Replace libuuid with internal implementation
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/time.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer/consumer-timer.h>
47 #include <common/consumer/consumer.h>
48 #include <common/consumer/consumer-stream.h>
49 #include <common/consumer/consumer-testpoint.h>
50 #include <common/align.h>
51 #include <common/consumer/consumer-metadata-cache.h>
52 #include <common/trace-chunk.h>
53 #include <common/trace-chunk-registry.h>
54 #include <common/string-utils/format.h>
55 #include <common/dynamic-array.h>
56
57 struct lttng_consumer_global_data consumer_data = {
58 .stream_count = 0,
59 .need_update = 1,
60 .type = LTTNG_CONSUMER_UNKNOWN,
61 };
62
63 enum consumer_channel_action {
64 CONSUMER_CHANNEL_ADD,
65 CONSUMER_CHANNEL_DEL,
66 CONSUMER_CHANNEL_QUIT,
67 };
68
69 struct consumer_channel_msg {
70 enum consumer_channel_action action;
71 struct lttng_consumer_channel *chan; /* add */
72 uint64_t key; /* del */
73 };
74
75 /* Flag used to temporarily pause data consumption from testpoints. */
76 int data_consumption_paused;
77
78 /*
79 * Flag to inform the polling thread to quit when all fd hung up. Updated by
80 * the consumer_thread_receive_fds when it notices that all fds has hung up.
81 * Also updated by the signal handler (consumer_should_exit()). Read by the
82 * polling threads.
83 */
84 int consumer_quit;
85
86 /*
87 * Global hash table containing respectively metadata and data streams. The
88 * stream element in this ht should only be updated by the metadata poll thread
89 * for the metadata and the data poll thread for the data.
90 */
91 static struct lttng_ht *metadata_ht;
92 static struct lttng_ht *data_ht;
93
94 /*
95 * Notify a thread lttng pipe to poll back again. This usually means that some
96 * global state has changed so we just send back the thread in a poll wait
97 * call.
98 */
99 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
100 {
101 struct lttng_consumer_stream *null_stream = NULL;
102
103 assert(pipe);
104
105 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
106 }
107
108 static void notify_health_quit_pipe(int *pipe)
109 {
110 ssize_t ret;
111
112 ret = lttng_write(pipe[1], "4", 1);
113 if (ret < 1) {
114 PERROR("write consumer health quit");
115 }
116 }
117
118 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel *chan,
120 uint64_t key,
121 enum consumer_channel_action action)
122 {
123 struct consumer_channel_msg msg;
124 ssize_t ret;
125
126 memset(&msg, 0, sizeof(msg));
127
128 msg.action = action;
129 msg.chan = chan;
130 msg.key = key;
131 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
132 if (ret < sizeof(msg)) {
133 PERROR("notify_channel_pipe write error");
134 }
135 }
136
137 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
138 uint64_t key)
139 {
140 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
141 }
142
143 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
144 struct lttng_consumer_channel **chan,
145 uint64_t *key,
146 enum consumer_channel_action *action)
147 {
148 struct consumer_channel_msg msg;
149 ssize_t ret;
150
151 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
152 if (ret < sizeof(msg)) {
153 ret = -1;
154 goto error;
155 }
156 *action = msg.action;
157 *chan = msg.chan;
158 *key = msg.key;
159 error:
160 return (int) ret;
161 }
162
163 /*
164 * Cleanup the stream list of a channel. Those streams are not yet globally
165 * visible
166 */
167 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
168 {
169 struct lttng_consumer_stream *stream, *stmp;
170
171 assert(channel);
172
173 /* Delete streams that might have been left in the stream list. */
174 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
175 send_node) {
176 cds_list_del(&stream->send_node);
177 /*
178 * Once a stream is added to this list, the buffers were created so we
179 * have a guarantee that this call will succeed. Setting the monitor
180 * mode to 0 so we don't lock nor try to delete the stream from the
181 * global hash table.
182 */
183 stream->monitor = 0;
184 consumer_stream_destroy(stream, NULL);
185 }
186 }
187
188 /*
189 * Find a stream. The consumer_data.lock must be locked during this
190 * call.
191 */
192 static struct lttng_consumer_stream *find_stream(uint64_t key,
193 struct lttng_ht *ht)
194 {
195 struct lttng_ht_iter iter;
196 struct lttng_ht_node_u64 *node;
197 struct lttng_consumer_stream *stream = NULL;
198
199 assert(ht);
200
201 /* -1ULL keys are lookup failures */
202 if (key == (uint64_t) -1ULL) {
203 return NULL;
204 }
205
206 rcu_read_lock();
207
208 lttng_ht_lookup(ht, &key, &iter);
209 node = lttng_ht_iter_get_node_u64(&iter);
210 if (node != NULL) {
211 stream = caa_container_of(node, struct lttng_consumer_stream, node);
212 }
213
214 rcu_read_unlock();
215
216 return stream;
217 }
218
219 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
220 {
221 struct lttng_consumer_stream *stream;
222
223 rcu_read_lock();
224 stream = find_stream(key, ht);
225 if (stream) {
226 stream->key = (uint64_t) -1ULL;
227 /*
228 * We don't want the lookup to match, but we still need
229 * to iterate on this stream when iterating over the hash table. Just
230 * change the node key.
231 */
232 stream->node.key = (uint64_t) -1ULL;
233 }
234 rcu_read_unlock();
235 }
236
237 /*
238 * Return a channel object for the given key.
239 *
240 * RCU read side lock MUST be acquired before calling this function and
241 * protects the channel ptr.
242 */
243 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
244 {
245 struct lttng_ht_iter iter;
246 struct lttng_ht_node_u64 *node;
247 struct lttng_consumer_channel *channel = NULL;
248
249 /* -1ULL keys are lookup failures */
250 if (key == (uint64_t) -1ULL) {
251 return NULL;
252 }
253
254 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
255 node = lttng_ht_iter_get_node_u64(&iter);
256 if (node != NULL) {
257 channel = caa_container_of(node, struct lttng_consumer_channel, node);
258 }
259
260 return channel;
261 }
262
263 /*
264 * There is a possibility that the consumer does not have enough time between
265 * the close of the channel on the session daemon and the cleanup in here thus
266 * once we have a channel add with an existing key, we know for sure that this
267 * channel will eventually get cleaned up by all streams being closed.
268 *
269 * This function just nullifies the already existing channel key.
270 */
271 static void steal_channel_key(uint64_t key)
272 {
273 struct lttng_consumer_channel *channel;
274
275 rcu_read_lock();
276 channel = consumer_find_channel(key);
277 if (channel) {
278 channel->key = (uint64_t) -1ULL;
279 /*
280 * We don't want the lookup to match, but we still need to iterate on
281 * this channel when iterating over the hash table. Just change the
282 * node key.
283 */
284 channel->node.key = (uint64_t) -1ULL;
285 }
286 rcu_read_unlock();
287 }
288
289 static void free_channel_rcu(struct rcu_head *head)
290 {
291 struct lttng_ht_node_u64 *node =
292 caa_container_of(head, struct lttng_ht_node_u64, head);
293 struct lttng_consumer_channel *channel =
294 caa_container_of(node, struct lttng_consumer_channel, node);
295
296 switch (consumer_data.type) {
297 case LTTNG_CONSUMER_KERNEL:
298 break;
299 case LTTNG_CONSUMER32_UST:
300 case LTTNG_CONSUMER64_UST:
301 lttng_ustconsumer_free_channel(channel);
302 break;
303 default:
304 ERR("Unknown consumer_data type");
305 abort();
306 }
307 free(channel);
308 }
309
310 /*
311 * RCU protected relayd socket pair free.
312 */
313 static void free_relayd_rcu(struct rcu_head *head)
314 {
315 struct lttng_ht_node_u64 *node =
316 caa_container_of(head, struct lttng_ht_node_u64, head);
317 struct consumer_relayd_sock_pair *relayd =
318 caa_container_of(node, struct consumer_relayd_sock_pair, node);
319
320 /*
321 * Close all sockets. This is done in the call RCU since we don't want the
322 * socket fds to be reassigned thus potentially creating bad state of the
323 * relayd object.
324 *
325 * We do not have to lock the control socket mutex here since at this stage
326 * there is no one referencing to this relayd object.
327 */
328 (void) relayd_close(&relayd->control_sock);
329 (void) relayd_close(&relayd->data_sock);
330
331 pthread_mutex_destroy(&relayd->ctrl_sock_mutex);
332 free(relayd);
333 }
334
335 /*
336 * Destroy and free relayd socket pair object.
