2 * Copyright (C) 2011 - David Goulet <david.goulet@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2013 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
32 #include <sys/mount.h>
33 #include <sys/resource.h>
34 #include <sys/socket.h>
36 #include <sys/types.h>
38 #include <urcu/uatomic.h>
42 #include <common/common.h>
43 #include <common/compat/socket.h>
44 #include <common/compat/getenv.h>
45 #include <common/defaults.h>
46 #include <common/kernel-consumer/kernel-consumer.h>
47 #include <common/futex.h>
48 #include <common/relayd/relayd.h>
49 #include <common/utils.h>
50 #include <common/daemonize.h>
51 #include <common/config/session-config.h>
52 #include <common/dynamic-buffer.h>
53 #include <lttng/userspace-probe-internal.h>
55 #include "lttng-sessiond.h"
56 #include "buffer-registry.h"
63 #include "kernel-consumer.h"
67 #include "ust-consumer.h"
70 #include "health-sessiond.h"
71 #include "testpoint.h"
72 #include "ust-thread.h"
73 #include "agent-thread.h"
75 #include "load-session-thread.h"
76 #include "notification-thread.h"
77 #include "notification-thread-commands.h"
78 #include "rotation-thread.h"
79 #include "lttng-syscall.h"
81 #include "ht-cleanup.h"
82 #include "sessiond-config.h"
83 #include "sessiond-timer.h"
85 static const char *help_msg
=
86 #ifdef LTTNG_EMBED_HELP
87 #include <lttng-sessiond.8.h>
94 static pid_t ppid
; /* Parent PID for --sig-parent option */
95 static pid_t child_ppid
; /* Internal parent PID use with daemonize. */
96 static int lockfile_fd
= -1;
98 /* Set to 1 when a SIGUSR1 signal is received. */
99 static int recv_child_signal
;
101 static struct lttng_kernel_tracer_version kernel_tracer_version
;
102 static struct lttng_kernel_tracer_abi_version kernel_tracer_abi_version
;
105 * Consumer daemon specific control data. Every value not initialized here is
106 * set to 0 by the static definition.
108 static struct consumer_data kconsumer_data
= {
109 .type
= LTTNG_CONSUMER_KERNEL
,
112 .channel_monitor_pipe
= -1,
113 .channel_rotate_pipe
= -1,
114 .pid_mutex
= PTHREAD_MUTEX_INITIALIZER
,
115 .lock
= PTHREAD_MUTEX_INITIALIZER
,
116 .cond
= PTHREAD_COND_INITIALIZER
,
117 .cond_mutex
= PTHREAD_MUTEX_INITIALIZER
,
119 static struct consumer_data ustconsumer64_data
= {
120 .type
= LTTNG_CONSUMER64_UST
,
123 .channel_monitor_pipe
= -1,
124 .channel_rotate_pipe
= -1,
125 .pid_mutex
= PTHREAD_MUTEX_INITIALIZER
,
126 .lock
= PTHREAD_MUTEX_INITIALIZER
,
127 .cond
= PTHREAD_COND_INITIALIZER
,
128 .cond_mutex
= PTHREAD_MUTEX_INITIALIZER
,
130 static struct consumer_data ustconsumer32_data
= {
131 .type
= LTTNG_CONSUMER32_UST
,
134 .channel_monitor_pipe
= -1,
135 .channel_rotate_pipe
= -1,
136 .pid_mutex
= PTHREAD_MUTEX_INITIALIZER
,
137 .lock
= PTHREAD_MUTEX_INITIALIZER
,
138 .cond
= PTHREAD_COND_INITIALIZER
,
139 .cond_mutex
= PTHREAD_MUTEX_INITIALIZER
,
142 /* Command line options */
143 static const struct option long_options
[] = {
144 { "client-sock", required_argument
, 0, 'c' },
145 { "apps-sock", required_argument
, 0, 'a' },
146 { "kconsumerd-cmd-sock", required_argument
, 0, '\0' },
147 { "kconsumerd-err-sock", required_argument
, 0, '\0' },
148 { "ustconsumerd32-cmd-sock", required_argument
, 0, '\0' },
149 { "ustconsumerd32-err-sock", required_argument
, 0, '\0' },
150 { "ustconsumerd64-cmd-sock", required_argument
, 0, '\0' },
151 { "ustconsumerd64-err-sock", required_argument
, 0, '\0' },
152 { "consumerd32-path", required_argument
, 0, '\0' },
153 { "consumerd32-libdir", required_argument
, 0, '\0' },
154 { "consumerd64-path", required_argument
, 0, '\0' },
155 { "consumerd64-libdir", required_argument
, 0, '\0' },
156 { "daemonize", no_argument
, 0, 'd' },
157 { "background", no_argument
, 0, 'b' },
158 { "sig-parent", no_argument
, 0, 'S' },
159 { "help", no_argument
, 0, 'h' },
160 { "group", required_argument
, 0, 'g' },
161 { "version", no_argument
, 0, 'V' },
162 { "quiet", no_argument
, 0, 'q' },
163 { "verbose", no_argument
, 0, 'v' },
164 { "verbose-consumer", no_argument
, 0, '\0' },
165 { "no-kernel", no_argument
, 0, '\0' },
166 { "pidfile", required_argument
, 0, 'p' },
167 { "agent-tcp-port", required_argument
, 0, '\0' },
168 { "config", required_argument
, 0, 'f' },
169 { "load", required_argument
, 0, 'l' },
170 { "kmod-probes", required_argument
, 0, '\0' },
171 { "extra-kmod-probes", required_argument
, 0, '\0' },
175 struct sessiond_config config
;
177 /* Command line options to ignore from configuration file */
178 static const char *config_ignore_options
[] = { "help", "version", "config" };
180 /* Shared between threads */
181 static int dispatch_thread_exit
;
183 /* Sockets and FDs */
184 static int client_sock
= -1;
185 static int apps_sock
= -1;
186 int kernel_tracer_fd
= -1;
187 static int kernel_poll_pipe
[2] = { -1, -1 };
190 * Quit pipe for all threads. This permits a single cancellation point
191 * for all threads when receiving an event on the pipe.
193 static int thread_quit_pipe
[2] = { -1, -1 };
196 * This pipe is used to inform the thread managing application communication
197 * that a command is queued and ready to be processed.
199 static int apps_cmd_pipe
[2] = { -1, -1 };
201 int apps_cmd_notify_pipe
[2] = { -1, -1 };
203 /* Pthread, Mutexes and Semaphores */
204 static pthread_t apps_thread
;
205 static pthread_t apps_notify_thread
;
206 static pthread_t reg_apps_thread
;
207 static pthread_t client_thread
;
208 static pthread_t kernel_thread
;
209 static pthread_t dispatch_thread
;
210 static pthread_t health_thread
;
211 static pthread_t ht_cleanup_thread
;
212 static pthread_t agent_reg_thread
;
213 static pthread_t load_session_thread
;
214 static pthread_t notification_thread
;
215 static pthread_t rotation_thread
;
216 static pthread_t timer_thread
;
219 * UST registration command queue. This queue is tied with a futex and uses a N
220 * wakers / 1 waiter implemented and detailed in futex.c/.h
222 * The thread_registration_apps and thread_dispatch_ust_registration uses this
223 * queue along with the wait/wake scheme. The thread_manage_apps receives down
224 * the line new application socket and monitors it for any I/O error or clean
225 * close that triggers an unregistration of the application.
227 static struct ust_cmd_queue ust_cmd_queue
;
230 * Pointer initialized before thread creation.
232 * This points to the tracing session list containing the session count and a
233 * mutex lock. The lock MUST be taken if you iterate over the list. The lock
234 * MUST NOT be taken if you call a public function in session.c.
236 * The lock is nested inside the structure: session_list_ptr->lock. Please use
237 * session_lock_list and session_unlock_list for lock acquisition.
239 static struct ltt_session_list
*session_list_ptr
;
241 int ust_consumerd64_fd
= -1;
242 int ust_consumerd32_fd
= -1;
244 static const char *module_proc_lttng
= "/proc/lttng";
247 * Consumer daemon state which is changed when spawning it, killing it or in
248 * case of a fatal error.
250 enum consumerd_state
{
251 CONSUMER_STARTED
= 1,
252 CONSUMER_STOPPED
= 2,
257 * This consumer daemon state is used to validate if a client command will be
258 * able to reach the consumer. If not, the client is informed. For instance,
259 * doing a "lttng start" when the consumer state is set to ERROR will return an
260 * error to the client.
262 * The following example shows a possible race condition of this scheme:
264 * consumer thread error happens
266 * client cmd checks state -> still OK
267 * consumer thread exit, sets error
268 * client cmd try to talk to consumer
271 * However, since the consumer is a different daemon, we have no way of making
272 * sure the command will reach it safely even with this state flag. This is why
273 * we consider that up to the state validation during command processing, the
274 * command is safe. After that, we can not guarantee the correctness of the
275 * client request vis-a-vis the consumer.
277 static enum consumerd_state ust_consumerd_state
;
278 static enum consumerd_state kernel_consumerd_state
;
280 /* Set in main() with the current page size. */
283 /* Application health monitoring */
284 struct health_app
*health_sessiond
;
286 /* Am I root or not. */
287 int is_root
; /* Set to 1 if the daemon is running as root */
289 const char * const config_section_name
= "sessiond";
291 /* Load session thread information to operate. */
292 struct load_session_thread_data
*load_info
;
294 /* Notification thread handle. */
295 struct notification_thread_handle
*notification_thread_handle
;
297 /* Rotation thread handle. */
298 struct rotation_thread_handle
*rotation_thread_handle
;
300 /* Global hash tables */
301 struct lttng_ht
*agent_apps_ht_by_sock
= NULL
;
304 * The initialization of the session daemon is done in multiple phases.
306 * While all threads are launched near-simultaneously, only some of them
307 * are needed to ensure the session daemon can start to respond to client
310 * There are two important guarantees that we wish to offer with respect
311 * to the initialisation of the session daemon:
312 * - When the daemonize/background launcher process exits, the sessiond
313 * is fully able to respond to client requests,
314 * - Auto-loaded sessions are visible to clients.
316 * In order to achieve this, a number of support threads have to be launched
317 * to allow the "client" thread to function properly. Moreover, since the
318 * "load session" thread needs the client thread, we must provide a way
319 * for the "load session" thread to know that the "client" thread is up
322 * Hence, the support threads decrement the lttng_sessiond_ready counter
323 * while the "client" threads waits for it to reach 0. Once the "client" thread
324 * unblocks, it posts the message_thread_ready semaphore which allows the
325 * "load session" thread to progress.
327 * This implies that the "load session" thread is the last to be initialized
328 * and will explicitly call sessiond_signal_parents(), which signals the parents
329 * that the session daemon is fully initialized.
