(
1257 consumer_data
->cmd_unix_sock_path
);
1258 consumer_data
->metadata_fd
=
1259 lttcomm_connect_unix_sock(
1260 consumer_data
->cmd_unix_sock_path
);
1261 if (consumer_data
->cmd_sock
< 0 || consumer_data
->metadata_fd
< 0) {
1262 PERROR("consumer connect cmd socket");
1263 /* On error, signal condition and quit. */
1264 signal_consumer_condition(consumer_data
, -1);
1268 consumer_data
->metadata_sock
.fd_ptr
= &consumer_data
->metadata_fd
;
1270 /* Create metadata socket lock. */
1271 consumer_data
->metadata_sock
.lock
= zmalloc(sizeof(pthread_mutex_t
));
1272 if (consumer_data
->metadata_sock
.lock
== NULL
) {
1273 PERROR("zmalloc pthread mutex");
1276 pthread_mutex_init(consumer_data
->metadata_sock
.lock
, NULL
);
1278 DBG("Consumer command socket ready (fd: %d", consumer_data
->cmd_sock
);
1279 DBG("Consumer metadata socket ready (fd: %d)",
1280 consumer_data
->metadata_fd
);
1283 * Remove the consumerd error sock since we've established a connection.
1285 ret
= lttng_poll_del(&events
, consumer_data
->err_sock
);
1290 /* Add new accepted error socket. */
1291 ret
= lttng_poll_add(&events
, sock
, LPOLLIN
| LPOLLRDHUP
);
1296 /* Add metadata socket that is successfully connected. */
1297 ret
= lttng_poll_add(&events
, consumer_data
->metadata_fd
,
1298 LPOLLIN
| LPOLLRDHUP
);
1303 health_code_update();
1306 * Transfer the write-end of the channel monitoring and rotate pipe
1307 * to the consumer by issuing a SET_CHANNEL_MONITOR_PIPE command.
1309 cmd_socket_wrapper
= consumer_allocate_socket(&consumer_data
->cmd_sock
);
1310 if (!cmd_socket_wrapper
) {
1313 cmd_socket_wrapper
->lock
= &consumer_data
->lock
;
1315 ret
= consumer_send_channel_monitor_pipe(cmd_socket_wrapper
,
1316 consumer_data
->channel_monitor_pipe
);
1321 /* Discard the socket wrapper as it is no longer needed. */
1322 consumer_destroy_socket(cmd_socket_wrapper
);
1323 cmd_socket_wrapper
= NULL
;
1325 /* The thread is completely initialized, signal that it is ready. */
1326 signal_consumer_condition(consumer_data
, 1);
1328 /* Infinite blocking call, waiting for transmission */
1331 health_code_update();
1333 /* Exit the thread because the thread quit pipe has been triggered. */
1335 /* Not a health error. */
1340 health_poll_entry();
1341 ret
= lttng_poll_wait(&events
, -1);
1345 * Restart interrupted system call.
1347 if (errno
== EINTR
) {
1355 for (i
= 0; i
< nb_fd
; i
++) {
1356 /* Fetch once the poll data */
1357 revents
= LTTNG_POLL_GETEV(&events
, i
);
1358 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1360 health_code_update();
1363 /* No activity for this FD (poll implementation). */
1368 * Thread quit pipe has been triggered, flag that we should stop
1369 * but continue the current loop to handle potential data from
1372 should_quit
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1374 if (pollfd
== sock
) {
1375 /* Event on the consumerd socket */
1376 if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)
1377 && !(revents
& LPOLLIN
)) {
1378 ERR("consumer err socket second poll error");
1381 health_code_update();
1382 /* Wait for any kconsumerd error */
1383 ret
= lttcomm_recv_unix_sock(sock
, &code
,
1384 sizeof(enum lttcomm_return_code
));
1386 ERR("consumer closed the command socket");
1390 ERR("consumer return code : %s",
1391 lttcomm_get_readable_code(-code
));
1394 } else if (pollfd
== consumer_data
->metadata_fd
) {
1395 if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)
1396 && !(revents
& LPOLLIN
)) {
1397 ERR("consumer err metadata socket second poll error");
1400 /* UST metadata requests */
1401 ret
= ust_consumer_metadata_request(
1402 &consumer_data
->metadata_sock
);
1404 ERR("Handling metadata request");
1408 /* No need for an else branch all FDs are tested prior. */
1410 health_code_update();
1416 * We lock here because we are about to close the sockets and some other
1417 * thread might be using them so get exclusive access which will abort all
1418 * other consumer command by other threads.
1420 pthread_mutex_lock(&consumer_data
->lock
);
1422 /* Immediately set the consumerd state to stopped */
1423 if (consumer_data
->type
== LTTNG_CONSUMER_KERNEL
) {
1424 uatomic_set(&kernel_consumerd_state
, CONSUMER_ERROR
);
1425 } else if (consumer_data
->type
== LTTNG_CONSUMER64_UST
||
1426 consumer_data
->type
== LTTNG_CONSUMER32_UST
) {
1427 uatomic_set(&ust_consumerd_state
, CONSUMER_ERROR
);
1429 /* Code flow error... */
1433 if (consumer_data
->err_sock
>= 0) {
1434 ret
= close(consumer_data
->err_sock
);
1438 consumer_data
->err_sock
= -1;
1440 if (consumer_data
->cmd_sock
>= 0) {
1441 ret
= close(consumer_data
->cmd_sock
);
1445 consumer_data
->cmd_sock
= -1;
1447 if (consumer_data
->metadata_sock
.fd_ptr
&&
1448 *consumer_data
->metadata_sock
.fd_ptr
>= 0) {
1449 ret
= close(*consumer_data
->metadata_sock
.fd_ptr
);
1461 unlink(consumer_data
->err_unix_sock_path
);
1462 unlink(consumer_data
->cmd_unix_sock_path
);
1463 pthread_mutex_unlock(&consumer_data
->lock
);
1465 /* Cleanup metadata socket mutex. */
1466 if (consumer_data
->metadata_sock
.lock
) {
1467 pthread_mutex_destroy(consumer_data
->metadata_sock
.lock
);
1468 free(consumer_data
->metadata_sock
.lock
);
1470 lttng_poll_clean(&events
);
1472 if (cmd_socket_wrapper
) {
1473 consumer_destroy_socket(cmd_socket_wrapper
);
1478 ERR("Health error occurred in %s", __func__
);
1480 health_unregister(health_sessiond
);
1481 DBG("consumer thread cleanup completed");
1483 rcu_thread_offline();
1484 rcu_unregister_thread();
1490 * This thread receives application command sockets (FDs) on the
1491 * apps_cmd_pipe and waits (polls) on them until they are closed
1492 * or an error occurs.