337 */
338 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
339 {
340 int ret;
341 struct lttng_ht_iter iter;
342
343 if (relayd == NULL) {
344 return;
345 }
346
347 DBG("Consumer destroy and close relayd socket pair");
348
349 iter.iter.node = &relayd->node.node;
350 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
351 if (ret != 0) {
352 /* We assume the relayd is being or is destroyed */
353 return;
354 }
355
356 /* RCU free() call */
357 call_rcu(&relayd->node.head, free_relayd_rcu);
358 }
359
360 /*
361 * Remove a channel from the global list protected by a mutex. This function is
362 * also responsible for freeing its data structures.
363 */
364 void consumer_del_channel(struct lttng_consumer_channel *channel)
365 {
366 struct lttng_ht_iter iter;
367
368 DBG("Consumer delete channel key %" PRIu64, channel->key);
369
370 pthread_mutex_lock(&consumer_data.lock);
371 pthread_mutex_lock(&channel->lock);
372
373 /* Destroy streams that might have been left in the stream list. */
374 clean_channel_stream_list(channel);
375
376 if (channel->live_timer_enabled == 1) {
377 consumer_timer_live_stop(channel);
378 }
379 if (channel->monitor_timer_enabled == 1) {
380 consumer_timer_monitor_stop(channel);
381 }
382
383 switch (consumer_data.type) {
384 case LTTNG_CONSUMER_KERNEL:
385 break;
386 case LTTNG_CONSUMER32_UST:
387 case LTTNG_CONSUMER64_UST:
388 lttng_ustconsumer_del_channel(channel);
389 break;
390 default:
391 ERR("Unknown consumer_data type");
392 assert(0);
393 goto end;
394 }
395
396 lttng_trace_chunk_put(channel->trace_chunk);
397 channel->trace_chunk = NULL;
398
399 if (channel->is_published) {
400 int ret;
401
402 rcu_read_lock();
403 iter.iter.node = &channel->node.node;
404 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
405 assert(!ret);
406
407 iter.iter.node = &channel->channels_by_session_id_ht_node.node;
408 ret = lttng_ht_del(consumer_data.channels_by_session_id_ht,
409 &iter);
410 assert(!ret);
411 rcu_read_unlock();
412 }
413
414 channel->is_deleted = true;
415 call_rcu(&channel->node.head, free_channel_rcu);
416 end:
417 pthread_mutex_unlock(&channel->lock);
418 pthread_mutex_unlock(&consumer_data.lock);
419 }
420
421 /*
422 * Iterate over the relayd hash table and destroy each element. Finally,
423 * destroy the whole hash table.
424 */
425 static void cleanup_relayd_ht(void)
426 {
427 struct lttng_ht_iter iter;
428 struct consumer_relayd_sock_pair *relayd;
429
430 rcu_read_lock();
431
432 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
433 node.node) {
434 consumer_destroy_relayd(relayd);
435 }
436
437 rcu_read_unlock();
438
439 lttng_ht_destroy(consumer_data.relayd_ht);
440 }
441
442 /*
443 * Update the end point status of all streams having the given network sequence
444 * index (relayd index).
445 *
446 * It's atomically set without having the stream mutex locked which is fine
447 * because we handle the write/read race with a pipe wakeup for each thread.
448 */
449 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
450 enum consumer_endpoint_status status)
451 {
452 struct lttng_ht_iter iter;
453 struct lttng_consumer_stream *stream;
454
455 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
456
457 rcu_read_lock();
458
459 /* Let's begin with metadata */
460 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
461 if (stream->net_seq_idx == net_seq_idx) {
462 uatomic_set(&stream->endpoint_status, status);
463 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
464 }
465 }
466
467 /* Follow up by the data streams */
468 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
469 if (stream->net_seq_idx == net_seq_idx) {
470 uatomic_set(&stream->endpoint_status, status);
471 DBG("Delete flag set to data stream %d", stream->wait_fd);
472 }
473 }
474 rcu_read_unlock();
475 }
476
477 /*
478 * Cleanup a relayd object by flagging every associated streams for deletion,
479 * destroying the object meaning removing it from the relayd hash table,
480 * closing the sockets and freeing the memory in a RCU call.
481 *
482 * If a local data context is available, notify the threads that the streams'
483 * state have changed.
484 */
485 void lttng_consumer_cleanup_relayd(struct consumer_relayd_sock_pair *relayd)
486 {
487 uint64_t netidx;
488
489 assert(relayd);
490
491 DBG("Cleaning up relayd object ID %"PRIu64, relayd->net_seq_idx);
492
493 /* Save the net sequence index before destroying the object */
494 netidx = relayd->net_seq_idx;
495
496 /*
497 * Delete the relayd from the relayd hash table, close the sockets and free
498 * the object in a RCU call.
499 */
500 consumer_destroy_relayd(relayd);
501
502 /* Set inactive endpoint to all streams */
503 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
504
505 /*
506 * With a local data context, notify the threads that the streams' state
507 * have changed. The write() action on the pipe acts as an "implicit"
508 * memory barrier ordering the updates of the end point status from the
509 * read of this status which happens AFTER receiving this notify.
510 */
511 notify_thread_lttng_pipe(relayd->ctx->consumer_data_pipe);
512 notify_thread_lttng_pipe(relayd->ctx->consumer_metadata_pipe);
513 }
514
515 /*
516 * Flag a relayd socket pair for destruction. Destroy it if the refcount
517 * reaches zero.
518 *
519 * RCU read side lock MUST be aquired before calling this function.
520 */
521 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
522 {
523 assert(relayd);
524
525 /* Set destroy flag for this object */
526 uatomic_set(&relayd->destroy_flag, 1);
527
528 /* Destroy the relayd if refcount is 0 */
529 if (uatomic_read(&relayd->refcount) == 0) {
530 consumer_destroy_relayd(relayd);
531 }
532 }
533
534 /*
535 * Completly destroy stream from every visiable data structure and the given
536 * hash table if one.
537 *
538 * One this call returns, the stream object is not longer usable nor visible.
539 */
540 void consumer_del_stream(struct lttng_consumer_stream *stream,
541 struct lttng_ht *ht)
542 {
543 consumer_stream_destroy(stream, ht);
544 }
545
546 /*
547 * XXX naming of del vs destroy is all mixed up.
548 */
549 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
550 {
551 consumer_stream_destroy(stream, data_ht);
552 }
553
554 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
555 {
556 consumer_stream_destroy(stream, metadata_ht);
557 }
558
559 void consumer_stream_update_channel_attributes(
560 struct lttng_consumer_stream *stream,
561 struct lttng_consumer_channel *channel)
562 {
563 stream->channel_read_only_attributes.tracefile_size =
564 channel->tracefile_size;
565 }
566
567 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
568 uint64_t stream_key,
569 const char *channel_name,
570 uint64_t relayd_id,
571 uint64_t session_id,
572 struct lttng_trace_chunk *trace_chunk,
573 int cpu,
574 int *alloc_ret,
575 enum consumer_channel_type type,
576 unsigned int monitor)
577 {
578 int ret;
579 struct lttng_consumer_stream *stream;
580
581 stream = zmalloc(sizeof(*stream));
582 if (stream == NULL) {
583 PERROR("malloc struct lttng_consumer_stream");
584 ret = -ENOMEM;
585 goto end;
586 }
587
588 if (trace_chunk && !lttng_trace_chunk_get(trace_chunk)) {
589 ERR("Failed to acquire trace chunk reference during the creation of a stream");
590 ret = -1;
591 goto error;
592 }
593
594 rcu_read_lock();
595 stream->key = stream_key;
596 stream->trace_chunk = trace_chunk;
597 stream->out_fd = -1;
598 stream->out_fd_offset = 0;
599 stream->output_written = 0;
600 stream->net_seq_idx = relayd_id;
601 stream->session_id = session_id;
602 stream->monitor = monitor;
603 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
604 stream->index_file = NULL;
605 stream->last_sequence_number = -1ULL;
606 pthread_mutex_init(&stream->lock, NULL);
607 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
608
609 /* If channel is the metadata, flag this stream as metadata. */
610 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
611 stream->metadata_flag = 1;
612 /* Metadata is flat out. */
613 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
614 /* Live rendez-vous point. */
615 pthread_cond_init(&stream->metadata_rdv, NULL);
616 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
617 } else {
618 /* Format stream name to <channel_name>_<cpu_number> */
619 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
620 channel_name, cpu);
621 if (ret < 0) {
622 PERROR("snprintf stream name");
623 goto error;
624 }
625 }
626
627 /* Key is always the wait_fd for streams. */
628 lttng_ht_node_init_u64(&stream->node, stream->key);
629
630 /* Init node per channel id key */
631 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
632
633 /* Init session id node with the stream session id */
634 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
635
636 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
637 " relayd_id %" PRIu64 ", session_id %" PRIu64,
638 stream->name, stream->key, channel_key,
639 stream->net_seq_idx, stream->session_id);
640
641 rcu_read_unlock();
642 return stream;
643
644 error:
645 rcu_read_unlock();
646 lttng_trace_chunk_put(stream->trace_chunk);
647 free(stream);
648 end:
649 if (alloc_ret) {
650 *alloc_ret = ret;
651 }
652 return NULL;
653 }
654
655 /*
656 * Add a stream to the global list protected by a mutex.
