d70a5d1d406b758e1b02cc61f22b440ee006a7b1
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Copyright (C) 2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * Copyright (C) 2012 David Goulet <dgoulet@efficios.com>
5 *
6 * SPDX-License-Identifier: GPL-2.0-only
7 *
8 */
9
10 #define _LGPL_SOURCE
11 #include <assert.h>
12 #include <poll.h>
13 #include <pthread.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <sys/mman.h>
17 #include <sys/socket.h>
18 #include <sys/types.h>
19 #include <unistd.h>
20 #include <inttypes.h>
21 #include <signal.h>
22
23 #include <bin/lttng-consumerd/health-consumerd.h>
24 #include <common/common.h>
25 #include <common/utils.h>
26 #include <common/time.h>
27 #include <common/compat/poll.h>
28 #include <common/compat/endian.h>
29 #include <common/index/index.h>
30 #include <common/kernel-ctl/kernel-ctl.h>
31 #include <common/sessiond-comm/relayd.h>
32 #include <common/sessiond-comm/sessiond-comm.h>
33 #include <common/kernel-consumer/kernel-consumer.h>
34 #include <common/relayd/relayd.h>
35 #include <common/ust-consumer/ust-consumer.h>
36 #include <common/consumer/consumer-timer.h>
37 #include <common/consumer/consumer.h>
38 #include <common/consumer/consumer-stream.h>
39 #include <common/consumer/consumer-testpoint.h>
40 #include <common/align.h>
41 #include <common/consumer/consumer-metadata-cache.h>
42 #include <common/trace-chunk.h>
43 #include <common/trace-chunk-registry.h>
44 #include <common/string-utils/format.h>
45 #include <common/dynamic-array.h>
46
47 struct lttng_consumer_global_data consumer_data = {
48 .stream_count = 0,
49 .need_update = 1,
50 .type = LTTNG_CONSUMER_UNKNOWN,
51 };
52
53 enum consumer_channel_action {
54 CONSUMER_CHANNEL_ADD,
55 CONSUMER_CHANNEL_DEL,
56 CONSUMER_CHANNEL_QUIT,
57 };
58
59 struct consumer_channel_msg {
60 enum consumer_channel_action action;
61 struct lttng_consumer_channel *chan; /* add */
62 uint64_t key; /* del */
63 };
64
65 /* Flag used to temporarily pause data consumption from testpoints. */
66 int data_consumption_paused;
67
68 /*
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
72 * polling threads.
73 */
74 int consumer_quit;
75
76 /*
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
80 */
81 static struct lttng_ht *metadata_ht;
82 static struct lttng_ht *data_ht;
83
84 static const char *get_consumer_domain(void)
85 {
86 switch (consumer_data.type) {
87 case LTTNG_CONSUMER_KERNEL:
88 return DEFAULT_KERNEL_TRACE_DIR;
89 case LTTNG_CONSUMER64_UST:
90 /* Fall-through. */
91 case LTTNG_CONSUMER32_UST:
92 return DEFAULT_UST_TRACE_DIR;
93 default:
94 abort();
95 }
96 }
97
98 /*
99 * Notify a thread lttng pipe to poll back again. This usually means that some
100 * global state has changed so we just send back the thread in a poll wait
101 * call.
102 */
103 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
104 {
105 struct lttng_consumer_stream *null_stream = NULL;
106
107 assert(pipe);
108
109 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
110 }
111
112 static void notify_health_quit_pipe(int *pipe)
113 {
114 ssize_t ret;
115
116 ret = lttng_write(pipe[1], "4", 1);
117 if (ret < 1) {
118 PERROR("write consumer health quit");
119 }
120 }
121
122 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
123 struct lttng_consumer_channel *chan,
124 uint64_t key,
125 enum consumer_channel_action action)
126 {
127 struct consumer_channel_msg msg;
128 ssize_t ret;
129
130 memset(&msg, 0, sizeof(msg));
131
132 msg.action = action;
133 msg.chan = chan;
134 msg.key = key;
135 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
136 if (ret < sizeof(msg)) {
137 PERROR("notify_channel_pipe write error");
138 }
139 }
140
141 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
142 uint64_t key)
143 {
144 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
145 }
146
147 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
148 struct lttng_consumer_channel **chan,
149 uint64_t *key,
150 enum consumer_channel_action *action)
151 {
152 struct consumer_channel_msg msg;
153 ssize_t ret;
154
155 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
156 if (ret < sizeof(msg)) {
157 ret = -1;
158 goto error;
159 }
160 *action = msg.action;
161 *chan = msg.chan;
162 *key = msg.key;
163 error:
164 return (int) ret;
165 }
166
167 /*
168 * Cleanup the stream list of a channel. Those streams are not yet globally
169 * visible
170 */
171 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
172 {
173 struct lttng_consumer_stream *stream, *stmp;
174
175 assert(channel);
176
177 /* Delete streams that might have been left in the stream list. */
178 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
179 send_node) {
180 cds_list_del(&stream->send_node);
181 /*
182 * Once a stream is added to this list, the buffers were created so we
183 * have a guarantee that this call will succeed. Setting the monitor
184 * mode to 0 so we don't lock nor try to delete the stream from the
185 * global hash table.
186 */
187 stream->monitor = 0;
188 consumer_stream_destroy(stream, NULL);
189 }
190 }
191
192 /*
193 * Find a stream. The consumer_data.lock must be locked during this
194 * call.
195 */
196 static struct lttng_consumer_stream *find_stream(uint64_t key,
197 struct lttng_ht *ht)
198 {
199 struct lttng_ht_iter iter;
200 struct lttng_ht_node_u64 *node;
201 struct lttng_consumer_stream *stream = NULL;
202
203 assert(ht);
204
205 /* -1ULL keys are lookup failures */
206 if (key == (uint64_t) -1ULL) {
207 return NULL;
208 }
209
210 rcu_read_lock();
211
212 lttng_ht_lookup(ht, &key, &iter);
213 node = lttng_ht_iter_get_node_u64(&iter);
214 if (node != NULL) {
215 stream = caa_container_of(node, struct lttng_consumer_stream, node);
216 }
217
218 rcu_read_unlock();
219
220 return stream;
221 }
222
223 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
224 {
225 struct lttng_consumer_stream *stream;
226
227 rcu_read_lock();
228 stream = find_stream(key, ht);
229 if (stream) {
230 stream->key = (uint64_t) -1ULL;
231 /*
232 * We don't want the lookup to match, but we still need
233 * to iterate on this stream when iterating over the hash table. Just
234 * change the node key.
235 */
236 stream->node.key = (uint64_t) -1ULL;
237 }
238 rcu_read_unlock();
239 }
240
241 /*
242 * Return a channel object for the given key.
243 *
244 * RCU read side lock MUST be acquired before calling this function and
245 * protects the channel ptr.
246 */
247 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
248 {
249 struct lttng_ht_iter iter;
250 struct lttng_ht_node_u64 *node;
251 struct lttng_consumer_channel *channel = NULL;
252
253 /* -1ULL keys are lookup failures */
254 if (key == (uint64_t) -1ULL) {
255 return NULL;
256 }
257
258 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
259 node = lttng_ht_iter_get_node_u64(&iter);
260 if (node != NULL) {
261 channel = caa_container_of(node, struct lttng_consumer_channel, node);
262 }
263
264 return channel;
265 }
266
267 /*
268 * There is a possibility that the consumer does not have enough time between
269 * the close of the channel on the session daemon and the cleanup in here thus
270 * once we have a channel add with an existing key, we know for sure that this
271 * channel will eventually get cleaned up by all streams being closed.
272 *
273 * This function just nullifies the already existing channel key.
274 */
275 static void steal_channel_key(uint64_t key)
276 {
277 struct lttng_consumer_channel *channel;
278
279 rcu_read_lock();
280 channel = consumer_find_channel(key);
281 if (channel) {
282 channel->key = (uint64_t) -1ULL;
283 /*
284 * We don't want the lookup to match, but we still need to iterate on
285 * this channel when iterating over the hash table. Just change the
286 * node key.
287 */
288 channel->node.key = (uint64_t) -1ULL;
289 }
290 rcu_read_unlock();
291 }
292
293 static void free_channel_rcu(struct rcu_head *head)
294 {
295 struct lttng_ht_node_u64 *node =
296 caa_container_of(head, struct lttng_ht_node_u64, head);
297 struct lttng_consumer_channel *channel =
298 caa_container_of(node, struct lttng_consumer_channel, node);
299
300 switch (consumer_data.type) {
301 case LTTNG_CONSUMER_KERNEL:
302 break;
303 case LTTNG_CONSUMER32_UST:
304 case LTTNG_CONSUMER64_UST:
305 lttng_ustconsumer_free_channel(channel);
306 break;
307 default:
308 ERR("Unknown consumer_data type");
309 abort();
310 }
311 free(channel);
312 }
313
314 /*
315 * RCU protected relayd socket pair free.
316 */
317 static void free_relayd_rcu(struct rcu_head *head)
318 {
319 struct lttng_ht_node_u64 *node =
320 caa_container_of(head, struct lttng_ht_node_u64, head);
321 struct consumer_relayd_sock_pair *relayd =
322 caa_container_of(node, struct consumer_relayd_sock_pair, node);
323
324 /*
325 * Close all sockets. This is done in the call RCU since we don't want the
326 * socket fds to be reassigned thus potentially creating bad state of the
327 * relayd object.
328 *
329 * We do not have to lock the control socket mutex here since at this stage
330 * there is no one referencing to this relayd object.
331 */
332 (void) relayd_close(&relayd->control_sock);
333 (void) relayd_close(&relayd->data_sock);
334
335 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
336 free(relayd);
337 }
338
339 /*
340 * Destroy and free relayd socket pair object.
341 */
342 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
343 {
344 int ret;
345 struct lttng_ht_iter iter;
346
347 if (relayd == NULL) {
348 return;
349 }
350
351 DBG("Consumer destroy and close relayd socket pair");
352
353 iter.iter.node = &relayd->node.node;
354 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
355 if (ret != 0) {
356 /* We assume the relayd is being or is destroyed */
357 return;
358 }
359
360 /* RCU free() call */
361 call_rcu(&relayd->node.head, free_relayd_rcu);
362 }
363
364 /*
365 * Remove a channel from the global list protected by a mutex. This function is
366 * also responsible for freeing its data structures.
367 */
368 void consumer_del_channel(struct lttng_consumer_channel *channel)
369 {
370 struct lttng_ht_iter iter;
371
372 DBG("Consumer delete channel key %" PRIu64, channel->key);
373
374 pthread_mutex_lock(&consumer_data.lock);
375 pthread_mutex_lock(&channel->lock);
376
377 /* Destroy streams that might have been left in the stream list. */
378 clean_channel_stream_list(channel);
379
380 if (channel->live_timer_enabled == 1) {
381 consumer_timer_live_stop(channel);
382 }
383 if (channel->monitor_timer_enabled == 1) {
384 consumer_timer_monitor_stop(channel);
385 }
386
387 switch (consumer_data.type) {
388 case LTTNG_CONSUMER_KERNEL:
389 break;
390 case LTTNG_CONSUMER32_UST:
391 case LTTNG_CONSUMER64_UST:
392 lttng_ustconsumer_del_channel(channel);
393 break;
394 default:
395 ERR("Unknown consumer_data type");
396 assert(0);
397 goto end;
398 }
399
400 lttng_trace_chunk_put(channel->trace_chunk);
401 channel->trace_chunk = NULL;
402
403 if (channel->is_published) {
404 int ret;
405
406 rcu_read_lock();
407 iter.iter.node = &channel->node.node;
408 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
409 assert(!ret);
410
411 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
412 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht,
413 &iter);
414 assert(!ret);
415 rcu_read_unlock();
416 }
417
418 channel->is_deleted = true;
419 call_rcu(&channel->node.head, free_channel_rcu);
420 end:
421 pthread_mutex_unlock(&channel->lock);
422 pthread_mutex_unlock(&consumer_data.lock);
423 }
424
425 /*
426 * Iterate over the relayd hash table and destroy each element. Finally,
427 * destroy the whole hash table.
428 */
429 static void cleanup_relayd_ht(void)
430 {
431 struct lttng_ht_iter iter;
432 struct consumer_relayd_sock_pair *relayd;
433
434 rcu_read_lock();
435
436 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
437 node.node) {
438 consumer_destroy_relayd(relayd);
439 }
440
441 rcu_read_unlock();
442
443 lttng_ht_destroy(consumer_data.relayd_ht);
444 }
445
446 /*
447 * Update the end point status of all streams having the given network sequence
448 * index (relayd index).
449 *
450 * It's atomically set without having the stream mutex locked which is fine
451 * because we handle the write/read race with a pipe wakeup for each thread.
452 */
453 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
454 enum consumer_endpoint_status status)
455 {
456 struct lttng_ht_iter iter;
457 struct lttng_consumer_stream *stream;
458
459 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
460
461 rcu_read_lock();
462
463 /* Let's begin with metadata */
464 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
465 if (stream->net_seq_idx == net_seq_idx) {
466 uatomic_set(&stream->endpoint_status, status);
467 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
468 }
469 }
470
471 /* Follow up by the data streams */
472 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
473 if (stream->net_seq_idx == net_seq_idx) {
474 uatomic_set(&stream->endpoint_status, status);
475 DBG("Delete flag set to data stream %d", stream->wait_fd);
476 }
477 }
478 rcu_read_unlock();
479 }
480
481 /*
482 * Cleanup a relayd object by flagging every associated streams for deletion,
483 * destroying the object meaning removing it from the relayd hash table,
484 * closing the sockets and freeing the memory in a RCU call.
485 *
486 * If a local data context is available, notify the threads that the streams'
487 * state have changed.
488 */
489 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
490 {
491 uint64_t netidx;
492
493 assert(relayd);
494
495 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
496
497 /* Save the net sequence index before destroying the object */
498 netidx = relayd->net_seq_idx;
499
500 /*
501 * Delete the relayd from the relayd hash table, close the sockets and free
502 * the object in a RCU call.
503 */
504 consumer_destroy_relayd(relayd);
505
506 /* Set inactive endpoint to all streams */
507 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
508
509 /*
510 * With a local data context, notify the threads that the streams' state
511 * have changed. The write() action on the pipe acts as an "implicit"
512 * memory barrier ordering the updates of the end point status from the
513 * read of this status which happens AFTER receiving this notify.
514 */
515 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
516 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
517 }
518
519 /*
520 * Flag a relayd socket pair for destruction. Destroy it if the refcount
521 * reaches zero.
522 *
523 * RCU read side lock MUST be aquired before calling this function.
524 */
525 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
526 {
527 assert(relayd);
528
529 /* Set destroy flag for this object */
530 uatomic_set(&relayd->destroy_flag, 1);
531
532 /* Destroy the relayd if refcount is 0 */
533 if (uatomic_read(&relayd->refcount) == 0) {
534 consumer_destroy_relayd(relayd);
535 }
536 }
537
538 /*
539 * Completly destroy stream from every visiable data structure and the given
540 * hash table if one.
541 *
542 * One this call returns, the stream object is not longer usable nor visible.
543 */
544 void consumer_del_stream(struct lttng_consumer_stream *stream,
545 struct lttng_ht *ht)
546 {
547 consumer_stream_destroy(stream, ht);
548 }
549
550 /*
551 * XXX naming of del vs destroy is all mixed up.
552 */
553 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
554 {
555 consumer_stream_destroy(stream, data_ht);
556 }
557
558 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
559 {
560 consumer_stream_destroy(stream, metadata_ht);
561 }
562
563 void consumer_stream_update_channel_attributes(
564 struct lttng_consumer_stream *stream,
565 struct lttng_consumer_channel *channel)
566 {
567 stream->channel_read_only_attributes.tracefile_size =
568 channel->tracefile_size;
569 }
570
571 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
572 uint64_t stream_key,
573 const char *channel_name,
574 uint64_t relayd_id,
575 uint64_t session_id,
576 struct lttng_trace_chunk *trace_chunk,
577 int cpu,
578 int *alloc_ret,
579 enum consumer_channel_type type,
580 unsigned int monitor)
581 {
582 int ret;
583 struct lttng_consumer_stream *stream;
584
585 stream = zmalloc(sizeof(*stream));
586 if (stream == NULL) {
587 PERROR("malloc struct lttng_consumer_stream");
588 ret = -ENOMEM;
589 goto end;
590 }
591
592 if (trace_chunk && !lttng_trace_chunk_get(trace_chunk)) {
593 ERR("Failed to acquire trace chunk reference during the creation of a stream");
594 ret = -1;
595 goto error;
596 }
597
598 rcu_read_lock();
599 stream->key = stream_key;
600 stream->trace_chunk = trace_chunk;
601 stream->out_fd = -1;
602 stream->out_fd_offset = 0;
603 stream->output_written = 0;
604 stream->net_seq_idx = relayd_id;
605 stream->session_id = session_id;
606 stream->monitor = monitor;
607 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
608 stream->index_file = NULL;
609 stream->last_sequence_number = -1ULL;
610 stream->rotate_position = -1ULL;
611 pthread_mutex_init(&stream->lock, NULL);
612 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
613
614 /* If channel is the metadata, flag this stream as metadata. */
615 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
616 stream->metadata_flag = 1;
617 /* Metadata is flat out. */
618 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
619 /* Live rendez-vous point. */
620 pthread_cond_init(&stream->metadata_rdv, NULL);
621 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
622 } else {
623 /* Format stream name to <channel_name>_<cpu_number> */
624 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
625 channel_name, cpu);
626 if (ret < 0) {
627 PERROR("snprintf stream name");
628 goto error;
629 }
630 }
631
632 /* Key is always the wait_fd for streams. */
633 lttng_ht_node_init_u64(&stream->node, stream->key);
634
635 /* Init node per channel id key */
636 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
637
638 /* Init session id node with the stream session id */
639 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
640
641 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
642 " relayd_id %" PRIu64 ", session_id %" PRIu64,
643 stream->name, stream->key, channel_key,
644 stream->net_seq_idx, stream->session_id);
645
646 rcu_read_unlock();
647 return stream;
648
649 error:
650 rcu_read_unlock();
651 lttng_trace_chunk_put(stream->trace_chunk);
652 free(stream);
653 end:
654 if (alloc_ret) {
655 *alloc_ret = ret;
656 }
657 return NULL;
658 }
659
660 /*
661 * Add a stream to the global list protected by a mutex.