1494 * At that point, it flushes the data (tracing and metadata) associated
1495 * with this application and tears down ust app sessions and other
1496 * associated data structures through ust_app_unregister().
1498 * Note that this thread never sends commands to the applications
1499 * through the command sockets; it merely listens for hang-ups
1500 * and errors on those sockets and cleans-up as they occur.
1502 static void *thread_manage_apps(void *data
)
1504 int i
, ret
, pollfd
, err
= -1;
1506 uint32_t revents
, nb_fd
;
1507 struct lttng_poll_event events
;
1509 DBG("[thread] Manage application started");
1511 rcu_register_thread();
1512 rcu_thread_online();
1514 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_APP_MANAGE
);
1516 if (testpoint(sessiond_thread_manage_apps
)) {
1517 goto error_testpoint
;
1520 health_code_update();
1522 ret
= sessiond_set_thread_pollset(&events
, 2);
1524 goto error_poll_create
;
1527 ret
= lttng_poll_add(&events
, apps_cmd_pipe
[0], LPOLLIN
| LPOLLRDHUP
);
1532 if (testpoint(sessiond_thread_manage_apps_before_loop
)) {
1536 health_code_update();
1539 DBG("Apps thread polling");
1541 /* Inifinite blocking call, waiting for transmission */
1543 health_poll_entry();
1544 ret
= lttng_poll_wait(&events
, -1);
1545 DBG("Apps thread return from poll on %d fds",
1546 LTTNG_POLL_GETNB(&events
));
1550 * Restart interrupted system call.
1552 if (errno
== EINTR
) {
1560 for (i
= 0; i
< nb_fd
; i
++) {
1561 /* Fetch once the poll data */
1562 revents
= LTTNG_POLL_GETEV(&events
, i
);
1563 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1565 health_code_update();
1568 /* No activity for this FD (poll implementation). */
1572 /* Thread quit pipe has been closed. Killing thread. */
1573 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1579 /* Inspect the apps cmd pipe */
1580 if (pollfd
== apps_cmd_pipe
[0]) {
1581 if (revents
& LPOLLIN
) {
1585 size_ret
= lttng_read(apps_cmd_pipe
[0], &sock
, sizeof(sock
));
1586 if (size_ret
< sizeof(sock
)) {
1587 PERROR("read apps cmd pipe");
1591 health_code_update();
1594 * Since this is a command socket (write then read),
1595 * we only monitor the error events of the socket.
1597 ret
= lttng_poll_add(&events
, sock
,
1598 LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
);
1603 DBG("Apps with sock %d added to poll set", sock
);
1604 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1605 ERR("Apps command pipe error");
1608 ERR("Unknown poll events %u for sock %d", revents
, pollfd
);
1613 * At this point, we know that a registered application made
1614 * the event at poll_wait.
1616 if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1617 /* Removing from the poll set */
1618 ret
= lttng_poll_del(&events
, pollfd
);
1623 /* Socket closed on remote end. */
1624 ust_app_unregister(pollfd
);
1626 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1631 health_code_update();
1637 lttng_poll_clean(&events
);
1640 utils_close_pipe(apps_cmd_pipe
);
1641 apps_cmd_pipe
[0] = apps_cmd_pipe
[1] = -1;
1644 * We don't clean the UST app hash table here since already registered
1645 * applications can still be controlled so let them be until the session
1646 * daemon dies or the applications stop.
1651 ERR("Health error occurred in %s", __func__
);
1653 health_unregister(health_sessiond
);
1654 DBG("Application communication apps thread cleanup complete");
1655 rcu_thread_offline();
1656 rcu_unregister_thread();
1661 * Send a socket to a thread This is called from the dispatch UST registration
1662 * thread once all sockets are set for the application.
1664 * The sock value can be invalid, we don't really care, the thread will handle
1665 * it and make the necessary cleanup if so.
1667 * On success, return 0 else a negative value being the errno message of the
1670 static int send_socket_to_thread(int fd
, int sock
)
1675 * It's possible that the FD is set as invalid with -1 concurrently just
1676 * before calling this function being a shutdown state of the thread.
1683 ret
= lttng_write(fd
, &sock
, sizeof(sock
));
1684 if (ret
< sizeof(sock
)) {
1685 PERROR("write apps pipe %d", fd
);
1692 /* All good. Don't send back the write positive ret value. */
1699 * Sanitize the wait queue of the dispatch registration thread meaning removing
1700 * invalid nodes from it. This is to avoid memory leaks for the case the UST
1701 * notify socket is never received.
1703 static void sanitize_wait_queue(struct ust_reg_wait_queue
*wait_queue
)
1705 int ret
, nb_fd
= 0, i
;
1706 unsigned int fd_added
= 0;
1707 struct lttng_poll_event events
;
1708 struct ust_reg_wait_node
*wait_node
= NULL
, *tmp_wait_node
;
1712 lttng_poll_init(&events
);
1714 /* Just skip everything for an empty queue. */
1715 if (!wait_queue
->count
) {
1719 ret
= lttng_poll_create(&events
, wait_queue
->count
, LTTNG_CLOEXEC
);
1724 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
1725 &wait_queue
->head
, head
) {
1726 assert(wait_node
->app
);
1727 ret
= lttng_poll_add(&events
, wait_node
->app
->sock
,
1728 LPOLLHUP
| LPOLLERR
);
1741 * Poll but don't block so we can quickly identify the faulty events and
1742 * clean them afterwards from the wait queue.
1744 ret
= lttng_poll_wait(&events
, 0);
1750 for (i
= 0; i
< nb_fd
; i
++) {
1751 /* Get faulty FD. */
1752 uint32_t revents
= LTTNG_POLL_GETEV(&events
, i
);
1753 int pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1756 /* No activity for this FD (poll implementation). */
1760 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
1761 &wait_queue
->head
, head
) {
1762 if (pollfd
== wait_node
->app
->sock
&&
1763 (revents
& (LPOLLHUP
| LPOLLERR
))) {
1764 cds_list_del(&wait_node
->head
);
1765 wait_queue
->count
--;
1766 ust_app_destroy(wait_node
->app
);
1769 * Silence warning of use-after-free in
1770 * cds_list_for_each_entry_safe which uses
1771 * __typeof__(*wait_node).
1776 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1783 DBG("Wait queue sanitized, %d node were cleaned up", nb_fd
);
1787 lttng_poll_clean(&events
);
1791 lttng_poll_clean(&events
);
1793 ERR("Unable to sanitize wait queue");
1798 * Dispatch request from the registration threads to the application
1799 * communication thread.