657 */
658 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
659 {
660 struct lttng_ht *ht = data_ht;
661
662 assert(stream);
663 assert(ht);
664
665 DBG3("Adding consumer stream %" PRIu64, stream->key);
666
667 pthread_mutex_lock(&consumer_data.lock);
668 pthread_mutex_lock(&stream->chan->lock);
669 pthread_mutex_lock(&stream->chan->timer_lock);
670 pthread_mutex_lock(&stream->lock);
671 rcu_read_lock();
672
673 /* Steal stream identifier to avoid having streams with the same key */
674 steal_stream_key(stream->key, ht);
675
676 lttng_ht_add_unique_u64(ht, &stream->node);
677
678 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
679 &stream->node_channel_id);
680
681 /*
682 * Add stream to the stream_list_ht of the consumer data. No need to steal
683 * the key since the HT does not use it and we allow to add redundant keys
684 * into this table.
685 */
686 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
687
688 /*
689 * When nb_init_stream_left reaches 0, we don't need to trigger any action
690 * in terms of destroying the associated channel, because the action that
691 * causes the count to become 0 also causes a stream to be added. The
692 * channel deletion will thus be triggered by the following removal of this
693 * stream.
694 */
695 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
696 /* Increment refcount before decrementing nb_init_stream_left */
697 cmm_smp_wmb();
698 uatomic_dec(&stream->chan->nb_init_stream_left);
699 }
700
701 /* Update consumer data once the node is inserted. */
702 consumer_data.stream_count++;
703 consumer_data.need_update = 1;
704
705 rcu_read_unlock();
706 pthread_mutex_unlock(&stream->lock);
707 pthread_mutex_unlock(&stream->chan->timer_lock);
708 pthread_mutex_unlock(&stream->chan->lock);
709 pthread_mutex_unlock(&consumer_data.lock);
710 }
711
712 /*
713 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
714 * be acquired before calling this.
715 */
716 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
717 {
718 int ret = 0;
719 struct lttng_ht_node_u64 *node;
720 struct lttng_ht_iter iter;
721
722 assert(relayd);
723
724 lttng_ht_lookup(consumer_data.relayd_ht,
725 &relayd->net_seq_idx, &iter);
726 node = lttng_ht_iter_get_node_u64(&iter);
727 if (node != NULL) {
728 goto end;
729 }
730 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
731
732 end:
733 return ret;
734 }
735
736 /*
737 * Allocate and return a consumer relayd socket.
738 */
739 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
740 uint64_t net_seq_idx)
741 {
742 struct consumer_relayd_sock_pair *obj = NULL;
743
744 /* net sequence index of -1 is a failure */
745 if (net_seq_idx == (uint64_t) -1ULL) {
746 goto error;
747 }
748
749 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
750 if (obj == NULL) {
751 PERROR("zmalloc relayd sock");
752 goto error;
753 }
754
755 obj->net_seq_idx = net_seq_idx;
756 obj->refcount = 0;
757 obj->destroy_flag = 0;
758 obj->control_sock.sock.fd = -1;
759 obj->data_sock.sock.fd = -1;
760 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
761 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
762
763 error:
764 return obj;
765 }
766
767 /*
768 * Find a relayd socket pair in the global consumer data.
769 *
770 * Return the object if found else NULL.
771 * RCU read-side lock must be held across this call and while using the
772 * returned object.
773 */
774 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
775 {
776 struct lttng_ht_iter iter;
777 struct lttng_ht_node_u64 *node;
778 struct consumer_relayd_sock_pair *relayd = NULL;
779
780 /* Negative keys are lookup failures */
781 if (key == (uint64_t) -1ULL) {
782 goto error;
783 }
784
785 lttng_ht_lookup(consumer_data.relayd_ht, &key,
786 &iter);
787 node = lttng_ht_iter_get_node_u64(&iter);
788 if (node != NULL) {
789 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
790 }
791
792 error:
793 return relayd;
794 }
795
796 /*
797 * Find a relayd and send the stream
798 *
799 * Returns 0 on success, < 0 on error
800 */
801 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
802 char *path)
803 {
804 int ret = 0;
805 struct consumer_relayd_sock_pair *relayd;
806
807 assert(stream);
808 assert(stream->net_seq_idx != -1ULL);
809 assert(path);
810
811 /* The stream is not metadata. Get relayd reference if exists. */
812 rcu_read_lock();
813 relayd = consumer_find_relayd(stream->net_seq_idx);
814 if (relayd != NULL) {
815 /* Add stream on the relayd */
816 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
817 ret = relayd_add_stream(&relayd->control_sock, stream->name,
818 path, &stream->relayd_stream_id,
819 stream->chan->tracefile_size,
820 stream->chan->tracefile_count,
821 stream->trace_chunk);
822 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
823 if (ret < 0) {
824 ERR("Relayd add stream failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
825 lttng_consumer_cleanup_relayd(relayd);
826 goto end;
827 }
828
829 uatomic_inc(&relayd->refcount);
830 stream->sent_to_relayd = 1;
831 } else {
832 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
833 stream->key, stream->net_seq_idx);
834 ret = -1;
835 goto end;
836 }
837
838 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
839 stream->name, stream->key, stream->net_seq_idx);
840
841 end:
842 rcu_read_unlock();
843 return ret;
844 }
845
846 /*
847 * Find a relayd and send the streams sent message
848 *
849 * Returns 0 on success, < 0 on error
850 */
851 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
852 {
853 int ret = 0;
854 struct consumer_relayd_sock_pair *relayd;
855
856 assert(net_seq_idx != -1ULL);
857
858 /* The stream is not metadata. Get relayd reference if exists. */
859 rcu_read_lock();
860 relayd = consumer_find_relayd(net_seq_idx);
861 if (relayd != NULL) {
862 /* Add stream on the relayd */
863 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
864 ret = relayd_streams_sent(&relayd->control_sock);
865 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
866 if (ret < 0) {
867 ERR("Relayd streams sent failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
868 lttng_consumer_cleanup_relayd(relayd);
869 goto end;
870 }
871 } else {
872 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
873 net_seq_idx);
874 ret = -1;
875 goto end;
876 }
877
878 ret = 0;
879 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
880
881 end:
882 rcu_read_unlock();
883 return ret;
884 }
885
886 /*
887 * Find a relayd and close the stream
888 */
889 void close_relayd_stream(struct lttng_consumer_stream *stream)
890 {
891 struct consumer_relayd_sock_pair *relayd;
892
893 /* The stream is not metadata. Get relayd reference if exists. */
894 rcu_read_lock();
895 relayd = consumer_find_relayd(stream->net_seq_idx);
896 if (relayd) {
897 consumer_stream_relayd_close(stream, relayd);
898 }
899 rcu_read_unlock();
900 }
901
902 /*
903 * Handle stream for relayd transmission if the stream applies for network
904 * streaming where the net sequence index is set.
905 *
906 * Return destination file descriptor or negative value on error.