662 */
663 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
664 {
665 struct lttng_ht *ht = data_ht;
666
667 assert(stream);
668 assert(ht);
669
670 DBG3("Adding consumer stream %" PRIu64, stream->key);
671
672 pthread_mutex_lock(&consumer_data.lock);
673 pthread_mutex_lock(&stream->chan->lock);
674 pthread_mutex_lock(&stream->chan->timer_lock);
675 pthread_mutex_lock(&stream->lock);
676 rcu_read_lock();
677
678 /* Steal stream identifier to avoid having streams with the same key */
679 steal_stream_key(stream->key, ht);
680
681 lttng_ht_add_unique_u64(ht, &stream->node);
682
683 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
684 &stream->node_channel_id);
685
686 /*
687 * Add stream to the stream_list_ht of the consumer data. No need to steal
688 * the key since the HT does not use it and we allow to add redundant keys
689 * into this table.
690 */
691 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
692
693 /*
694 * When nb_init_stream_left reaches 0, we don't need to trigger any action
695 * in terms of destroying the associated channel, because the action that
696 * causes the count to become 0 also causes a stream to be added. The
697 * channel deletion will thus be triggered by the following removal of this
698 * stream.
699 */
700 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
701 /* Increment refcount before decrementing nb_init_stream_left */
702 cmm_smp_wmb();
703 uatomic_dec(&stream->chan->nb_init_stream_left);
704 }
705
706 /* Update consumer data once the node is inserted. */
707 consumer_data.stream_count++;
708 consumer_data.need_update = 1;
709
710 rcu_read_unlock();
711 pthread_mutex_unlock(&stream->lock);
712 pthread_mutex_unlock(&stream->chan->timer_lock);
713 pthread_mutex_unlock(&stream->chan->lock);
714 pthread_mutex_unlock(&consumer_data.lock);
715 }
716
717 /*
718 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
719 * be acquired before calling this.
720 */
721 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
722 {
723 int ret = 0;
724 struct lttng_ht_node_u64 *node;
725 struct lttng_ht_iter iter;
726
727 assert(relayd);
728
729 lttng_ht_lookup(consumer_data.relayd_ht,
730 &relayd->net_seq_idx, &iter);
731 node = lttng_ht_iter_get_node_u64(&iter);
732 if (node != NULL) {
733 goto end;
734 }
735 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
736
737 end:
738 return ret;
739 }
740
741 /*
742 * Allocate and return a consumer relayd socket.
743 */
744 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
745 uint64_t net_seq_idx)
746 {
747 struct consumer_relayd_sock_pair *obj = NULL;
748
749 /* net sequence index of -1 is a failure */
750 if (net_seq_idx == (uint64_t) -1ULL) {
751 goto error;
752 }
753
754 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
755 if (obj == NULL) {
756 PERROR("zmalloc relayd sock");
757 goto error;
758 }
759
760 obj->net_seq_idx = net_seq_idx;
761 obj->refcount = 0;
762 obj->destroy_flag = 0;
763 obj->control_sock.sock.fd = -1;
764 obj->data_sock.sock.fd = -1;
765 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
766 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
767
768 error:
769 return obj;
770 }
771
772 /*
773 * Find a relayd socket pair in the global consumer data.
774 *
775 * Return the object if found else NULL.
776 * RCU read-side lock must be held across this call and while using the
777 * returned object.
778 */
779 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
780 {
781 struct lttng_ht_iter iter;
782 struct lttng_ht_node_u64 *node;
783 struct consumer_relayd_sock_pair *relayd = NULL;
784
785 /* Negative keys are lookup failures */
786 if (key == (uint64_t) -1ULL) {
787 goto error;
788 }
789
790 lttng_ht_lookup(consumer_data.relayd_ht, &key,
791 &iter);
792 node = lttng_ht_iter_get_node_u64(&iter);
793 if (node != NULL) {
794 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
795 }
796
797 error:
798 return relayd;
799 }
800
801 /*
802 * Find a relayd and send the stream
803 *
804 * Returns 0 on success, < 0 on error
805 */
806 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
807 char *path)
808 {
809 int ret = 0;
810 struct consumer_relayd_sock_pair *relayd;
811
812 assert(stream);
813 assert(stream->net_seq_idx != -1ULL);
814 assert(path);
815
816 /* The stream is not metadata. Get relayd reference if exists. */
817 rcu_read_lock();
818 relayd = consumer_find_relayd(stream->net_seq_idx);
819 if (relayd != NULL) {
820 /* Add stream on the relayd */
821 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
822 ret = relayd_add_stream(&relayd->control_sock, stream->name,
823 get_consumer_domain(), path, &stream->relayd_stream_id,
824 stream->chan->tracefile_size,
825 stream->chan->tracefile_count,
826 stream->trace_chunk);
827 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
828 if (ret < 0) {
829 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
830 lttng_consumer_cleanup_relayd(relayd);
831 goto end;
832 }
833
834 uatomic_inc(&relayd->refcount);
835 stream->sent_to_relayd = 1;
836 } else {
837 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
838 stream->key, stream->net_seq_idx);
839 ret = -1;
840 goto end;
841 }
842
843 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
844 stream->name, stream->key, stream->net_seq_idx);
845
846 end:
847 rcu_read_unlock();
848 return ret;
849 }
850
851 /*
852 * Find a relayd and send the streams sent message
853 *
854 * Returns 0 on success, < 0 on error
855 */
856 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
857 {
858 int ret = 0;
859 struct consumer_relayd_sock_pair *relayd;
860
861 assert(net_seq_idx != -1ULL);
862
863 /* The stream is not metadata. Get relayd reference if exists. */
864 rcu_read_lock();
865 relayd = consumer_find_relayd(net_seq_idx);
866 if (relayd != NULL) {
867 /* Add stream on the relayd */
868 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
869 ret = relayd_streams_sent(&relayd->control_sock);
870 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
871 if (ret < 0) {
872 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
873 lttng_consumer_cleanup_relayd(relayd);
874 goto end;
875 }
876 } else {
877 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
878 net_seq_idx);
879 ret = -1;
880 goto end;
881 }
882
883 ret = 0;
884 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
885
886 end:
887 rcu_read_unlock();
888 return ret;
889 }
890
891 /*
892 * Find a relayd and close the stream
893 */
894 void close_relayd_stream(struct lttng_consumer_stream *stream)
895 {
896 struct consumer_relayd_sock_pair *relayd;
897
898 /* The stream is not metadata. Get relayd reference if exists. */
899 rcu_read_lock();
900 relayd = consumer_find_relayd(stream->net_seq_idx);
901 if (relayd) {
902 consumer_stream_relayd_close(stream, relayd);
903 }
904 rcu_read_unlock();
905 }
906
907 /*
908 * Handle stream for relayd transmission if the stream applies for network
909 * streaming where the net sequence index is set.
910 *
911 * Return destination file descriptor or negative value on error.
912 */
913 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
914 size_t data_size, unsigned long padding,
915 struct consumer_relayd_sock_pair *relayd)
916 {
917 int outfd = -1, ret;
918 struct lttcomm_relayd_data_hdr data_hdr;
919
920 /* Safety net */
921 assert(stream);
922 assert(relayd);
923
924 /* Reset data header */
925 memset(&data_hdr, 0, sizeof(data_hdr));
926
927 if (stream->metadata_flag) {
928 /* Caller MUST acquire the relayd control socket lock */
929 ret = relayd_send_metadata(&relayd->control_sock, data_size);
930 if (ret < 0) {
931 goto error;
932 }
933
934 /* Metadata are always sent on the control socket. */
935 outfd = relayd->control_sock.sock.fd;
936 } else {
937 /* Set header with stream information */
938 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
939 data_hdr.data_size = htobe32(data_size);
940 data_hdr.padding_size = htobe32(padding);
941
942 /*
943 * Note that net_seq_num below is assigned with the *current* value of
944 * next_net_seq_num and only after that the next_net_seq_num will be
945 * increment. This is why when issuing a command on the relayd using
946 * this next value, 1 should always be substracted in order to compare
947 * the last seen sequence number on the relayd side to the last sent.
948 */
949 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
950 /* Other fields are zeroed previously */
951
952 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
953 sizeof(data_hdr));
954 if (ret < 0) {
955 goto error;
956 }
957
958 ++stream->next_net_seq_num;
959
960 /* Set to go on data socket */
961 outfd = relayd->data_sock.sock.fd;
962 }
963
964 error:
965 return outfd;
966 }
967
968 /*
969 * Trigger a dump of the metadata content. Following/during the succesful
970 * completion of this call, the metadata poll thread will start receiving
971 * metadata packets to consume.
972 *
973 * The caller must hold the channel and stream locks.
974 */
975 static
976 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
977 {
978 int ret;
979
980 ASSERT_LOCKED(stream->chan->lock);
981 ASSERT_LOCKED(stream->lock);
982 assert(stream->metadata_flag);
983 assert(stream->chan->trace_chunk);
984
985 switch (consumer_data.type) {
986 case LTTNG_CONSUMER_KERNEL:
987 /*
988 * Reset the position of what has been read from the
989 * metadata cache to 0 so we can dump it again.
990 */
991 ret = kernctl_metadata_cache_dump(stream->wait_fd);
992 break;
993 case LTTNG_CONSUMER32_UST:
994 case LTTNG_CONSUMER64_UST:
995 /*
996 * Reset the position pushed from the metadata cache so it
997 * will write from the beginning on the next push.
998 */
999 stream->ust_metadata_pushed = 0;
1000 ret = consumer_metadata_wakeup_pipe(stream->chan);
1001 break;
1002 default:
1003 ERR("Unknown consumer_data type");
1004 abort();
1005 }
1006 if (ret < 0) {
1007 ERR("Failed to dump the metadata cache");
1008 }
1009 return ret;
1010 }
1011
1012 static
1013 int lttng_consumer_channel_set_trace_chunk(
1014 struct lttng_consumer_channel *channel,
1015 struct lttng_trace_chunk *new_trace_chunk)
1016 {
1017 pthread_mutex_lock(&channel->lock);
1018 if (channel->is_deleted) {
1019 /*
1020 * The channel has been logically deleted and should no longer
1021 * be used. It has released its reference to its current trace
1022 * chunk and should not acquire a new one.
1023 *
1024 * Return success as there is nothing for the caller to do.
1025 */
1026 goto end;
1027 }
1028
1029 /*
1030 * The acquisition of the reference cannot fail (barring
1031 * a severe internal error) since a reference to the published
1032 * chunk is already held by the caller.
1033 */
1034 if (new_trace_chunk) {
1035 const bool acquired_reference = lttng_trace_chunk_get(
1036 new_trace_chunk);
1037
1038 assert(acquired_reference);
1039 }
1040
1041 lttng_trace_chunk_put(channel->trace_chunk);
1042 channel->trace_chunk = new_trace_chunk;
1043 end:
1044 pthread_mutex_unlock(&channel->lock);
1045 return 0;
1046 }
1047
1048 /*
1049 * Allocate and return a new lttng_consumer_channel object using the given key
1050 * to initialize the hash table node.
1051 *
1052 * On error, return NULL.
1053 */
1054 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1055 uint64_t session_id,
1056 const uint64_t *chunk_id,
1057 const char *pathname,
1058 const char *name,
1059 uint64_t relayd_id,
1060 enum lttng_event_output output,
1061 uint64_t tracefile_size,
1062 uint64_t tracefile_count,
1063 uint64_t session_id_per_pid,
1064 unsigned int monitor,
1065 unsigned int live_timer_interval,
1066 const char *root_shm_path,
1067 const char *shm_path)
1068 {
1069 struct lttng_consumer_channel *channel = NULL;
1070 struct lttng_trace_chunk *trace_chunk = NULL;
1071
1072 if (chunk_id) {
1073 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1074 consumer_data.chunk_registry, session_id,
1075 *chunk_id);
1076 if (!trace_chunk) {
1077 ERR("Failed to find trace chunk reference during creation of channel");
1078 goto end;
1079 }
1080 }
1081
1082 channel = zmalloc(sizeof(*channel));
1083 if (channel == NULL) {
1084 PERROR("malloc struct lttng_consumer_channel");
1085 goto end;
1086 }
1087
1088 channel->key = key;
1089 channel->refcount = 0;
1090 channel->session_id = session_id;
1091 channel->session_id_per_pid = session_id_per_pid;
1092 channel->relayd_id = relayd_id;
1093 channel->tracefile_size = tracefile_size;
1094 channel->tracefile_count = tracefile_count;
1095 channel->monitor = monitor;
1096 channel->live_timer_interval = live_timer_interval;
1097 pthread_mutex_init(&channel->lock, NULL);
1098 pthread_mutex_init(&channel->timer_lock, NULL);
1099
1100 switch (output) {
1101 case LTTNG_EVENT_SPLICE:
1102 channel->output = CONSUMER_CHANNEL_SPLICE;
1103 break;
1104 case LTTNG_EVENT_MMAP:
1105 channel->output = CONSUMER_CHANNEL_MMAP;
1106 break;
1107 default:
1108 assert(0);
1109 free(channel);
1110 channel = NULL;
1111 goto end;
1112 }
1113
1114 /*
1115 * In monitor mode, the streams associated with the channel will be put in
1116 * a special list ONLY owned by this channel. So, the refcount is set to 1
1117 * here meaning that the channel itself has streams that are referenced.
1118 *
1119 * On a channel deletion, once the channel is no longer visible, the
1120 * refcount is decremented and checked for a zero value to delete it. With
1121 * streams in no monitor mode, it will now be safe to destroy the channel.
1122 */
1123 if (!channel->monitor) {
1124 channel->refcount = 1;
1125 }
1126
1127 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1128 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1129
1130 strncpy(channel->name, name, sizeof(channel->name));
1131 channel->name[sizeof(channel->name) - 1] = '\0';
1132
1133 if (root_shm_path) {
1134 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1135 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1136 }
1137 if (shm_path) {
1138 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1139 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1140 }
1141
1142 lttng_ht_node_init_u64(&channel->node, channel->key);
1143 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1144 channel->session_id);
1145
1146 channel->wait_fd = -1;
1147 CDS_INIT_LIST_HEAD(&channel->streams.head);
1148
1149 if (trace_chunk) {
1150 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1151 trace_chunk);
1152 if (ret) {
1153 goto error;
1154 }
1155 }
1156
1157 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1158
1159 end:
1160 lttng_trace_chunk_put(trace_chunk);
1161 return channel;
1162 error:
1163 consumer_del_channel(channel);
1164 channel = NULL;
1165 goto end;
1166 }
1167
1168 /*
1169 * Add a channel to the global list protected by a mutex.
1170 *
1171 * Always return 0 indicating success.
1172 */
1173 int consumer_add_channel(struct lttng_consumer_channel *channel,
1174 struct lttng_consumer_local_data *ctx)
1175 {
1176 pthread_mutex_lock(&consumer_data.lock);
1177 pthread_mutex_lock(&channel->lock);
1178 pthread_mutex_lock(&channel->timer_lock);
1179
1180 /*
1181 * This gives us a guarantee that the channel we are about to add to the
1182 * channel hash table will be unique. See this function comment on the why
1183 * we need to steel the channel key at this stage.
1184 */
1185 steal_channel_key(channel->key);
1186
1187 rcu_read_lock();
1188 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1189 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1190 &channel->channels_by_session_id_ht_node);
1191 rcu_read_unlock();
1192 channel->is_published = true;
1193
1194 pthread_mutex_unlock(&channel->timer_lock);
1195 pthread_mutex_unlock(&channel->lock);
1196 pthread_mutex_unlock(&consumer_data.lock);
1197
1198 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1199 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1200 }
1201
1202 return 0;
1203 }
1204
1205 /*
1206 * Allocate the pollfd structure and the local view of the out fds to avoid
1207 * doing a lookup in the linked list and concurrency issues when writing is
1208 * needed. Called with consumer_data.lock held.
1209 *
1210 * Returns the number of fds in the structures.
1211 */
1212 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1213 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1214 struct lttng_ht *ht, int *nb_inactive_fd)
1215 {
1216 int i = 0;
1217 struct lttng_ht_iter iter;
1218 struct lttng_consumer_stream *stream;
1219
1220 assert(ctx);
1221 assert(ht);
1222 assert(pollfd);
1223 assert(local_stream);
1224
1225 DBG("Updating poll fd array");
1226 *nb_inactive_fd = 0;
1227 rcu_read_lock();
1228 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1229 /*
1230 * Only active streams with an active end point can be added to the
1231 * poll set and local stream storage of the thread.
1232 *
1233 * There is a potential race here for endpoint_status to be updated
1234 * just after the check. However, this is OK since the stream(s) will
1235 * be deleted once the thread is notified that the end point state has
1236 * changed where this function will be called back again.
1237 *
1238 * We track the number of inactive FDs because they still need to be
1239 * closed by the polling thread after a wakeup on the data_pipe or
1240 * metadata_pipe.
1241 */
1242 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1243 (*nb_inactive_fd)++;
1244 continue;
1245 }
1246 /*
1247 * This clobbers way too much the debug output. Uncomment that if you
1248 * need it for debugging purposes.
1249 */
1250 (*pollfd)[i].fd = stream->wait_fd;
1251 (*pollfd)[i].events = POLLIN | POLLPRI;
1252 local_stream[i] = stream;
1253 i++;
1254 }
1255 rcu_read_unlock();
1256
1257 /*
1258 * Insert the consumer_data_pipe at the end of the array and don't
1259 * increment i so nb_fd is the number of real FD.
1260 */
1261 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1262 (*pollfd)[i].events = POLLIN | POLLPRI;
1263
1264 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1265 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1266 return i;
1267 }
1268
1269 /*
1270 * Poll on the should_quit pipe and the command socket return -1 on
1271 * error, 1 if should exit, 0 if data is available on the command socket
1272 */
1273 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1274 {
1275 int num_rdy;
1276
1277 restart:
1278 num_rdy = poll(consumer_sockpoll, 2, -1);
1279 if (num_rdy == -1) {
1280 /*
1281 * Restart interrupted system call.
1282 */
1283 if (errno == EINTR) {
1284 goto restart;
1285 }
1286 PERROR("Poll error");
1287 return -1;
1288 }
1289 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1290 DBG("consumer_should_quit wake up");
1291 return 1;
1292 }
1293 return 0;
1294 }
1295
1296 /*
1297 * Set the error socket.
1298 */
1299 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1300 int sock)
1301 {
1302 ctx->consumer_error_socket = sock;
1303 }
1304
1305 /*
1306 * Set the command socket path.
1307 */
1308 void lttng_consumer_set_command_sock_path(
1309 struct lttng_consumer_local_data *ctx, char *sock)
1310 {
1311 ctx->consumer_command_sock_path = sock;
1312 }
1313
1314 /*
1315 * Send return code to the session daemon.