1801 static void *thread_dispatch_ust_registration(void *data
)
1804 struct cds_wfcq_node
*node
;
1805 struct ust_command
*ust_cmd
= NULL
;
1806 struct ust_reg_wait_node
*wait_node
= NULL
, *tmp_wait_node
;
1807 struct ust_reg_wait_queue wait_queue
= {
1811 rcu_register_thread();
1813 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_APP_REG_DISPATCH
);
1815 if (testpoint(sessiond_thread_app_reg_dispatch
)) {
1816 goto error_testpoint
;
1819 health_code_update();
1821 CDS_INIT_LIST_HEAD(&wait_queue
.head
);
1823 DBG("[thread] Dispatch UST command started");
1826 health_code_update();
1828 /* Atomically prepare the queue futex */
1829 futex_nto1_prepare(&ust_cmd_queue
.futex
);
1831 if (CMM_LOAD_SHARED(dispatch_thread_exit
)) {
1836 struct ust_app
*app
= NULL
;
1840 * Make sure we don't have node(s) that have hung up before receiving
1841 * the notify socket. This is to clean the list in order to avoid
1842 * memory leaks from notify socket that are never seen.
1844 sanitize_wait_queue(&wait_queue
);
1846 health_code_update();
1847 /* Dequeue command for registration */
1848 node
= cds_wfcq_dequeue_blocking(&ust_cmd_queue
.head
, &ust_cmd_queue
.tail
);
1850 DBG("Woken up but nothing in the UST command queue");
1851 /* Continue thread execution */
1855 ust_cmd
= caa_container_of(node
, struct ust_command
, node
);
1857 DBG("Dispatching UST registration pid:%d ppid:%d uid:%d"
1858 " gid:%d sock:%d name:%s (version %d.%d)",
1859 ust_cmd
->reg_msg
.pid
, ust_cmd
->reg_msg
.ppid
,
1860 ust_cmd
->reg_msg
.uid
, ust_cmd
->reg_msg
.gid
,
1861 ust_cmd
->sock
, ust_cmd
->reg_msg
.name
,
1862 ust_cmd
->reg_msg
.major
, ust_cmd
->reg_msg
.minor
);
1864 if (ust_cmd
->reg_msg
.type
== USTCTL_SOCKET_CMD
) {
1865 wait_node
= zmalloc(sizeof(*wait_node
));
1867 PERROR("zmalloc wait_node dispatch");
1868 ret
= close(ust_cmd
->sock
);
1870 PERROR("close ust sock dispatch %d", ust_cmd
->sock
);
1872 lttng_fd_put(LTTNG_FD_APPS
, 1);
1876 CDS_INIT_LIST_HEAD(&wait_node
->head
);
1878 /* Create application object if socket is CMD. */
1879 wait_node
->app
= ust_app_create(&ust_cmd
->reg_msg
,
1881 if (!wait_node
->app
) {
1882 ret
= close(ust_cmd
->sock
);
1884 PERROR("close ust sock dispatch %d", ust_cmd
->sock
);
1886 lttng_fd_put(LTTNG_FD_APPS
, 1);
1892 * Add application to the wait queue so we can set the notify
1893 * socket before putting this object in the global ht.
1895 cds_list_add(&wait_node
->head
, &wait_queue
.head
);
1900 * We have to continue here since we don't have the notify
1901 * socket and the application MUST be added to the hash table
1902 * only at that moment.
1907 * Look for the application in the local wait queue and set the
1908 * notify socket if found.
1910 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
1911 &wait_queue
.head
, head
) {
1912 health_code_update();
1913 if (wait_node
->app
->pid
== ust_cmd
->reg_msg
.pid
) {
1914 wait_node
->app
->notify_sock
= ust_cmd
->sock
;
1915 cds_list_del(&wait_node
->head
);
1917 app
= wait_node
->app
;
1919 DBG3("UST app notify socket %d is set", ust_cmd
->sock
);
1925 * With no application at this stage the received socket is
1926 * basically useless so close it before we free the cmd data
1927 * structure for good.
1930 ret
= close(ust_cmd
->sock
);
1932 PERROR("close ust sock dispatch %d", ust_cmd
->sock
);
1934 lttng_fd_put(LTTNG_FD_APPS
, 1);
1941 * @session_lock_list
1943 * Lock the global session list so from the register up to the
1944 * registration done message, no thread can see the application
1945 * and change its state.
1947 session_lock_list();
1951 * Add application to the global hash table. This needs to be
1952 * done before the update to the UST registry can locate the
1957 /* Set app version. This call will print an error if needed. */
1958 (void) ust_app_version(app
);
1960 /* Send notify socket through the notify pipe. */
1961 ret
= send_socket_to_thread(apps_cmd_notify_pipe
[1],
1965 session_unlock_list();
1967 * No notify thread, stop the UST tracing. However, this is
1968 * not an internal error of the this thread thus setting
1969 * the health error code to a normal exit.
1976 * Update newly registered application with the tracing
1977 * registry info already enabled information.
1979 update_ust_app(app
->sock
);
1982 * Don't care about return value. Let the manage apps threads
1983 * handle app unregistration upon socket close.
1985 (void) ust_app_register_done(app
);
1988 * Even if the application socket has been closed, send the app
1989 * to the thread and unregistration will take place at that
1992 ret
= send_socket_to_thread(apps_cmd_pipe
[1], app
->sock
);
1995 session_unlock_list();
1997 * No apps. thread, stop the UST tracing. However, this is
1998 * not an internal error of the this thread thus setting
1999 * the health error code to a normal exit.
2006 session_unlock_list();
2008 } while (node
!= NULL
);
2010 health_poll_entry();
2011 /* Futex wait on queue. Blocking call on futex() */
2012 futex_nto1_wait(&ust_cmd_queue
.futex
);
2015 /* Normal exit, no error */
2019 /* Clean up wait queue. */
2020 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
2021 &wait_queue
.head
, head
) {
2022 cds_list_del(&wait_node
->head
);
2027 /* Empty command queue. */
2029 /* Dequeue command for registration */
2030 node
= cds_wfcq_dequeue_blocking(&ust_cmd_queue
.head
, &ust_cmd_queue
.tail
);
2034 ust_cmd
= caa_container_of(node
, struct ust_command
, node
);
2035 ret
= close(ust_cmd
->sock
);
2037 PERROR("close ust sock exit dispatch %d", ust_cmd
->sock
);
2039 lttng_fd_put(LTTNG_FD_APPS
, 1);
2044 DBG("Dispatch thread dying");
2047 ERR("Health error occurred in %s", __func__
);
2049 health_unregister(health_sessiond
);
2050 rcu_unregister_thread();
2055 * This thread manage application registration.
2057 static void *thread_registration_apps(void *data
)
2059 int sock
= -1, i
, ret
, pollfd
, err
= -1;
2060 uint32_t revents
, nb_fd
;
2061 struct lttng_poll_event events
;
2063 * Get allocated in this thread, enqueued to a global queue, dequeued and
2064 * freed in the manage apps thread.