907 */
908 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
909 size_t data_size, unsigned long padding,
910 struct consumer_relayd_sock_pair *relayd)
911 {
912 int outfd = -1, ret;
913 struct lttcomm_relayd_data_hdr data_hdr;
914
915 /* Safety net */
916 assert(stream);
917 assert(relayd);
918
919 /* Reset data header */
920 memset(&data_hdr, 0, sizeof(data_hdr));
921
922 if (stream->metadata_flag) {
923 /* Caller MUST acquire the relayd control socket lock */
924 ret = relayd_send_metadata(&relayd->control_sock, data_size);
925 if (ret < 0) {
926 goto error;
927 }
928
929 /* Metadata are always sent on the control socket. */
930 outfd = relayd->control_sock.sock.fd;
931 } else {
932 /* Set header with stream information */
933 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
934 data_hdr.data_size = htobe32(data_size);
935 data_hdr.padding_size = htobe32(padding);
936
937 /*
938 * Note that net_seq_num below is assigned with the *current* value of
939 * next_net_seq_num and only after that the next_net_seq_num will be
940 * increment. This is why when issuing a command on the relayd using
941 * this next value, 1 should always be substracted in order to compare
942 * the last seen sequence number on the relayd side to the last sent.
943 */
944 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
945 /* Other fields are zeroed previously */
946
947 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
948 sizeof(data_hdr));
949 if (ret < 0) {
950 goto error;
951 }
952
953 ++stream->next_net_seq_num;
954
955 /* Set to go on data socket */
956 outfd = relayd->data_sock.sock.fd;
957 }
958
959 error:
960 return outfd;
961 }
962
963 /*
964 * Trigger a dump of the metadata content. Following/during the succesful
965 * completion of this call, the metadata poll thread will start receiving
966 * metadata packets to consume.
967 *
968 * The caller must hold the channel and stream locks.
969 */
970 static
971 int consumer_metadata_stream_dump(struct lttng_consumer_stream *stream)
972 {
973 int ret;
974
975 ASSERT_LOCKED(stream->chan->lock);
976 ASSERT_LOCKED(stream->lock);
977 assert(stream->metadata_flag);
978 assert(stream->chan->trace_chunk);
979
980 switch (consumer_data.type) {
981 case LTTNG_CONSUMER_KERNEL:
982 /*
983 * Reset the position of what has been read from the
984 * metadata cache to 0 so we can dump it again.
985 */
986 ret = kernctl_metadata_cache_dump(stream->wait_fd);
987 break;
988 case LTTNG_CONSUMER32_UST:
989 case LTTNG_CONSUMER64_UST:
990 /*
991 * Reset the position pushed from the metadata cache so it
992 * will write from the beginning on the next push.
993 */
994 stream->ust_metadata_pushed = 0;
995 ret = consumer_metadata_wakeup_pipe(stream->chan);
996 break;
997 default:
998 ERR("Unknown consumer_data type");
999 abort();
1000 }
1001 if (ret < 0) {
1002 ERR("Failed to dump the metadata cache");
1003 }
1004 return ret;
1005 }
1006
1007 static
1008 int lttng_consumer_channel_set_trace_chunk(
1009 struct lttng_consumer_channel *channel,
1010 struct lttng_trace_chunk *new_trace_chunk)
1011 {
1012 pthread_mutex_lock(&channel->lock);
1013 if (channel->is_deleted) {
1014 /*
1015 * The channel has been logically deleted and should no longer
1016 * be used. It has released its reference to its current trace
1017 * chunk and should not acquire a new one.
1018 *
1019 * Return success as there is nothing for the caller to do.
1020 */
1021 goto end;
1022 }
1023
1024 /*
1025 * The acquisition of the reference cannot fail (barring
1026 * a severe internal error) since a reference to the published
1027 * chunk is already held by the caller.
1028 */
1029 if (new_trace_chunk) {
1030 const bool acquired_reference = lttng_trace_chunk_get(
1031 new_trace_chunk);
1032
1033 assert(acquired_reference);
1034 }
1035
1036 lttng_trace_chunk_put(channel->trace_chunk);
1037 channel->trace_chunk = new_trace_chunk;
1038 end:
1039 pthread_mutex_unlock(&channel->lock);
1040 return 0;
1041 }
1042
1043 /*
1044 * Allocate and return a new lttng_consumer_channel object using the given key
1045 * to initialize the hash table node.
1046 *
1047 * On error, return NULL.
1048 */
1049 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
1050 uint64_t session_id,
1051 const uint64_t *chunk_id,
1052 const char *pathname,
1053 const char *name,
1054 uint64_t relayd_id,
1055 enum lttng_event_output output,
1056 uint64_t tracefile_size,
1057 uint64_t tracefile_count,
1058 uint64_t session_id_per_pid,
1059 unsigned int monitor,
1060 unsigned int live_timer_interval,
1061 const char *root_shm_path,
1062 const char *shm_path)
1063 {
1064 struct lttng_consumer_channel *channel = NULL;
1065 struct lttng_trace_chunk *trace_chunk = NULL;
1066
1067 if (chunk_id) {
1068 trace_chunk = lttng_trace_chunk_registry_find_chunk(
1069 consumer_data.chunk_registry, session_id,
1070 *chunk_id);
1071 if (!trace_chunk) {
1072 ERR("Failed to find trace chunk reference during creation of channel");
1073 goto end;
1074 }
1075 }
1076
1077 channel = zmalloc(sizeof(*channel));
1078 if (channel == NULL) {
1079 PERROR("malloc struct lttng_consumer_channel");
1080 goto end;
1081 }
1082
1083 channel->key = key;
1084 channel->refcount = 0;
1085 channel->session_id = session_id;
1086 channel->session_id_per_pid = session_id_per_pid;
1087 channel->relayd_id = relayd_id;
1088 channel->tracefile_size = tracefile_size;
1089 channel->tracefile_count = tracefile_count;
1090 channel->monitor = monitor;
1091 channel->live_timer_interval = live_timer_interval;
1092 pthread_mutex_init(&channel->lock, NULL);
1093 pthread_mutex_init(&channel->timer_lock, NULL);
1094
1095 switch (output) {
1096 case LTTNG_EVENT_SPLICE:
1097 channel->output = CONSUMER_CHANNEL_SPLICE;
1098 break;
1099 case LTTNG_EVENT_MMAP:
1100 channel->output = CONSUMER_CHANNEL_MMAP;
1101 break;
1102 default:
1103 assert(0);
1104 free(channel);
1105 channel = NULL;
1106 goto end;
1107 }
1108
1109 /*
1110 * In monitor mode, the streams associated with the channel will be put in
1111 * a special list ONLY owned by this channel. So, the refcount is set to 1
1112 * here meaning that the channel itself has streams that are referenced.
1113 *
1114 * On a channel deletion, once the channel is no longer visible, the
1115 * refcount is decremented and checked for a zero value to delete it. With
1116 * streams in no monitor mode, it will now be safe to destroy the channel.
1117 */
1118 if (!channel->monitor) {
1119 channel->refcount = 1;
1120 }
1121
1122 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1123 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1124
1125 strncpy(channel->name, name, sizeof(channel->name));
1126 channel->name[sizeof(channel->name) - 1] = '\0';
1127
1128 if (root_shm_path) {
1129 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1130 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1131 }
1132 if (shm_path) {
1133 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1134 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1135 }
1136
1137 lttng_ht_node_init_u64(&channel->node, channel->key);
1138 lttng_ht_node_init_u64(&channel->channels_by_session_id_ht_node,
1139 channel->session_id);
1140
1141 channel->wait_fd = -1;
1142 CDS_INIT_LIST_HEAD(&channel->streams.head);
1143
1144 if (trace_chunk) {
1145 int ret = lttng_consumer_channel_set_trace_chunk(channel,
1146 trace_chunk);
1147 if (ret) {
1148 goto error;
1149 }
1150 }
1151
1152 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1153
1154 end:
1155 lttng_trace_chunk_put(trace_chunk);
1156 return channel;
1157 error:
1158 consumer_del_channel(channel);
1159 channel = NULL;
1160 goto end;
1161 }
1162
1163 /*
1164 * Add a channel to the global list protected by a mutex.
1165 *
1166 * Always return 0 indicating success.
1167 */
1168 int consumer_add_channel(struct lttng_consumer_channel *channel,
1169 struct lttng_consumer_local_data *ctx)
1170 {
1171 pthread_mutex_lock(&consumer_data.lock);
1172 pthread_mutex_lock(&channel->lock);
1173 pthread_mutex_lock(&channel->timer_lock);
1174
1175 /*
1176 * This gives us a guarantee that the channel we are about to add to the
1177 * channel hash table will be unique. See this function comment on the why
1178 * we need to steel the channel key at this stage.