1316 * If the socket is not defined, we return 0, it is not a fatal error
1317 */
1318 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1319 {
1320 if (ctx->consumer_error_socket > 0) {
1321 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1322 sizeof(enum lttcomm_sessiond_command));
1323 }
1324
1325 return 0;
1326 }
1327
1328 /*
1329 * Close all the tracefiles and stream fds and MUST be called when all
1330 * instances are destroyed i.e. when all threads were joined and are ended.
1331 */
1332 void lttng_consumer_cleanup(void)
1333 {
1334 struct lttng_ht_iter iter;
1335 struct lttng_consumer_channel *channel;
1336 unsigned int trace_chunks_left;
1337
1338 rcu_read_lock();
1339
1340 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1341 node.node) {
1342 consumer_del_channel(channel);
1343 }
1344
1345 rcu_read_unlock();
1346
1347 lttng_ht_destroy(consumer_data.channel_ht);
1348 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1349
1350 cleanup_relayd_ht();
1351
1352 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1353
1354 /*
1355 * This HT contains streams that are freed by either the metadata thread or
1356 * the data thread so we do *nothing* on the hash table and simply destroy
1357 * it.
1358 */
1359 lttng_ht_destroy(consumer_data.stream_list_ht);
1360
1361 /*
1362 * Trace chunks in the registry may still exist if the session
1363 * daemon has encountered an internal error and could not
1364 * tear down its sessions and/or trace chunks properly.
1365 *
1366 * Release the session daemon's implicit reference to any remaining
1367 * trace chunk and print an error if any trace chunk was found. Note
1368 * that there are _no_ legitimate cases for trace chunks to be left,
1369 * it is a leak. However, it can happen following a crash of the
1370 * session daemon and not emptying the registry would cause an assertion
1371 * to hit.
1372 */
1373 trace_chunks_left = lttng_trace_chunk_registry_put_each_chunk(
1374 consumer_data.chunk_registry);
1375 if (trace_chunks_left) {
1376 ERR("%u trace chunks are leaked by lttng-consumerd. "
1377 "This can be caused by an internal error of the session daemon.",
1378 trace_chunks_left);
1379 }
1380 /* Run all callbacks freeing each chunk. */
1381 rcu_barrier();
1382 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1383 }
1384
1385 /*
1386 * Called from signal handler.
1387 */
1388 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1389 {
1390 ssize_t ret;
1391
1392 CMM_STORE_SHARED(consumer_quit, 1);
1393 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1394 if (ret < 1) {
1395 PERROR("write consumer quit");
1396 }
1397
1398 DBG("Consumer flag that it should quit");
1399 }
1400
1401
1402 /*
1403 * Flush pending writes to trace output disk file.
1404 */
1405 static
1406 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1407 off_t orig_offset)
1408 {
1409 int ret;
1410 int outfd = stream->out_fd;
1411
1412 /*
1413 * This does a blocking write-and-wait on any page that belongs to the
1414 * subbuffer prior to the one we just wrote.
1415 * Don't care about error values, as these are just hints and ways to
1416 * limit the amount of page cache used.
1417 */
1418 if (orig_offset < stream->max_sb_size) {
1419 return;
1420 }
1421 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1422 stream->max_sb_size,
1423 SYNC_FILE_RANGE_WAIT_BEFORE
1424 | SYNC_FILE_RANGE_WRITE
1425 | SYNC_FILE_RANGE_WAIT_AFTER);
1426 /*
1427 * Give hints to the kernel about how we access the file:
1428 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1429 * we write it.
1430 *
1431 * We need to call fadvise again after the file grows because the
1432 * kernel does not seem to apply fadvise to non-existing parts of the
1433 * file.
1434 *
1435 * Call fadvise _after_ having waited for the page writeback to
1436 * complete because the dirty page writeback semantic is not well
1437 * defined. So it can be expected to lead to lower throughput in
1438 * streaming.
1439 */
1440 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1441 stream->max_sb_size, POSIX_FADV_DONTNEED);
1442 if (ret && ret != -ENOSYS) {
1443 errno = ret;
1444 PERROR("posix_fadvise on fd %i", outfd);
1445 }
1446 }
1447
1448 /*
1449 * Initialise the necessary environnement :
1450 * - create a new context
1451 * - create the poll_pipe
1452 * - create the should_quit pipe (for signal handler)
1453 * - create the thread pipe (for splice)
1454 *
1455 * Takes a function pointer as argument, this function is called when data is
1456 * available on a buffer. This function is responsible to do the
1457 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1458 * buffer configuration and then kernctl_put_next_subbuf at the end.
1459 *
1460 * Returns a pointer to the new context or NULL on error.
1461 */
1462 struct lttng_consumer_local_data *lttng_consumer_create(
1463 enum lttng_consumer_type type,
1464 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1465 struct lttng_consumer_local_data *ctx),
1466 int (*recv_channel)(struct lttng_consumer_channel *channel),
1467 int (*recv_stream)(struct lttng_consumer_stream *stream),
1468 int (*update_stream)(uint64_t stream_key, uint32_t state))
1469 {
1470 int ret;
1471 struct lttng_consumer_local_data *ctx;
1472
1473 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1474 consumer_data.type == type);
1475 consumer_data.type = type;
1476
1477 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1478 if (ctx == NULL) {
1479 PERROR("allocating context");
1480 goto error;
1481 }
1482
1483 ctx->consumer_error_socket = -1;
1484 ctx->consumer_metadata_socket = -1;
1485 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1486 /* assign the callbacks */
1487 ctx->on_buffer_ready = buffer_ready;
1488 ctx->on_recv_channel = recv_channel;
1489 ctx->on_recv_stream = recv_stream;
1490 ctx->on_update_stream = update_stream;
1491
1492 ctx->consumer_data_pipe = lttng_pipe_open(0);
1493 if (!ctx->consumer_data_pipe) {
1494 goto error_poll_pipe;
1495 }
1496
1497 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1498 if (!ctx->consumer_wakeup_pipe) {
1499 goto error_wakeup_pipe;
1500 }
1501
1502 ret = pipe(ctx->consumer_should_quit);
1503 if (ret < 0) {
1504 PERROR("Error creating recv pipe");
1505 goto error_quit_pipe;
1506 }
1507
1508 ret = pipe(ctx->consumer_channel_pipe);
1509 if (ret < 0) {
1510 PERROR("Error creating channel pipe");
1511 goto error_channel_pipe;
1512 }
1513
1514 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1515 if (!ctx->consumer_metadata_pipe) {
1516 goto error_metadata_pipe;
1517 }
1518
1519 ctx->channel_monitor_pipe = -1;
1520
1521 return ctx;
1522
1523 error_metadata_pipe:
1524 utils_close_pipe(ctx->consumer_channel_pipe);
1525 error_channel_pipe:
1526 utils_close_pipe(ctx->consumer_should_quit);
1527 error_quit_pipe:
1528 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1529 error_wakeup_pipe:
1530 lttng_pipe_destroy(ctx->consumer_data_pipe);
1531 error_poll_pipe:
1532 free(ctx);
1533 error:
1534 return NULL;
1535 }
1536
1537 /*
1538 * Iterate over all streams of the hashtable and free them properly.
1539 */
1540 static void destroy_data_stream_ht(struct lttng_ht *ht)
1541 {
1542 struct lttng_ht_iter iter;
1543 struct lttng_consumer_stream *stream;
1544
1545 if (ht == NULL) {
1546 return;
1547 }
1548
1549 rcu_read_lock();
1550 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1551 /*
1552 * Ignore return value since we are currently cleaning up so any error
1553 * can't be handled.
1554 */
1555 (void) consumer_del_stream(stream, ht);
1556 }
1557 rcu_read_unlock();
1558
1559 lttng_ht_destroy(ht);
1560 }
1561
1562 /*
1563 * Iterate over all streams of the metadata hashtable and free them
1564 * properly.
1565 */
1566 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1567 {
1568 struct lttng_ht_iter iter;
1569 struct lttng_consumer_stream *stream;
1570
1571 if (ht == NULL) {
1572 return;
1573 }
1574
1575 rcu_read_lock();
1576 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1577 /*
1578 * Ignore return value since we are currently cleaning up so any error
1579 * can't be handled.
1580 */
1581 (void) consumer_del_metadata_stream(stream, ht);
1582 }
1583 rcu_read_unlock();
1584
1585 lttng_ht_destroy(ht);
1586 }
1587
1588 /*
1589 * Close all fds associated with the instance and free the context.
1590 */
1591 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1592 {
1593 int ret;
1594
1595 DBG("Consumer destroying it. Closing everything.");
1596
1597 if (!ctx) {
1598 return;
1599 }
1600
1601 destroy_data_stream_ht(data_ht);
1602 destroy_metadata_stream_ht(metadata_ht);
1603
1604 ret = close(ctx->consumer_error_socket);
1605 if (ret) {
1606 PERROR("close");
1607 }
1608 ret = close(ctx->consumer_metadata_socket);
1609 if (ret) {
1610 PERROR("close");
1611 }
1612 utils_close_pipe(ctx->consumer_channel_pipe);
1613 lttng_pipe_destroy(ctx->consumer_data_pipe);
1614 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1615 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1616 utils_close_pipe(ctx->consumer_should_quit);
1617
1618 unlink(ctx->consumer_command_sock_path);
1619 free(ctx);
1620 }
1621
1622 /*
1623 * Write the metadata stream id on the specified file descriptor.
1624 */
1625 static int write_relayd_metadata_id(int fd,
1626 struct lttng_consumer_stream *stream,
1627 unsigned long padding)
1628 {
1629 ssize_t ret;
1630 struct lttcomm_relayd_metadata_payload hdr;
1631
1632 hdr.stream_id = htobe64(stream->relayd_stream_id);
1633 hdr.padding_size = htobe32(padding);
1634 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1635 if (ret < sizeof(hdr)) {
1636 /*
1637 * This error means that the fd's end is closed so ignore the PERROR
1638 * not to clubber the error output since this can happen in a normal
1639 * code path.
1640 */
1641 if (errno != EPIPE) {
1642 PERROR("write metadata stream id");
1643 }
1644 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1645 /*
1646 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1647 * handle writting the missing part so report that as an error and
1648 * don't lie to the caller.
1649 */
1650 ret = -1;
1651 goto end;
1652 }
1653 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1654 stream->relayd_stream_id, padding);
1655
1656 end:
1657 return (int) ret;
1658 }
1659
1660 /*
1661 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1662 * core function for writing trace buffers to either the local filesystem or
1663 * the network.
1664 *
1665 * It must be called with the stream and the channel lock held.
1666 *
1667 * Careful review MUST be put if any changes occur!
1668 *
1669 * Returns the number of bytes written
1670 */
1671 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1672 struct lttng_consumer_local_data *ctx,
1673 struct lttng_consumer_stream *stream,
1674 const struct lttng_buffer_view *buffer,
1675 unsigned long padding,
1676 struct ctf_packet_index *index)
1677 {
1678 ssize_t ret = 0;
1679 off_t orig_offset = stream->out_fd_offset;
1680 /* Default is on the disk */
1681 int outfd = stream->out_fd;
1682 struct consumer_relayd_sock_pair *relayd = NULL;
1683 unsigned int relayd_hang_up = 0;
1684 const size_t subbuf_content_size = buffer->size - padding;
1685 size_t write_len;
1686
1687 /* RCU lock for the relayd pointer */
1688 rcu_read_lock();
1689 assert(stream->net_seq_idx != (uint64_t) -1ULL ||
1690 stream->trace_chunk);
1691
1692 /* Flag that the current stream if set for network streaming. */
1693 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1694 relayd = consumer_find_relayd(stream->net_seq_idx);
1695 if (relayd == NULL) {
1696 ret = -EPIPE;
1697 goto end;
1698 }
1699 }
1700
1701 /* Handle stream on the relayd if the output is on the network */
1702 if (relayd) {
1703 unsigned long netlen = subbuf_content_size;
1704
1705 /*
1706 * Lock the control socket for the complete duration of the function
1707 * since from this point on we will use the socket.
1708 */
1709 if (stream->metadata_flag) {
1710 /* Metadata requires the control socket. */
1711 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1712 if (stream->reset_metadata_flag) {
1713 ret = relayd_reset_metadata(&relayd->control_sock,
1714 stream->relayd_stream_id,
1715 stream->metadata_version);
1716 if (ret < 0) {
1717 relayd_hang_up = 1;
1718 goto write_error;
1719 }
1720 stream->reset_metadata_flag = 0;
1721 }
1722 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1723 }
1724
1725 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1726 if (ret < 0) {
1727 relayd_hang_up = 1;
1728 goto write_error;
1729 }
1730 /* Use the returned socket. */
1731 outfd = ret;
1732
1733 /* Write metadata stream id before payload */
1734 if (stream->metadata_flag) {
1735 ret = write_relayd_metadata_id(outfd, stream, padding);
1736 if (ret < 0) {
1737 relayd_hang_up = 1;
1738 goto write_error;
1739 }
1740 }
1741
1742 write_len = subbuf_content_size;
1743 } else {
1744 /* No streaming; we have to write the full padding. */
1745 if (stream->metadata_flag && stream->reset_metadata_flag) {
1746 ret = utils_truncate_stream_file(stream->out_fd, 0);
1747 if (ret < 0) {
1748 ERR("Reset metadata file");
1749 goto end;
1750 }
1751 stream->reset_metadata_flag = 0;
1752 }
1753
1754 /*
1755 * Check if we need to change the tracefile before writing the packet.
1756 */
1757 if (stream->chan->tracefile_size > 0 &&
1758 (stream->tracefile_size_current + buffer->size) >
1759 stream->chan->tracefile_size) {
1760 ret = consumer_stream_rotate_output_files(stream);
1761 if (ret) {
1762 goto end;
1763 }
1764 outfd = stream->out_fd;
1765 orig_offset = 0;
1766 }
1767 stream->tracefile_size_current += buffer->size;
1768 if (index) {
1769 index->offset = htobe64(stream->out_fd_offset);
1770 }
1771
1772 write_len = buffer->size;
1773 }
1774
1775 /*
1776 * This call guarantee that len or less is returned. It's impossible to
1777 * receive a ret value that is bigger than len.
1778 */
1779 ret = lttng_write(outfd, buffer->data, write_len);
1780 DBG("Consumer mmap write() ret %zd (len %lu)", ret, write_len);
1781 if (ret < 0 || ((size_t) ret != write_len)) {
1782 /*
1783 * Report error to caller if nothing was written else at least send the
1784 * amount written.
1785 */
1786 if (ret < 0) {
1787 ret = -errno;
1788 }
1789 relayd_hang_up = 1;
1790
1791 /* Socket operation failed. We consider the relayd dead */
1792 if (errno == EPIPE) {
1793 /*
1794 * This is possible if the fd is closed on the other side
1795 * (outfd) or any write problem. It can be verbose a bit for a
1796 * normal execution if for instance the relayd is stopped
1797 * abruptly. This can happen so set this to a DBG statement.
1798 */
1799 DBG("Consumer mmap write detected relayd hang up");
1800 } else {
1801 /* Unhandled error, print it and stop function right now. */
1802 PERROR("Error in write mmap (ret %zd != write_len %zu)", ret,
1803 write_len);
1804 }
1805 goto write_error;
1806 }
1807 stream->output_written += ret;
1808
1809 /* This call is useless on a socket so better save a syscall. */
1810 if (!relayd) {
1811 /* This won't block, but will start writeout asynchronously */
1812 lttng_sync_file_range(outfd, stream->out_fd_offset, write_len,
1813 SYNC_FILE_RANGE_WRITE);
1814 stream->out_fd_offset += write_len;
1815 lttng_consumer_sync_trace_file(stream, orig_offset);
1816 }
1817
1818 write_error:
1819 /*
1820 * This is a special case that the relayd has closed its socket. Let's
1821 * cleanup the relayd object and all associated streams.
1822 */
1823 if (relayd && relayd_hang_up) {
1824 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1825 lttng_consumer_cleanup_relayd(relayd);
1826 }
1827
1828 end:
1829 /* Unlock only if ctrl socket used */
1830 if (relayd && stream->metadata_flag) {
1831 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1832 }
1833
1834 rcu_read_unlock();
1835 return ret;
1836 }
1837
1838 /*
1839 * Splice the data from the ring buffer to the tracefile.
1840 *
1841 * It must be called with the stream lock held.
1842 *
1843 * Returns the number of bytes spliced.
1844 */
1845 ssize_t lttng_consumer_on_read_subbuffer_splice(
1846 struct lttng_consumer_local_data *ctx,
1847 struct lttng_consumer_stream *stream, unsigned long len,
1848 unsigned long padding,
1849 struct ctf_packet_index *index)
1850 {
1851 ssize_t ret = 0, written = 0, ret_splice = 0;
1852 loff_t offset = 0;
1853 off_t orig_offset = stream->out_fd_offset;
1854 int fd = stream->wait_fd;
1855 /* Default is on the disk */
1856 int outfd = stream->out_fd;
1857 struct consumer_relayd_sock_pair *relayd = NULL;
1858 int *splice_pipe;
1859 unsigned int relayd_hang_up = 0;
1860
1861 switch (consumer_data.type) {
1862 case LTTNG_CONSUMER_KERNEL:
1863 break;
1864 case LTTNG_CONSUMER32_UST:
1865 case LTTNG_CONSUMER64_UST:
1866 /* Not supported for user space tracing */
1867 return -ENOSYS;
1868 default:
1869 ERR("Unknown consumer_data type");
1870 assert(0);
1871 }
1872
1873 /* RCU lock for the relayd pointer */
1874 rcu_read_lock();
1875
1876 /* Flag that the current stream if set for network streaming. */
1877 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1878 relayd = consumer_find_relayd(stream->net_seq_idx);
1879 if (relayd == NULL) {
1880 written = -ret;
1881 goto end;
1882 }
1883 }
1884 splice_pipe = stream->splice_pipe;
1885
1886 /* Write metadata stream id before payload */
1887 if (relayd) {
1888 unsigned long total_len = len;
1889
1890 if (stream->metadata_flag) {
1891 /*
1892 * Lock the control socket for the complete duration of the function
1893 * since from this point on we will use the socket.