2066 struct ust_command
*ust_cmd
= NULL
;
2068 DBG("[thread] Manage application registration started");
2070 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_APP_REG
);
2072 if (testpoint(sessiond_thread_registration_apps
)) {
2073 goto error_testpoint
;
2076 ret
= lttcomm_listen_unix_sock(apps_sock
);
2082 * Pass 2 as size here for the thread quit pipe and apps socket. Nothing
2083 * more will be added to this poll set.
2085 ret
= sessiond_set_thread_pollset(&events
, 2);
2087 goto error_create_poll
;
2090 /* Add the application registration socket */
2091 ret
= lttng_poll_add(&events
, apps_sock
, LPOLLIN
| LPOLLRDHUP
);
2093 goto error_poll_add
;
2096 /* Notify all applications to register */
2097 ret
= notify_ust_apps(1);
2099 ERR("Failed to notify applications or create the wait shared memory.\n"
2100 "Execution continues but there might be problem for already\n"
2101 "running applications that wishes to register.");
2105 DBG("Accepting application registration");
2107 /* Inifinite blocking call, waiting for transmission */
2109 health_poll_entry();
2110 ret
= lttng_poll_wait(&events
, -1);
2114 * Restart interrupted system call.
2116 if (errno
== EINTR
) {
2124 for (i
= 0; i
< nb_fd
; i
++) {
2125 health_code_update();
2127 /* Fetch once the poll data */
2128 revents
= LTTNG_POLL_GETEV(&events
, i
);
2129 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2132 /* No activity for this FD (poll implementation). */
2136 /* Thread quit pipe has been closed. Killing thread. */
2137 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
2143 /* Event on the registration socket */
2144 if (pollfd
== apps_sock
) {
2145 if (revents
& LPOLLIN
) {
2146 sock
= lttcomm_accept_unix_sock(apps_sock
);
2152 * Set socket timeout for both receiving and ending.
2153 * app_socket_timeout is in seconds, whereas
2154 * lttcomm_setsockopt_rcv_timeout and
2155 * lttcomm_setsockopt_snd_timeout expect msec as
2158 if (config
.app_socket_timeout
>= 0) {
2159 (void) lttcomm_setsockopt_rcv_timeout(sock
,
2160 config
.app_socket_timeout
* 1000);
2161 (void) lttcomm_setsockopt_snd_timeout(sock
,
2162 config
.app_socket_timeout
* 1000);
2166 * Set the CLOEXEC flag. Return code is useless because
2167 * either way, the show must go on.
2169 (void) utils_set_fd_cloexec(sock
);
2171 /* Create UST registration command for enqueuing */
2172 ust_cmd
= zmalloc(sizeof(struct ust_command
));
2173 if (ust_cmd
== NULL
) {
2174 PERROR("ust command zmalloc");
2183 * Using message-based transmissions to ensure we don't
2184 * have to deal with partially received messages.
2186 ret
= lttng_fd_get(LTTNG_FD_APPS
, 1);
2188 ERR("Exhausted file descriptors allowed for applications.");
2198 health_code_update();
2199 ret
= ust_app_recv_registration(sock
, &ust_cmd
->reg_msg
);
2202 /* Close socket of the application. */
2207 lttng_fd_put(LTTNG_FD_APPS
, 1);
2211 health_code_update();
2213 ust_cmd
->sock
= sock
;
2216 DBG("UST registration received with pid:%d ppid:%d uid:%d"
2217 " gid:%d sock:%d name:%s (version %d.%d)",
2218 ust_cmd
->reg_msg
.pid
, ust_cmd
->reg_msg
.ppid
,
2219 ust_cmd
->reg_msg
.uid
, ust_cmd
->reg_msg
.gid
,
2220 ust_cmd
->sock
, ust_cmd
->reg_msg
.name
,
2221 ust_cmd
->reg_msg
.major
, ust_cmd
->reg_msg
.minor
);
2224 * Lock free enqueue the registration request. The red pill
2225 * has been taken! This apps will be part of the *system*.
2227 cds_wfcq_enqueue(&ust_cmd_queue
.head
, &ust_cmd_queue
.tail
, &ust_cmd
->node
);
2230 * Wake the registration queue futex. Implicit memory
2231 * barrier with the exchange in cds_wfcq_enqueue.
2233 futex_nto1_wake(&ust_cmd_queue
.futex
);
2234 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
2235 ERR("Register apps socket poll error");
2238 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2247 /* Notify that the registration thread is gone */
2250 if (apps_sock
>= 0) {
2251 ret
= close(apps_sock
);
2261 lttng_fd_put(LTTNG_FD_APPS
, 1);
2263 unlink(config
.apps_unix_sock_path
.value
);
2266 lttng_poll_clean(&events
);
2270 DBG("UST Registration thread cleanup complete");
2273 ERR("Health error occurred in %s", __func__
);
2275 health_unregister(health_sessiond
);
2281 * Start the thread_manage_consumer. This must be done after a lttng-consumerd
2282 * exec or it will fails.
2284 static int spawn_consumer_thread(struct consumer_data
*consumer_data
)
2287 struct timespec timeout
;
2290 * Make sure we set the readiness flag to 0 because we are NOT ready.
2291 * This access to consumer_thread_is_ready does not need to be
2292 * protected by consumer_data.cond_mutex (yet) since the consumer
2293 * management thread has not been started at this point.
2295 consumer_data
->consumer_thread_is_ready
= 0;
2297 /* Setup pthread condition */
2298 ret
= pthread_condattr_init(&consumer_data
->condattr
);
2301 PERROR("pthread_condattr_init consumer data");
2306 * Set the monotonic clock in order to make sure we DO NOT jump in time
2307 * between the clock_gettime() call and the timedwait call. See bug #324
2308 * for a more details and how we noticed it.
2310 ret
= pthread_condattr_setclock(&consumer_data
->condattr
, CLOCK_MONOTONIC
);
2313 PERROR("pthread_condattr_setclock consumer data");
2317 ret
= pthread_cond_init(&consumer_data
->cond
, &consumer_data
->condattr
);
2320 PERROR("pthread_cond_init consumer data");
2324 ret
= pthread_create(&consumer_data
->thread
, default_pthread_attr(),
2325 thread_manage_consumer
, consumer_data
);
2328 PERROR("pthread_create consumer");
2333 /* We are about to wait on a pthread condition */
2334 pthread_mutex_lock(&consumer_data
->cond_mutex
);
2336 /* Get time for sem_timedwait absolute timeout */
2337 clock_ret
= lttng_clock_gettime(CLOCK_MONOTONIC
, &timeout
);
2339 * Set the timeout for the condition timed wait even if the clock gettime
2340 * call fails since we might loop on that call and we want to avoid to
2341 * increment the timeout too many times.