1179 */
1180 steal_channel_key(channel->key);
1181
1182 rcu_read_lock();
1183 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1184 lttng_ht_add_u64(consumer_data.channels_by_session_id_ht,
1185 &channel->channels_by_session_id_ht_node);
1186 rcu_read_unlock();
1187 channel->is_published = true;
1188
1189 pthread_mutex_unlock(&channel->timer_lock);
1190 pthread_mutex_unlock(&channel->lock);
1191 pthread_mutex_unlock(&consumer_data.lock);
1192
1193 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1194 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1195 }
1196
1197 return 0;
1198 }
1199
1200 /*
1201 * Allocate the pollfd structure and the local view of the out fds to avoid
1202 * doing a lookup in the linked list and concurrency issues when writing is
1203 * needed. Called with consumer_data.lock held.
1204 *
1205 * Returns the number of fds in the structures.
1206 */
1207 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1208 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1209 struct lttng_ht *ht, int *nb_inactive_fd)
1210 {
1211 int i = 0;
1212 struct lttng_ht_iter iter;
1213 struct lttng_consumer_stream *stream;
1214
1215 assert(ctx);
1216 assert(ht);
1217 assert(pollfd);
1218 assert(local_stream);
1219
1220 DBG("Updating poll fd array");
1221 *nb_inactive_fd = 0;
1222 rcu_read_lock();
1223 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1224 /*
1225 * Only active streams with an active end point can be added to the
1226 * poll set and local stream storage of the thread.
1227 *
1228 * There is a potential race here for endpoint_status to be updated
1229 * just after the check. However, this is OK since the stream(s) will
1230 * be deleted once the thread is notified that the end point state has
1231 * changed where this function will be called back again.
1232 *
1233 * We track the number of inactive FDs because they still need to be
1234 * closed by the polling thread after a wakeup on the data_pipe or
1235 * metadata_pipe.
1236 */
1237 if (stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1238 (*nb_inactive_fd)++;
1239 continue;
1240 }
1241 /*
1242 * This clobbers way too much the debug output. Uncomment that if you
1243 * need it for debugging purposes.
1244 */
1245 (*pollfd)[i].fd = stream->wait_fd;
1246 (*pollfd)[i].events = POLLIN | POLLPRI;
1247 local_stream[i] = stream;
1248 i++;
1249 }
1250 rcu_read_unlock();
1251
1252 /*
1253 * Insert the consumer_data_pipe at the end of the array and don't
1254 * increment i so nb_fd is the number of real FD.
1255 */
1256 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1257 (*pollfd)[i].events = POLLIN | POLLPRI;
1258
1259 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1260 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1261 return i;
1262 }
1263
1264 /*
1265 * Poll on the should_quit pipe and the command socket return -1 on
1266 * error, 1 if should exit, 0 if data is available on the command socket
1267 */
1268 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1269 {
1270 int num_rdy;
1271
1272 restart:
1273 num_rdy = poll(consumer_sockpoll, 2, -1);
1274 if (num_rdy == -1) {
1275 /*
1276 * Restart interrupted system call.
1277 */
1278 if (errno == EINTR) {
1279 goto restart;
1280 }
1281 PERROR("Poll error");
1282 return -1;
1283 }
1284 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1285 DBG("consumer_should_quit wake up");
1286 return 1;
1287 }
1288 return 0;
1289 }
1290
1291 /*
1292 * Set the error socket.
1293 */
1294 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1295 int sock)
1296 {
1297 ctx->consumer_error_socket = sock;
1298 }
1299
1300 /*
1301 * Set the command socket path.
1302 */
1303 void lttng_consumer_set_command_sock_path(
1304 struct lttng_consumer_local_data *ctx, char *sock)
1305 {
1306 ctx->consumer_command_sock_path = sock;
1307 }
1308
1309 /*
1310 * Send return code to the session daemon.
1311 * If the socket is not defined, we return 0, it is not a fatal error
1312 */
1313 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1314 {
1315 if (ctx->consumer_error_socket > 0) {
1316 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1317 sizeof(enum lttcomm_sessiond_command));
1318 }
1319
1320 return 0;
1321 }
1322
1323 /*
1324 * Close all the tracefiles and stream fds and MUST be called when all
1325 * instances are destroyed i.e. when all threads were joined and are ended.
1326 */
1327 void lttng_consumer_cleanup(void)
1328 {
1329 struct lttng_ht_iter iter;
1330 struct lttng_consumer_channel *channel;
1331 unsigned int trace_chunks_left;
1332
1333 rcu_read_lock();
1334
1335 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1336 node.node) {
1337 consumer_del_channel(channel);
1338 }
1339
1340 rcu_read_unlock();
1341
1342 lttng_ht_destroy(consumer_data.channel_ht);
1343 lttng_ht_destroy(consumer_data.channels_by_session_id_ht);
1344
1345 cleanup_relayd_ht();
1346
1347 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1348
1349 /*
1350 * This HT contains streams that are freed by either the metadata thread or
1351 * the data thread so we do *nothing* on the hash table and simply destroy
1352 * it.
1353 */
1354 lttng_ht_destroy(consumer_data.stream_list_ht);
1355
1356 /*
1357 * Trace chunks in the registry may still exist if the session
1358 * daemon has encountered an internal error and could not
1359 * tear down its sessions and/or trace chunks properly.
1360 *
1361 * Release the session daemon's implicit reference to any remaining
1362 * trace chunk and print an error if any trace chunk was found. Note
1363 * that there are _no_ legitimate cases for trace chunks to be left,
1364 * it is a leak. However, it can happen following a crash of the
1365 * session daemon and not emptying the registry would cause an assertion
1366 * to hit.
1367 */
1368 trace_chunks_left = lttng_trace_chunk_registry_put_each_chunk(
1369 consumer_data.chunk_registry);
1370 if (trace_chunks_left) {
1371 ERR("%u trace chunks are leaked by lttng-consumerd. "
1372 "This can be caused by an internal error of the session daemon.",
1373 trace_chunks_left);
1374 }
1375 /* Run all callbacks freeing each chunk. */
1376 rcu_barrier();
1377 lttng_trace_chunk_registry_destroy(consumer_data.chunk_registry);
1378 }
1379
1380 /*
1381 * Called from signal handler.
1382 */
1383 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1384 {
1385 ssize_t ret;
1386
1387 CMM_STORE_SHARED(consumer_quit, 1);
1388 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1389 if (ret < 1) {
1390 PERROR("write consumer quit");
1391 }
1392
1393 DBG("Consumer flag that it should quit");
1394 }
1395
1396
1397 /*
1398 * Flush pending writes to trace output disk file.
1399 */
1400 static
1401 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1402 off_t orig_offset)
1403 {
1404 int ret;
1405 int outfd = stream->out_fd;
1406
1407 /*
1408 * This does a blocking write-and-wait on any page that belongs to the
1409 * subbuffer prior to the one we just wrote.
1410 * Don't care about error values, as these are just hints and ways to
1411 * limit the amount of page cache used.
1412 */
1413 if (orig_offset < stream->max_sb_size) {
1414 return;
1415 }
1416 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1417 stream->max_sb_size,
1418 SYNC_FILE_RANGE_WAIT_BEFORE
1419 | SYNC_FILE_RANGE_WRITE
1420 | SYNC_FILE_RANGE_WAIT_AFTER);
1421 /*
1422 * Give hints to the kernel about how we access the file:
1423 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1424 * we write it.
1425 *
1426 * We need to call fadvise again after the file grows because the
1427 * kernel does not seem to apply fadvise to non-existing parts of the
1428 * file.
1429 *
1430 * Call fadvise _after_ having waited for the page writeback to
1431 * complete because the dirty page writeback semantic is not well
1432 * defined. So it can be expected to lead to lower throughput in
1433 * streaming.
1434 */
1435 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1436 stream->max_sb_size, POSIX_FADV_DONTNEED);
1437 if (ret && ret != -ENOSYS) {
1438 errno = ret;
1439 PERROR("posix_fadvise on fd %i", outfd);
1440 }
1441 }
1442
1443 /*
1444 * Initialise the necessary environnement :
1445 * - create a new context
1446 * - create the poll_pipe
1447 * - create the should_quit pipe (for signal handler)
1448 * - create the thread pipe (for splice)
1449 *
1450 * Takes a function pointer as argument, this function is called when data is
1451 * available on a buffer. This function is responsible to do the
1452 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1453 * buffer configuration and then kernctl_put_next_subbuf at the end.