1894 */
1895 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1896
1897 if (stream->reset_metadata_flag) {
1898 ret = relayd_reset_metadata(&relayd->control_sock,
1899 stream->relayd_stream_id,
1900 stream->metadata_version);
1901 if (ret < 0) {
1902 relayd_hang_up = 1;
1903 goto write_error;
1904 }
1905 stream->reset_metadata_flag = 0;
1906 }
1907 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1908 padding);
1909 if (ret < 0) {
1910 written = ret;
1911 relayd_hang_up = 1;
1912 goto write_error;
1913 }
1914
1915 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1916 }
1917
1918 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1919 if (ret < 0) {
1920 written = ret;
1921 relayd_hang_up = 1;
1922 goto write_error;
1923 }
1924 /* Use the returned socket. */
1925 outfd = ret;
1926 } else {
1927 /* No streaming, we have to set the len with the full padding */
1928 len += padding;
1929
1930 if (stream->metadata_flag && stream->reset_metadata_flag) {
1931 ret = utils_truncate_stream_file(stream->out_fd, 0);
1932 if (ret < 0) {
1933 ERR("Reset metadata file");
1934 goto end;
1935 }
1936 stream->reset_metadata_flag = 0;
1937 }
1938 /*
1939 * Check if we need to change the tracefile before writing the packet.
1940 */
1941 if (stream->chan->tracefile_size > 0 &&
1942 (stream->tracefile_size_current + len) >
1943 stream->chan->tracefile_size) {
1944 ret = consumer_stream_rotate_output_files(stream);
1945 if (ret < 0) {
1946 written = ret;
1947 goto end;
1948 }
1949 outfd = stream->out_fd;
1950 orig_offset = 0;
1951 }
1952 stream->tracefile_size_current += len;
1953 index->offset = htobe64(stream->out_fd_offset);
1954 }
1955
1956 while (len > 0) {
1957 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1958 (unsigned long)offset, len, fd, splice_pipe[1]);
1959 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1960 SPLICE_F_MOVE | SPLICE_F_MORE);
1961 DBG("splice chan to pipe, ret %zd", ret_splice);
1962 if (ret_splice < 0) {
1963 ret = errno;
1964 written = -ret;
1965 PERROR("Error in relay splice");
1966 goto splice_error;
1967 }
1968
1969 /* Handle stream on the relayd if the output is on the network */
1970 if (relayd && stream->metadata_flag) {
1971 size_t metadata_payload_size =
1972 sizeof(struct lttcomm_relayd_metadata_payload);
1973
1974 /* Update counter to fit the spliced data */
1975 ret_splice += metadata_payload_size;
1976 len += metadata_payload_size;
1977 /*
1978 * We do this so the return value can match the len passed as
1979 * argument to this function.
1980 */
1981 written -= metadata_payload_size;
1982 }
1983
1984 /* Splice data out */
1985 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1986 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1987 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1988 outfd, ret_splice);
1989 if (ret_splice < 0) {
1990 ret = errno;
1991 written = -ret;
1992 relayd_hang_up = 1;
1993 goto write_error;
1994 } else if (ret_splice > len) {
1995 /*
1996 * We don't expect this code path to be executed but you never know
1997 * so this is an extra protection agains a buggy splice().
1998 */
1999 ret = errno;
2000 written += ret_splice;
2001 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
2002 len);
2003 goto splice_error;
2004 } else {
2005 /* All good, update current len and continue. */
2006 len -= ret_splice;
2007 }
2008
2009 /* This call is useless on a socket so better save a syscall. */
2010 if (!relayd) {
2011 /* This won't block, but will start writeout asynchronously */
2012 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
2013 SYNC_FILE_RANGE_WRITE);
2014 stream->out_fd_offset += ret_splice;
2015 }
2016 stream->output_written += ret_splice;
2017 written += ret_splice;
2018 }
2019 if (!relayd) {
2020 lttng_consumer_sync_trace_file(stream, orig_offset);
2021 }
2022 goto end;
2023
2024 write_error:
2025 /*
2026 * This is a special case that the relayd has closed its socket. Let's
2027 * cleanup the relayd object and all associated streams.
2028 */
2029 if (relayd && relayd_hang_up) {
2030 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
2031 lttng_consumer_cleanup_relayd(relayd);
2032 /* Skip splice error so the consumer does not fail */
2033 goto end;
2034 }
2035
2036 splice_error:
2037 /* send the appropriate error description to sessiond */
2038 switch (ret) {
2039 case EINVAL:
2040 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
2041 break;
2042 case ENOMEM:
2043 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
2044 break;
2045 case ESPIPE:
2046 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
2047 break;
2048 }
2049
2050 end:
2051 if (relayd && stream->metadata_flag) {
2052 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2053 }
2054
2055 rcu_read_unlock();
2056 return written;
2057 }
2058
2059 /*
2060 * Sample the snapshot positions for a specific fd
2061 *
2062 * Returns 0 on success, < 0 on error
2063 */
2064 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2065 {
2066 switch (consumer_data.type) {
2067 case LTTNG_CONSUMER_KERNEL:
2068 return lttng_kconsumer_sample_snapshot_positions(stream);
2069 case LTTNG_CONSUMER32_UST:
2070 case LTTNG_CONSUMER64_UST:
2071 return lttng_ustconsumer_sample_snapshot_positions(stream);
2072 default:
2073 ERR("Unknown consumer_data type");
2074 assert(0);
2075 return -ENOSYS;
2076 }
2077 }
2078 /*
2079 * Take a snapshot for a specific fd
2080 *
2081 * Returns 0 on success, < 0 on error
2082 */
2083 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2084 {
2085 switch (consumer_data.type) {
2086 case LTTNG_CONSUMER_KERNEL:
2087 return lttng_kconsumer_take_snapshot(stream);
2088 case LTTNG_CONSUMER32_UST:
2089 case LTTNG_CONSUMER64_UST:
2090 return lttng_ustconsumer_take_snapshot(stream);
2091 default:
2092 ERR("Unknown consumer_data type");
2093 assert(0);
2094 return -ENOSYS;
2095 }
2096 }
2097
2098 /*
2099 * Get the produced position
2100 *
2101 * Returns 0 on success, < 0 on error
2102 */
2103 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2104 unsigned long *pos)
2105 {
2106 switch (consumer_data.type) {
2107 case LTTNG_CONSUMER_KERNEL:
2108 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2109 case LTTNG_CONSUMER32_UST:
2110 case LTTNG_CONSUMER64_UST:
2111 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2112 default:
2113 ERR("Unknown consumer_data type");
2114 assert(0);
2115 return -ENOSYS;
2116 }
2117 }
2118
2119 /*
2120 * Get the consumed position (free-running counter position in bytes).
2121 *
2122 * Returns 0 on success, < 0 on error
2123 */
2124 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2125 unsigned long *pos)
2126 {
2127 switch (consumer_data.type) {
2128 case LTTNG_CONSUMER_KERNEL:
2129 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2130 case LTTNG_CONSUMER32_UST:
2131 case LTTNG_CONSUMER64_UST:
2132 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2133 default:
2134 ERR("Unknown consumer_data type");
2135 assert(0);
2136 return -ENOSYS;
2137 }
2138 }
2139
2140 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2141 int sock, struct pollfd *consumer_sockpoll)
2142 {
2143 switch (consumer_data.type) {
2144 case LTTNG_CONSUMER_KERNEL:
2145 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2146 case LTTNG_CONSUMER32_UST:
2147 case LTTNG_CONSUMER64_UST:
2148 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2149 default:
2150 ERR("Unknown consumer_data type");
2151 assert(0);
2152 return -ENOSYS;
2153 }
2154 }
2155
2156 static
2157 void lttng_consumer_close_all_metadata(void)
2158 {
2159 switch (consumer_data.type) {
2160 case LTTNG_CONSUMER_KERNEL:
2161 /*
2162 * The Kernel consumer has a different metadata scheme so we don't
2163 * close anything because the stream will be closed by the session
2164 * daemon.
2165 */
2166 break;
2167 case LTTNG_CONSUMER32_UST:
2168 case LTTNG_CONSUMER64_UST:
2169 /*
2170 * Close all metadata streams. The metadata hash table is passed and
2171 * this call iterates over it by closing all wakeup fd. This is safe
2172 * because at this point we are sure that the metadata producer is
2173 * either dead or blocked.
2174 */
2175 lttng_ustconsumer_close_all_metadata(metadata_ht);
2176 break;
2177 default:
2178 ERR("Unknown consumer_data type");
2179 assert(0);
2180 }
2181 }
2182
2183 /*
2184 * Clean up a metadata stream and free its memory.
2185 */
2186 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2187 struct lttng_ht *ht)
2188 {
2189 struct lttng_consumer_channel *channel = NULL;
2190 bool free_channel = false;
2191
2192 assert(stream);
2193 /*
2194 * This call should NEVER receive regular stream. It must always be
2195 * metadata stream and this is crucial for data structure synchronization.
2196 */
2197 assert(stream->metadata_flag);
2198
2199 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2200
2201 pthread_mutex_lock(&consumer_data.lock);
2202 /*
2203 * Note that this assumes that a stream's channel is never changed and
2204 * that the stream's lock doesn't need to be taken to sample its
2205 * channel.
2206 */
2207 channel = stream->chan;
2208 pthread_mutex_lock(&channel->lock);
2209 pthread_mutex_lock(&stream->lock);
2210 if (channel->metadata_cache) {
2211 /* Only applicable to userspace consumers. */
2212 pthread_mutex_lock(&channel->metadata_cache->lock);
2213 }
2214
2215 /* Remove any reference to that stream. */
2216 consumer_stream_delete(stream, ht);
2217
2218 /* Close down everything including the relayd if one. */
2219 consumer_stream_close(stream);
2220 /* Destroy tracer buffers of the stream. */
2221 consumer_stream_destroy_buffers(stream);
2222
2223 /* Atomically decrement channel refcount since other threads can use it. */
2224 if (!uatomic_sub_return(&channel->refcount, 1)
2225 && !uatomic_read(&channel->nb_init_stream_left)) {
2226 /* Go for channel deletion! */
2227 free_channel = true;
2228 }
2229 stream->chan = NULL;
2230
2231 /*
2232 * Nullify the stream reference so it is not used after deletion. The
2233 * channel lock MUST be acquired before being able to check for a NULL
2234 * pointer value.
2235 */
2236 channel->metadata_stream = NULL;
2237
2238 if (channel->metadata_cache) {
2239 pthread_mutex_unlock(&channel->metadata_cache->lock);
2240 }
2241 pthread_mutex_unlock(&stream->lock);
2242 pthread_mutex_unlock(&channel->lock);
2243 pthread_mutex_unlock(&consumer_data.lock);
2244
2245 if (free_channel) {
2246 consumer_del_channel(channel);
2247 }
2248
2249 lttng_trace_chunk_put(stream->trace_chunk);
2250 stream->trace_chunk = NULL;
2251 consumer_stream_free(stream);
2252 }
2253
2254 /*
2255 * Action done with the metadata stream when adding it to the consumer internal
2256 * data structures to handle it.
2257 */
2258 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2259 {
2260 struct lttng_ht *ht = metadata_ht;
2261 struct lttng_ht_iter iter;
2262 struct lttng_ht_node_u64 *node;
2263
2264 assert(stream);
2265 assert(ht);
2266
2267 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2268
2269 pthread_mutex_lock(&consumer_data.lock);
2270 pthread_mutex_lock(&stream->chan->lock);
2271 pthread_mutex_lock(&stream->chan->timer_lock);
2272 pthread_mutex_lock(&stream->lock);
2273
2274 /*
2275 * From here, refcounts are updated so be _careful_ when returning an error
2276 * after this point.
2277 */
2278
2279 rcu_read_lock();
2280
2281 /*
2282 * Lookup the stream just to make sure it does not exist in our internal
2283 * state. This should NEVER happen.
2284 */
2285 lttng_ht_lookup(ht, &stream->key, &iter);
2286 node = lttng_ht_iter_get_node_u64(&iter);
2287 assert(!node);
2288
2289 /*
2290 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2291 * in terms of destroying the associated channel, because the action that
2292 * causes the count to become 0 also causes a stream to be added. The
2293 * channel deletion will thus be triggered by the following removal of this
2294 * stream.
2295 */
2296 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2297 /* Increment refcount before decrementing nb_init_stream_left */
2298 cmm_smp_wmb();
2299 uatomic_dec(&stream->chan->nb_init_stream_left);
2300 }
2301
2302 lttng_ht_add_unique_u64(ht, &stream->node);
2303
2304 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2305 &stream->node_channel_id);
2306
2307 /*
2308 * Add stream to the stream_list_ht of the consumer data. No need to steal
2309 * the key since the HT does not use it and we allow to add redundant keys
2310 * into this table.
2311 */
2312 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2313
2314 rcu_read_unlock();
2315
2316 pthread_mutex_unlock(&stream->lock);
2317 pthread_mutex_unlock(&stream->chan->lock);
2318 pthread_mutex_unlock(&stream->chan->timer_lock);
2319 pthread_mutex_unlock(&consumer_data.lock);
2320 }
2321
2322 /*
2323 * Delete data stream that are flagged for deletion (endpoint_status).
2324 */
2325 static void validate_endpoint_status_data_stream(void)
2326 {
2327 struct lttng_ht_iter iter;
2328 struct lttng_consumer_stream *stream;
2329
2330 DBG("Consumer delete flagged data stream");
2331
2332 rcu_read_lock();
2333 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2334 /* Validate delete flag of the stream */
2335 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2336 continue;
2337 }
2338 /* Delete it right now */
2339 consumer_del_stream(stream, data_ht);
2340 }
2341 rcu_read_unlock();
2342 }
2343
2344 /*
2345 * Delete metadata stream that are flagged for deletion (endpoint_status).
2346 */
2347 static void validate_endpoint_status_metadata_stream(
2348 struct lttng_poll_event *pollset)
2349 {
2350 struct lttng_ht_iter iter;
2351 struct lttng_consumer_stream *stream;
2352
2353 DBG("Consumer delete flagged metadata stream");
2354
2355 assert(pollset);
2356
2357 rcu_read_lock();
2358 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2359 /* Validate delete flag of the stream */
2360 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2361 continue;
2362 }
2363 /*
2364 * Remove from pollset so the metadata thread can continue without
2365 * blocking on a deleted stream.
2366 */
2367 lttng_poll_del(pollset, stream->wait_fd);
2368
2369 /* Delete it right now */
2370 consumer_del_metadata_stream(stream, metadata_ht);
2371 }
2372 rcu_read_unlock();
2373 }
2374
2375 /*
2376 * Thread polls on metadata file descriptor and write them on disk or on the
2377 * network.
2378 */
2379 void *consumer_thread_metadata_poll(void *data)
2380 {
2381 int ret, i, pollfd, err = -1;
2382 uint32_t revents, nb_fd;
2383 struct lttng_consumer_stream *stream = NULL;
2384 struct lttng_ht_iter iter;
2385 struct lttng_ht_node_u64 *node;
2386 struct lttng_poll_event events;
2387 struct lttng_consumer_local_data *ctx = data;
2388 ssize_t len;
2389
2390 rcu_register_thread();
2391
2392 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2393
2394 if (testpoint(consumerd_thread_metadata)) {
2395 goto error_testpoint;
2396 }
2397
2398 health_code_update();
2399
2400 DBG("Thread metadata poll started");
2401
2402 /* Size is set to 1 for the consumer_metadata pipe */
2403 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2404 if (ret < 0) {
2405 ERR("Poll set creation failed");
2406 goto end_poll;
2407 }
2408
2409 ret = lttng_poll_add(&events,
2410 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2411 if (ret < 0) {
2412 goto end;
2413 }
2414
2415 /* Main loop */
2416 DBG("Metadata main loop started");
2417
2418 while (1) {
2419 restart:
2420 health_code_update();
2421 health_poll_entry();
2422 DBG("Metadata poll wait");
2423 ret = lttng_poll_wait(&events, -1);
2424 DBG("Metadata poll return from wait with %d fd(s)",
2425 LTTNG_POLL_GETNB(&events));
2426 health_poll_exit();
2427 DBG("Metadata event caught in thread");
2428 if (ret < 0) {
2429 if (errno == EINTR) {
2430 ERR("Poll EINTR caught");
2431 goto restart;
2432 }
2433 if (LTTNG_POLL_GETNB(&events) == 0) {
2434 err = 0; /* All is OK */
2435 }
2436 goto end;
2437 }
2438
2439 nb_fd = ret;
2440
2441 /* From here, the event is a metadata wait fd */
2442 for (i = 0; i < nb_fd; i++) {
2443 health_code_update();
2444
2445 revents = LTTNG_POLL_GETEV(&events, i);
2446 pollfd = LTTNG_POLL_GETFD(&events, i);
2447
2448 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2449 if (revents & LPOLLIN) {
2450 ssize_t pipe_len;
2451
2452 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2453 &stream, sizeof(stream));
2454 if (pipe_len < sizeof(stream)) {
2455 if (pipe_len < 0) {
2456 PERROR("read metadata stream");
2457 }
2458 /*
2459 * Remove the pipe from the poll set and continue the loop
2460 * since their might be data to consume.
2461 */
2462 lttng_poll_del(&events,
2463 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2464 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2465 continue;
2466 }
2467
2468 /* A NULL stream means that the state has changed. */
2469 if (stream == NULL) {
2470 /* Check for deleted streams. */
2471 validate_endpoint_status_metadata_stream(&events);
2472 goto restart;
2473 }
2474
2475 DBG("Adding metadata stream %d to poll set",
2476 stream->wait_fd);
2477
2478 /* Add metadata stream to the global poll events list */
2479 lttng_poll_add(&events, stream->wait_fd,
2480 LPOLLIN | LPOLLPRI | LPOLLHUP);
2481 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2482 DBG("Metadata thread pipe hung up");
2483 /*
2484 * Remove the pipe from the poll set and continue the loop
2485 * since their might be data to consume.
2486 */
2487 lttng_poll_del(&events,
2488 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2489 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2490 continue;
2491 } else {
2492 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2493 goto end;
2494 }
2495
2496 /* Handle other stream */
2497 continue;
2498 }
2499
2500 rcu_read_lock();
2501 {
2502 uint64_t tmp_id = (uint64_t) pollfd;
2503
2504 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2505 }
2506 node = lttng_ht_iter_get_node_u64(&iter);
2507 assert(node);
2508
2509 stream = caa_container_of(node, struct lttng_consumer_stream,
2510 node);
2511
2512 if (revents & (LPOLLIN | LPOLLPRI)) {
2513 /* Get the data out of the metadata file descriptor */
2514 DBG("Metadata available on fd %d", pollfd);
2515 assert(stream->wait_fd == pollfd);
2516
2517 do {
2518 health_code_update();
2519
2520 len = ctx->on_buffer_ready(stream, ctx);
2521 /*
2522 * We don't check the return value here since if we get
2523 * a negative len, it means an error occurred thus we
2524 * simply remove it from the poll set and free the
2525 * stream.