2343 timeout
.tv_sec
+= DEFAULT_SEM_WAIT_TIMEOUT
;
2346 * The following loop COULD be skipped in some conditions so this is why we
2347 * set ret to 0 in order to make sure at least one round of the loop is
2353 * Loop until the condition is reached or when a timeout is reached. Note
2354 * that the pthread_cond_timedwait(P) man page specifies that EINTR can NOT
2355 * be returned but the pthread_cond(3), from the glibc-doc, says that it is
2356 * possible. This loop does not take any chances and works with both of
2359 while (!consumer_data
->consumer_thread_is_ready
&& ret
!= ETIMEDOUT
) {
2360 if (clock_ret
< 0) {
2361 PERROR("clock_gettime spawn consumer");
2362 /* Infinite wait for the consumerd thread to be ready */
2363 ret
= pthread_cond_wait(&consumer_data
->cond
,
2364 &consumer_data
->cond_mutex
);
2366 ret
= pthread_cond_timedwait(&consumer_data
->cond
,
2367 &consumer_data
->cond_mutex
, &timeout
);
2371 /* Release the pthread condition */
2372 pthread_mutex_unlock(&consumer_data
->cond_mutex
);
2376 if (ret
== ETIMEDOUT
) {
2380 * Call has timed out so we kill the kconsumerd_thread and return
2383 ERR("Condition timed out. The consumer thread was never ready."
2385 pth_ret
= pthread_cancel(consumer_data
->thread
);
2387 PERROR("pthread_cancel consumer thread");
2390 PERROR("pthread_cond_wait failed consumer thread");
2392 /* Caller is expecting a negative value on failure. */
2397 pthread_mutex_lock(&consumer_data
->pid_mutex
);
2398 if (consumer_data
->pid
== 0) {
2399 ERR("Consumerd did not start");
2400 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2403 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2412 * Join consumer thread
2414 static int join_consumer_thread(struct consumer_data
*consumer_data
)
2418 /* Consumer pid must be a real one. */
2419 if (consumer_data
->pid
> 0) {
2421 ret
= kill(consumer_data
->pid
, SIGTERM
);
2423 PERROR("Error killing consumer daemon");
2426 return pthread_join(consumer_data
->thread
, &status
);
2433 * Fork and exec a consumer daemon (consumerd).
2435 * Return pid if successful else -1.
2437 static pid_t
spawn_consumerd(struct consumer_data
*consumer_data
)
2441 const char *consumer_to_use
;
2442 const char *verbosity
;
2445 DBG("Spawning consumerd");
2452 if (config
.verbose_consumer
) {
2453 verbosity
= "--verbose";
2454 } else if (lttng_opt_quiet
) {
2455 verbosity
= "--quiet";
2460 switch (consumer_data
->type
) {
2461 case LTTNG_CONSUMER_KERNEL
:
2463 * Find out which consumerd to execute. We will first try the
2464 * 64-bit path, then the sessiond's installation directory, and
2465 * fallback on the 32-bit one,
2467 DBG3("Looking for a kernel consumer at these locations:");
2468 DBG3(" 1) %s", config
.consumerd64_bin_path
.value
? : "NULL");
2469 DBG3(" 2) %s/%s", INSTALL_BIN_PATH
, DEFAULT_CONSUMERD_FILE
);
2470 DBG3(" 3) %s", config
.consumerd32_bin_path
.value
? : "NULL");
2471 if (stat(config
.consumerd64_bin_path
.value
, &st
) == 0) {
2472 DBG3("Found location #1");
2473 consumer_to_use
= config
.consumerd64_bin_path
.value
;
2474 } else if (stat(INSTALL_BIN_PATH
"/" DEFAULT_CONSUMERD_FILE
, &st
) == 0) {
2475 DBG3("Found location #2");
2476 consumer_to_use
= INSTALL_BIN_PATH
"/" DEFAULT_CONSUMERD_FILE
;
2477 } else if (config
.consumerd32_bin_path
.value
&&
2478 stat(config
.consumerd32_bin_path
.value
, &st
) == 0) {
2479 DBG3("Found location #3");
2480 consumer_to_use
= config
.consumerd32_bin_path
.value
;
2482 DBG("Could not find any valid consumerd executable");
2486 DBG("Using kernel consumer at: %s", consumer_to_use
);
2487 (void) execl(consumer_to_use
,
2488 "lttng-consumerd", verbosity
, "-k",
2489 "--consumerd-cmd-sock", consumer_data
->cmd_unix_sock_path
,
2490 "--consumerd-err-sock", consumer_data
->err_unix_sock_path
,
2491 "--group", config
.tracing_group_name
.value
,
2494 case LTTNG_CONSUMER64_UST
:
2496 if (config
.consumerd64_lib_dir
.value
) {
2501 tmp
= lttng_secure_getenv("LD_LIBRARY_PATH");
2505 tmplen
= strlen(config
.consumerd64_lib_dir
.value
) + 1 /* : */ + strlen(tmp
);
2506 tmpnew
= zmalloc(tmplen
+ 1 /* \0 */);
2511 strcat(tmpnew
, config
.consumerd64_lib_dir
.value
);
2512 if (tmp
[0] != '\0') {
2513 strcat(tmpnew
, ":");
2514 strcat(tmpnew
, tmp
);
2516 ret
= setenv("LD_LIBRARY_PATH", tmpnew
, 1);
2523 DBG("Using 64-bit UST consumer at: %s", config
.consumerd64_bin_path
.value
);
2524 (void) execl(config
.consumerd64_bin_path
.value
, "lttng-consumerd", verbosity
, "-u",
2525 "--consumerd-cmd-sock", consumer_data
->cmd_unix_sock_path
,
2526 "--consumerd-err-sock", consumer_data
->err_unix_sock_path
,
2527 "--group", config
.tracing_group_name
.value
,
2531 case LTTNG_CONSUMER32_UST
:
2533 if (config
.consumerd32_lib_dir
.value
) {
2538 tmp
= lttng_secure_getenv("LD_LIBRARY_PATH");
2542 tmplen
= strlen(config
.consumerd32_lib_dir
.value
) + 1 /* : */ + strlen(tmp
);
2543 tmpnew
= zmalloc(tmplen
+ 1 /* \0 */);
2548 strcat(tmpnew
, config
.consumerd32_lib_dir
.value
);
2549 if (tmp
[0] != '\0') {
2550 strcat(tmpnew
, ":");
2551 strcat(tmpnew
, tmp
);
2553 ret
= setenv("LD_LIBRARY_PATH", tmpnew
, 1);
2560 DBG("Using 32-bit UST consumer at: %s", config
.consumerd32_bin_path
.value
);
2561 (void) execl(config
.consumerd32_bin_path
.value
, "lttng-consumerd", verbosity
, "-u",
2562 "--consumerd-cmd-sock", consumer_data
->cmd_unix_sock_path
,
2563 "--consumerd-err-sock", consumer_data
->err_unix_sock_path
,
2564 "--group", config
.tracing_group_name
.value
,
2569 ERR("unknown consumer type");
2573 PERROR("Consumer execl()");
2575 /* Reaching this point, we got a failure on our execl(). */
2577 } else if (pid
> 0) {
2580 PERROR("start consumer fork");
2588 * Spawn the consumerd daemon and session daemon thread.