1454 *
1455 * Returns a pointer to the new context or NULL on error.
1456 */
1457 struct lttng_consumer_local_data *lttng_consumer_create(
1458 enum lttng_consumer_type type,
1459 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1460 struct lttng_consumer_local_data *ctx),
1461 int (*recv_channel)(struct lttng_consumer_channel *channel),
1462 int (*recv_stream)(struct lttng_consumer_stream *stream),
1463 int (*update_stream)(uint64_t stream_key, uint32_t state))
1464 {
1465 int ret;
1466 struct lttng_consumer_local_data *ctx;
1467
1468 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1469 consumer_data.type == type);
1470 consumer_data.type = type;
1471
1472 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1473 if (ctx == NULL) {
1474 PERROR("allocating context");
1475 goto error;
1476 }
1477
1478 ctx->consumer_error_socket = -1;
1479 ctx->consumer_metadata_socket = -1;
1480 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1481 /* assign the callbacks */
1482 ctx->on_buffer_ready = buffer_ready;
1483 ctx->on_recv_channel = recv_channel;
1484 ctx->on_recv_stream = recv_stream;
1485 ctx->on_update_stream = update_stream;
1486
1487 ctx->consumer_data_pipe = lttng_pipe_open(0);
1488 if (!ctx->consumer_data_pipe) {
1489 goto error_poll_pipe;
1490 }
1491
1492 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1493 if (!ctx->consumer_wakeup_pipe) {
1494 goto error_wakeup_pipe;
1495 }
1496
1497 ret = pipe(ctx->consumer_should_quit);
1498 if (ret < 0) {
1499 PERROR("Error creating recv pipe");
1500 goto error_quit_pipe;
1501 }
1502
1503 ret = pipe(ctx->consumer_channel_pipe);
1504 if (ret < 0) {
1505 PERROR("Error creating channel pipe");
1506 goto error_channel_pipe;
1507 }
1508
1509 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1510 if (!ctx->consumer_metadata_pipe) {
1511 goto error_metadata_pipe;
1512 }
1513
1514 ctx->channel_monitor_pipe = -1;
1515
1516 return ctx;
1517
1518 error_metadata_pipe:
1519 utils_close_pipe(ctx->consumer_channel_pipe);
1520 error_channel_pipe:
1521 utils_close_pipe(ctx->consumer_should_quit);
1522 error_quit_pipe:
1523 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1524 error_wakeup_pipe:
1525 lttng_pipe_destroy(ctx->consumer_data_pipe);
1526 error_poll_pipe:
1527 free(ctx);
1528 error:
1529 return NULL;
1530 }
1531
1532 /*
1533 * Iterate over all streams of the hashtable and free them properly.
1534 */
1535 static void destroy_data_stream_ht(struct lttng_ht *ht)
1536 {
1537 struct lttng_ht_iter iter;
1538 struct lttng_consumer_stream *stream;
1539
1540 if (ht == NULL) {
1541 return;
1542 }
1543
1544 rcu_read_lock();
1545 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1546 /*
1547 * Ignore return value since we are currently cleaning up so any error
1548 * can't be handled.
1549 */
1550 (void) consumer_del_stream(stream, ht);
1551 }
1552 rcu_read_unlock();
1553
1554 lttng_ht_destroy(ht);
1555 }
1556
1557 /*
1558 * Iterate over all streams of the metadata hashtable and free them
1559 * properly.
1560 */
1561 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1562 {
1563 struct lttng_ht_iter iter;
1564 struct lttng_consumer_stream *stream;
1565
1566 if (ht == NULL) {
1567 return;
1568 }
1569
1570 rcu_read_lock();
1571 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1572 /*
1573 * Ignore return value since we are currently cleaning up so any error
1574 * can't be handled.
1575 */
1576 (void) consumer_del_metadata_stream(stream, ht);
1577 }
1578 rcu_read_unlock();
1579
1580 lttng_ht_destroy(ht);
1581 }
1582
1583 /*
1584 * Close all fds associated with the instance and free the context.
1585 */
1586 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1587 {
1588 int ret;
1589
1590 DBG("Consumer destroying it. Closing everything.");
1591
1592 if (!ctx) {
1593 return;
1594 }
1595
1596 destroy_data_stream_ht(data_ht);
1597 destroy_metadata_stream_ht(metadata_ht);
1598
1599 ret = close(ctx->consumer_error_socket);
1600 if (ret) {
1601 PERROR("close");
1602 }
1603 ret = close(ctx->consumer_metadata_socket);
1604 if (ret) {
1605 PERROR("close");
1606 }
1607 utils_close_pipe(ctx->consumer_channel_pipe);
1608 lttng_pipe_destroy(ctx->consumer_data_pipe);
1609 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1610 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1611 utils_close_pipe(ctx->consumer_should_quit);
1612
1613 unlink(ctx->consumer_command_sock_path);
1614 free(ctx);
1615 }
1616
1617 /*
1618 * Write the metadata stream id on the specified file descriptor.
1619 */
1620 static int write_relayd_metadata_id(int fd,
1621 struct lttng_consumer_stream *stream,
1622 unsigned long padding)
1623 {
1624 ssize_t ret;
1625 struct lttcomm_relayd_metadata_payload hdr;
1626
1627 hdr.stream_id = htobe64(stream->relayd_stream_id);
1628 hdr.padding_size = htobe32(padding);
1629 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1630 if (ret < sizeof(hdr)) {
1631 /*
1632 * This error means that the fd's end is closed so ignore the PERROR
1633 * not to clubber the error output since this can happen in a normal
1634 * code path.
1635 */
1636 if (errno != EPIPE) {
1637 PERROR("write metadata stream id");
1638 }
1639 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1640 /*
1641 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1642 * handle writting the missing part so report that as an error and
1643 * don't lie to the caller.
1644 */
1645 ret = -1;
1646 goto end;
1647 }
1648 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1649 stream->relayd_stream_id, padding);
1650
1651 end:
1652 return (int) ret;
1653 }
1654
1655 /*
1656 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1657 * core function for writing trace buffers to either the local filesystem or
1658 * the network.
1659 *
1660 * It must be called with the stream and the channel lock held.
1661 *
1662 * Careful review MUST be put if any changes occur!
1663 *
1664 * Returns the number of bytes written
1665 */
1666 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1667 struct lttng_consumer_local_data *ctx,
1668 struct lttng_consumer_stream *stream, unsigned long len,
1669 unsigned long padding,
1670 struct ctf_packet_index *index)
1671 {
1672 unsigned long mmap_offset;
1673 void *mmap_base;
1674 ssize_t ret = 0;
1675 off_t orig_offset = stream->out_fd_offset;
1676 /* Default is on the disk */
1677 int outfd = stream->out_fd;
1678 struct consumer_relayd_sock_pair *relayd = NULL;
1679 unsigned int relayd_hang_up = 0;
1680
1681 /* RCU lock for the relayd pointer */
1682 rcu_read_lock();
1683 assert(stream->net_seq_idx != (uint64_t) -1ULL ||
1684 stream->trace_chunk);
1685
1686 /* Flag that the current stream if set for network streaming. */
1687 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1688 relayd = consumer_find_relayd(stream->net_seq_idx);
1689 if (relayd == NULL) {
1690 ret = -EPIPE;
1691 goto end;
1692 }
1693 }
1694
1695 /* get the offset inside the fd to mmap */
1696 switch (consumer_data.type) {
1697 case LTTNG_CONSUMER_KERNEL:
1698 mmap_base = stream->mmap_base;
1699 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1700 if (ret < 0) {
1701 PERROR("tracer ctl get_mmap_read_offset");
1702 goto end;
1703 }
1704 break;
1705 case LTTNG_CONSUMER32_UST:
1706 case LTTNG_CONSUMER64_UST:
1707 mmap_base = lttng_ustctl_get_mmap_base(stream);
1708 if (!mmap_base) {
1709 ERR("read mmap get mmap base for stream %s", stream->name);
1710 ret = -EPERM;
1711 goto end;
1712 }
1713 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1714 if (ret != 0) {
1715 PERROR("tracer ctl get_mmap_read_offset");
1716 ret = -EINVAL;
1717 goto end;
1718 }
1719 break;
1720 default:
1721 ERR("Unknown consumer_data type");
1722 assert(0);
1723 }
1724
1725 /* Handle stream on the relayd if the output is on the network */
1726 if (relayd) {
1727 unsigned long netlen = len;
1728
1729 /*
1730 * Lock the control socket for the complete duration of the function
1731 * since from this point on we will use the socket.