2526 */
2527 } while (len > 0);
2528
2529 /* It's ok to have an unavailable sub-buffer */
2530 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2531 /* Clean up stream from consumer and free it. */
2532 lttng_poll_del(&events, stream->wait_fd);
2533 consumer_del_metadata_stream(stream, metadata_ht);
2534 }
2535 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2536 DBG("Metadata fd %d is hup|err.", pollfd);
2537 if (!stream->hangup_flush_done
2538 && (consumer_data.type == LTTNG_CONSUMER32_UST
2539 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2540 DBG("Attempting to flush and consume the UST buffers");
2541 lttng_ustconsumer_on_stream_hangup(stream);
2542
2543 /* We just flushed the stream now read it. */
2544 do {
2545 health_code_update();
2546
2547 len = ctx->on_buffer_ready(stream, ctx);
2548 /*
2549 * We don't check the return value here since if we get
2550 * a negative len, it means an error occurred thus we
2551 * simply remove it from the poll set and free the
2552 * stream.
2553 */
2554 } while (len > 0);
2555 }
2556
2557 lttng_poll_del(&events, stream->wait_fd);
2558 /*
2559 * This call update the channel states, closes file descriptors
2560 * and securely free the stream.
2561 */
2562 consumer_del_metadata_stream(stream, metadata_ht);
2563 } else {
2564 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2565 rcu_read_unlock();
2566 goto end;
2567 }
2568 /* Release RCU lock for the stream looked up */
2569 rcu_read_unlock();
2570 }
2571 }
2572
2573 /* All is OK */
2574 err = 0;
2575 end:
2576 DBG("Metadata poll thread exiting");
2577
2578 lttng_poll_clean(&events);
2579 end_poll:
2580 error_testpoint:
2581 if (err) {
2582 health_error();
2583 ERR("Health error occurred in %s", __func__);
2584 }
2585 health_unregister(health_consumerd);
2586 rcu_unregister_thread();
2587 return NULL;
2588 }
2589
2590 /*
2591 * This thread polls the fds in the set to consume the data and write
2592 * it to tracefile if necessary.
2593 */
2594 void *consumer_thread_data_poll(void *data)
2595 {
2596 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2597 struct pollfd *pollfd = NULL;
2598 /* local view of the streams */
2599 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2600 /* local view of consumer_data.fds_count */
2601 int nb_fd = 0;
2602 /* 2 for the consumer_data_pipe and wake up pipe */
2603 const int nb_pipes_fd = 2;
2604 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2605 int nb_inactive_fd = 0;
2606 struct lttng_consumer_local_data *ctx = data;
2607 ssize_t len;
2608
2609 rcu_register_thread();
2610
2611 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2612
2613 if (testpoint(consumerd_thread_data)) {
2614 goto error_testpoint;
2615 }
2616
2617 health_code_update();
2618
2619 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2620 if (local_stream == NULL) {
2621 PERROR("local_stream malloc");
2622 goto end;
2623 }
2624
2625 while (1) {
2626 health_code_update();
2627
2628 high_prio = 0;
2629 num_hup = 0;
2630
2631 /*
2632 * the fds set has been updated, we need to update our
2633 * local array as well
2634 */
2635 pthread_mutex_lock(&consumer_data.lock);
2636 if (consumer_data.need_update) {
2637 free(pollfd);
2638 pollfd = NULL;
2639
2640 free(local_stream);
2641 local_stream = NULL;
2642
2643 /* Allocate for all fds */
2644 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2645 if (pollfd == NULL) {
2646 PERROR("pollfd malloc");
2647 pthread_mutex_unlock(&consumer_data.lock);
2648 goto end;
2649 }
2650
2651 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2652 sizeof(struct lttng_consumer_stream *));
2653 if (local_stream == NULL) {
2654 PERROR("local_stream malloc");
2655 pthread_mutex_unlock(&consumer_data.lock);
2656 goto end;
2657 }
2658 ret = update_poll_array(ctx, &pollfd, local_stream,
2659 data_ht, &nb_inactive_fd);
2660 if (ret < 0) {
2661 ERR("Error in allocating pollfd or local_outfds");
2662 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2663 pthread_mutex_unlock(&consumer_data.lock);
2664 goto end;
2665 }
2666 nb_fd = ret;
2667 consumer_data.need_update = 0;
2668 }
2669 pthread_mutex_unlock(&consumer_data.lock);
2670
2671 /* No FDs and consumer_quit, consumer_cleanup the thread */
2672 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2673 CMM_LOAD_SHARED(consumer_quit) == 1) {
2674 err = 0; /* All is OK */
2675 goto end;
2676 }
2677 /* poll on the array of fds */
2678 restart:
2679 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2680 if (testpoint(consumerd_thread_data_poll)) {
2681 goto end;
2682 }
2683 health_poll_entry();
2684 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2685 health_poll_exit();
2686 DBG("poll num_rdy : %d", num_rdy);
2687 if (num_rdy == -1) {
2688 /*
2689 * Restart interrupted system call.
2690 */
2691 if (errno == EINTR) {
2692 goto restart;
2693 }
2694 PERROR("Poll error");
2695 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2696 goto end;
2697 } else if (num_rdy == 0) {
2698 DBG("Polling thread timed out");
2699 goto end;
2700 }
2701
2702 if (caa_unlikely(data_consumption_paused)) {
2703 DBG("Data consumption paused, sleeping...");
2704 sleep(1);
2705 goto restart;
2706 }
2707
2708 /*
2709 * If the consumer_data_pipe triggered poll go directly to the
2710 * beginning of the loop to update the array. We want to prioritize
2711 * array update over low-priority reads.
2712 */
2713 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2714 ssize_t pipe_readlen;
2715
2716 DBG("consumer_data_pipe wake up");
2717 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2718 &new_stream, sizeof(new_stream));
2719 if (pipe_readlen < sizeof(new_stream)) {
2720 PERROR("Consumer data pipe");
2721 /* Continue so we can at least handle the current stream(s). */
2722 continue;
2723 }
2724
2725 /*
2726 * If the stream is NULL, just ignore it. It's also possible that
2727 * the sessiond poll thread changed the consumer_quit state and is
2728 * waking us up to test it.
2729 */
2730 if (new_stream == NULL) {
2731 validate_endpoint_status_data_stream();
2732 continue;
2733 }
2734
2735 /* Continue to update the local streams and handle prio ones */
2736 continue;
2737 }
2738
2739 /* Handle wakeup pipe. */
2740 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2741 char dummy;
2742 ssize_t pipe_readlen;
2743
2744 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2745 sizeof(dummy));
2746 if (pipe_readlen < 0) {
2747 PERROR("Consumer data wakeup pipe");
2748 }
2749 /* We've been awakened to handle stream(s). */
2750 ctx->has_wakeup = 0;
2751 }
2752
2753 /* Take care of high priority channels first. */
2754 for (i = 0; i < nb_fd; i++) {
2755 health_code_update();
2756
2757 if (local_stream[i] == NULL) {
2758 continue;
2759 }
2760 if (pollfd[i].revents & POLLPRI) {
2761 DBG("Urgent read on fd %d", pollfd[i].fd);
2762 high_prio = 1;
2763 len = ctx->on_buffer_ready(local_stream[i], ctx);
2764 /* it's ok to have an unavailable sub-buffer */
2765 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2766 /* Clean the stream and free it. */
2767 consumer_del_stream(local_stream[i], data_ht);
2768 local_stream[i] = NULL;
2769 } else if (len > 0) {
2770 local_stream[i]->data_read = 1;
2771 }
2772 }
2773 }
2774
2775 /*
2776 * If we read high prio channel in this loop, try again
2777 * for more high prio data.
2778 */
2779 if (high_prio) {
2780 continue;
2781 }
2782
2783 /* Take care of low priority channels. */
2784 for (i = 0; i < nb_fd; i++) {
2785 health_code_update();
2786
2787 if (local_stream[i] == NULL) {
2788 continue;
2789 }
2790 if ((pollfd[i].revents & POLLIN) ||
2791 local_stream[i]->hangup_flush_done ||
2792 local_stream[i]->has_data) {
2793 DBG("Normal read on fd %d", pollfd[i].fd);
2794 len = ctx->on_buffer_ready(local_stream[i], ctx);
2795 /* it's ok to have an unavailable sub-buffer */
2796 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2797 /* Clean the stream and free it. */
2798 consumer_del_stream(local_stream[i], data_ht);
2799 local_stream[i] = NULL;
2800 } else if (len > 0) {
2801 local_stream[i]->data_read = 1;
2802 }
2803 }
2804 }
2805
2806 /* Handle hangup and errors */
2807 for (i = 0; i < nb_fd; i++) {
2808 health_code_update();
2809
2810 if (local_stream[i] == NULL) {
2811 continue;
2812 }
2813 if (!local_stream[i]->hangup_flush_done
2814 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2815 && (consumer_data.type == LTTNG_CONSUMER32_UST
2816 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2817 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2818 pollfd[i].fd);
2819 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2820 /* Attempt read again, for the data we just flushed. */
2821 local_stream[i]->data_read = 1;
2822 }
2823 /*
2824 * If the poll flag is HUP/ERR/NVAL and we have
2825 * read no data in this pass, we can remove the
2826 * stream from its hash table.
2827 */
2828 if ((pollfd[i].revents & POLLHUP)) {
2829 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2830 if (!local_stream[i]->data_read) {
2831 consumer_del_stream(local_stream[i], data_ht);
2832 local_stream[i] = NULL;
2833 num_hup++;
2834 }
2835 } else if (pollfd[i].revents & POLLERR) {
2836 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2837 if (!local_stream[i]->data_read) {
2838 consumer_del_stream(local_stream[i], data_ht);
2839 local_stream[i] = NULL;
2840 num_hup++;
2841 }
2842 } else if (pollfd[i].revents & POLLNVAL) {
2843 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2844 if (!local_stream[i]->data_read) {
2845 consumer_del_stream(local_stream[i], data_ht);
2846 local_stream[i] = NULL;
2847 num_hup++;
2848 }
2849 }
2850 if (local_stream[i] != NULL) {
2851 local_stream[i]->data_read = 0;
2852 }
2853 }
2854 }
2855 /* All is OK */
2856 err = 0;
2857 end:
2858 DBG("polling thread exiting");
2859 free(pollfd);
2860 free(local_stream);
2861
2862 /*
2863 * Close the write side of the pipe so epoll_wait() in
2864 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2865 * read side of the pipe. If we close them both, epoll_wait strangely does
2866 * not return and could create a endless wait period if the pipe is the
2867 * only tracked fd in the poll set. The thread will take care of closing
2868 * the read side.
2869 */
2870 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2871
2872 error_testpoint:
2873 if (err) {
2874 health_error();
2875 ERR("Health error occurred in %s", __func__);
2876 }
2877 health_unregister(health_consumerd);
2878
2879 rcu_unregister_thread();
2880 return NULL;
2881 }
2882
2883 /*
2884 * Close wake-up end of each stream belonging to the channel. This will
2885 * allow the poll() on the stream read-side to detect when the
2886 * write-side (application) finally closes them.
2887 */
2888 static
2889 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2890 {
2891 struct lttng_ht *ht;
2892 struct lttng_consumer_stream *stream;
2893 struct lttng_ht_iter iter;
2894
2895 ht = consumer_data.stream_per_chan_id_ht;
2896
2897 rcu_read_lock();
2898 cds_lfht_for_each_entry_duplicate(ht->ht,
2899 ht->hash_fct(&channel->key, lttng_ht_seed),
2900 ht->match_fct, &channel->key,
2901 &iter.iter, stream, node_channel_id.node) {
2902 /*
2903 * Protect against teardown with mutex.
2904 */
2905 pthread_mutex_lock(&stream->lock);
2906 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2907 goto next;
2908 }
2909 switch (consumer_data.type) {
2910 case LTTNG_CONSUMER_KERNEL:
2911 break;
2912 case LTTNG_CONSUMER32_UST:
2913 case LTTNG_CONSUMER64_UST:
2914 if (stream->metadata_flag) {
2915 /* Safe and protected by the stream lock. */
2916 lttng_ustconsumer_close_metadata(stream->chan);
2917 } else {
2918 /*
2919 * Note: a mutex is taken internally within
2920 * liblttng-ust-ctl to protect timer wakeup_fd
2921 * use from concurrent close.
2922 */
2923 lttng_ustconsumer_close_stream_wakeup(stream);
2924 }
2925 break;
2926 default:
2927 ERR("Unknown consumer_data type");
2928 assert(0);
2929 }
2930 next:
2931 pthread_mutex_unlock(&stream->lock);
2932 }
2933 rcu_read_unlock();
2934 }
2935
2936 static void destroy_channel_ht(struct lttng_ht *ht)
2937 {
2938 struct lttng_ht_iter iter;
2939 struct lttng_consumer_channel *channel;
2940 int ret;
2941
2942 if (ht == NULL) {
2943 return;
2944 }
2945
2946 rcu_read_lock();
2947 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2948 ret = lttng_ht_del(ht, &iter);
2949 assert(ret != 0);
2950 }
2951 rcu_read_unlock();
2952
2953 lttng_ht_destroy(ht);
2954 }
2955
2956 /*
2957 * This thread polls the channel fds to detect when they are being
2958 * closed. It closes all related streams if the channel is detected as
2959 * closed. It is currently only used as a shim layer for UST because the
2960 * consumerd needs to keep the per-stream wakeup end of pipes open for
2961 * periodical flush.
2962 */
2963 void *consumer_thread_channel_poll(void *data)
2964 {
2965 int ret, i, pollfd, err = -1;
2966 uint32_t revents, nb_fd;
2967 struct lttng_consumer_channel *chan = NULL;
2968 struct lttng_ht_iter iter;
2969 struct lttng_ht_node_u64 *node;
2970 struct lttng_poll_event events;
2971 struct lttng_consumer_local_data *ctx = data;
2972 struct lttng_ht *channel_ht;
2973
2974 rcu_register_thread();
2975
2976 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2977
2978 if (testpoint(consumerd_thread_channel)) {
2979 goto error_testpoint;
2980 }
2981
2982 health_code_update();
2983
2984 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2985 if (!channel_ht) {
2986 /* ENOMEM at this point. Better to bail out. */
2987 goto end_ht;
2988 }
2989
2990 DBG("Thread channel poll started");
2991
2992 /* Size is set to 1 for the consumer_channel pipe */
2993 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2994 if (ret < 0) {
2995 ERR("Poll set creation failed");
2996 goto end_poll;
2997 }
2998
2999 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
3000 if (ret < 0) {
3001 goto end;
3002 }
3003
3004 /* Main loop */
3005 DBG("Channel main loop started");
3006
3007 while (1) {
3008 restart:
3009 health_code_update();
3010 DBG("Channel poll wait");
3011 health_poll_entry();
3012 ret = lttng_poll_wait(&events, -1);
3013 DBG("Channel poll return from wait with %d fd(s)",
3014 LTTNG_POLL_GETNB(&events));
3015 health_poll_exit();
3016 DBG("Channel event caught in thread");
3017 if (ret < 0) {
3018 if (errno == EINTR) {
3019 ERR("Poll EINTR caught");
3020 goto restart;
3021 }
3022 if (LTTNG_POLL_GETNB(&events) == 0) {
3023 err = 0; /* All is OK */
3024 }
3025 goto end;
3026 }
3027
3028 nb_fd = ret;
3029
3030 /* From here, the event is a channel wait fd */
3031 for (i = 0; i < nb_fd; i++) {
3032 health_code_update();
3033
3034 revents = LTTNG_POLL_GETEV(&events, i);
3035 pollfd = LTTNG_POLL_GETFD(&events, i);
3036
3037 if (pollfd == ctx->consumer_channel_pipe[0]) {
3038 if (revents & LPOLLIN) {
3039 enum consumer_channel_action action;
3040 uint64_t key;
3041
3042 ret = read_channel_pipe(ctx, &chan, &key, &action);
3043 if (ret <= 0) {
3044 if (ret < 0) {
3045 ERR("Error reading channel pipe");
3046 }
3047 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3048 continue;
3049 }
3050
3051 switch (action) {
3052 case CONSUMER_CHANNEL_ADD:
3053 DBG("Adding channel %d to poll set",
3054 chan->wait_fd);
3055
3056 lttng_ht_node_init_u64(&chan->wait_fd_node,
3057 chan->wait_fd);
3058 rcu_read_lock();
3059 lttng_ht_add_unique_u64(channel_ht,
3060 &chan->wait_fd_node);
3061 rcu_read_unlock();
3062 /* Add channel to the global poll events list */
3063 lttng_poll_add(&events, chan->wait_fd,
3064 LPOLLERR | LPOLLHUP);
3065 break;
3066 case CONSUMER_CHANNEL_DEL:
3067 {
3068 /*
3069 * This command should never be called if the channel
3070 * has streams monitored by either the data or metadata
3071 * thread. The consumer only notify this thread with a
3072 * channel del. command if it receives a destroy
3073 * channel command from the session daemon that send it
3074 * if a command prior to the GET_CHANNEL failed.
3075 */
3076
3077 rcu_read_lock();
3078 chan = consumer_find_channel(key);
3079 if (!chan) {
3080 rcu_read_unlock();
3081 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3082 break;
3083 }
3084 lttng_poll_del(&events, chan->wait_fd);
3085 iter.iter.node = &chan->wait_fd_node.node;
3086 ret = lttng_ht_del(channel_ht, &iter);
3087 assert(ret == 0);
3088
3089 switch (consumer_data.type) {
3090 case LTTNG_CONSUMER_KERNEL:
3091 break;
3092 case LTTNG_CONSUMER32_UST:
3093 case LTTNG_CONSUMER64_UST:
3094 health_code_update();
3095 /* Destroy streams that might have been left in the stream list. */
3096 clean_channel_stream_list(chan);
3097 break;
3098 default:
3099 ERR("Unknown consumer_data type");
3100 assert(0);
3101 }
3102
3103 /*
3104 * Release our own refcount. Force channel deletion even if
3105 * streams were not initialized.
3106 */
3107 if (!uatomic_sub_return(&chan->refcount, 1)) {
3108 consumer_del_channel(chan);
3109 }
3110 rcu_read_unlock();
3111 goto restart;
3112 }
3113 case CONSUMER_CHANNEL_QUIT:
3114 /*
3115 * Remove the pipe from the poll set and continue the loop
3116 * since their might be data to consume.
3117 */
3118 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3119 continue;
3120 default:
3121 ERR("Unknown action");
3122 break;
3123 }
3124 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3125 DBG("Channel thread pipe hung up");
3126 /*
3127 * Remove the pipe from the poll set and continue the loop
3128 * since their might be data to consume.