331 * The four (4) support threads are:
333 * - notification_thread
337 #define NR_LTTNG_SESSIOND_SUPPORT_THREADS 4
338 int lttng_sessiond_ready
= NR_LTTNG_SESSIOND_SUPPORT_THREADS
;
340 int sessiond_check_thread_quit_pipe(int fd
, uint32_t events
)
342 return (fd
== thread_quit_pipe
[0] && (events
& LPOLLIN
)) ? 1 : 0;
345 /* Notify parents that we are ready for cmd and health check */
347 void sessiond_signal_parents(void)
350 * Notify parent pid that we are ready to accept command
351 * for client side. This ppid is the one from the
352 * external process that spawned us.
354 if (config
.sig_parent
) {
359 * Notify the parent of the fork() process that we are
362 if (config
.daemonize
|| config
.background
) {
363 kill(child_ppid
, SIGUSR1
);
368 void sessiond_notify_ready(void)
371 * This memory barrier is paired with the one performed by
372 * the client thread after it has seen that 'lttng_sessiond_ready' is 0.
374 * The purpose of these memory barriers is to ensure that all
375 * initialization operations of the various threads that call this
376 * function to signal that they are ready are commited/published
377 * before the client thread can see the 'lttng_sessiond_ready' counter
380 * Note that this could be a 'write' memory barrier, but a full barrier
381 * is used in case the code using this utility changes. The performance
382 * implications of this choice are minimal since this is a slow path.
385 uatomic_sub(<tng_sessiond_ready
, 1);
389 int __sessiond_set_thread_pollset(struct lttng_poll_event
*events
, size_t size
,
396 ret
= lttng_poll_create(events
, size
, LTTNG_CLOEXEC
);
402 ret
= lttng_poll_add(events
, a_pipe
[0], LPOLLIN
| LPOLLERR
);
414 * Create a poll set with O_CLOEXEC and add the thread quit pipe to the set.
416 int sessiond_set_thread_pollset(struct lttng_poll_event
*events
, size_t size
)
418 return __sessiond_set_thread_pollset(events
, size
, thread_quit_pipe
);
422 * Init thread quit pipe.
424 * Return -1 on error or 0 if all pipes are created.
426 static int __init_thread_quit_pipe(int *a_pipe
)
432 PERROR("thread quit pipe");
436 for (i
= 0; i
< 2; i
++) {
437 ret
= fcntl(a_pipe
[i
], F_SETFD
, FD_CLOEXEC
);
448 static int init_thread_quit_pipe(void)
450 return __init_thread_quit_pipe(thread_quit_pipe
);
454 * Stop all threads by closing the thread quit pipe.
456 static void stop_threads(void)
460 /* Stopping all threads */
461 DBG("Terminating all threads");
462 ret
= notify_thread_pipe(thread_quit_pipe
[1]);
464 ERR("write error on thread quit pipe");
467 /* Dispatch thread */
468 CMM_STORE_SHARED(dispatch_thread_exit
, 1);
469 futex_nto1_wake(&ust_cmd_queue
.futex
);
473 * Close every consumer sockets.
475 static void close_consumer_sockets(void)
479 if (kconsumer_data
.err_sock
>= 0) {
480 ret
= close(kconsumer_data
.err_sock
);
482 PERROR("kernel consumer err_sock close");
485 if (ustconsumer32_data
.err_sock
>= 0) {
486 ret
= close(ustconsumer32_data
.err_sock
);
488 PERROR("UST consumerd32 err_sock close");
491 if (ustconsumer64_data
.err_sock
>= 0) {
492 ret
= close(ustconsumer64_data
.err_sock
);
494 PERROR("UST consumerd64 err_sock close");
497 if (kconsumer_data
.cmd_sock
>= 0) {
498 ret
= close(kconsumer_data
.cmd_sock
);
500 PERROR("kernel consumer cmd_sock close");
503 if (ustconsumer32_data
.cmd_sock
>= 0) {
504 ret
= close(ustconsumer32_data
.cmd_sock
);
506 PERROR("UST consumerd32 cmd_sock close");
509 if (ustconsumer64_data
.cmd_sock
>= 0) {
510 ret
= close(ustconsumer64_data
.cmd_sock
);
512 PERROR("UST consumerd64 cmd_sock close");
515 if (kconsumer_data
.channel_monitor_pipe
>= 0) {
516 ret
= close(kconsumer_data
.channel_monitor_pipe
);
518 PERROR("kernel consumer channel monitor pipe close");
521 if (ustconsumer32_data
.channel_monitor_pipe
>= 0) {
522 ret
= close(ustconsumer32_data
.channel_monitor_pipe
);
524 PERROR("UST consumerd32 channel monitor pipe close");
527 if (ustconsumer64_data
.channel_monitor_pipe
>= 0) {
528 ret
= close(ustconsumer64_data
.channel_monitor_pipe
);
530 PERROR("UST consumerd64 channel monitor pipe close");
533 if (kconsumer_data
.channel_rotate_pipe
>= 0) {
534 ret
= close(kconsumer_data
.channel_rotate_pipe
);
536 PERROR("kernel consumer channel rotate pipe close");
539 if (ustconsumer32_data
.channel_rotate_pipe
>= 0) {
540 ret
= close(ustconsumer32_data
.channel_rotate_pipe
);
542 PERROR("UST consumerd32 channel rotate pipe close");
545 if (ustconsumer64_data
.channel_rotate_pipe
>= 0) {
546 ret
= close(ustconsumer64_data
.channel_rotate_pipe
);
548 PERROR("UST consumerd64 channel rotate pipe close");
554 * Wait on consumer process termination.
556 * Need to be called with the consumer data lock held or from a context
557 * ensuring no concurrent access to data (e.g: cleanup).
559 static void wait_consumer(struct consumer_data
*consumer_data
)
564 if (consumer_data
->pid
<= 0) {
568 DBG("Waiting for complete teardown of consumerd (PID: %d)",
570 ret
= waitpid(consumer_data
->pid
, &status
, 0);
572 PERROR("consumerd waitpid pid: %d", consumer_data
->pid
)
573 } else if (!WIFEXITED(status
)) {
574 ERR("consumerd termination with error: %d",
577 consumer_data
->pid
= 0;
581 * Cleanup the session daemon's data structures.
583 static void sessiond_cleanup(void)
586 struct ltt_session
*sess
, *stmp
;
588 DBG("Cleanup sessiond");
591 * Close the thread quit pipe. It has already done its job,
592 * since we are now called.
594 utils_close_pipe(thread_quit_pipe
);
596 ret
= remove(config
.pid_file_path
.value
);
598 PERROR("remove pidfile %s", config
.pid_file_path
.value
);
601 DBG("Removing sessiond and consumerd content of directory %s",
602 config
.rundir
.value
);
605 DBG("Removing %s", config
.pid_file_path
.value
);
606 (void) unlink(config
.pid_file_path
.value
);
608 DBG("Removing %s", config
.agent_port_file_path
.value
);
609 (void) unlink(config
.agent_port_file_path
.value
);
612 DBG("Removing %s", kconsumer_data
.err_unix_sock_path
);
613 (void) unlink(kconsumer_data
.err_unix_sock_path
);
615 DBG("Removing directory %s", config
.kconsumerd_path
.value
);
616 (void) rmdir(config
.kconsumerd_path
.value
);
618 /* ust consumerd 32 */
619 DBG("Removing %s", config
.consumerd32_err_unix_sock_path
.value
);
620 (void) unlink(config
.consumerd32_err_unix_sock_path
.value
);
622 DBG("Removing directory %s", config
.consumerd32_path
.value
);
623 (void) rmdir(config
.consumerd32_path
.value
);
625 /* ust consumerd 64 */
626 DBG("Removing %s", config
.consumerd64_err_unix_sock_path
.value
);
627 (void) unlink(config
.consumerd64_err_unix_sock_path
.value
);
629 DBG("Removing directory %s", config
.consumerd64_path
.value
);
630 (void) rmdir(config
.consumerd64_path
.value
);
632 DBG("Cleaning up all sessions");
634 /* Destroy session list mutex */
635 if (session_list_ptr
!= NULL
) {
636 pthread_mutex_destroy(&session_list_ptr
->lock
);
638 /* Cleanup ALL session */
639 cds_list_for_each_entry_safe(sess
, stmp
,
640 &session_list_ptr
->head
, list
) {
641 cmd_destroy_session(sess
, kernel_poll_pipe
[1],
642 notification_thread_handle
);
646 wait_consumer(&kconsumer_data
);
647 wait_consumer(&ustconsumer64_data
);
648 wait_consumer(&ustconsumer32_data
);
650 DBG("Cleaning up all agent apps");
651 agent_app_ht_clean();
653 DBG("Closing all UST sockets");
654 ust_app_clean_list();
655 buffer_reg_destroy_registries();
657 if (is_root
&& !config
.no_kernel
) {
658 DBG2("Closing kernel fd");
659 if (kernel_tracer_fd
>= 0) {
660 ret
= close(kernel_tracer_fd
);
665 DBG("Unloading kernel modules");
666 modprobe_remove_lttng_all();
670 close_consumer_sockets();
673 load_session_destroy_data(load_info
);
678 * We do NOT rmdir rundir because there are other processes
679 * using it, for instance lttng-relayd, which can start in
680 * parallel with this teardown.
685 * Cleanup the daemon's option data structures.
687 static void sessiond_cleanup_options(void)
689 DBG("Cleaning up options");
691 sessiond_config_fini(&config
);
693 run_as_destroy_worker();
697 * Send data on a unix socket using the liblttsessiondcomm API.
699 * Return lttcomm error code.
701 static int send_unix_sock(int sock
, void *buf
, size_t len
)
703 /* Check valid length */
708 return lttcomm_send_unix_sock(sock
, buf
, len
);
712 * Free memory of a command context structure.
714 static void clean_command_ctx(struct command_ctx
**cmd_ctx
)
716 DBG("Clean command context structure");
718 if ((*cmd_ctx
)->llm
) {
719 free((*cmd_ctx
)->llm
);
721 if ((*cmd_ctx
)->lsm
) {
722 free((*cmd_ctx
)->lsm
);
730 * Notify UST applications using the shm mmap futex.
732 static int notify_ust_apps(int active
)
736 DBG("Notifying applications of session daemon state: %d", active
);
738 /* See shm.c for this call implying mmap, shm and futex calls */
739 wait_shm_mmap
= shm_ust_get_mmap(config
.wait_shm_path
.value
, is_root
);
740 if (wait_shm_mmap
== NULL
) {
744 /* Wake waiting process */
745 futex_wait_update((int32_t *) wait_shm_mmap
, active
);
747 /* Apps notified successfully */
755 * Setup the outgoing data buffer for the response (llm) by allocating the
756 * right amount of memory and copying the original information from the lsm
759 * Return 0 on success, negative value on error.