2590 static int start_consumerd(struct consumer_data
*consumer_data
)
2595 * Set the listen() state on the socket since there is a possible race
2596 * between the exec() of the consumer daemon and this call if place in the
2597 * consumer thread. See bug #366 for more details.
2599 ret
= lttcomm_listen_unix_sock(consumer_data
->err_sock
);
2604 pthread_mutex_lock(&consumer_data
->pid_mutex
);
2605 if (consumer_data
->pid
!= 0) {
2606 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2610 ret
= spawn_consumerd(consumer_data
);
2612 ERR("Spawning consumerd failed");
2613 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2617 /* Setting up the consumer_data pid */
2618 consumer_data
->pid
= ret
;
2619 DBG2("Consumer pid %d", consumer_data
->pid
);
2620 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2622 DBG2("Spawning consumer control thread");
2623 ret
= spawn_consumer_thread(consumer_data
);
2625 ERR("Fatal error spawning consumer control thread");
2633 /* Cleanup already created sockets on error. */
2634 if (consumer_data
->err_sock
>= 0) {
2637 err
= close(consumer_data
->err_sock
);
2639 PERROR("close consumer data error socket");
2646 * Setup necessary data for kernel tracer action.
2648 static int init_kernel_tracer(void)
2652 /* Modprobe lttng kernel modules */
2653 ret
= modprobe_lttng_control();
2658 /* Open debugfs lttng */
2659 kernel_tracer_fd
= open(module_proc_lttng
, O_RDWR
);
2660 if (kernel_tracer_fd
< 0) {
2661 DBG("Failed to open %s", module_proc_lttng
);
2665 /* Validate kernel version */
2666 ret
= kernel_validate_version(kernel_tracer_fd
, &kernel_tracer_version
,
2667 &kernel_tracer_abi_version
);
2672 ret
= modprobe_lttng_data();
2677 ret
= kernel_supports_ring_buffer_snapshot_sample_positions(
2684 WARN("Kernel tracer does not support buffer monitoring. "
2685 "The monitoring timer of channels in the kernel domain "
2686 "will be set to 0 (disabled).");
2689 DBG("Kernel tracer fd %d", kernel_tracer_fd
);
2693 modprobe_remove_lttng_control();
2694 ret
= close(kernel_tracer_fd
);
2698 kernel_tracer_fd
= -1;
2699 return LTTNG_ERR_KERN_VERSION
;
2702 ret
= close(kernel_tracer_fd
);
2708 modprobe_remove_lttng_control();
2711 WARN("No kernel tracer available");
2712 kernel_tracer_fd
= -1;
2714 return LTTNG_ERR_NEED_ROOT_SESSIOND
;
2716 return LTTNG_ERR_KERN_NA
;
2722 * Copy consumer output from the tracing session to the domain session. The
2723 * function also applies the right modification on a per domain basis for the
2724 * trace files destination directory.
2726 * Should *NOT* be called with RCU read-side lock held.
2728 static int copy_session_consumer(int domain
, struct ltt_session
*session
)
2731 const char *dir_name
;
2732 struct consumer_output
*consumer
;
2735 assert(session
->consumer
);
2738 case LTTNG_DOMAIN_KERNEL
:
2739 DBG3("Copying tracing session consumer output in kernel session");
2741 * XXX: We should audit the session creation and what this function
2742 * does "extra" in order to avoid a destroy since this function is used
2743 * in the domain session creation (kernel and ust) only. Same for UST
2746 if (session
->kernel_session
->consumer
) {
2747 consumer_output_put(session
->kernel_session
->consumer
);
2749 session
->kernel_session
->consumer
=
2750 consumer_copy_output(session
->consumer
);
2751 /* Ease our life a bit for the next part */
2752 consumer
= session
->kernel_session
->consumer
;
2753 dir_name
= DEFAULT_KERNEL_TRACE_DIR
;
2755 case LTTNG_DOMAIN_JUL
:
2756 case LTTNG_DOMAIN_LOG4J
:
2757 case LTTNG_DOMAIN_PYTHON
:
2758 case LTTNG_DOMAIN_UST
:
2759 DBG3("Copying tracing session consumer output in UST session");
2760 if (session
->ust_session
->consumer
) {
2761 consumer_output_put(session
->ust_session
->consumer
);
2763 session
->ust_session
->consumer
=
2764 consumer_copy_output(session
->consumer
);
2765 /* Ease our life a bit for the next part */
2766 consumer
= session
->ust_session
->consumer
;
2767 dir_name
= DEFAULT_UST_TRACE_DIR
;
2770 ret
= LTTNG_ERR_UNKNOWN_DOMAIN
;
2774 /* Append correct directory to subdir */
2775 strncat(consumer
->subdir
, dir_name
,
2776 sizeof(consumer
->subdir
) - strlen(consumer
->subdir
) - 1);
2777 DBG3("Copy session consumer subdir %s", consumer
->subdir
);
2786 * Create an UST session and add it to the session ust list.
2788 * Should *NOT* be called with RCU read-side lock held.
2790 static int create_ust_session(struct ltt_session
*session
,
2791 struct lttng_domain
*domain
)
2794 struct ltt_ust_session
*lus
= NULL
;
2798 assert(session
->consumer
);
2800 switch (domain
->type
) {
2801 case LTTNG_DOMAIN_JUL
:
2802 case LTTNG_DOMAIN_LOG4J
:
2803 case LTTNG_DOMAIN_PYTHON
:
2804 case LTTNG_DOMAIN_UST
:
2807 ERR("Unknown UST domain on create session %d", domain
->type
);
2808 ret
= LTTNG_ERR_UNKNOWN_DOMAIN
;
2812 DBG("Creating UST session");
2814 lus
= trace_ust_create_session(session
->id
);
2816 ret
= LTTNG_ERR_UST_SESS_FAIL
;
2820 lus
->uid
= session
->uid
;
2821 lus
->gid
= session
->gid
;
2822 lus
->output_traces
= session
->output_traces
;
2823 lus
->snapshot_mode
= session
->snapshot_mode
;
2824 lus
->live_timer_interval
= session
->live_timer
;
2825 session
->ust_session
= lus
;
2826 if (session
->shm_path
[0]) {
2827 strncpy(lus
->root_shm_path
, session
->shm_path
,
2828 sizeof(lus
->root_shm_path
));
2829 lus
->root_shm_path
[sizeof(lus
->root_shm_path
) - 1] = '\0';
2830 strncpy(lus
->shm_path
, session
->shm_path
,
2831 sizeof(lus
->shm_path
));
2832 lus
->shm_path
[sizeof(lus
->shm_path
) - 1] = '\0';
2833 strncat(lus
->shm_path
, "/ust",
2834 sizeof(lus
->shm_path
) - strlen(lus
->shm_path
) - 1);
2836 /* Copy session output to the newly created UST session */
2837 ret
= copy_session_consumer(domain
->type
, session
);
2838 if (ret
!= LTTNG_OK
) {
2846 session
->ust_session
= NULL
;
2851 * Create a kernel tracer session then create the default channel.