3129 */
3130 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3131 continue;
3132 } else {
3133 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3134 goto end;
3135 }
3136
3137 /* Handle other stream */
3138 continue;
3139 }
3140
3141 rcu_read_lock();
3142 {
3143 uint64_t tmp_id = (uint64_t) pollfd;
3144
3145 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3146 }
3147 node = lttng_ht_iter_get_node_u64(&iter);
3148 assert(node);
3149
3150 chan = caa_container_of(node, struct lttng_consumer_channel,
3151 wait_fd_node);
3152
3153 /* Check for error event */
3154 if (revents & (LPOLLERR | LPOLLHUP)) {
3155 DBG("Channel fd %d is hup|err.", pollfd);
3156
3157 lttng_poll_del(&events, chan->wait_fd);
3158 ret = lttng_ht_del(channel_ht, &iter);
3159 assert(ret == 0);
3160
3161 /*
3162 * This will close the wait fd for each stream associated to
3163 * this channel AND monitored by the data/metadata thread thus
3164 * will be clean by the right thread.
3165 */
3166 consumer_close_channel_streams(chan);
3167
3168 /* Release our own refcount */
3169 if (!uatomic_sub_return(&chan->refcount, 1)
3170 && !uatomic_read(&chan->nb_init_stream_left)) {
3171 consumer_del_channel(chan);
3172 }
3173 } else {
3174 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3175 rcu_read_unlock();
3176 goto end;
3177 }
3178
3179 /* Release RCU lock for the channel looked up */
3180 rcu_read_unlock();
3181 }
3182 }
3183
3184 /* All is OK */
3185 err = 0;
3186 end:
3187 lttng_poll_clean(&events);
3188 end_poll:
3189 destroy_channel_ht(channel_ht);
3190 end_ht:
3191 error_testpoint:
3192 DBG("Channel poll thread exiting");
3193 if (err) {
3194 health_error();
3195 ERR("Health error occurred in %s", __func__);
3196 }
3197 health_unregister(health_consumerd);
3198 rcu_unregister_thread();
3199 return NULL;
3200 }
3201
3202 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3203 struct pollfd *sockpoll, int client_socket)
3204 {
3205 int ret;
3206
3207 assert(ctx);
3208 assert(sockpoll);
3209
3210 ret = lttng_consumer_poll_socket(sockpoll);
3211 if (ret) {
3212 goto error;
3213 }
3214 DBG("Metadata connection on client_socket");
3215
3216 /* Blocking call, waiting for transmission */
3217 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3218 if (ctx->consumer_metadata_socket < 0) {
3219 WARN("On accept metadata");
3220 ret = -1;
3221 goto error;
3222 }
3223 ret = 0;
3224
3225 error:
3226 return ret;
3227 }
3228
3229 /*
3230 * This thread listens on the consumerd socket and receives the file
3231 * descriptors from the session daemon.
3232 */
3233 void *consumer_thread_sessiond_poll(void *data)
3234 {
3235 int sock = -1, client_socket, ret, err = -1;
3236 /*
3237 * structure to poll for incoming data on communication socket avoids
3238 * making blocking sockets.
3239 */
3240 struct pollfd consumer_sockpoll[2];
3241 struct lttng_consumer_local_data *ctx = data;
3242
3243 rcu_register_thread();
3244
3245 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3246
3247 if (testpoint(consumerd_thread_sessiond)) {
3248 goto error_testpoint;
3249 }
3250
3251 health_code_update();
3252
3253 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3254 unlink(ctx->consumer_command_sock_path);
3255 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3256 if (client_socket < 0) {
3257 ERR("Cannot create command socket");
3258 goto end;
3259 }
3260
3261 ret = lttcomm_listen_unix_sock(client_socket);
3262 if (ret < 0) {
3263 goto end;
3264 }
3265
3266 DBG("Sending ready command to lttng-sessiond");
3267 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3268 /* return < 0 on error, but == 0 is not fatal */
3269 if (ret < 0) {
3270 ERR("Error sending ready command to lttng-sessiond");
3271 goto end;
3272 }
3273
3274 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3275 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3276 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3277 consumer_sockpoll[1].fd = client_socket;
3278 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3279
3280 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3281 if (ret) {
3282 if (ret > 0) {
3283 /* should exit */
3284 err = 0;
3285 }
3286 goto end;
3287 }
3288 DBG("Connection on client_socket");
3289
3290 /* Blocking call, waiting for transmission */
3291 sock = lttcomm_accept_unix_sock(client_socket);
3292 if (sock < 0) {
3293 WARN("On accept");
3294 goto end;
3295 }
3296
3297 /*
3298 * Setup metadata socket which is the second socket connection on the
3299 * command unix socket.
3300 */
3301 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3302 if (ret) {
3303 if (ret > 0) {
3304 /* should exit */
3305 err = 0;
3306 }
3307 goto end;
3308 }
3309
3310 /* This socket is not useful anymore. */
3311 ret = close(client_socket);
3312 if (ret < 0) {
3313 PERROR("close client_socket");
3314 }
3315 client_socket = -1;
3316
3317 /* update the polling structure to poll on the established socket */
3318 consumer_sockpoll[1].fd = sock;
3319 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3320
3321 while (1) {
3322 health_code_update();
3323
3324 health_poll_entry();
3325 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3326 health_poll_exit();
3327 if (ret) {
3328 if (ret > 0) {
3329 /* should exit */
3330 err = 0;
3331 }
3332 goto end;
3333 }
3334 DBG("Incoming command on sock");
3335 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3336 if (ret <= 0) {
3337 /*
3338 * This could simply be a session daemon quitting. Don't output
3339 * ERR() here.
3340 */
3341 DBG("Communication interrupted on command socket");
3342 err = 0;
3343 goto end;
3344 }
3345 if (CMM_LOAD_SHARED(consumer_quit)) {
3346 DBG("consumer_thread_receive_fds received quit from signal");
3347 err = 0; /* All is OK */
3348 goto end;
3349 }
3350 DBG("received command on sock");
3351 }
3352 /* All is OK */
3353 err = 0;
3354
3355 end:
3356 DBG("Consumer thread sessiond poll exiting");
3357
3358 /*
3359 * Close metadata streams since the producer is the session daemon which
3360 * just died.
3361 *
3362 * NOTE: for now, this only applies to the UST tracer.
3363 */
3364 lttng_consumer_close_all_metadata();
3365
3366 /*
3367 * when all fds have hung up, the polling thread
3368 * can exit cleanly
3369 */
3370 CMM_STORE_SHARED(consumer_quit, 1);
3371
3372 /*
3373 * Notify the data poll thread to poll back again and test the
3374 * consumer_quit state that we just set so to quit gracefully.
3375 */
3376 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3377
3378 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3379
3380 notify_health_quit_pipe(health_quit_pipe);
3381
3382 /* Cleaning up possibly open sockets. */
3383 if (sock >= 0) {
3384 ret = close(sock);
3385 if (ret < 0) {
3386 PERROR("close sock sessiond poll");
3387 }
3388 }
3389 if (client_socket >= 0) {
3390 ret = close(client_socket);
3391 if (ret < 0) {
3392 PERROR("close client_socket sessiond poll");
3393 }
3394 }
3395
3396 error_testpoint:
3397 if (err) {
3398 health_error();
3399 ERR("Health error occurred in %s", __func__);
3400 }
3401 health_unregister(health_consumerd);
3402
3403 rcu_unregister_thread();
3404 return NULL;
3405 }
3406
3407 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3408 struct lttng_consumer_local_data *ctx)
3409 {
3410 ssize_t ret;
3411
3412 pthread_mutex_lock(&stream->chan->lock);
3413 pthread_mutex_lock(&stream->lock);
3414 if (stream->metadata_flag) {
3415 pthread_mutex_lock(&stream->metadata_rdv_lock);
3416 }
3417
3418 switch (consumer_data.type) {
3419 case LTTNG_CONSUMER_KERNEL:
3420 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3421 break;
3422 case LTTNG_CONSUMER32_UST:
3423 case LTTNG_CONSUMER64_UST:
3424 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3425 break;
3426 default:
3427 ERR("Unknown consumer_data type");
3428 assert(0);
3429 ret = -ENOSYS;
3430 break;
3431 }
3432
3433 if (stream->metadata_flag) {
3434 pthread_cond_broadcast(&stream->metadata_rdv);
3435 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3436 }
3437 pthread_mutex_unlock(&stream->lock);
3438 pthread_mutex_unlock(&stream->chan->lock);
3439
3440 return ret;
3441 }
3442
3443 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3444 {
3445 switch (consumer_data.type) {
3446 case LTTNG_CONSUMER_KERNEL:
3447 return lttng_kconsumer_on_recv_stream(stream);
3448 case LTTNG_CONSUMER32_UST:
3449 case LTTNG_CONSUMER64_UST:
3450 return lttng_ustconsumer_on_recv_stream(stream);
3451 default:
3452 ERR("Unknown consumer_data type");
3453 assert(0);
3454 return -ENOSYS;
3455 }
3456 }
3457
3458 /*
3459 * Allocate and set consumer data hash tables.
3460 */
3461 int lttng_consumer_init(void)
3462 {
3463 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3464 if (!consumer_data.channel_ht) {
3465 goto error;
3466 }
3467
3468 consumer_data.channels_by_session_id_ht =
3469 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3470 if (!consumer_data.channels_by_session_id_ht) {
3471 goto error;
3472 }
3473
3474 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3475 if (!consumer_data.relayd_ht) {
3476 goto error;
3477 }
3478
3479 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3480 if (!consumer_data.stream_list_ht) {
3481 goto error;
3482 }
3483
3484 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3485 if (!consumer_data.stream_per_chan_id_ht) {
3486 goto error;
3487 }
3488
3489 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3490 if (!data_ht) {
3491 goto error;
3492 }
3493
3494 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3495 if (!metadata_ht) {
3496 goto error;
3497 }
3498
3499 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3500 if (!consumer_data.chunk_registry) {
3501 goto error;
3502 }
3503
3504 return 0;
3505
3506 error:
3507 return -1;
3508 }
3509
3510 /*
3511 * Process the ADD_RELAYD command receive by a consumer.
3512 *
3513 * This will create a relayd socket pair and add it to the relayd hash table.
3514 * The caller MUST acquire a RCU read side lock before calling it.
3515 */
3516 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3517 struct lttng_consumer_local_data *ctx, int sock,
3518 struct pollfd *consumer_sockpoll,
3519 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3520 uint64_t relayd_session_id)
3521 {
3522 int fd = -1, ret = -1, relayd_created = 0;
3523 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3524 struct consumer_relayd_sock_pair *relayd = NULL;
3525
3526 assert(ctx);
3527 assert(relayd_sock);
3528
3529 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3530
3531 /* Get relayd reference if exists. */
3532 relayd = consumer_find_relayd(net_seq_idx);
3533 if (relayd == NULL) {
3534 assert(sock_type == LTTNG_STREAM_CONTROL);
3535 /* Not found. Allocate one. */
3536 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3537 if (relayd == NULL) {
3538 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3539 goto error;
3540 } else {
3541 relayd->sessiond_session_id = sessiond_id;
3542 relayd_created = 1;
3543 }
3544
3545 /*
3546 * This code path MUST continue to the consumer send status message to
3547 * we can notify the session daemon and continue our work without
3548 * killing everything.
3549 */
3550 } else {
3551 /*
3552 * relayd key should never be found for control socket.
3553 */
3554 assert(sock_type != LTTNG_STREAM_CONTROL);
3555 }
3556
3557 /* First send a status message before receiving the fds. */
3558 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3559 if (ret < 0) {
3560 /* Somehow, the session daemon is not responding anymore. */
3561 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3562 goto error_nosignal;
3563 }
3564
3565 /* Poll on consumer socket. */
3566 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3567 if (ret) {
3568 /* Needing to exit in the middle of a command: error. */
3569 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3570 goto error_nosignal;
3571 }
3572
3573 /* Get relayd socket from session daemon */
3574 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3575 if (ret != sizeof(fd)) {
3576 fd = -1; /* Just in case it gets set with an invalid value. */
3577
3578 /*
3579 * Failing to receive FDs might indicate a major problem such as
3580 * reaching a fd limit during the receive where the kernel returns a
3581 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3582 * don't take any chances and stop everything.
3583 *
3584 * XXX: Feature request #558 will fix that and avoid this possible
3585 * issue when reaching the fd limit.
3586 */
3587 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3588 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3589 goto error;
3590 }
3591
3592 /* Copy socket information and received FD */
3593 switch (sock_type) {
3594 case LTTNG_STREAM_CONTROL:
3595 /* Copy received lttcomm socket */
3596 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3597 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3598 /* Handle create_sock error. */
3599 if (ret < 0) {
3600 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3601 goto error;
3602 }
3603 /*
3604 * Close the socket created internally by
3605 * lttcomm_create_sock, so we can replace it by the one
3606 * received from sessiond.
3607 */
3608 if (close(relayd->control_sock.sock.fd)) {
3609 PERROR("close");
3610 }
3611
3612 /* Assign new file descriptor */
3613 relayd->control_sock.sock.fd = fd;
3614 /* Assign version values. */
3615 relayd->control_sock.major = relayd_sock->major;
3616 relayd->control_sock.minor = relayd_sock->minor;
3617
3618 relayd->relayd_session_id = relayd_session_id;
3619
3620 break;
3621 case LTTNG_STREAM_DATA:
3622 /* Copy received lttcomm socket */
3623 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3624 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3625 /* Handle create_sock error. */
3626 if (ret < 0) {
3627 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3628 goto error;
3629 }
3630 /*
3631 * Close the socket created internally by
3632 * lttcomm_create_sock, so we can replace it by the one
3633 * received from sessiond.
3634 */
3635 if (close(relayd->data_sock.sock.fd)) {
3636 PERROR("close");
3637 }
3638
3639 /* Assign new file descriptor */
3640 relayd->data_sock.sock.fd = fd;
3641 /* Assign version values. */
3642 relayd->data_sock.major = relayd_sock->major;
3643 relayd->data_sock.minor = relayd_sock->minor;
3644 break;
3645 default:
3646 ERR("Unknown relayd socket type (%d)", sock_type);
3647 ret_code = LTTCOMM_CONSUMERD_FATAL;
3648 goto error;
3649 }
3650
3651 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3652 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3653 relayd->net_seq_idx, fd);
3654 /*
3655 * We gave the ownership of the fd to the relayd structure. Set the
3656 * fd to -1 so we don't call close() on it in the error path below.
3657 */
3658 fd = -1;
3659
3660 /* We successfully added the socket. Send status back. */
3661 ret = consumer_send_status_msg(sock, ret_code);
3662 if (ret < 0) {
3663 /* Somehow, the session daemon is not responding anymore. */
3664 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3665 goto error_nosignal;
3666 }
3667
3668 /*
3669 * Add relayd socket pair to consumer data hashtable. If object already
3670 * exists or on error, the function gracefully returns.
3671 */
3672 relayd->ctx = ctx;
3673 add_relayd(relayd);
3674
3675 /* All good! */
3676 return;
3677
3678 error:
3679 if (consumer_send_status_msg(sock, ret_code) < 0) {
3680 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3681 }
3682
3683 error_nosignal:
3684 /* Close received socket if valid. */
3685 if (fd >= 0) {
3686 if (close(fd)) {
3687 PERROR("close received socket");
3688 }
3689 }
3690
3691 if (relayd_created) {
3692 free(relayd);
3693 }
3694 }
3695
3696 /*
3697 * Search for a relayd associated to the session id and return the reference.
3698 *
3699 * A rcu read side lock MUST be acquire before calling this function and locked
3700 * until the relayd object is no longer necessary.
3701 */
3702 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3703 {
3704 struct lttng_ht_iter iter;
3705 struct consumer_relayd_sock_pair *relayd = NULL;
3706
3707 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3708 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3709 node.node) {
3710 /*
3711 * Check by sessiond id which is unique here where the relayd session
3712 * id might not be when having multiple relayd.
3713 */
3714 if (relayd->sessiond_session_id == id) {
3715 /* Found the relayd. There can be only one per id. */
3716 goto found;
3717 }
3718 }
3719
3720 return NULL;
3721
3722 found:
3723 return relayd;
3724 }
3725
3726 /*
3727 * Check if for a given session id there is still data needed to be extract
3728 * from the buffers.
3729 *
3730 * Return 1 if data is pending or else 0 meaning ready to be read.
3731 */
3732 int consumer_data_pending(uint64_t id)
3733 {
3734 int ret;
3735 struct lttng_ht_iter iter;
3736 struct lttng_ht *ht;
3737 struct lttng_consumer_stream *stream;
3738 struct consumer_relayd_sock_pair *relayd = NULL;
3739 int (*data_pending)(struct lttng_consumer_stream *);
3740
3741 DBG("Consumer data pending command on session id %" PRIu64, id);
3742
3743 rcu_read_lock();
3744 pthread_mutex_lock(&consumer_data.lock);
3745
3746 switch (consumer_data.type) {
3747 case LTTNG_CONSUMER_KERNEL:
3748 data_pending = lttng_kconsumer_data_pending;
3749 break;
3750 case LTTNG_CONSUMER32_UST:
3751 case LTTNG_CONSUMER64_UST:
3752 data_pending = lttng_ustconsumer_data_pending;
3753 break;
3754 default:
3755 ERR("Unknown consumer data type");
3756 assert(0);
3757 }
3758
3759 /* Ease our life a bit */
3760 ht = consumer_data.stream_list_ht;
3761
3762 cds_lfht_for_each_entry_duplicate(ht->ht,
3763 ht->hash_fct(&id, lttng_ht_seed),
3764 ht->match_fct, &id,
3765 &iter.iter, stream, node_session_id.node) {
3766 pthread_mutex_lock(&stream->lock);
3767
3768 /*
3769 * A removed node from the hash table indicates that the stream has
3770 * been deleted thus having a guarantee that the buffers are closed
3771 * on the consumer side. However, data can still be transmitted
3772 * over the network so don't skip the relayd check.