761 static int setup_lttng_msg(struct command_ctx
*cmd_ctx
,
762 const void *payload_buf
, size_t payload_len
,
763 const void *cmd_header_buf
, size_t cmd_header_len
)
766 const size_t header_len
= sizeof(struct lttcomm_lttng_msg
);
767 const size_t cmd_header_offset
= header_len
;
768 const size_t payload_offset
= cmd_header_offset
+ cmd_header_len
;
769 const size_t total_msg_size
= header_len
+ cmd_header_len
+ payload_len
;
771 cmd_ctx
->llm
= zmalloc(total_msg_size
);
773 if (cmd_ctx
->llm
== NULL
) {
779 /* Copy common data */
780 cmd_ctx
->llm
->cmd_type
= cmd_ctx
->lsm
->cmd_type
;
781 cmd_ctx
->llm
->pid
= cmd_ctx
->lsm
->domain
.attr
.pid
;
782 cmd_ctx
->llm
->cmd_header_size
= cmd_header_len
;
783 cmd_ctx
->llm
->data_size
= payload_len
;
784 cmd_ctx
->lttng_msg_size
= total_msg_size
;
786 /* Copy command header */
787 if (cmd_header_len
) {
788 memcpy(((uint8_t *) cmd_ctx
->llm
) + cmd_header_offset
, cmd_header_buf
,
794 memcpy(((uint8_t *) cmd_ctx
->llm
) + payload_offset
, payload_buf
,
803 * Version of setup_lttng_msg() without command header.
805 static int setup_lttng_msg_no_cmd_header(struct command_ctx
*cmd_ctx
,
806 void *payload_buf
, size_t payload_len
)
808 return setup_lttng_msg(cmd_ctx
, payload_buf
, payload_len
, NULL
, 0);
811 * Update the kernel poll set of all channel fd available over all tracing
812 * session. Add the wakeup pipe at the end of the set.
814 static int update_kernel_poll(struct lttng_poll_event
*events
)
817 struct ltt_session
*session
;
818 struct ltt_kernel_channel
*channel
;
820 DBG("Updating kernel poll set");
823 cds_list_for_each_entry(session
, &session_list_ptr
->head
, list
) {
824 session_lock(session
);
825 if (session
->kernel_session
== NULL
) {
826 session_unlock(session
);
830 cds_list_for_each_entry(channel
,
831 &session
->kernel_session
->channel_list
.head
, list
) {
832 /* Add channel fd to the kernel poll set */
833 ret
= lttng_poll_add(events
, channel
->fd
, LPOLLIN
| LPOLLRDNORM
);
835 session_unlock(session
);
838 DBG("Channel fd %d added to kernel set", channel
->fd
);
840 session_unlock(session
);
842 session_unlock_list();
847 session_unlock_list();
852 * Find the channel fd from 'fd' over all tracing session. When found, check
853 * for new channel stream and send those stream fds to the kernel consumer.
855 * Useful for CPU hotplug feature.
857 static int update_kernel_stream(int fd
)
860 struct ltt_session
*session
;
861 struct ltt_kernel_session
*ksess
;
862 struct ltt_kernel_channel
*channel
;
864 DBG("Updating kernel streams for channel fd %d", fd
);
867 cds_list_for_each_entry(session
, &session_list_ptr
->head
, list
) {
868 session_lock(session
);
869 if (session
->kernel_session
== NULL
) {
870 session_unlock(session
);
873 ksess
= session
->kernel_session
;
875 cds_list_for_each_entry(channel
,
876 &ksess
->channel_list
.head
, list
) {
877 struct lttng_ht_iter iter
;
878 struct consumer_socket
*socket
;
880 if (channel
->fd
!= fd
) {
883 DBG("Channel found, updating kernel streams");
884 ret
= kernel_open_channel_stream(channel
);
888 /* Update the stream global counter */
889 ksess
->stream_count_global
+= ret
;
892 * Have we already sent fds to the consumer? If yes, it
893 * means that tracing is started so it is safe to send
894 * our updated stream fds.
896 if (ksess
->consumer_fds_sent
!= 1
897 || ksess
->consumer
== NULL
) {
903 cds_lfht_for_each_entry(ksess
->consumer
->socks
->ht
,
904 &iter
.iter
, socket
, node
.node
) {
905 pthread_mutex_lock(socket
->lock
);
906 ret
= kernel_consumer_send_channel_streams(socket
,
908 session
->output_traces
? 1 : 0);
909 pthread_mutex_unlock(socket
->lock
);
917 session_unlock(session
);
919 session_unlock_list();
923 session_unlock(session
);
924 session_unlock_list();
929 * For each tracing session, update newly registered apps. The session list
930 * lock MUST be acquired before calling this.
932 static void update_ust_app(int app_sock
)
934 struct ltt_session
*sess
, *stmp
;
936 /* Consumer is in an ERROR state. Stop any application update. */
937 if (uatomic_read(&ust_consumerd_state
) == CONSUMER_ERROR
) {
938 /* Stop the update process since the consumer is dead. */
942 /* For all tracing session(s) */
943 cds_list_for_each_entry_safe(sess
, stmp
, &session_list_ptr
->head
, list
) {
947 if (!sess
->ust_session
) {
952 assert(app_sock
>= 0);
953 app
= ust_app_find_by_sock(app_sock
);
956 * Application can be unregistered before so
957 * this is possible hence simply stopping the
960 DBG3("UST app update failed to find app sock %d",
964 ust_app_global_update(sess
->ust_session
, app
);
968 session_unlock(sess
);
973 * This thread manage event coming from the kernel.
975 * Features supported in this thread:
978 static void *thread_manage_kernel(void *data
)
980 int ret
, i
, pollfd
, update_poll_flag
= 1, err
= -1;
981 uint32_t revents
, nb_fd
;
983 struct lttng_poll_event events
;
985 DBG("[thread] Thread manage kernel started");
987 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_KERNEL
);
990 * This first step of the while is to clean this structure which could free
991 * non NULL pointers so initialize it before the loop.
993 lttng_poll_init(&events
);
995 if (testpoint(sessiond_thread_manage_kernel
)) {
996 goto error_testpoint
;
999 health_code_update();
1001 if (testpoint(sessiond_thread_manage_kernel_before_loop
)) {
1002 goto error_testpoint
;
1006 health_code_update();
1008 if (update_poll_flag
== 1) {
1009 /* Clean events object. We are about to populate it again. */
1010 lttng_poll_clean(&events
);
1012 ret
= sessiond_set_thread_pollset(&events
, 2);
1014 goto error_poll_create
;
1017 ret
= lttng_poll_add(&events
, kernel_poll_pipe
[0], LPOLLIN
);
1022 /* This will add the available kernel channel if any. */
1023 ret
= update_kernel_poll(&events
);
1027 update_poll_flag
= 0;
1030 DBG("Thread kernel polling");
1032 /* Poll infinite value of time */
1034 health_poll_entry();
1035 ret
= lttng_poll_wait(&events
, -1);
1036 DBG("Thread kernel return from poll on %d fds",
1037 LTTNG_POLL_GETNB(&events
));
1041 * Restart interrupted system call.
1043 if (errno
== EINTR
) {
1047 } else if (ret
== 0) {
1048 /* Should not happen since timeout is infinite */
1049 ERR("Return value of poll is 0 with an infinite timeout.\n"
1050 "This should not have happened! Continuing...");
1056 for (i
= 0; i
< nb_fd
; i
++) {
1057 /* Fetch once the poll data */
1058 revents
= LTTNG_POLL_GETEV(&events
, i
);
1059 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1061 health_code_update();
1064 /* No activity for this FD (poll implementation). */
1068 /* Thread quit pipe has been closed. Killing thread. */
1069 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1075 /* Check for data on kernel pipe */
1076 if (revents
& LPOLLIN
) {
1077 if (pollfd
== kernel_poll_pipe
[0]) {
1078 (void) lttng_read(kernel_poll_pipe
[0],
1081 * Ret value is useless here, if this pipe gets any actions an
1082 * update is required anyway.
1084 update_poll_flag
= 1;
1088 * New CPU detected by the kernel. Adding kernel stream to
1089 * kernel session and updating the kernel consumer
1091 ret
= update_kernel_stream(pollfd
);
1097 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1098 update_poll_flag
= 1;
1101 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1109 lttng_poll_clean(&events
);
1112 utils_close_pipe(kernel_poll_pipe
);
1113 kernel_poll_pipe
[0] = kernel_poll_pipe
[1] = -1;
1116 ERR("Health error occurred in %s", __func__
);
1117 WARN("Kernel thread died unexpectedly. "
1118 "Kernel tracing can continue but CPU hotplug is disabled.");
1120 health_unregister(health_sessiond
);
1121 DBG("Kernel thread dying");
1126 * Signal pthread condition of the consumer data that the thread.
1128 static void signal_consumer_condition(struct consumer_data
*data
, int state
)
1130 pthread_mutex_lock(&data
->cond_mutex
);
1133 * The state is set before signaling. It can be any value, it's the waiter
1134 * job to correctly interpret this condition variable associated to the
1135 * consumer pthread_cond.
1137 * A value of 0 means that the corresponding thread of the consumer data
1138 * was not started. 1 indicates that the thread has started and is ready
1139 * for action. A negative value means that there was an error during the
1142 data
->consumer_thread_is_ready
= state
;
1143 (void) pthread_cond_signal(&data
->cond
);
1145 pthread_mutex_unlock(&data
->cond_mutex
);
1149 * This thread manage the consumer error sent back to the session daemon.
1151 static void *thread_manage_consumer(void *data
)
1153 int sock
= -1, i
, ret
, pollfd
, err
= -1, should_quit
= 0;
1154 uint32_t revents
, nb_fd
;
1155 enum lttcomm_return_code code
;
1156 struct lttng_poll_event events
;
1157 struct consumer_data
*consumer_data
= data
;
1158 struct consumer_socket
*cmd_socket_wrapper
= NULL
;
1160 DBG("[thread] Manage consumer started");
1162 rcu_register_thread();
1163 rcu_thread_online();
1165 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_CONSUMER
);
1167 health_code_update();
1170 * Pass 3 as size here for the thread quit pipe, consumerd_err_sock and the
1171 * metadata_sock. Nothing more will be added to this poll set.
1173 ret
= sessiond_set_thread_pollset(&events
, 3);
1179 * The error socket here is already in a listening state which was done
1180 * just before spawning this thread to avoid a race between the consumer
1181 * daemon exec trying to connect and the listen() call.
1183 ret
= lttng_poll_add(&events
, consumer_data
->err_sock
, LPOLLIN
| LPOLLRDHUP
);
1188 health_code_update();
1190 /* Infinite blocking call, waiting for transmission */
1192 health_poll_entry();
1194 if (testpoint(sessiond_thread_manage_consumer
)) {
1198 ret
= lttng_poll_wait(&events
, -1);
1202 * Restart interrupted system call.