1732 */
1733 if (stream->metadata_flag) {
1734 /* Metadata requires the control socket. */
1735 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1736 if (stream->reset_metadata_flag) {
1737 ret = relayd_reset_metadata(&relayd->control_sock,
1738 stream->relayd_stream_id,
1739 stream->metadata_version);
1740 if (ret < 0) {
1741 relayd_hang_up = 1;
1742 goto write_error;
1743 }
1744 stream->reset_metadata_flag = 0;
1745 }
1746 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1747 }
1748
1749 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1750 if (ret < 0) {
1751 relayd_hang_up = 1;
1752 goto write_error;
1753 }
1754 /* Use the returned socket. */
1755 outfd = ret;
1756
1757 /* Write metadata stream id before payload */
1758 if (stream->metadata_flag) {
1759 ret = write_relayd_metadata_id(outfd, stream, padding);
1760 if (ret < 0) {
1761 relayd_hang_up = 1;
1762 goto write_error;
1763 }
1764 }
1765 } else {
1766 /* No streaming, we have to set the len with the full padding */
1767 len += padding;
1768
1769 if (stream->metadata_flag && stream->reset_metadata_flag) {
1770 ret = utils_truncate_stream_file(stream->out_fd, 0);
1771 if (ret < 0) {
1772 ERR("Reset metadata file");
1773 goto end;
1774 }
1775 stream->reset_metadata_flag = 0;
1776 }
1777
1778 /*
1779 * Check if we need to change the tracefile before writing the packet.
1780 */
1781 if (stream->chan->tracefile_size > 0 &&
1782 (stream->tracefile_size_current + len) >
1783 stream->chan->tracefile_size) {
1784 ret = consumer_stream_rotate_output_files(stream);
1785 if (ret) {
1786 goto end;
1787 }
1788 outfd = stream->out_fd;
1789 orig_offset = 0;
1790 }
1791 stream->tracefile_size_current += len;
1792 if (index) {
1793 index->offset = htobe64(stream->out_fd_offset);
1794 }
1795 }
1796
1797 /*
1798 * This call guarantee that len or less is returned. It's impossible to
1799 * receive a ret value that is bigger than len.
1800 */
1801 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1802 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1803 if (ret < 0 || ((size_t) ret != len)) {
1804 /*
1805 * Report error to caller if nothing was written else at least send the
1806 * amount written.
1807 */
1808 if (ret < 0) {
1809 ret = -errno;
1810 }
1811 relayd_hang_up = 1;
1812
1813 /* Socket operation failed. We consider the relayd dead */
1814 if (errno == EPIPE) {
1815 /*
1816 * This is possible if the fd is closed on the other side
1817 * (outfd) or any write problem. It can be verbose a bit for a
1818 * normal execution if for instance the relayd is stopped
1819 * abruptly. This can happen so set this to a DBG statement.
1820 */
1821 DBG("Consumer mmap write detected relayd hang up");
1822 } else {
1823 /* Unhandled error, print it and stop function right now. */
1824 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1825 }
1826 goto write_error;
1827 }
1828 stream->output_written += ret;
1829
1830 /* This call is useless on a socket so better save a syscall. */
1831 if (!relayd) {
1832 /* This won't block, but will start writeout asynchronously */
1833 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1834 SYNC_FILE_RANGE_WRITE);
1835 stream->out_fd_offset += len;
1836 lttng_consumer_sync_trace_file(stream, orig_offset);
1837 }
1838
1839 write_error:
1840 /*
1841 * This is a special case that the relayd has closed its socket. Let's
1842 * cleanup the relayd object and all associated streams.
1843 */
1844 if (relayd && relayd_hang_up) {
1845 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
1846 lttng_consumer_cleanup_relayd(relayd);
1847 }
1848
1849 end:
1850 /* Unlock only if ctrl socket used */
1851 if (relayd && stream->metadata_flag) {
1852 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1853 }
1854
1855 rcu_read_unlock();
1856 return ret;
1857 }
1858
1859 /*
1860 * Splice the data from the ring buffer to the tracefile.
1861 *
1862 * It must be called with the stream lock held.
1863 *
1864 * Returns the number of bytes spliced.
1865 */
1866 ssize_t lttng_consumer_on_read_subbuffer_splice(
1867 struct lttng_consumer_local_data *ctx,
1868 struct lttng_consumer_stream *stream, unsigned long len,
1869 unsigned long padding,
1870 struct ctf_packet_index *index)
1871 {
1872 ssize_t ret = 0, written = 0, ret_splice = 0;
1873 loff_t offset = 0;
1874 off_t orig_offset = stream->out_fd_offset;
1875 int fd = stream->wait_fd;
1876 /* Default is on the disk */
1877 int outfd = stream->out_fd;
1878 struct consumer_relayd_sock_pair *relayd = NULL;
1879 int *splice_pipe;
1880 unsigned int relayd_hang_up = 0;
1881
1882 switch (consumer_data.type) {
1883 case LTTNG_CONSUMER_KERNEL:
1884 break;
1885 case LTTNG_CONSUMER32_UST:
1886 case LTTNG_CONSUMER64_UST:
1887 /* Not supported for user space tracing */
1888 return -ENOSYS;
1889 default:
1890 ERR("Unknown consumer_data type");
1891 assert(0);
1892 }
1893
1894 /* RCU lock for the relayd pointer */
1895 rcu_read_lock();
1896
1897 /* Flag that the current stream if set for network streaming. */
1898 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1899 relayd = consumer_find_relayd(stream->net_seq_idx);
1900 if (relayd == NULL) {
1901 written = -ret;
1902 goto end;
1903 }
1904 }
1905 splice_pipe = stream->splice_pipe;
1906
1907 /* Write metadata stream id before payload */
1908 if (relayd) {
1909 unsigned long total_len = len;
1910
1911 if (stream->metadata_flag) {
1912 /*
1913 * Lock the control socket for the complete duration of the function
1914 * since from this point on we will use the socket.
1915 */
1916 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1917
1918 if (stream->reset_metadata_flag) {
1919 ret = relayd_reset_metadata(&relayd->control_sock,
1920 stream->relayd_stream_id,
1921 stream->metadata_version);
1922 if (ret < 0) {
1923 relayd_hang_up = 1;
1924 goto write_error;
1925 }
1926 stream->reset_metadata_flag = 0;
1927 }
1928 ret = write_relayd_metadata_id(splice_pipe[1], stream,
1929 padding);
1930 if (ret < 0) {
1931 written = ret;
1932 relayd_hang_up = 1;
1933 goto write_error;
1934 }
1935
1936 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1937 }
1938
1939 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1940 if (ret < 0) {
1941 written = ret;
1942 relayd_hang_up = 1;
1943 goto write_error;
1944 }
1945 /* Use the returned socket. */
1946 outfd = ret;
1947 } else {
1948 /* No streaming, we have to set the len with the full padding */
1949 len += padding;
1950
1951 if (stream->metadata_flag && stream->reset_metadata_flag) {
1952 ret = utils_truncate_stream_file(stream->out_fd, 0);
1953 if (ret < 0) {
1954 ERR("Reset metadata file");
1955 goto end;
1956 }
1957 stream->reset_metadata_flag = 0;
1958 }
1959 /*
1960 * Check if we need to change the tracefile before writing the packet.
1961 */
1962 if (stream->chan->tracefile_size > 0 &&
1963 (stream->tracefile_size_current + len) >
1964 stream->chan->tracefile_size) {
1965 ret = consumer_stream_rotate_output_files(stream);
1966 if (ret < 0) {
1967 written = ret;
1968 goto end;
1969 }
1970 outfd = stream->out_fd;
1971 orig_offset = 0;
1972 }
1973 stream->tracefile_size_current += len;
1974 index->offset = htobe64(stream->out_fd_offset);
1975 }
1976
1977 while (len > 0) {
1978 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1979 (unsigned long)offset, len, fd, splice_pipe[1]);
1980 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1981 SPLICE_F_MOVE | SPLICE_F_MORE);
1982 DBG("splice chan to pipe, ret %zd", ret_splice);
1983 if (ret_splice < 0) {
1984 ret = errno;
1985 written = -ret;
1986 PERROR("Error in relay splice");
1987 goto splice_error;
1988 }
1989
1990 /* Handle stream on the relayd if the output is on the network */
1991 if (relayd && stream->metadata_flag) {
1992 size_t metadata_payload_size =
1993 sizeof(struct lttcomm_relayd_metadata_payload);
1994
1995 /* Update counter to fit the spliced data */
1996 ret_splice += metadata_payload_size;
1997 len += metadata_payload_size;
1998 /*
1999 * We do this so the return value can match the len passed as
2000 * argument to this function.