3773 */
3774 ret = cds_lfht_is_node_deleted(&stream->node.node);
3775 if (!ret) {
3776 /* Check the stream if there is data in the buffers. */
3777 ret = data_pending(stream);
3778 if (ret == 1) {
3779 pthread_mutex_unlock(&stream->lock);
3780 goto data_pending;
3781 }
3782 }
3783
3784 pthread_mutex_unlock(&stream->lock);
3785 }
3786
3787 relayd = find_relayd_by_session_id(id);
3788 if (relayd) {
3789 unsigned int is_data_inflight = 0;
3790
3791 /* Send init command for data pending. */
3792 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3793 ret = relayd_begin_data_pending(&relayd->control_sock,
3794 relayd->relayd_session_id);
3795 if (ret < 0) {
3796 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3797 /* Communication error thus the relayd so no data pending. */
3798 goto data_not_pending;
3799 }
3800
3801 cds_lfht_for_each_entry_duplicate(ht->ht,
3802 ht->hash_fct(&id, lttng_ht_seed),
3803 ht->match_fct, &id,
3804 &iter.iter, stream, node_session_id.node) {
3805 if (stream->metadata_flag) {
3806 ret = relayd_quiescent_control(&relayd->control_sock,
3807 stream->relayd_stream_id);
3808 } else {
3809 ret = relayd_data_pending(&relayd->control_sock,
3810 stream->relayd_stream_id,
3811 stream->next_net_seq_num - 1);
3812 }
3813
3814 if (ret == 1) {
3815 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3816 goto data_pending;
3817 } else if (ret < 0) {
3818 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3819 lttng_consumer_cleanup_relayd(relayd);
3820 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3821 goto data_not_pending;
3822 }
3823 }
3824
3825 /* Send end command for data pending. */
3826 ret = relayd_end_data_pending(&relayd->control_sock,
3827 relayd->relayd_session_id, &is_data_inflight);
3828 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3829 if (ret < 0) {
3830 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3831 lttng_consumer_cleanup_relayd(relayd);
3832 goto data_not_pending;
3833 }
3834 if (is_data_inflight) {
3835 goto data_pending;
3836 }
3837 }
3838
3839 /*
3840 * Finding _no_ node in the hash table and no inflight data means that the
3841 * stream(s) have been removed thus data is guaranteed to be available for
3842 * analysis from the trace files.
3843 */
3844
3845 data_not_pending:
3846 /* Data is available to be read by a viewer. */
3847 pthread_mutex_unlock(&consumer_data.lock);
3848 rcu_read_unlock();
3849 return 0;
3850
3851 data_pending:
3852 /* Data is still being extracted from buffers. */
3853 pthread_mutex_unlock(&consumer_data.lock);
3854 rcu_read_unlock();
3855 return 1;
3856 }
3857
3858 /*
3859 * Send a ret code status message to the sessiond daemon.
3860 *
3861 * Return the sendmsg() return value.
3862 */
3863 int consumer_send_status_msg(int sock, int ret_code)
3864 {
3865 struct lttcomm_consumer_status_msg msg;
3866
3867 memset(&msg, 0, sizeof(msg));
3868 msg.ret_code = ret_code;
3869
3870 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3871 }
3872
3873 /*
3874 * Send a channel status message to the sessiond daemon.
3875 *
3876 * Return the sendmsg() return value.
3877 */
3878 int consumer_send_status_channel(int sock,
3879 struct lttng_consumer_channel *channel)
3880 {
3881 struct lttcomm_consumer_status_channel msg;
3882
3883 assert(sock >= 0);
3884
3885 memset(&msg, 0, sizeof(msg));
3886 if (!channel) {
3887 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3888 } else {
3889 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3890 msg.key = channel->key;
3891 msg.stream_count = channel->streams.count;
3892 }
3893
3894 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3895 }
3896
3897 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3898 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3899 uint64_t max_sb_size)
3900 {
3901 unsigned long start_pos;
3902
3903 if (!nb_packets_per_stream) {
3904 return consumed_pos; /* Grab everything */
3905 }
3906 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3907 start_pos -= max_sb_size * nb_packets_per_stream;
3908 if ((long) (start_pos - consumed_pos) < 0) {
3909 return consumed_pos; /* Grab everything */
3910 }
3911 return start_pos;
3912 }
3913
3914 static
3915 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3916 {
3917 int ret = 0;
3918
3919 switch (consumer_data.type) {
3920 case LTTNG_CONSUMER_KERNEL:
3921 if (producer_active) {
3922 ret = kernctl_buffer_flush(stream->wait_fd);
3923 if (ret < 0) {
3924 ERR("Failed to flush kernel stream");
3925 goto end;
3926 }
3927 } else {
3928 ret = kernctl_buffer_flush_empty(stream->wait_fd);
3929 if (ret < 0) {
3930 /*
3931 * Doing a buffer flush which does not take into
3932 * account empty packets. This is not perfect,
3933 * but required as a fall-back when
3934 * "flush_empty" is not implemented by
3935 * lttng-modules.
3936 */
3937 ret = kernctl_buffer_flush(stream->wait_fd);
3938 if (ret < 0) {
3939 ERR("Failed to flush kernel stream");
3940 goto end;
3941 }
3942 }
3943 }
3944 break;
3945 case LTTNG_CONSUMER32_UST:
3946 case LTTNG_CONSUMER64_UST:
3947 lttng_ustconsumer_flush_buffer(stream, producer_active);
3948 break;
3949 default:
3950 ERR("Unknown consumer_data type");
3951 abort();
3952 }
3953
3954 end:
3955 return ret;
3956 }
3957
3958 /*
3959 * Sample the rotate position for all the streams of a channel. If a stream
3960 * is already at the rotate position (produced == consumed), we flag it as
3961 * ready for rotation. The rotation of ready streams occurs after we have
3962 * replied to the session daemon that we have finished sampling the positions.
3963 * Must be called with RCU read-side lock held to ensure existence of channel.
3964 *
3965 * Returns 0 on success, < 0 on error
3966 */
3967 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
3968 uint64_t key, uint64_t relayd_id, uint32_t metadata,
3969 struct lttng_consumer_local_data *ctx)
3970 {
3971 int ret;
3972 struct lttng_consumer_stream *stream;
3973 struct lttng_ht_iter iter;
3974 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
3975 struct lttng_dynamic_array stream_rotation_positions;
3976 uint64_t next_chunk_id, stream_count = 0;
3977 enum lttng_trace_chunk_status chunk_status;
3978 const bool is_local_trace = relayd_id == -1ULL;
3979 struct consumer_relayd_sock_pair *relayd = NULL;
3980 bool rotating_to_new_chunk = true;
3981
3982 DBG("Consumer sample rotate position for channel %" PRIu64, key);
3983
3984 lttng_dynamic_array_init(&stream_rotation_positions,
3985 sizeof(struct relayd_stream_rotation_position), NULL);
3986
3987 rcu_read_lock();
3988
3989 pthread_mutex_lock(&channel->lock);
3990 assert(channel->trace_chunk);
3991 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
3992 &next_chunk_id);
3993 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
3994 ret = -1;
3995 goto end_unlock_channel;
3996 }
3997
3998 cds_lfht_for_each_entry_duplicate(ht->ht,
3999 ht->hash_fct(&channel->key, lttng_ht_seed),
4000 ht->match_fct, &channel->key, &iter.iter,
4001 stream, node_channel_id.node) {
4002 unsigned long produced_pos = 0, consumed_pos = 0;
4003
4004 health_code_update();
4005
4006 /*
4007 * Lock stream because we are about to change its state.
4008 */
4009 pthread_mutex_lock(&stream->lock);
4010
4011 if (stream->trace_chunk == stream->chan->trace_chunk) {
4012 rotating_to_new_chunk = false;
4013 }
4014
4015 /*
4016 * Do not flush an empty packet when rotating from a NULL trace
4017 * chunk. The stream has no means to output data, and the prior
4018 * rotation which rotated to NULL performed that side-effect already.
4019 */
4020 if (stream->trace_chunk) {
4021 /*
4022 * For metadata stream, do an active flush, which does not
4023 * produce empty packets. For data streams, empty-flush;
4024 * ensures we have at least one packet in each stream per trace
4025 * chunk, even if no data was produced.
4026 */
4027 ret = consumer_flush_buffer(stream, stream->metadata_flag ? 1 : 0);
4028 if (ret < 0) {
4029 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4030 stream->key);
4031 goto end_unlock_stream;
4032 }
4033 }
4034
4035 ret = lttng_consumer_take_snapshot(stream);
4036 if (ret < 0 && ret != -ENODATA && ret != -EAGAIN) {
4037 ERR("Failed to sample snapshot position during channel rotation");
4038 goto end_unlock_stream;
4039 }
4040 if (!ret) {
4041 ret = lttng_consumer_get_produced_snapshot(stream,
4042 &produced_pos);
4043 if (ret < 0) {
4044 ERR("Failed to sample produced position during channel rotation");
4045 goto end_unlock_stream;
4046 }
4047
4048 ret = lttng_consumer_get_consumed_snapshot(stream,
4049 &consumed_pos);
4050 if (ret < 0) {
4051 ERR("Failed to sample consumed position during channel rotation");
4052 goto end_unlock_stream;
4053 }
4054 }
4055 /*
4056 * Align produced position on the start-of-packet boundary of the first
4057 * packet going into the next trace chunk.
4058 */
4059 produced_pos = ALIGN_FLOOR(produced_pos, stream->max_sb_size);
4060 if (consumed_pos == produced_pos) {
4061 DBG("Set rotate ready for stream %" PRIu64 " produced = %lu consumed = %lu",
4062 stream->key, produced_pos, consumed_pos);
4063 stream->rotate_ready = true;
4064 } else {
4065 DBG("Different consumed and produced positions "
4066 "for stream %" PRIu64 " produced = %lu consumed = %lu",
4067 stream->key, produced_pos, consumed_pos);
4068 }
4069 /*
4070 * The rotation position is based on the packet_seq_num of the
4071 * packet following the last packet that was consumed for this
4072 * stream, incremented by the offset between produced and
4073 * consumed positions. This rotation position is a lower bound
4074 * (inclusive) at which the next trace chunk starts. Since it
4075 * is a lower bound, it is OK if the packet_seq_num does not
4076 * correspond exactly to the same packet identified by the
4077 * consumed_pos, which can happen in overwrite mode.
4078 */
4079 if (stream->sequence_number_unavailable) {
4080 /*
4081 * Rotation should never be performed on a session which
4082 * interacts with a pre-2.8 lttng-modules, which does
4083 * not implement packet sequence number.
4084 */
4085 ERR("Failure to rotate stream %" PRIu64 ": sequence number unavailable",
4086 stream->key);
4087 ret = -1;
4088 goto end_unlock_stream;
4089 }
4090 stream->rotate_position = stream->last_sequence_number + 1 +
4091 ((produced_pos - consumed_pos) / stream->max_sb_size);
4092 DBG("Set rotation position for stream %" PRIu64 " at position %" PRIu64,
4093 stream->key, stream->rotate_position);
4094
4095 if (!is_local_trace) {
4096 /*
4097 * The relay daemon control protocol expects a rotation
4098 * position as "the sequence number of the first packet
4099 * _after_ the current trace chunk".
4100 */
4101 const struct relayd_stream_rotation_position position = {
4102 .stream_id = stream->relayd_stream_id,
4103 .rotate_at_seq_num = stream->rotate_position,
4104 };
4105
4106 ret = lttng_dynamic_array_add_element(
4107 &stream_rotation_positions,
4108 &position);
4109 if (ret) {
4110 ERR("Failed to allocate stream rotation position");
4111 goto end_unlock_stream;
4112 }
4113 stream_count++;
4114 }
4115 pthread_mutex_unlock(&stream->lock);
4116 }
4117 stream = NULL;
4118 pthread_mutex_unlock(&channel->lock);
4119
4120 if (is_local_trace) {
4121 ret = 0;
4122 goto end;
4123 }
4124
4125 relayd = consumer_find_relayd(relayd_id);
4126 if (!relayd) {
4127 ERR("Failed to find relayd %" PRIu64, relayd_id);
4128 ret = -1;
4129 goto end;
4130 }
4131
4132 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4133 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4134 rotating_to_new_chunk ? &next_chunk_id : NULL,
4135 (const struct relayd_stream_rotation_position *)
4136 stream_rotation_positions.buffer.data);
4137 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4138 if (ret < 0) {
4139 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4140 relayd->net_seq_idx);
4141 lttng_consumer_cleanup_relayd(relayd);
4142 goto end;
4143 }
4144
4145 ret = 0;
4146 goto end;
4147
4148 end_unlock_stream:
4149 pthread_mutex_unlock(&stream->lock);
4150 end_unlock_channel:
4151 pthread_mutex_unlock(&channel->lock);
4152 end:
4153 rcu_read_unlock();
4154 lttng_dynamic_array_reset(&stream_rotation_positions);
4155 return ret;
4156 }
4157
4158 static
4159 int consumer_clear_buffer(struct lttng_consumer_stream *stream)
4160 {
4161 int ret = 0;
4162 unsigned long consumed_pos_before, consumed_pos_after;
4163
4164 ret = lttng_consumer_sample_snapshot_positions(stream);
4165 if (ret < 0) {
4166 ERR("Taking snapshot positions");
4167 goto end;
4168 }
4169
4170 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_before);
4171 if (ret < 0) {
4172 ERR("Consumed snapshot position");
4173 goto end;
4174 }
4175
4176 switch (consumer_data.type) {
4177 case LTTNG_CONSUMER_KERNEL:
4178 ret = kernctl_buffer_clear(stream->wait_fd);
4179 if (ret < 0) {
4180 ERR("Failed to clear kernel stream (ret = %d)", ret);
4181 goto end;
4182 }
4183 break;
4184 case LTTNG_CONSUMER32_UST:
4185 case LTTNG_CONSUMER64_UST:
4186 lttng_ustconsumer_clear_buffer(stream);
4187 break;
4188 default:
4189 ERR("Unknown consumer_data type");
4190 abort();
4191 }
4192
4193 ret = lttng_consumer_sample_snapshot_positions(stream);
4194 if (ret < 0) {
4195 ERR("Taking snapshot positions");
4196 goto end;
4197 }
4198 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos_after);
4199 if (ret < 0) {
4200 ERR("Consumed snapshot position");
4201 goto end;
4202 }
4203 DBG("clear: before: %lu after: %lu", consumed_pos_before, consumed_pos_after);
4204 end:
4205 return ret;
4206 }
4207
4208 static
4209 int consumer_clear_stream(struct lttng_consumer_stream *stream)
4210 {
4211 int ret;
4212
4213 ret = consumer_flush_buffer(stream, 1);
4214 if (ret < 0) {
4215 ERR("Failed to flush stream %" PRIu64 " during channel clear",
4216 stream->key);
4217 ret = LTTCOMM_CONSUMERD_FATAL;
4218 goto error;
4219 }
4220
4221 ret = consumer_clear_buffer(stream);
4222 if (ret < 0) {
4223 ERR("Failed to clear stream %" PRIu64 " during channel clear",
4224 stream->key);
4225 ret = LTTCOMM_CONSUMERD_FATAL;
4226 goto error;
4227 }
4228
4229 ret = LTTCOMM_CONSUMERD_SUCCESS;
4230 error:
4231 return ret;
4232 }
4233
4234 static
4235 int consumer_clear_unmonitored_channel(struct lttng_consumer_channel *channel)
4236 {
4237 int ret;
4238 struct lttng_consumer_stream *stream;
4239
4240 rcu_read_lock();
4241 pthread_mutex_lock(&channel->lock);
4242 cds_list_for_each_entry(stream, &channel->streams.head, send_node) {
4243 health_code_update();
4244 pthread_mutex_lock(&stream->lock);
4245 ret = consumer_clear_stream(stream);
4246 if (ret) {
4247 goto error_unlock;
4248 }
4249 pthread_mutex_unlock(&stream->lock);
4250 }
4251 pthread_mutex_unlock(&channel->lock);
4252 rcu_read_unlock();
4253 return 0;
4254
4255 error_unlock:
4256 pthread_mutex_unlock(&stream->lock);
4257 pthread_mutex_unlock(&channel->lock);
4258 rcu_read_unlock();
4259 return ret;
4260 }
4261
4262 /*
4263 * Check if a stream is ready to be rotated after extracting it.
4264 *
4265 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4266 * error. Stream lock must be held.
4267 */
4268 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4269 {
4270 DBG("Check is rotate ready for stream %" PRIu64
4271 " ready %u rotate_position %" PRIu64
4272 " last_sequence_number %" PRIu64,
4273 stream->key, stream->rotate_ready,
4274 stream->rotate_position, stream->last_sequence_number);
4275 if (stream->rotate_ready) {
4276 return 1;
4277 }
4278
4279 /*
4280 * If packet seq num is unavailable, it means we are interacting
4281 * with a pre-2.8 lttng-modules which does not implement the
4282 * sequence number. Rotation should never be used by sessiond in this
4283 * scenario.
4284 */
4285 if (stream->sequence_number_unavailable) {
4286 ERR("Internal error: rotation used on stream %" PRIu64
4287 " with unavailable sequence number",
4288 stream->key);
4289 return -1;
4290 }
4291
4292 if (stream->rotate_position == -1ULL ||
4293 stream->last_sequence_number == -1ULL) {
4294 return 0;
4295 }
4296
4297 /*
4298 * Rotate position not reached yet. The stream rotate position is
4299 * the position of the next packet belonging to the next trace chunk,
4300 * but consumerd considers rotation ready when reaching the last
4301 * packet of the current chunk, hence the "rotate_position - 1".
4302 */
4303
4304 DBG("Check is rotate ready for stream %" PRIu64
4305 " last_sequence_number %" PRIu64
4306 " rotate_position %" PRIu64,
4307 stream->key, stream->last_sequence_number,
4308 stream->rotate_position);
4309 if (stream->last_sequence_number >= stream->rotate_position - 1) {
4310 return 1;
4311 }
4312
4313 return 0;
4314 }
4315
4316 /*
4317 * Reset the state for a stream after a rotation occurred.
4318 */
4319 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4320 {
4321 DBG("lttng_consumer_reset_stream_rotate_state for stream %" PRIu64,
4322 stream->key);
4323 stream->rotate_position = -1ULL;
4324 stream->rotate_ready = false;
4325 }
4326
4327 /*
4328 * Perform the rotation a local stream file.
4329 */
4330 static
4331 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4332 struct lttng_consumer_stream *stream)
4333 {
4334 int ret = 0;
4335
4336 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4337 stream->key,
4338 stream->chan->key);
4339 stream->tracefile_size_current = 0;
4340 stream->tracefile_count_current = 0;
4341
4342 if (stream->out_fd >= 0) {
4343 ret = close(stream->out_fd);
4344 if (ret) {
4345 PERROR("Failed to close stream out_fd of channel \"%s\"",
4346 stream->chan->name);
4347 }
4348 stream->out_fd = -1;
4349 }
4350
4351 if (stream->index_file) {
4352 lttng_index_file_put(stream->index_file);
4353 stream->index_file = NULL;
4354 }
4355
4356 if (!stream->trace_chunk) {
4357 goto end;
4358 }
4359
4360 ret = consumer_stream_create_output_files(stream, true);
4361 end:
4362 return ret;
4363 }
4364
4365 /*
4366 * Performs the stream rotation for the rotate session feature if needed.