1204 if (errno
== EINTR
) {
1212 for (i
= 0; i
< nb_fd
; i
++) {
1213 /* Fetch once the poll data */
1214 revents
= LTTNG_POLL_GETEV(&events
, i
);
1215 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1217 health_code_update();
1220 /* No activity for this FD (poll implementation). */
1224 /* Thread quit pipe has been closed. Killing thread. */
1225 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1231 /* Event on the registration socket */
1232 if (pollfd
== consumer_data
->err_sock
) {
1233 if (revents
& LPOLLIN
) {
1235 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1236 ERR("consumer err socket poll error");
1239 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1245 sock
= lttcomm_accept_unix_sock(consumer_data
->err_sock
);
1251 * Set the CLOEXEC flag. Return code is useless because either way, the
1254 (void) utils_set_fd_cloexec(sock
);
1256 health_code_update();
1258 DBG2("Receiving code from consumer err_sock");
1260 /* Getting status code from kconsumerd */
1261 ret
= lttcomm_recv_unix_sock(sock
, &code
,
1262 sizeof(enum lttcomm_return_code
));
1267 health_code_update();
1268 if (code
!= LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
) {
1269 ERR("consumer error when waiting for SOCK_READY : %s",
1270 lttcomm_get_readable_code(-code
));
1274 /* Connect both command and metadata sockets. */
1275 consumer_data
->cmd_sock
=
1276 lttcomm_connect_unix_sock(
1277 consumer_data
->cmd_unix_sock_path
);
1278 consumer_data
->metadata_fd
=
1279 lttcomm_connect_unix_sock(
1280 consumer_data
->cmd_unix_sock_path
);
1281 if (consumer_data
->cmd_sock
< 0 || consumer_data
->metadata_fd
< 0) {
1282 PERROR("consumer connect cmd socket");
1283 /* On error, signal condition and quit. */
1284 signal_consumer_condition(consumer_data
, -1);
1288 consumer_data
->metadata_sock
.fd_ptr
= &consumer_data
->metadata_fd
;
1290 /* Create metadata socket lock. */
1291 consumer_data
->metadata_sock
.lock
= zmalloc(sizeof(pthread_mutex_t
));
1292 if (consumer_data
->metadata_sock
.lock
== NULL
) {
1293 PERROR("zmalloc pthread mutex");
1296 pthread_mutex_init(consumer_data
->metadata_sock
.lock
, NULL
);
1298 DBG("Consumer command socket ready (fd: %d", consumer_data
->cmd_sock
);
1299 DBG("Consumer metadata socket ready (fd: %d)",
1300 consumer_data
->metadata_fd
);
1303 * Remove the consumerd error sock since we've established a connection.
1305 ret
= lttng_poll_del(&events
, consumer_data
->err_sock
);
1310 /* Add new accepted error socket. */
1311 ret
= lttng_poll_add(&events
, sock
, LPOLLIN
| LPOLLRDHUP
);
1316 /* Add metadata socket that is successfully connected. */
1317 ret
= lttng_poll_add(&events
, consumer_data
->metadata_fd
,
1318 LPOLLIN
| LPOLLRDHUP
);
1323 health_code_update();
1326 * Transfer the write-end of the channel monitoring and rotate pipe
1327 * to the consumer by issuing a SET_CHANNEL_MONITOR_PIPE and
1328 * SET_CHANNEL_ROTATE_PIPE commands.
1330 cmd_socket_wrapper
= consumer_allocate_socket(&consumer_data
->cmd_sock
);
1331 if (!cmd_socket_wrapper
) {
1334 cmd_socket_wrapper
->lock
= &consumer_data
->lock
;
1336 ret
= consumer_send_channel_monitor_pipe(cmd_socket_wrapper
,
1337 consumer_data
->channel_monitor_pipe
);
1342 ret
= consumer_send_channel_rotate_pipe(cmd_socket_wrapper
,
1343 consumer_data
->channel_rotate_pipe
);
1348 /* Discard the socket wrapper as it is no longer needed. */
1349 consumer_destroy_socket(cmd_socket_wrapper
);
1350 cmd_socket_wrapper
= NULL
;
1352 /* The thread is completely initialized, signal that it is ready. */
1353 signal_consumer_condition(consumer_data
, 1);
1355 /* Infinite blocking call, waiting for transmission */
1358 health_code_update();
1360 /* Exit the thread because the thread quit pipe has been triggered. */
1362 /* Not a health error. */
1367 health_poll_entry();
1368 ret
= lttng_poll_wait(&events
, -1);
1372 * Restart interrupted system call.
1374 if (errno
== EINTR
) {
1382 for (i
= 0; i
< nb_fd
; i
++) {
1383 /* Fetch once the poll data */
1384 revents
= LTTNG_POLL_GETEV(&events
, i
);
1385 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1387 health_code_update();
1390 /* No activity for this FD (poll implementation). */
1395 * Thread quit pipe has been triggered, flag that we should stop
1396 * but continue the current loop to handle potential data from
1399 should_quit
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1401 if (pollfd
== sock
) {
1402 /* Event on the consumerd socket */
1403 if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)
1404 && !(revents
& LPOLLIN
)) {
1405 ERR("consumer err socket second poll error");
1408 health_code_update();
1409 /* Wait for any kconsumerd error */
1410 ret
= lttcomm_recv_unix_sock(sock
, &code
,
1411 sizeof(enum lttcomm_return_code
));
1413 ERR("consumer closed the command socket");
1417 ERR("consumer return code : %s",
1418 lttcomm_get_readable_code(-code
));
1421 } else if (pollfd
== consumer_data
->metadata_fd
) {
1422 if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)
1423 && !(revents
& LPOLLIN
)) {
1424 ERR("consumer err metadata socket second poll error");
1427 /* UST metadata requests */
1428 ret
= ust_consumer_metadata_request(
1429 &consumer_data
->metadata_sock
);
1431 ERR("Handling metadata request");
1435 /* No need for an else branch all FDs are tested prior. */
1437 health_code_update();
1443 * We lock here because we are about to close the sockets and some other
1444 * thread might be using them so get exclusive access which will abort all
1445 * other consumer command by other threads.
1447 pthread_mutex_lock(&consumer_data
->lock
);
1449 /* Immediately set the consumerd state to stopped */
1450 if (consumer_data
->type
== LTTNG_CONSUMER_KERNEL
) {
1451 uatomic_set(&kernel_consumerd_state
, CONSUMER_ERROR
);
1452 } else if (consumer_data
->type
== LTTNG_CONSUMER64_UST
||
1453 consumer_data
->type
== LTTNG_CONSUMER32_UST
) {
1454 uatomic_set(&ust_consumerd_state
, CONSUMER_ERROR
);
1456 /* Code flow error... */
1460 if (consumer_data
->err_sock
>= 0) {
1461 ret
= close(consumer_data
->err_sock
);
1465 consumer_data
->err_sock
= -1;
1467 if (consumer_data
->cmd_sock
>= 0) {
1468 ret
= close(consumer_data
->cmd_sock
);
1472 consumer_data
->cmd_sock
= -1;
1474 if (consumer_data
->metadata_sock
.fd_ptr
&&
1475 *consumer_data
->metadata_sock
.fd_ptr
>= 0) {
1476 ret
= close(*consumer_data
->metadata_sock
.fd_ptr
);
1488 unlink(consumer_data
->err_unix_sock_path
);
1489 unlink(consumer_data
->cmd_unix_sock_path
);
1490 pthread_mutex_unlock(&consumer_data
->lock
);
1492 /* Cleanup metadata socket mutex. */
1493 if (consumer_data
->metadata_sock
.lock
) {
1494 pthread_mutex_destroy(consumer_data
->metadata_sock
.lock
);
1495 free(consumer_data
->metadata_sock
.lock
);
1497 lttng_poll_clean(&events
);
1499 if (cmd_socket_wrapper
) {
1500 consumer_destroy_socket(cmd_socket_wrapper
);
1505 ERR("Health error occurred in %s", __func__
);
1507 health_unregister(health_sessiond
);
1508 DBG("consumer thread cleanup completed");
1510 rcu_thread_offline();
1511 rcu_unregister_thread();
1517 * This thread receives application command sockets (FDs) on the
1518 * apps_cmd_pipe and waits (polls) on them until they are closed
1519 * or an error occurs.
1521 * At that point, it flushes the data (tracing and metadata) associated
1522 * with this application and tears down ust app sessions and other
1523 * associated data structures through ust_app_unregister().
1525 * Note that this thread never sends commands to the applications
1526 * through the command sockets; it merely listens for hang-ups
1527 * and errors on those sockets and cleans-up as they occur.
1529 static void *thread_manage_apps(void *data
)
1531 int i
, ret
, pollfd
, err
= -1;
1533 uint32_t revents
, nb_fd
;
1534 struct lttng_poll_event events
;
1536 DBG("[thread] Manage application started");
1538 rcu_register_thread();
1539 rcu_thread_online();
1541 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_APP_MANAGE
);
1543 if (testpoint(sessiond_thread_manage_apps
)) {
1544 goto error_testpoint
;
1547 health_code_update();
1549 ret
= sessiond_set_thread_pollset(&events
, 2);
1551 goto error_poll_create
;
1554 ret
= lttng_poll_add(&events
, apps_cmd_pipe
[0], LPOLLIN
| LPOLLRDHUP
);
1559 if (testpoint(sessiond_thread_manage_apps_before_loop
)) {
1563 health_code_update();
1566 DBG("Apps thread polling");
1568 /* Inifinite blocking call, waiting for transmission */
1570 health_poll_entry();
1571 ret
= lttng_poll_wait(&events
, -1);
1572 DBG("Apps thread return from poll on %d fds",
1573 LTTNG_POLL_GETNB(&events
));
1577 * Restart interrupted system call.
1579 if (errno
== EINTR
) {
1587 for (i
= 0; i
< nb_fd
; i
++) {
1588 /* Fetch once the poll data */
1589 revents
= LTTNG_POLL_GETEV(&events
, i
);
1590 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1592 health_code_update();
1595 /* No activity for this FD (poll implementation). */
1599 /* Thread quit pipe has been closed. Killing thread. */
1600 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
1606 /* Inspect the apps cmd pipe */
1607 if (pollfd
== apps_cmd_pipe
[0]) {
1608 if (revents
& LPOLLIN
) {
1612 size_ret
= lttng_read(apps_cmd_pipe
[0], &sock
, sizeof(sock
));
1613 if (size_ret
< sizeof(sock
)) {
1614 PERROR("read apps cmd pipe");
1618 health_code_update();
1621 * Since this is a command socket (write then read),
1622 * we only monitor the error events of the socket.
1624 ret
= lttng_poll_add(&events
, sock
,
1625 LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
);
1630 DBG("Apps with sock %d added to poll set", sock
);
1631 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1632 ERR("Apps command pipe error");
1635 ERR("Unknown poll events %u for sock %d", revents
, pollfd
);
1640 * At this point, we know that a registered application made
1641 * the event at poll_wait.