2853 static int create_kernel_session(struct ltt_session
*session
)
2857 DBG("Creating kernel session");
2859 ret
= kernel_create_session(session
, kernel_tracer_fd
);
2861 ret
= LTTNG_ERR_KERN_SESS_FAIL
;
2865 /* Code flow safety */
2866 assert(session
->kernel_session
);
2868 /* Copy session output to the newly created Kernel session */
2869 ret
= copy_session_consumer(LTTNG_DOMAIN_KERNEL
, session
);
2870 if (ret
!= LTTNG_OK
) {
2874 session
->kernel_session
->uid
= session
->uid
;
2875 session
->kernel_session
->gid
= session
->gid
;
2876 session
->kernel_session
->output_traces
= session
->output_traces
;
2877 session
->kernel_session
->snapshot_mode
= session
->snapshot_mode
;
2882 trace_kernel_destroy_session(session
->kernel_session
);
2883 session
->kernel_session
= NULL
;
2888 * Count number of session permitted by uid/gid.
2890 static unsigned int lttng_sessions_count(uid_t uid
, gid_t gid
)
2893 struct ltt_session
*session
;
2895 DBG("Counting number of available session for UID %d GID %d",
2897 cds_list_for_each_entry(session
, &session_list_ptr
->head
, list
) {
2899 * Only list the sessions the user can control.
2901 if (!session_access_ok(session
, uid
, gid
)) {
2909 static int receive_userspace_probe(struct command_ctx
*cmd_ctx
, int sock
,
2910 int *sock_error
, struct lttng_event
*event
)
2913 struct lttng_userspace_probe_location
*probe_location
;
2914 const struct lttng_userspace_probe_location_lookup_method
*lookup
= NULL
;
2915 struct lttng_dynamic_buffer probe_location_buffer
;
2916 struct lttng_buffer_view buffer_view
;
2919 * Create a buffer to store the serialized version of the probe
2922 lttng_dynamic_buffer_init(&probe_location_buffer
);
2923 ret
= lttng_dynamic_buffer_set_size(&probe_location_buffer
,
2924 cmd_ctx
->lsm
->u
.enable
.userspace_probe_location_len
);
2926 ret
= LTTNG_ERR_NOMEM
;
2931 * Receive the probe location.
2933 ret
= lttcomm_recv_unix_sock(sock
, probe_location_buffer
.data
,
2934 probe_location_buffer
.size
);
2936 DBG("Nothing recv() from client var len data... continuing");
2938 lttng_dynamic_buffer_reset(&probe_location_buffer
);
2939 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2943 buffer_view
= lttng_buffer_view_from_dynamic_buffer(
2944 &probe_location_buffer
, 0, probe_location_buffer
.size
);
2947 * Extract the probe location from the serialized version.
2949 ret
= lttng_userspace_probe_location_create_from_buffer(
2950 &buffer_view
, &probe_location
);
2952 WARN("Failed to create a userspace probe location from the received buffer");
2953 lttng_dynamic_buffer_reset( &probe_location_buffer
);
2954 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2959 * Receive the file descriptor to the target binary from the client.
2961 DBG("Receiving userspace probe target FD from client ...");
2962 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
2964 DBG("Nothing recv() from client userspace probe fd... continuing");
2966 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2971 * Set the file descriptor received from the client through the unix
2972 * socket in the probe location.
2974 lookup
= lttng_userspace_probe_location_get_lookup_method(probe_location
);
2976 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2981 * From the kernel tracer's perspective, all userspace probe event types
2982 * are all the same: a file and an offset.
2984 switch (lttng_userspace_probe_location_lookup_method_get_type(lookup
)) {
2985 case LTTNG_USERSPACE_PROBE_LOCATION_LOOKUP_METHOD_TYPE_FUNCTION_ELF
:
2986 ret
= lttng_userspace_probe_location_function_set_binary_fd(
2987 probe_location
, fd
);
2989 case LTTNG_USERSPACE_PROBE_LOCATION_LOOKUP_METHOD_TYPE_TRACEPOINT_SDT
:
2990 ret
= lttng_userspace_probe_location_tracepoint_set_binary_fd(
2991 probe_location
, fd
);
2994 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2999 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
3003 /* Attach the probe location to the event. */
3004 ret
= lttng_event_set_userspace_probe_location(event
, probe_location
);
3006 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
3010 lttng_dynamic_buffer_reset(&probe_location_buffer
);
3016 * Check if the current kernel tracer supports the session rotation feature.
3017 * Return 1 if it does, 0 otherwise.
3019 static int check_rotate_compatible(void)
3023 if (kernel_tracer_version
.major
!= 2 || kernel_tracer_version
.minor
< 11) {
3024 DBG("Kernel tracer version is not compatible with the rotation feature");
3032 * Process the command requested by the lttng client within the command
3033 * context structure. This function make sure that the return structure (llm)
3034 * is set and ready for transmission before returning.
3036 * Return any error encountered or 0 for success.
3038 * "sock" is only used for special-case var. len data.
3040 * Should *NOT* be called with RCU read-side lock held.