4367 * It must be called with the channel and stream locks held.
4368 *
4369 * Return 0 on success, a negative number of error.
4370 */
4371 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4372 struct lttng_consumer_stream *stream)
4373 {
4374 int ret;
4375
4376 DBG("Consumer rotate stream %" PRIu64, stream->key);
4377
4378 /*
4379 * Update the stream's 'current' chunk to the session's (channel)
4380 * now-current chunk.
4381 */
4382 lttng_trace_chunk_put(stream->trace_chunk);
4383 if (stream->chan->trace_chunk == stream->trace_chunk) {
4384 /*
4385 * A channel can be rotated and not have a "next" chunk
4386 * to transition to. In that case, the channel's "current chunk"
4387 * has not been closed yet, but it has not been updated to
4388 * a "next" trace chunk either. Hence, the stream, like its
4389 * parent channel, becomes part of no chunk and can't output
4390 * anything until a new trace chunk is created.
4391 */
4392 stream->trace_chunk = NULL;
4393 } else if (stream->chan->trace_chunk &&
4394 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4395 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4396 ret = -1;
4397 goto error;
4398 } else {
4399 /*
4400 * Update the stream's trace chunk to its parent channel's
4401 * current trace chunk.
4402 */
4403 stream->trace_chunk = stream->chan->trace_chunk;
4404 }
4405
4406 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4407 ret = rotate_local_stream(ctx, stream);
4408 if (ret < 0) {
4409 ERR("Failed to rotate stream, ret = %i", ret);
4410 goto error;
4411 }
4412 }
4413
4414 if (stream->metadata_flag && stream->trace_chunk) {
4415 /*
4416 * If the stream has transitioned to a new trace
4417 * chunk, the metadata should be re-dumped to the
4418 * newest chunk.
4419 *
4420 * However, it is possible for a stream to transition to
4421 * a "no-chunk" state. This can happen if a rotation
4422 * occurs on an inactive session. In such cases, the metadata
4423 * regeneration will happen when the next trace chunk is
4424 * created.
4425 */
4426 ret = consumer_metadata_stream_dump(stream);
4427 if (ret) {
4428 goto error;
4429 }
4430 }
4431 lttng_consumer_reset_stream_rotate_state(stream);
4432
4433 ret = 0;
4434
4435 error:
4436 return ret;
4437 }
4438
4439 /*
4440 * Rotate all the ready streams now.
4441 *
4442 * This is especially important for low throughput streams that have already
4443 * been consumed, we cannot wait for their next packet to perform the
4444 * rotation.
4445 * Need to be called with RCU read-side lock held to ensure existence of
4446 * channel.
4447 *
4448 * Returns 0 on success, < 0 on error
4449 */
4450 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4451 uint64_t key, struct lttng_consumer_local_data *ctx)
4452 {
4453 int ret;
4454 struct lttng_consumer_stream *stream;
4455 struct lttng_ht_iter iter;
4456 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4457
4458 rcu_read_lock();
4459
4460 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4461
4462 cds_lfht_for_each_entry_duplicate(ht->ht,
4463 ht->hash_fct(&channel->key, lttng_ht_seed),
4464 ht->match_fct, &channel->key, &iter.iter,
4465 stream, node_channel_id.node) {
4466 health_code_update();
4467
4468 pthread_mutex_lock(&stream->chan->lock);
4469 pthread_mutex_lock(&stream->lock);
4470
4471 if (!stream->rotate_ready) {
4472 pthread_mutex_unlock(&stream->lock);
4473 pthread_mutex_unlock(&stream->chan->lock);
4474 continue;
4475 }
4476 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4477
4478 ret = lttng_consumer_rotate_stream(ctx, stream);
4479 pthread_mutex_unlock(&stream->lock);
4480 pthread_mutex_unlock(&stream->chan->lock);
4481 if (ret) {
4482 goto end;
4483 }
4484 }
4485
4486 ret = 0;
4487
4488 end:
4489 rcu_read_unlock();
4490 return ret;
4491 }
4492
4493 enum lttcomm_return_code lttng_consumer_init_command(
4494 struct lttng_consumer_local_data *ctx,
4495 const lttng_uuid sessiond_uuid)
4496 {
4497 enum lttcomm_return_code ret;
4498 char uuid_str[LTTNG_UUID_STR_LEN];
4499
4500 if (ctx->sessiond_uuid.is_set) {
4501 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4502 goto end;
4503 }
4504
4505 ctx->sessiond_uuid.is_set = true;
4506 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4507 ret = LTTCOMM_CONSUMERD_SUCCESS;
4508 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4509 DBG("Received session daemon UUID: %s", uuid_str);
4510 end:
4511 return ret;
4512 }
4513
4514 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4515 const uint64_t *relayd_id, uint64_t session_id,
4516 uint64_t chunk_id,
4517 time_t chunk_creation_timestamp,
4518 const char *chunk_override_name,
4519 const struct lttng_credentials *credentials,
4520 struct lttng_directory_handle *chunk_directory_handle)
4521 {
4522 int ret;
4523 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4524 struct lttng_trace_chunk *created_chunk = NULL, *published_chunk = NULL;
4525 enum lttng_trace_chunk_status chunk_status;
4526 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4527 char creation_timestamp_buffer[ISO8601_STR_LEN];
4528 const char *relayd_id_str = "(none)";
4529 const char *creation_timestamp_str;
4530 struct lttng_ht_iter iter;
4531 struct lttng_consumer_channel *channel;
4532
4533 if (relayd_id) {
4534 /* Only used for logging purposes. */
4535 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4536 "%" PRIu64, *relayd_id);
4537 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4538 relayd_id_str = relayd_id_buffer;
4539 } else {
4540 relayd_id_str = "(formatting error)";
4541 }
4542 }
4543
4544 /* Local protocol error. */
4545 assert(chunk_creation_timestamp);
4546 ret = time_to_iso8601_str(chunk_creation_timestamp,
4547 creation_timestamp_buffer,
4548 sizeof(creation_timestamp_buffer));
4549 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4550 "(formatting error)";
4551
4552 DBG("Consumer create trace chunk command: relay_id = %s"
4553 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4554 ", chunk_override_name = %s"
4555 ", chunk_creation_timestamp = %s",
4556 relayd_id_str, session_id, chunk_id,
4557 chunk_override_name ? : "(none)",
4558 creation_timestamp_str);
4559
4560 /*
4561 * The trace chunk registry, as used by the consumer daemon, implicitly
4562 * owns the trace chunks. This is only needed in the consumer since
4563 * the consumer has no notion of a session beyond session IDs being
4564 * used to identify other objects.
4565 *
4566 * The lttng_trace_chunk_registry_publish() call below provides a
4567 * reference which is not released; it implicitly becomes the session
4568 * daemon's reference to the chunk in the consumer daemon.
4569 *
4570 * The lifetime of trace chunks in the consumer daemon is managed by
4571 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4572 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4573 */
4574 created_chunk = lttng_trace_chunk_create(chunk_id,
4575 chunk_creation_timestamp, NULL);
4576 if (!created_chunk) {
4577 ERR("Failed to create trace chunk");
4578 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4579 goto error;
4580 }
4581
4582 if (chunk_override_name) {
4583 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4584 chunk_override_name);
4585 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4586 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4587 goto error;
4588 }
4589 }
4590
4591 if (chunk_directory_handle) {
4592 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4593 credentials);
4594 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4595 ERR("Failed to set trace chunk credentials");
4596 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4597 goto error;
4598 }
4599 /*
4600 * The consumer daemon has no ownership of the chunk output
4601 * directory.
4602 */
4603 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4604 chunk_directory_handle);
4605 chunk_directory_handle = NULL;
4606 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4607 ERR("Failed to set trace chunk's directory handle");
4608 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4609 goto error;
4610 }
4611 }
4612
4613 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4614 consumer_data.chunk_registry, session_id,
4615 created_chunk);
4616 lttng_trace_chunk_put(created_chunk);
4617 created_chunk = NULL;
4618 if (!published_chunk) {
4619 ERR("Failed to publish trace chunk");
4620 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4621 goto error;
4622 }
4623
4624 rcu_read_lock();
4625 cds_lfht_for_each_entry_duplicate(consumer_data.channels_by_session_id_ht->ht,
4626 consumer_data.channels_by_session_id_ht->hash_fct(
4627 &session_id, lttng_ht_seed),
4628 consumer_data.channels_by_session_id_ht->match_fct,
4629 &session_id, &iter.iter, channel,
4630 channels_by_session_id_ht_node.node) {
4631 ret = lttng_consumer_channel_set_trace_chunk(channel,
4632 published_chunk);
4633 if (ret) {
4634 /*
4635 * Roll-back the creation of this chunk.
4636 *
4637 * This is important since the session daemon will
4638 * assume that the creation of this chunk failed and
4639 * will never ask for it to be closed, resulting
4640 * in a leak and an inconsistent state for some
4641 * channels.
4642 */
4643 enum lttcomm_return_code close_ret;
4644 char path[LTTNG_PATH_MAX];
4645
4646 DBG("Failed to set new trace chunk on existing channels, rolling back");
4647 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4648 session_id, chunk_id,
4649 chunk_creation_timestamp, NULL,
4650 path);
4651 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4652 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4653 session_id, chunk_id);
4654 }
4655
4656 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4657 break;
4658 }
4659 }
4660
4661 if (relayd_id) {
4662 struct consumer_relayd_sock_pair *relayd;
4663
4664 relayd = consumer_find_relayd(*relayd_id);
4665 if (relayd) {
4666 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4667 ret = relayd_create_trace_chunk(
4668 &relayd->control_sock, published_chunk);
4669 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4670 } else {
4671 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4672 }
4673
4674 if (!relayd || ret) {
4675 enum lttcomm_return_code close_ret;
4676 char path[LTTNG_PATH_MAX];
4677
4678 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4679 session_id,
4680 chunk_id,
4681 chunk_creation_timestamp,
4682 NULL, path);
4683 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4684 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4685 session_id,
4686 chunk_id);
4687 }
4688
4689 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4690 goto error_unlock;
4691 }
4692 }
4693 error_unlock:
4694 rcu_read_unlock();
4695 error:
4696 /* Release the reference returned by the "publish" operation. */
4697 lttng_trace_chunk_put(published_chunk);
4698 lttng_trace_chunk_put(created_chunk);
4699 return ret_code;
4700 }
4701
4702 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4703 const uint64_t *relayd_id, uint64_t session_id,
4704 uint64_t chunk_id, time_t chunk_close_timestamp,
4705 const enum lttng_trace_chunk_command_type *close_command,
4706 char *path)
4707 {
4708 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4709 struct lttng_trace_chunk *chunk;
4710 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4711 const char *relayd_id_str = "(none)";
4712 const char *close_command_name = "none";
4713 struct lttng_ht_iter iter;
4714 struct lttng_consumer_channel *channel;
4715 enum lttng_trace_chunk_status chunk_status;
4716
4717 if (relayd_id) {
4718 int ret;
4719
4720 /* Only used for logging purposes. */
4721 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4722 "%" PRIu64, *relayd_id);
4723 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4724 relayd_id_str = relayd_id_buffer;
4725 } else {
4726 relayd_id_str = "(formatting error)";
4727 }
4728 }
4729 if (close_command) {
4730 close_command_name = lttng_trace_chunk_command_type_get_name(
4731 *close_command);
4732 }
4733
4734 DBG("Consumer close trace chunk command: relayd_id = %s"
4735 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4736 ", close command = %s",
4737 relayd_id_str, session_id, chunk_id,
4738 close_command_name);
4739
4740 chunk = lttng_trace_chunk_registry_find_chunk(
4741 consumer_data.chunk_registry, session_id, chunk_id);
4742 if (!chunk) {
4743 ERR("Failed to find chunk: session_id = %" PRIu64
4744 ", chunk_id = %" PRIu64,
4745 session_id, chunk_id);
4746 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4747 goto end;
4748 }
4749
4750 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4751 chunk_close_timestamp);
4752 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4753 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4754 goto end;
4755 }
4756
4757 if (close_command) {
4758 chunk_status = lttng_trace_chunk_set_close_command(
4759 chunk, *close_command);
4760 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4761 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4762 goto end;
4763 }
4764 }
4765
4766 /*
4767 * chunk is now invalid to access as we no longer hold a reference to
4768 * it; it is only kept around to compare it (by address) to the
4769 * current chunk found in the session's channels.
4770 */
4771 rcu_read_lock();
4772 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter,
4773 channel, node.node) {
4774 int ret;
4775
4776 /*
4777 * Only change the channel's chunk to NULL if it still
4778 * references the chunk being closed. The channel may
4779 * reference a newer channel in the case of a session
4780 * rotation. When a session rotation occurs, the "next"
4781 * chunk is created before the "current" chunk is closed.
4782 */
4783 if (channel->trace_chunk != chunk) {
4784 continue;
4785 }
4786 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4787 if (ret) {
4788 /*
4789 * Attempt to close the chunk on as many channels as
4790 * possible.
4791 */
4792 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4793 }
4794 }
4795
4796 if (relayd_id) {
4797 int ret;
4798 struct consumer_relayd_sock_pair *relayd;
4799
4800 relayd = consumer_find_relayd(*relayd_id);
4801 if (relayd) {
4802 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4803 ret = relayd_close_trace_chunk(
4804 &relayd->control_sock, chunk,
4805 path);
4806 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4807 } else {
4808 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
4809 *relayd_id);
4810 }
4811
4812 if (!relayd || ret) {
4813 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4814 goto error_unlock;
4815 }
4816 }
4817 error_unlock:
4818 rcu_read_unlock();
4819 end:
4820 /*
4821 * Release the reference returned by the "find" operation and
4822 * the session daemon's implicit reference to the chunk.
4823 */
4824 lttng_trace_chunk_put(chunk);
4825 lttng_trace_chunk_put(chunk);
4826
4827 return ret_code;
4828 }
4829
4830 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
4831 const uint64_t *relayd_id, uint64_t session_id,
4832 uint64_t chunk_id)
4833 {
4834 int ret;
4835 enum lttcomm_return_code ret_code;
4836 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4837 const char *relayd_id_str = "(none)";
4838 const bool is_local_trace = !relayd_id;
4839 struct consumer_relayd_sock_pair *relayd = NULL;
4840 bool chunk_exists_local, chunk_exists_remote;
4841
4842 if (relayd_id) {
4843 int ret;
4844
4845 /* Only used for logging purposes. */
4846 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4847 "%" PRIu64, *relayd_id);
4848 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4849 relayd_id_str = relayd_id_buffer;
4850 } else {
4851 relayd_id_str = "(formatting error)";
4852 }
4853 }
4854
4855 DBG("Consumer trace chunk exists command: relayd_id = %s"
4856 ", chunk_id = %" PRIu64, relayd_id_str,
4857 chunk_id);
4858 ret = lttng_trace_chunk_registry_chunk_exists(
4859 consumer_data.chunk_registry, session_id,
4860 chunk_id, &chunk_exists_local);
4861 if (ret) {
4862 /* Internal error. */
4863 ERR("Failed to query the existence of a trace chunk");
4864 ret_code = LTTCOMM_CONSUMERD_FATAL;
4865 goto end;
4866 }
4867 DBG("Trace chunk %s locally",
4868 chunk_exists_local ? "exists" : "does not exist");
4869 if (chunk_exists_local) {
4870 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
4871 goto end;
4872 } else if (is_local_trace) {
4873 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4874 goto end;
4875 }
4876
4877 rcu_read_lock();
4878 relayd = consumer_find_relayd(*relayd_id);
4879 if (!relayd) {
4880 ERR("Failed to find relayd %" PRIu64, *relayd_id);
4881 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
4882 goto end_rcu_unlock;
4883 }
4884 DBG("Looking up existence of trace chunk on relay daemon");
4885 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4886 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
4887 &chunk_exists_remote);
4888 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4889 if (ret < 0) {
4890 ERR("Failed to look-up the existence of trace chunk on relay daemon");
4891 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
4892 goto end_rcu_unlock;
4893 }
4894
4895 ret_code = chunk_exists_remote ?
4896 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
4897 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4898 DBG("Trace chunk %s on relay daemon",
4899 chunk_exists_remote ? "exists" : "does not exist");
4900
4901 end_rcu_unlock:
4902 rcu_read_unlock();
4903 end:
4904 return ret_code;
4905 }
4906
4907 static
4908 int consumer_clear_monitored_channel(struct lttng_consumer_channel *channel)
4909 {
4910 struct lttng_ht *ht;
4911 struct lttng_consumer_stream *stream;
4912 struct lttng_ht_iter iter;
4913 int ret;
4914
4915 ht = consumer_data.stream_per_chan_id_ht;
4916
4917 rcu_read_lock();
4918 cds_lfht_for_each_entry_duplicate(ht->ht,
4919 ht->hash_fct(&channel->key, lttng_ht_seed),
4920 ht->match_fct, &channel->key,
4921 &iter.iter, stream, node_channel_id.node) {
4922 /*
4923 * Protect against teardown with mutex.
4924 */
4925 pthread_mutex_lock(&stream->lock);
4926 if (cds_lfht_is_node_deleted(&stream->node.node)) {
4927 goto next;
4928 }
4929 ret = consumer_clear_stream(stream);
4930 if (ret) {
4931 goto error_unlock;
4932 }
4933 next:
4934 pthread_mutex_unlock(&stream->lock);
4935 }
4936 rcu_read_unlock();
4937 return LTTCOMM_CONSUMERD_SUCCESS;
4938
4939 error_unlock:
4940 pthread_mutex_unlock(&stream->lock);
4941 rcu_read_unlock();
4942 return ret;
4943 }
4944
4945 int lttng_consumer_clear_channel(struct lttng_consumer_channel *channel)
4946 {
4947 int ret;
4948
4949 DBG("Consumer clear channel %" PRIu64, channel->key);
4950
4951 if (channel->type == CONSUMER_CHANNEL_TYPE_METADATA) {
4952 /*
4953 * Nothing to do for the metadata channel/stream.
4954 * Snapshot mechanism already take care of the metadata
4955 * handling/generation, and monitored channels only need to
4956 * have their data stream cleared..
4957 */
4958 ret = LTTCOMM_CONSUMERD_SUCCESS;
4959 goto end;
4960 }
4961
4962 if (!channel->monitor) {
4963 ret = consumer_clear_unmonitored_channel(channel);
4964 } else {
4965 ret = consumer_clear_monitored_channel(channel);
4966 }
4967 end:
4968 return ret;
4969 }
This page took 0.210248 seconds and 4 git commands to generate.