1643 if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
1644 /* Removing from the poll set */
1645 ret
= lttng_poll_del(&events
, pollfd
);
1650 /* Socket closed on remote end. */
1651 ust_app_unregister(pollfd
);
1653 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1658 health_code_update();
1664 lttng_poll_clean(&events
);
1667 utils_close_pipe(apps_cmd_pipe
);
1668 apps_cmd_pipe
[0] = apps_cmd_pipe
[1] = -1;
1671 * We don't clean the UST app hash table here since already registered
1672 * applications can still be controlled so let them be until the session
1673 * daemon dies or the applications stop.
1678 ERR("Health error occurred in %s", __func__
);
1680 health_unregister(health_sessiond
);
1681 DBG("Application communication apps thread cleanup complete");
1682 rcu_thread_offline();
1683 rcu_unregister_thread();
1688 * Send a socket to a thread This is called from the dispatch UST registration
1689 * thread once all sockets are set for the application.
1691 * The sock value can be invalid, we don't really care, the thread will handle
1692 * it and make the necessary cleanup if so.
1694 * On success, return 0 else a negative value being the errno message of the
1697 static int send_socket_to_thread(int fd
, int sock
)
1702 * It's possible that the FD is set as invalid with -1 concurrently just
1703 * before calling this function being a shutdown state of the thread.
1710 ret
= lttng_write(fd
, &sock
, sizeof(sock
));
1711 if (ret
< sizeof(sock
)) {
1712 PERROR("write apps pipe %d", fd
);
1719 /* All good. Don't send back the write positive ret value. */
1726 * Sanitize the wait queue of the dispatch registration thread meaning removing
1727 * invalid nodes from it. This is to avoid memory leaks for the case the UST
1728 * notify socket is never received.
1730 static void sanitize_wait_queue(struct ust_reg_wait_queue
*wait_queue
)
1732 int ret
, nb_fd
= 0, i
;
1733 unsigned int fd_added
= 0;
1734 struct lttng_poll_event events
;
1735 struct ust_reg_wait_node
*wait_node
= NULL
, *tmp_wait_node
;
1739 lttng_poll_init(&events
);
1741 /* Just skip everything for an empty queue. */
1742 if (!wait_queue
->count
) {
1746 ret
= lttng_poll_create(&events
, wait_queue
->count
, LTTNG_CLOEXEC
);
1751 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
1752 &wait_queue
->head
, head
) {
1753 assert(wait_node
->app
);
1754 ret
= lttng_poll_add(&events
, wait_node
->app
->sock
,
1755 LPOLLHUP
| LPOLLERR
);
1768 * Poll but don't block so we can quickly identify the faulty events and
1769 * clean them afterwards from the wait queue.
1771 ret
= lttng_poll_wait(&events
, 0);
1777 for (i
= 0; i
< nb_fd
; i
++) {
1778 /* Get faulty FD. */
1779 uint32_t revents
= LTTNG_POLL_GETEV(&events
, i
);
1780 int pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1783 /* No activity for this FD (poll implementation). */
1787 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
1788 &wait_queue
->head
, head
) {
1789 if (pollfd
== wait_node
->app
->sock
&&
1790 (revents
& (LPOLLHUP
| LPOLLERR
))) {
1791 cds_list_del(&wait_node
->head
);
1792 wait_queue
->count
--;
1793 ust_app_destroy(wait_node
->app
);
1796 * Silence warning of use-after-free in
1797 * cds_list_for_each_entry_safe which uses
1798 * __typeof__(*wait_node).
1803 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
1810 DBG("Wait queue sanitized, %d node were cleaned up", nb_fd
);
1814 lttng_poll_clean(&events
);
1818 lttng_poll_clean(&events
);
1820 ERR("Unable to sanitize wait queue");
1825 * Dispatch request from the registration threads to the application
1826 * communication thread.
1828 static void *thread_dispatch_ust_registration(void *data
)
1831 struct cds_wfcq_node
*node
;
1832 struct ust_command
*ust_cmd
= NULL
;
1833 struct ust_reg_wait_node
*wait_node
= NULL
, *tmp_wait_node
;
1834 struct ust_reg_wait_queue wait_queue
= {
1838 rcu_register_thread();
1840 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_APP_REG_DISPATCH
);
1842 if (testpoint(sessiond_thread_app_reg_dispatch
)) {
1843 goto error_testpoint
;
1846 health_code_update();
1848 CDS_INIT_LIST_HEAD(&wait_queue
.head
);
1850 DBG("[thread] Dispatch UST command started");
1853 health_code_update();
1855 /* Atomically prepare the queue futex */
1856 futex_nto1_prepare(&ust_cmd_queue
.futex
);
1858 if (CMM_LOAD_SHARED(dispatch_thread_exit
)) {
1863 struct ust_app
*app
= NULL
;
1867 * Make sure we don't have node(s) that have hung up before receiving
1868 * the notify socket. This is to clean the list in order to avoid
1869 * memory leaks from notify socket that are never seen.
1871 sanitize_wait_queue(&wait_queue
);
1873 health_code_update();
1874 /* Dequeue command for registration */
1875 node
= cds_wfcq_dequeue_blocking(&ust_cmd_queue
.head
, &ust_cmd_queue
.tail
);
1877 DBG("Woken up but nothing in the UST command queue");
1878 /* Continue thread execution */
1882 ust_cmd
= caa_container_of(node
, struct ust_command
, node
);
1884 DBG("Dispatching UST registration pid:%d ppid:%d uid:%d"
1885 " gid:%d sock:%d name:%s (version %d.%d)",
1886 ust_cmd
->reg_msg
.pid
, ust_cmd
->reg_msg
.ppid
,
1887 ust_cmd
->reg_msg
.uid
, ust_cmd
->reg_msg
.gid
,
1888 ust_cmd
->sock
, ust_cmd
->reg_msg
.name
,
1889 ust_cmd
->reg_msg
.major
, ust_cmd
->reg_msg
.minor
);
1891 if (ust_cmd
->reg_msg
.type
== USTCTL_SOCKET_CMD
) {
1892 wait_node
= zmalloc(sizeof(*wait_node
));
1894 PERROR("zmalloc wait_node dispatch");
1895 ret
= close(ust_cmd
->sock
);
1897 PERROR("close ust sock dispatch %d", ust_cmd
->sock
);
1899 lttng_fd_put(LTTNG_FD_APPS
, 1);
1903 CDS_INIT_LIST_HEAD(&wait_node
->head
);
1905 /* Create application object if socket is CMD. */
1906 wait_node
->app
= ust_app_create(&ust_cmd
->reg_msg
,
1908 if (!wait_node
->app
) {
1909 ret
= close(ust_cmd
->sock
);
1911 PERROR("close ust sock dispatch %d", ust_cmd
->sock
);
1913 lttng_fd_put(LTTNG_FD_APPS
, 1);
1919 * Add application to the wait queue so we can set the notify
1920 * socket before putting this object in the global ht.
1922 cds_list_add(&wait_node
->head
, &wait_queue
.head
);
1927 * We have to continue here since we don't have the notify
1928 * socket and the application MUST be added to the hash table
1929 * only at that moment.
1934 * Look for the application in the local wait queue and set the
1935 * notify socket if found.
1937 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
1938 &wait_queue
.head
, head
) {
1939 health_code_update();
1940 if (wait_node
->app
->pid
== ust_cmd
->reg_msg
.pid
) {
1941 wait_node
->app
->notify_sock
= ust_cmd
->sock
;
1942 cds_list_del(&wait_node
->head
);
1944 app
= wait_node
->app
;
1946 DBG3("UST app notify socket %d is set", ust_cmd
->sock
);
1952 * With no application at this stage the received socket is
1953 * basically useless so close it before we free the cmd data
1954 * structure for good.
1957 ret
= close(ust_cmd
->sock
);
1959 PERROR("close ust sock dispatch %d", ust_cmd
->sock
);
1961 lttng_fd_put(LTTNG_FD_APPS
, 1);
1968 * @session_lock_list
1970 * Lock the global session list so from the register up to the
1971 * registration done message, no thread can see the application
1972 * and change its state.
1974 session_lock_list();
1978 * Add application to the global hash table. This needs to be
1979 * done before the update to the UST registry can locate the
1984 /* Set app version. This call will print an error if needed. */
1985 (void) ust_app_version(app
);
1987 /* Send notify socket through the notify pipe. */
1988 ret
= send_socket_to_thread(apps_cmd_notify_pipe
[1],
1992 session_unlock_list();
1994 * No notify thread, stop the UST tracing. However, this is
1995 * not an internal error of the this thread thus setting
1996 * the health error code to a normal exit.
2003 * Update newly registered application with the tracing
2004 * registry info already enabled information.
2006 update_ust_app(app
->sock
);
2009 * Don't care about return value. Let the manage apps threads
2010 * handle app unregistration upon socket close.
2012 (void) ust_app_register_done(app
);
2015 * Even if the application socket has been closed, send the app
2016 * to the thread and unregistration will take place at that
2019 ret
= send_socket_to_thread(apps_cmd_pipe
[1], app
->sock
);
2022 session_unlock_list();
2024 * No apps. thread, stop the UST tracing. However, this is
2025 * not an internal error of the this thread thus setting
2026 * the health error code to a normal exit.
2033 session_unlock_list();
2035 } while (node
!= NULL
);
2037 health_poll_entry();
2038 /* Futex wait on queue. Blocking call on futex() */
2039 futex_nto1_wait(&ust_cmd_queue
.futex
);
2042 /* Normal exit, no error */
2046 /* Clean up wait queue. */
2047 cds_list_for_each_entry_safe(wait_node
, tmp_wait_node
,
2048 &wait_queue
.head
, head
) {
2049 cds_list_del(&wait_node
->head
);
2054 /* Empty command queue. */
2056 /* Dequeue command for registration */
2057 node
= cds_wfcq_dequeue_blocking(&ust_cmd_queue
.head
, &ust_cmd_queue
.tail
);
2061 ust_cmd
= caa_container_of(node
, struct ust_command
, node
);
2062 ret
= close(ust_cmd
->sock
);
2064 PERROR("close ust sock exit dispatch %d", ust_cmd
->sock
);
2066 lttng_fd_put(LTTNG_FD_APPS
, 1);
2071 DBG("Dispatch thread dying");
2074 ERR("Health error occurred in %s", __func__
);
2076 health_unregister(health_sessiond
);
2077 rcu_unregister_thread();
2082 * This thread manage application registration.
2084 static void *thread_registration_apps(void *data
)
2086 int sock
= -1, i
, ret
, pollfd
, err
= -1;
2087 uint32_t revents
, nb_fd
;
2088 struct lttng_poll_event events
;
2090 * Get allocated in this thread, enqueued to a global queue, dequeued and
2091 * freed in the manage apps thread.