3042 static int process_client_msg(struct command_ctx
*cmd_ctx
, int sock
,
3046 int need_tracing_session
= 1;
3049 DBG("Processing client command %d", cmd_ctx
->lsm
->cmd_type
);
3051 assert(!rcu_read_ongoing());
3055 switch (cmd_ctx
->lsm
->cmd_type
) {
3056 case LTTNG_CREATE_SESSION
:
3057 case LTTNG_CREATE_SESSION_SNAPSHOT
:
3058 case LTTNG_CREATE_SESSION_LIVE
:
3059 case LTTNG_DESTROY_SESSION
:
3060 case LTTNG_LIST_SESSIONS
:
3061 case LTTNG_LIST_DOMAINS
:
3062 case LTTNG_START_TRACE
:
3063 case LTTNG_STOP_TRACE
:
3064 case LTTNG_DATA_PENDING
:
3065 case LTTNG_SNAPSHOT_ADD_OUTPUT
:
3066 case LTTNG_SNAPSHOT_DEL_OUTPUT
:
3067 case LTTNG_SNAPSHOT_LIST_OUTPUT
:
3068 case LTTNG_SNAPSHOT_RECORD
:
3069 case LTTNG_SAVE_SESSION
:
3070 case LTTNG_SET_SESSION_SHM_PATH
:
3071 case LTTNG_REGENERATE_METADATA
:
3072 case LTTNG_REGENERATE_STATEDUMP
:
3073 case LTTNG_REGISTER_TRIGGER
:
3074 case LTTNG_UNREGISTER_TRIGGER
:
3075 case LTTNG_ROTATE_SESSION
:
3076 case LTTNG_ROTATION_GET_INFO
:
3077 case LTTNG_ROTATION_SET_SCHEDULE
:
3078 case LTTNG_SESSION_LIST_ROTATION_SCHEDULES
:
3085 if (config
.no_kernel
&& need_domain
3086 && cmd_ctx
->lsm
->domain
.type
== LTTNG_DOMAIN_KERNEL
) {
3088 ret
= LTTNG_ERR_NEED_ROOT_SESSIOND
;
3090 ret
= LTTNG_ERR_KERN_NA
;
3095 /* Deny register consumer if we already have a spawned consumer. */
3096 if (cmd_ctx
->lsm
->cmd_type
== LTTNG_REGISTER_CONSUMER
) {
3097 pthread_mutex_lock(&kconsumer_data
.pid_mutex
);
3098 if (kconsumer_data
.pid
> 0) {
3099 ret
= LTTNG_ERR_KERN_CONSUMER_FAIL
;
3100 pthread_mutex_unlock(&kconsumer_data
.pid_mutex
);
3103 pthread_mutex_unlock(&kconsumer_data
.pid_mutex
);
3107 * Check for command that don't needs to allocate a returned payload. We do
3108 * this here so we don't have to make the call for no payload at each
3111 switch(cmd_ctx
->lsm
->cmd_type
) {
3112 case LTTNG_LIST_SESSIONS
:
3113 case LTTNG_LIST_TRACEPOINTS
:
3114 case LTTNG_LIST_TRACEPOINT_FIELDS
:
3115 case LTTNG_LIST_DOMAINS
:
3116 case LTTNG_LIST_CHANNELS
:
3117 case LTTNG_LIST_EVENTS
:
3118 case LTTNG_LIST_SYSCALLS
:
3119 case LTTNG_LIST_TRACKER_PIDS
:
3120 case LTTNG_DATA_PENDING
:
3121 case LTTNG_ROTATE_SESSION
:
3122 case LTTNG_ROTATION_GET_INFO
:
3123 case LTTNG_SESSION_LIST_ROTATION_SCHEDULES
:
3126 /* Setup lttng message with no payload */
3127 ret
= setup_lttng_msg_no_cmd_header(cmd_ctx
, NULL
, 0);
3129 /* This label does not try to unlock the session */
3130 goto init_setup_error
;
3134 /* Commands that DO NOT need a session. */
3135 switch (cmd_ctx
->lsm
->cmd_type
) {
3136 case LTTNG_CREATE_SESSION
:
3137 case LTTNG_CREATE_SESSION_SNAPSHOT
:
3138 case LTTNG_CREATE_SESSION_LIVE
:
3139 case LTTNG_LIST_SESSIONS
:
3140 case LTTNG_LIST_TRACEPOINTS
:
3141 case LTTNG_LIST_SYSCALLS
:
3142 case LTTNG_LIST_TRACEPOINT_FIELDS
:
3143 case LTTNG_SAVE_SESSION
:
3144 case LTTNG_REGISTER_TRIGGER
:
3145 case LTTNG_UNREGISTER_TRIGGER
:
3146 need_tracing_session
= 0;
3149 DBG("Getting session %s by name", cmd_ctx
->lsm
->session
.name
);
3151 * We keep the session list lock across _all_ commands
3152 * for now, because the per-session lock does not
3153 * handle teardown properly.
3155 session_lock_list();
3156 cmd_ctx
->session
= session_find_by_name(cmd_ctx
->lsm
->session
.name
);
3157 if (cmd_ctx
->session
== NULL
) {
3158 ret
= LTTNG_ERR_SESS_NOT_FOUND
;
3161 /* Acquire lock for the session */
3162 session_lock(cmd_ctx
->session
);
3168 * Commands that need a valid session but should NOT create one if none
3169 * exists. Instead of creating one and destroying it when the command is
3170 * handled, process that right before so we save some round trip in useless
3173 switch (cmd_ctx
->lsm
->cmd_type
) {
3174 case LTTNG_DISABLE_CHANNEL
:
3175 case LTTNG_DISABLE_EVENT
:
3176 switch (cmd_ctx
->lsm
->domain
.type
) {
3177 case LTTNG_DOMAIN_KERNEL
:
3178 if (!cmd_ctx
->session
->kernel_session
) {
3179 ret
= LTTNG_ERR_NO_CHANNEL
;
3183 case LTTNG_DOMAIN_JUL
:
3184 case LTTNG_DOMAIN_LOG4J
:
3185 case LTTNG_DOMAIN_PYTHON
:
3186 case LTTNG_DOMAIN_UST
:
3187 if (!cmd_ctx
->session
->ust_session
) {
3188 ret
= LTTNG_ERR_NO_CHANNEL
;
3193 ret
= LTTNG_ERR_UNKNOWN_DOMAIN
;
3205 * Check domain type for specific "pre-action".
3207 switch (cmd_ctx
->lsm
->domain
.type
) {
3208 case LTTNG_DOMAIN_KERNEL
:
3210 ret
= LTTNG_ERR_NEED_ROOT_SESSIOND
;
3214 /* Kernel tracer check */
3215 if (kernel_tracer_fd
== -1) {
3216 /* Basically, load kernel tracer modules */
3217 ret
= init_kernel_tracer();
3223 /* Consumer is in an ERROR state. Report back to client */
3224 if (uatomic_read(&kernel_consumerd_state
) == CONSUMER_ERROR
) {
3225 ret
= LTTNG_ERR_NO_KERNCONSUMERD
;
3229 /* Need a session for kernel command */
3230 if (need_tracing_session
) {
3231 if (cmd_ctx
->session
->kernel_session
== NULL
) {
3232 ret
= create_kernel_session(cmd_ctx
->session
);
3234 ret
= LTTNG_ERR_KERN_SESS_FAIL
;