2093 struct ust_command
*ust_cmd
= NULL
;
2095 DBG("[thread] Manage application registration started");
2097 health_register(health_sessiond
, HEALTH_SESSIOND_TYPE_APP_REG
);
2099 if (testpoint(sessiond_thread_registration_apps
)) {
2100 goto error_testpoint
;
2103 ret
= lttcomm_listen_unix_sock(apps_sock
);
2109 * Pass 2 as size here for the thread quit pipe and apps socket. Nothing
2110 * more will be added to this poll set.
2112 ret
= sessiond_set_thread_pollset(&events
, 2);
2114 goto error_create_poll
;
2117 /* Add the application registration socket */
2118 ret
= lttng_poll_add(&events
, apps_sock
, LPOLLIN
| LPOLLRDHUP
);
2120 goto error_poll_add
;
2123 /* Notify all applications to register */
2124 ret
= notify_ust_apps(1);
2126 ERR("Failed to notify applications or create the wait shared memory.\n"
2127 "Execution continues but there might be problem for already\n"
2128 "running applications that wishes to register.");
2132 DBG("Accepting application registration");
2134 /* Inifinite blocking call, waiting for transmission */
2136 health_poll_entry();
2137 ret
= lttng_poll_wait(&events
, -1);
2141 * Restart interrupted system call.
2143 if (errno
== EINTR
) {
2151 for (i
= 0; i
< nb_fd
; i
++) {
2152 health_code_update();
2154 /* Fetch once the poll data */
2155 revents
= LTTNG_POLL_GETEV(&events
, i
);
2156 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2159 /* No activity for this FD (poll implementation). */
2163 /* Thread quit pipe has been closed. Killing thread. */
2164 ret
= sessiond_check_thread_quit_pipe(pollfd
, revents
);
2170 /* Event on the registration socket */
2171 if (pollfd
== apps_sock
) {
2172 if (revents
& LPOLLIN
) {
2173 sock
= lttcomm_accept_unix_sock(apps_sock
);
2179 * Set socket timeout for both receiving and ending.
2180 * app_socket_timeout is in seconds, whereas
2181 * lttcomm_setsockopt_rcv_timeout and
2182 * lttcomm_setsockopt_snd_timeout expect msec as
2185 if (config
.app_socket_timeout
>= 0) {
2186 (void) lttcomm_setsockopt_rcv_timeout(sock
,
2187 config
.app_socket_timeout
* 1000);
2188 (void) lttcomm_setsockopt_snd_timeout(sock
,
2189 config
.app_socket_timeout
* 1000);
2193 * Set the CLOEXEC flag. Return code is useless because
2194 * either way, the show must go on.
2196 (void) utils_set_fd_cloexec(sock
);
2198 /* Create UST registration command for enqueuing */
2199 ust_cmd
= zmalloc(sizeof(struct ust_command
));
2200 if (ust_cmd
== NULL
) {
2201 PERROR("ust command zmalloc");
2210 * Using message-based transmissions to ensure we don't
2211 * have to deal with partially received messages.
2213 ret
= lttng_fd_get(LTTNG_FD_APPS
, 1);
2215 ERR("Exhausted file descriptors allowed for applications.");
2225 health_code_update();
2226 ret
= ust_app_recv_registration(sock
, &ust_cmd
->reg_msg
);
2229 /* Close socket of the application. */
2234 lttng_fd_put(LTTNG_FD_APPS
, 1);
2238 health_code_update();
2240 ust_cmd
->sock
= sock
;
2243 DBG("UST registration received with pid:%d ppid:%d uid:%d"
2244 " gid:%d sock:%d name:%s (version %d.%d)",
2245 ust_cmd
->reg_msg
.pid
, ust_cmd
->reg_msg
.ppid
,
2246 ust_cmd
->reg_msg
.uid
, ust_cmd
->reg_msg
.gid
,
2247 ust_cmd
->sock
, ust_cmd
->reg_msg
.name
,
2248 ust_cmd
->reg_msg
.major
, ust_cmd
->reg_msg
.minor
);
2251 * Lock free enqueue the registration request. The red pill
2252 * has been taken! This apps will be part of the *system*.
2254 cds_wfcq_enqueue(&ust_cmd_queue
.head
, &ust_cmd_queue
.tail
, &ust_cmd
->node
);
2257 * Wake the registration queue futex. Implicit memory
2258 * barrier with the exchange in cds_wfcq_enqueue.
2260 futex_nto1_wake(&ust_cmd_queue
.futex
);
2261 } else if (revents
& (LPOLLERR
| LPOLLHUP
| LPOLLRDHUP
)) {
2262 ERR("Register apps socket poll error");
2265 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2274 /* Notify that the registration thread is gone */
2277 if (apps_sock
>= 0) {
2278 ret
= close(apps_sock
);
2288 lttng_fd_put(LTTNG_FD_APPS
, 1);
2290 unlink(config
.apps_unix_sock_path
.value
);
2293 lttng_poll_clean(&events
);
2297 DBG("UST Registration thread cleanup complete");
2300 ERR("Health error occurred in %s", __func__
);
2302 health_unregister(health_sessiond
);
2308 * Start the thread_manage_consumer. This must be done after a lttng-consumerd
2309 * exec or it will fails.
2311 static int spawn_consumer_thread(struct consumer_data
*consumer_data
)
2314 struct timespec timeout
;
2317 * Make sure we set the readiness flag to 0 because we are NOT ready.
2318 * This access to consumer_thread_is_ready does not need to be
2319 * protected by consumer_data.cond_mutex (yet) since the consumer
2320 * management thread has not been started at this point.
2322 consumer_data
->consumer_thread_is_ready
= 0;
2324 /* Setup pthread condition */
2325 ret
= pthread_condattr_init(&consumer_data
->condattr
);
2328 PERROR("pthread_condattr_init consumer data");
2333 * Set the monotonic clock in order to make sure we DO NOT jump in time
2334 * between the clock_gettime() call and the timedwait call. See bug #324
2335 * for a more details and how we noticed it.
2337 ret
= pthread_condattr_setclock(&consumer_data
->condattr
, CLOCK_MONOTONIC
);
2340 PERROR("pthread_condattr_setclock consumer data");
2344 ret
= pthread_cond_init(&consumer_data
->cond
, &consumer_data
->condattr
);
2347 PERROR("pthread_cond_init consumer data");
2351 ret
= pthread_create(&consumer_data
->thread
, default_pthread_attr(),
2352 thread_manage_consumer
, consumer_data
);
2355 PERROR("pthread_create consumer");
2360 /* We are about to wait on a pthread condition */
2361 pthread_mutex_lock(&consumer_data
->cond_mutex
);
2363 /* Get time for sem_timedwait absolute timeout */
2364 clock_ret
= lttng_clock_gettime(CLOCK_MONOTONIC
, &timeout
);
2366 * Set the timeout for the condition timed wait even if the clock gettime
2367 * call fails since we might loop on that call and we want to avoid to
2368 * increment the timeout too many times.
2370 timeout
.tv_sec
+= DEFAULT_SEM_WAIT_TIMEOUT
;
2373 * The following loop COULD be skipped in some conditions so this is why we
2374 * set ret to 0 in order to make sure at least one round of the loop is
2380 * Loop until the condition is reached or when a timeout is reached. Note
2381 * that the pthread_cond_timedwait(P) man page specifies that EINTR can NOT
2382 * be returned but the pthread_cond(3), from the glibc-doc, says that it is
2383 * possible. This loop does not take any chances and works with both of
2386 while (!consumer_data
->consumer_thread_is_ready
&& ret
!= ETIMEDOUT
) {
2387 if (clock_ret
< 0) {
2388 PERROR("clock_gettime spawn consumer");
2389 /* Infinite wait for the consumerd thread to be ready */
2390 ret
= pthread_cond_wait(&consumer_data
->cond
,
2391 &consumer_data
->cond_mutex
);
2393 ret
= pthread_cond_timedwait(&consumer_data
->cond
,
2394 &consumer_data
->cond_mutex
, &timeout
);
2398 /* Release the pthread condition */
2399 pthread_mutex_unlock(&consumer_data
->cond_mutex
);
2403 if (ret
== ETIMEDOUT
) {
2407 * Call has timed out so we kill the kconsumerd_thread and return
2410 ERR("Condition timed out. The consumer thread was never ready."
2412 pth_ret
= pthread_cancel(consumer_data
->thread
);
2414 PERROR("pthread_cancel consumer thread");
2417 PERROR("pthread_cond_wait failed consumer thread");
2419 /* Caller is expecting a negative value on failure. */
2424 pthread_mutex_lock(&consumer_data
->pid_mutex
);
2425 if (consumer_data
->pid
== 0) {
2426 ERR("Consumerd did not start");
2427 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2430 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2439 * Join consumer thread
2441 static int join_consumer_thread(struct consumer_data
*consumer_data
)
2445 /* Consumer pid must be a real one. */
2446 if (consumer_data
->pid
> 0) {
2448 ret
= kill(consumer_data
->pid
, SIGTERM
);
2450 PERROR("Error killing consumer daemon");
2453 return pthread_join(consumer_data
->thread
, &status
);
2460 * Fork and exec a consumer daemon (consumerd).
2462 * Return pid if successful else -1.
2464 static pid_t
spawn_consumerd(struct consumer_data
*consumer_data
)
2468 const char *consumer_to_use
;
2469 const char *verbosity
;
2472 DBG("Spawning consumerd");
2479 if (config
.verbose_consumer
) {
2480 verbosity
= "--verbose";
2481 } else if (lttng_opt_quiet
) {
2482 verbosity
= "--quiet";
2487 switch (consumer_data
->type
) {
2488 case LTTNG_CONSUMER_KERNEL
:
2490 * Find out which consumerd to execute. We will first try the
2491 * 64-bit path, then the sessiond's installation directory, and
2492 * fallback on the 32-bit one,
2494 DBG3("Looking for a kernel consumer at these locations:");
2495 DBG3(" 1) %s", config
.consumerd64_bin_path
.value
? : "NULL");
2496 DBG3(" 2) %s/%s", INSTALL_BIN_PATH
, DEFAULT_CONSUMERD_FILE
);
2497 DBG3(" 3) %s", config
.consumerd32_bin_path
.value
? : "NULL");
2498 if (stat(config
.consumerd64_bin_path
.value
, &st
) == 0) {
2499 DBG3("Found location #1");
2500 consumer_to_use
= config
.consumerd64_bin_path
.value
;
2501 } else if (stat(INSTALL_BIN_PATH
"/" DEFAULT_CONSUMERD_FILE
, &st
) == 0) {
2502 DBG3("Found location #2");
2503 consumer_to_use
= INSTALL_BIN_PATH
"/" DEFAULT_CONSUMERD_FILE
;
2504 } else if (stat(config
.consumerd32_bin_path
.value
, &st
) == 0) {
2505 DBG3("Found location #3");
2506 consumer_to_use
= config
.consumerd32_bin_path
.value
;
2508 DBG("Could not find any valid consumerd executable");
2512 DBG("Using kernel consumer at: %s", consumer_to_use
);
2513 (void) execl(consumer_to_use
,
2514 "lttng-consumerd", verbosity
, "-k",
2515 "--consumerd-cmd-sock", consumer_data
->cmd_unix_sock_path
,
2516 "--consumerd-err-sock", consumer_data
->err_unix_sock_path
,
2517 "--group", config
.tracing_group_name
.value
,
2520 case LTTNG_CONSUMER64_UST
:
2522 if (config
.consumerd64_lib_dir
.value
) {
2527 tmp
= lttng_secure_getenv("LD_LIBRARY_PATH");
2531 tmplen
= strlen(config
.consumerd64_lib_dir
.value
) + 1 /* : */ + strlen(tmp
);
2532 tmpnew
= zmalloc(tmplen
+ 1 /* \0 */);
2537 strcat(tmpnew
, config
.consumerd64_lib_dir
.value
);
2538 if (tmp
[0] != '\0') {
2539 strcat(tmpnew
, ":");
2540 strcat(tmpnew
, tmp
);
2542 ret
= setenv("LD_LIBRARY_PATH", tmpnew
, 1);
2549 DBG("Using 64-bit UST consumer at: %s", config
.consumerd64_bin_path
.value
);
2550 (void) execl(config
.consumerd64_bin_path
.value
, "lttng-consumerd", verbosity
, "-u",
2551 "--consumerd-cmd-sock", consumer_data
->cmd_unix_sock_path
,
2552 "--consumerd-err-sock", consumer_data
->err_unix_sock_path
,
2553 "--group", config
.tracing_group_name
.value
,
2557 case LTTNG_CONSUMER32_UST
:
2559 if (config
.consumerd32_lib_dir
.value
) {
2564 tmp
= lttng_secure_getenv("LD_LIBRARY_PATH");
2568 tmplen
= strlen(config
.consumerd32_lib_dir
.value
) + 1 /* : */ + strlen(tmp
);
2569 tmpnew
= zmalloc(tmplen
+ 1 /* \0 */);
2574 strcat(tmpnew
, config
.consumerd32_lib_dir
.value
);
2575 if (tmp
[0] != '\0') {
2576 strcat(tmpnew
, ":");
2577 strcat(tmpnew
, tmp
);
2579 ret
= setenv("LD_LIBRARY_PATH", tmpnew
, 1);
2586 DBG("Using 32-bit UST consumer at: %s", config
.consumerd32_bin_path
.value
);
2587 (void) execl(config
.consumerd32_bin_path
.value
, "lttng-consumerd", verbosity
, "-u",
2588 "--consumerd-cmd-sock", consumer_data
->cmd_unix_sock_path
,
2589 "--consumerd-err-sock", consumer_data
->err_unix_sock_path
,
2590 "--group", config
.tracing_group_name
.value
,
2595 ERR("unknown consumer type");
2599 PERROR("Consumer execl()");
2601 /* Reaching this point, we got a failure on our execl(). */
2603 } else if (pid
> 0) {
2606 PERROR("start consumer fork");
2614 * Spawn the consumerd daemon and session daemon thread.
2616 static int start_consumerd(struct consumer_data
*consumer_data
)
2621 * Set the listen() state on the socket since there is a possible race
2622 * between the exec() of the consumer daemon and this call if place in the
2623 * consumer thread. See bug #366 for more details.
2625 ret
= lttcomm_listen_unix_sock(consumer_data
->err_sock
);
2630 pthread_mutex_lock(&consumer_data
->pid_mutex
);
2631 if (consumer_data
->pid
!= 0) {
2632 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2636 ret
= spawn_consumerd(consumer_data
);
2638 ERR("Spawning consumerd failed");
2639 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2643 /* Setting up the consumer_data pid */
2644 consumer_data
->pid
= ret
;
2645 DBG2("Consumer pid %d", consumer_data
->pid
);
2646 pthread_mutex_unlock(&consumer_data
->pid_mutex
);
2648 DBG2("Spawning consumer control thread");
2649 ret
= spawn_consumer_thread(consumer_data
);
2651 ERR("Fatal error spawning consumer control thread");
2659 /* Cleanup already created sockets on error. */
2660 if (consumer_data
->err_sock
>= 0) {
2663 err
= close(consumer_data
->err_sock
);
2665 PERROR("close consumer data error socket");
2672 * Setup necessary data for kernel tracer action.
2674 static int init_kernel_tracer(void)
2678 /* Modprobe lttng kernel modules */
2679 ret
= modprobe_lttng_control();
2684 /* Open debugfs lttng */
2685 kernel_tracer_fd
= open(module_proc_lttng
, O_RDWR
);
2686 if (kernel_tracer_fd
< 0) {
2687 DBG("Failed to open %s", module_proc_lttng
);
2691 /* Validate kernel version */
2692 ret
= kernel_validate_version(kernel_tracer_fd
, &kernel_tracer_version
,
2693 &kernel_tracer_abi_version
);
2698 ret
= modprobe_lttng_data();
2703 ret
= kernel_supports_ring_buffer_snapshot_sample_positions(
2710 WARN("Kernel tracer does not support buffer monitoring. "
2711 "The monitoring timer of channels in the kernel domain "
2712 "will be set to 0 (disabled).");
2715 DBG("Kernel tracer fd %d", kernel_tracer_fd
);
2719 modprobe_remove_lttng_control();
2720 ret
= close(kernel_tracer_fd
);
2724 kernel_tracer_fd
= -1;
2725 return LTTNG_ERR_KERN_VERSION
;
2728 ret
= close(kernel_tracer_fd
);
2734 modprobe_remove_lttng_control();
2737 WARN("No kernel tracer available");
2738 kernel_tracer_fd
= -1;
2740 return LTTNG_ERR_NEED_ROOT_SESSIOND
;
2742 return LTTNG_ERR_KERN_NA
;
2748 * Copy consumer output from the tracing session to the domain session. The
2749 * function also applies the right modification on a per domain basis for the
2750 * trace files destination directory.
2752 * Should *NOT* be called with RCU read-side lock held.
2754 static int copy_session_consumer(int domain
, struct ltt_session
*session
)
2757 const char *dir_name
;
2758 struct consumer_output
*consumer
;
2761 assert(session
->consumer
);
2764 case LTTNG_DOMAIN_KERNEL
:
2765 DBG3("Copying tracing session consumer output in kernel session");
2767 * XXX: We should audit the session creation and what this function
2768 * does "extra" in order to avoid a destroy since this function is used
2769 * in the domain session creation (kernel and ust) only. Same for UST
2772 if (session
->kernel_session
->consumer
) {
2773 consumer_output_put(session
->kernel_session
->consumer
);
2775 session
->kernel_session
->consumer
=
2776 consumer_copy_output(session
->consumer
);
2777 /* Ease our life a bit for the next part */
2778 consumer
= session
->kernel_session
->consumer
;
2779 dir_name
= DEFAULT_KERNEL_TRACE_DIR
;
2781 case LTTNG_DOMAIN_JUL
:
2782 case LTTNG_DOMAIN_LOG4J
:
2783 case LTTNG_DOMAIN_PYTHON
:
2784 case LTTNG_DOMAIN_UST
:
2785 DBG3("Copying tracing session consumer output in UST session");
2786 if (session
->ust_session
->consumer
) {
2787 consumer_output_put(session
->ust_session
->consumer
);
2789 session
->ust_session
->consumer
=
2790 consumer_copy_output(session
->consumer
);
2791 /* Ease our life a bit for the next part */
2792 consumer
= session
->ust_session
->consumer
;
2793 dir_name
= DEFAULT_UST_TRACE_DIR
;
2796 ret
= LTTNG_ERR_UNKNOWN_DOMAIN
;
2800 /* Append correct directory to subdir */
2801 strncat(consumer
->subdir
, dir_name
,
2802 sizeof(consumer
->subdir
) - strlen(consumer
->subdir
) - 1);
2803 DBG3("Copy session consumer subdir %s", consumer
->subdir
);
2812 * Create an UST session and add it to the session ust list.
2814 * Should *NOT* be called with RCU read-side lock held.
2816 static int create_ust_session(struct ltt_session
*session
,
2817 struct lttng_domain
*domain
)
2820 struct ltt_ust_session
*lus
= NULL
;
2824 assert(session
->consumer
);
2826 switch (domain
->type
) {
2827 case LTTNG_DOMAIN_JUL
:
2828 case LTTNG_DOMAIN_LOG4J
:
2829 case LTTNG_DOMAIN_PYTHON
:
2830 case LTTNG_DOMAIN_UST
:
2833 ERR("Unknown UST domain on create session %d", domain
->type
);
2834 ret
= LTTNG_ERR_UNKNOWN_DOMAIN
;
2838 DBG("Creating UST session");
2840 lus
= trace_ust_create_session(session
->id
);
2842 ret
= LTTNG_ERR_UST_SESS_FAIL
;
2846 lus
->uid
= session
->uid
;
2847 lus
->gid
= session
->gid
;
2848 lus
->output_traces
= session
->output_traces
;
2849 lus
->snapshot_mode
= session
->snapshot_mode
;
2850 lus
->live_timer_interval
= session
->live_timer
;
2851 session
->ust_session
= lus
;
2852 if (session
->shm_path
[0]) {
2853 strncpy(lus
->root_shm_path
, session
->shm_path
,
2854 sizeof(lus
->root_shm_path
));
2855 lus
->root_shm_path
[sizeof(lus
->root_shm_path
) - 1] = '\0';
2856 strncpy(lus
->shm_path
, session
->shm_path
,
2857 sizeof(lus
->shm_path
));
2858 lus
->shm_path
[sizeof(lus
->shm_path
) - 1] = '\0';
2859 strncat(lus
->shm_path
, "/ust",
2860 sizeof(lus
->shm_path
) - strlen(lus
->shm_path
) - 1);
2862 /* Copy session output to the newly created UST session */
2863 ret
= copy_session_consumer(domain
->type
, session
);
2864 if (ret
!= LTTNG_OK
) {
2872 session
->ust_session
= NULL
;
2877 * Create a kernel tracer session then create the default channel.
2879 static int create_kernel_session(struct ltt_session
*session
)
2883 DBG("Creating kernel session");
2885 ret
= kernel_create_session(session
, kernel_tracer_fd
);
2887 ret
= LTTNG_ERR_KERN_SESS_FAIL
;
2891 /* Code flow safety */
2892 assert(session
->kernel_session
);
2894 /* Copy session output to the newly created Kernel session */
2895 ret
= copy_session_consumer(LTTNG_DOMAIN_KERNEL
, session
);
2896 if (ret
!= LTTNG_OK
) {
2900 session
->kernel_session
->uid
= session
->uid
;
2901 session
->kernel_session
->gid
= session
->gid
;
2902 session
->kernel_session
->output_traces
= session
->output_traces
;
2903 session
->kernel_session
->snapshot_mode
= session
->snapshot_mode
;
2908 trace_kernel_destroy_session(session
->kernel_session
);
2909 session
->kernel_session
= NULL
;
2914 * Count number of session permitted by uid/gid.
2916 static unsigned int lttng_sessions_count(uid_t uid
, gid_t gid
)
2919 struct ltt_session
*session
;
2921 DBG("Counting number of available session for UID %d GID %d",
2923 cds_list_for_each_entry(session
, &session_list_ptr
->head
, list
) {
2925 * Only list the sessions the user can control.
2927 if (!session_access_ok(session
, uid
, gid
)) {
2935 static int receive_userspace_probe(struct command_ctx
*cmd_ctx
, int sock
,
2936 int *sock_error
, struct lttng_event
*event
)
2939 struct lttng_userspace_probe_location
*probe_location
;
2940 struct lttng_userspace_probe_location_lookup_method
*lookup
= NULL
;
2941 struct lttng_dynamic_buffer probe_location_buffer
;
2942 struct lttng_buffer_view buffer_view
;
2945 * Create a buffer to store the serialized version of the probe
2948 lttng_dynamic_buffer_init(&probe_location_buffer
);
2949 ret
= lttng_dynamic_buffer_set_size(&probe_location_buffer
,
2950 cmd_ctx
->lsm
->u
.enable
.userspace_probe_location_len
);
2952 ret
= LTTNG_ERR_NOMEM
;
2957 * Receive the probe location.
2959 ret
= lttcomm_recv_unix_sock(sock
, probe_location_buffer
.data
,
2960 probe_location_buffer
.size
);
2962 DBG("Nothing recv() from client var len data... continuing");
2964 lttng_dynamic_buffer_reset(&probe_location_buffer
);
2965 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2969 buffer_view
= lttng_buffer_view_from_dynamic_buffer(
2970 &probe_location_buffer
, 0, probe_location_buffer
.size
);
2973 * Extract the probe location from the serialized version.
2975 ret
= lttng_userspace_probe_location_create_from_buffer(
2976 &buffer_view
, &probe_location
);
2978 WARN("Failed to create a userspace probe location from the received buffer");
2979 lttng_dynamic_buffer_reset( &probe_location_buffer
);
2980 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2985 * Receive the file descriptor to the target binary from the client.
2987 DBG("Receiving userspace probe target FD from client ...");
2988 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
2990 DBG("Nothing recv() from client userspace probe fd... continuing");
2992 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
2997 * Set the file descriptor received from the client through the unix
2998 * socket in the probe location.
3000 lookup
= lttng_userspace_probe_location_get_lookup_method(probe_location
);
3002 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
3007 * From the kernel tracer's perspective, all userspace probe event types
3008 * are all the same: a file and an offset.
3010 switch (lttng_userspace_probe_location_lookup_method_get_type(lookup
)) {
3011 case LTTNG_USERSPACE_PROBE_LOCATION_LOOKUP_METHOD_TYPE_FUNCTION_ELF
:
3012 ret
= lttng_userspace_probe_location_function_set_binary_fd(
3013 probe_location
, fd
);
3015 case LTTNG_USERSPACE_PROBE_LOCATION_LOOKUP_METHOD_TYPE_TRACEPOINT_SDT
:
3016 ret
= lttng_userspace_probe_location_tracepoint_set_binary_fd(
3017 probe_location
, fd
);
3020 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
3025 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
3029 /* Attach the probe location to the event. */
3030 ret
= lttng_event_set_userspace_probe_location(event
, probe_location
);
3032 ret
= LTTNG_ERR_PROBE_LOCATION_INVAL
;
3036 lttng_dynamic_buffer_reset(&probe_location_buffer
);
3042 * Check if the current kernel tracer supports the session rotation feature.
3043 * Return 1 if it does, 0 otherwise.
3045 static int check_rotate_compatible(void)
3049 if (kernel_tracer_version
.major
!= 2 || kernel_tracer_version
.minor
< 11) {
3050 DBG("Kernel tracer version is not compatible with the rotation feature");
3058 * Process the command requested by the lttng client within the command
3059 * context structure. This function make sure that the return structure (llm)
3060 * is set and ready for transmission before returning.
3062 * Return any error encountered or 0 for success.
3064 * "sock" is only used for special-case var. len data.
3066 * Should *NOT* be called with RCU read-side lock held.
3068 static int process_client_msg(struct command_ctx
*cmd_ctx
, int sock
,
3072 int need_tracing_session
= 1;
3075 DBG("Processing client command %d", cmd_ctx
->lsm
->cmd_type
);
3077 assert(!rcu_read_ongoing());
3081 switch (cmd_ctx
->lsm
->cmd_type
) {
3082 case LTTNG_CREATE_SESSION
:
3083 case LTTNG_CREATE_SESSION_SNAPSHOT
:
3084 case LTTNG_CREATE_SESSION_LIVE
:
3085 case LTTNG_DESTROY_SESSION
:
3086 case LTTNG_LIST_SESSIONS
:
3087 case LTTNG_LIST_DOMAINS
:
3088 case LTTNG_START_TRACE
:
3089 case LTTNG_STOP_TRACE
:
3090 case LTTNG_DATA_PENDING
:
3091 case LTTNG_SNAPSHOT_ADD_OUTPUT
:
3092 case LTTNG_SNAPSHOT_DEL_OUTPUT
:
3093 case LTTNG_SNAPSHOT_LIST_OUTPUT
:
3094 case LTTNG_SNAPSHOT_RECORD
:
3095 case LTTNG_SAVE_SESSION
:
3096 case LTTNG_SET_SESSION_SHM_PATH
:
3097 case LTTNG_REGENERATE_METADATA
:
3098 case LTTNG_REGENERATE_STATEDUMP
:
3099 case LTTNG_REGISTER_TRIGGER
:
3100 case LTTNG_UNREGISTER_TRIGGER
:
3101 case LTTNG_ROTATE_SESSION
:
3102 case LTTNG_ROTATION_GET_INFO
:
3103 case LTTNG_SESSION_GET_CURRENT_OUTPUT
:
3104 case LTTNG_ROTATION_SET_SCHEDULE
:
3105 case LTTNG_SESSION_LIST_ROTATION_SCHEDULES
:
3112 if (config
.no_kernel
&& need_domain
3113 && cmd_ctx
->lsm
->domain
.type
== LTTNG_DOMAIN_KERNEL
) {
3115 ret
= LTTNG_ERR_NEED_ROOT_SESSIOND
;
3117 ret
= LTTNG_ERR_KERN_NA
;
3122 /* Deny register consumer if we already have a spawned consumer. */
3123 if (cmd_ctx
->lsm
->cmd_type
== LTTNG_REGISTER_CONSUMER
) {
3124 pthread_mutex_lock(&kconsumer_data
.pid_mutex
);
3125 if (kconsumer_data
.pid
> 0) {
3126 ret
= LTTNG_ERR_KERN_CONSUMER_FAIL
;
3127 pthread_mutex_unlock(&kconsumer_data
.pid_mutex
);
3130 pthread_mutex_unlock(&kconsumer_data
.pid_mutex
);
3134 * Check for command that don't needs to allocate a returned payload. We do
3135 * this here so we don't have to make the call for no payload at each
3138 switch(cmd_ctx
->lsm
->cmd_type
) {
3139 case LTTNG_LIST_SESSIONS
:
3140 case LTTNG_LIST_TRACEPOINTS
:
3141 case LTTNG_LIST_TRACEPOINT_FIELDS
:
3142 case LTTNG_LIST_DOMAINS
:
3143 case LTTNG_LIST_CHANNELS
:
3144 case LTTNG_LIST_EVENTS
:
3145 case LTTNG_LIST_SYSCALLS
:
3146 case LTTNG_LIST_TRACKER_PIDS
:
3147 case LTTNG_DATA_PENDING
:
3148 case LTTNG_ROTATE_SESSION
:
3149 case LTTNG_ROTATION_GET_INFO
:
3150 case LTTNG_SESSION_LIST_ROTATION_SCHEDULES
:
3153 /* Setup lttng message with no payload */
3154 ret
= setup_lttng_msg_no_cmd_header(cmd_ctx
, NULL
, 0);
3156 /* This label does not try to unlock the session */
3157 goto init_setup_error
;
3161 /* Commands that DO NOT need a session. */
3162 switch (cmd_ctx
->lsm
->cmd_type
) {
3163 case LTTNG_CREATE_SESSION
:
3164 case LTTNG_CREATE_SESSION_SNAPSHOT
:
3165 case LTTNG_CREATE_SESSION_LIVE
:
3166 case LTTNG_LIST_SESSIONS
:
3167 case LTTNG_LIST_TRACEPOINTS
:
3168 case LTTNG_LIST_SYSCALLS
:
3169 case LTTNG_LIST_TRACEPOINT_FIELDS
:
3170 case LTTNG_SAVE_SESSION
:
3171 case LTTNG_REGISTER_TRIGGER
:
3172 case LTTNG_UNREGISTER_TRIGGER
:
3173 need_tracing_session
= 0;
3176 DBG("Getting session %s by name", cmd_ctx
->lsm
->session
.name
);
3178 * We keep the session list lock across _all_ commands
3179 * for now, because the per-session lock does not
3180 * handle teardown properly.
3182 session_lock_list();
3183 cmd_ctx
->session
= session_find_by_name(cmd_ctx
->lsm
->session
.name
);
3184 if (cmd_ctx
->session
== NULL
) {
3185 ret
= LTTNG_ERR_SESS_NOT_FOUND
;
3188 /* Acquire lock for the session */
3189 session_lock(cmd_ctx
->session
);
3195 * Commands that need a valid session but should NOT create one if none
3196 * exists. Instead of creating one and destroying it when the command is
3197 * handled, process that right before so we save some round trip in useless
3200 switch (cmd_ctx
->lsm
->cmd_type
) {
3201 case LTTNG_DISABLE_CHANNEL
:
3202 case LTTNG_DISABLE_EVENT
:
3203 switch (cmd_ctx
->lsm
->domain
.type
) {
3204 case LTTNG_DOMAIN_KERNEL
:
3205 if (!cmd_ctx
->session
->kernel_session
) {
3206 ret
= LTTNG_ERR_NO_CHANNEL
;
3210 case LTTNG_DOMAIN_JUL
:
3211 case LTTNG_DOMAIN_LOG4J
:
3212 case LTTNG_DOMAIN_PYTHON
:
3213 case LTTNG_DOMAIN_UST
:
3214 if (!cmd_ctx
->session
->ust_session
) {
3215 ret
= LTTNG_ERR_NO_CHANNEL
;
3220 ret
= LTTNG_ERR_UNKNOWN_DOMAIN
;
3232 * Check domain type for specific "pre-action".