2001 */
2002 written -= metadata_payload_size;
2003 }
2004
2005 /* Splice data out */
2006 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
2007 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
2008 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
2009 outfd, ret_splice);
2010 if (ret_splice < 0) {
2011 ret = errno;
2012 written = -ret;
2013 relayd_hang_up = 1;
2014 goto write_error;
2015 } else if (ret_splice > len) {
2016 /*
2017 * We don't expect this code path to be executed but you never know
2018 * so this is an extra protection agains a buggy splice().
2019 */
2020 ret = errno;
2021 written += ret_splice;
2022 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
2023 len);
2024 goto splice_error;
2025 } else {
2026 /* All good, update current len and continue. */
2027 len -= ret_splice;
2028 }
2029
2030 /* This call is useless on a socket so better save a syscall. */
2031 if (!relayd) {
2032 /* This won't block, but will start writeout asynchronously */
2033 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
2034 SYNC_FILE_RANGE_WRITE);
2035 stream->out_fd_offset += ret_splice;
2036 }
2037 stream->output_written += ret_splice;
2038 written += ret_splice;
2039 }
2040 if (!relayd) {
2041 lttng_consumer_sync_trace_file(stream, orig_offset);
2042 }
2043 goto end;
2044
2045 write_error:
2046 /*
2047 * This is a special case that the relayd has closed its socket. Let's
2048 * cleanup the relayd object and all associated streams.
2049 */
2050 if (relayd && relayd_hang_up) {
2051 ERR("Relayd hangup. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
2052 lttng_consumer_cleanup_relayd(relayd);
2053 /* Skip splice error so the consumer does not fail */
2054 goto end;
2055 }
2056
2057 splice_error:
2058 /* send the appropriate error description to sessiond */
2059 switch (ret) {
2060 case EINVAL:
2061 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
2062 break;
2063 case ENOMEM:
2064 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
2065 break;
2066 case ESPIPE:
2067 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
2068 break;
2069 }
2070
2071 end:
2072 if (relayd && stream->metadata_flag) {
2073 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2074 }
2075
2076 rcu_read_unlock();
2077 return written;
2078 }
2079
2080 /*
2081 * Sample the snapshot positions for a specific fd
2082 *
2083 * Returns 0 on success, < 0 on error
2084 */
2085 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
2086 {
2087 switch (consumer_data.type) {
2088 case LTTNG_CONSUMER_KERNEL:
2089 return lttng_kconsumer_sample_snapshot_positions(stream);
2090 case LTTNG_CONSUMER32_UST:
2091 case LTTNG_CONSUMER64_UST:
2092 return lttng_ustconsumer_sample_snapshot_positions(stream);
2093 default:
2094 ERR("Unknown consumer_data type");
2095 assert(0);
2096 return -ENOSYS;
2097 }
2098 }
2099 /*
2100 * Take a snapshot for a specific fd
2101 *
2102 * Returns 0 on success, < 0 on error
2103 */
2104 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
2105 {
2106 switch (consumer_data.type) {
2107 case LTTNG_CONSUMER_KERNEL:
2108 return lttng_kconsumer_take_snapshot(stream);
2109 case LTTNG_CONSUMER32_UST:
2110 case LTTNG_CONSUMER64_UST:
2111 return lttng_ustconsumer_take_snapshot(stream);
2112 default:
2113 ERR("Unknown consumer_data type");
2114 assert(0);
2115 return -ENOSYS;
2116 }
2117 }
2118
2119 /*
2120 * Get the produced position
2121 *
2122 * Returns 0 on success, < 0 on error
2123 */
2124 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2125 unsigned long *pos)
2126 {
2127 switch (consumer_data.type) {
2128 case LTTNG_CONSUMER_KERNEL:
2129 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2130 case LTTNG_CONSUMER32_UST:
2131 case LTTNG_CONSUMER64_UST:
2132 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2133 default:
2134 ERR("Unknown consumer_data type");
2135 assert(0);
2136 return -ENOSYS;
2137 }
2138 }
2139
2140 /*
2141 * Get the consumed position (free-running counter position in bytes).
2142 *
2143 * Returns 0 on success, < 0 on error
2144 */
2145 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2146 unsigned long *pos)
2147 {
2148 switch (consumer_data.type) {
2149 case LTTNG_CONSUMER_KERNEL:
2150 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2151 case LTTNG_CONSUMER32_UST:
2152 case LTTNG_CONSUMER64_UST:
2153 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2154 default:
2155 ERR("Unknown consumer_data type");
2156 assert(0);
2157 return -ENOSYS;
2158 }
2159 }
2160
2161 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2162 int sock, struct pollfd *consumer_sockpoll)
2163 {
2164 switch (consumer_data.type) {
2165 case LTTNG_CONSUMER_KERNEL:
2166 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2167 case LTTNG_CONSUMER32_UST:
2168 case LTTNG_CONSUMER64_UST:
2169 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2170 default:
2171 ERR("Unknown consumer_data type");
2172 assert(0);
2173 return -ENOSYS;
2174 }
2175 }
2176
2177 void lttng_consumer_close_all_metadata(void)
2178 {
2179 switch (consumer_data.type) {
2180 case LTTNG_CONSUMER_KERNEL:
2181 /*
2182 * The Kernel consumer has a different metadata scheme so we don't
2183 * close anything because the stream will be closed by the session
2184 * daemon.
2185 */
2186 break;
2187 case LTTNG_CONSUMER32_UST:
2188 case LTTNG_CONSUMER64_UST:
2189 /*
2190 * Close all metadata streams. The metadata hash table is passed and
2191 * this call iterates over it by closing all wakeup fd. This is safe
2192 * because at this point we are sure that the metadata producer is
2193 * either dead or blocked.
2194 */
2195 lttng_ustconsumer_close_all_metadata(metadata_ht);
2196 break;
2197 default:
2198 ERR("Unknown consumer_data type");
2199 assert(0);
2200 }
2201 }
2202
2203 /*
2204 * Clean up a metadata stream and free its memory.
2205 */
2206 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2207 struct lttng_ht *ht)
2208 {
2209 struct lttng_consumer_channel *channel = NULL;
2210 bool free_channel = false;
2211
2212 assert(stream);
2213 /*
2214 * This call should NEVER receive regular stream. It must always be
2215 * metadata stream and this is crucial for data structure synchronization.
2216 */
2217 assert(stream->metadata_flag);
2218
2219 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2220
2221 pthread_mutex_lock(&consumer_data.lock);
2222 /*
2223 * Note that this assumes that a stream's channel is never changed and
2224 * that the stream's lock doesn't need to be taken to sample its
2225 * channel.
2226 */
2227 channel = stream->chan;
2228 pthread_mutex_lock(&channel->lock);
2229 pthread_mutex_lock(&stream->lock);
2230 if (channel->metadata_cache) {
2231 /* Only applicable to userspace consumers. */
2232 pthread_mutex_lock(&channel->metadata_cache->lock);
2233 }
2234
2235 /* Remove any reference to that stream. */
2236 consumer_stream_delete(stream, ht);
2237
2238 /* Close down everything including the relayd if one. */
2239 consumer_stream_close(stream);
2240 /* Destroy tracer buffers of the stream. */
2241 consumer_stream_destroy_buffers(stream);
2242
2243 /* Atomically decrement channel refcount since other threads can use it. */
2244 if (!uatomic_sub_return(&channel->refcount, 1)
2245 && !uatomic_read(&channel->nb_init_stream_left)) {
2246 /* Go for channel deletion! */
2247 free_channel = true;
2248 }
2249 stream->chan = NULL;
2250
2251 /*
2252 * Nullify the stream reference so it is not used after deletion. The
2253 * channel lock MUST be acquired before being able to check for a NULL
2254 * pointer value.
2255 */
2256 channel->metadata_stream = NULL;
2257
2258 if (channel->metadata_cache) {
2259 pthread_mutex_unlock(&channel->metadata_cache->lock);
2260 }
2261 pthread_mutex_unlock(&stream->lock);
2262 pthread_mutex_unlock(&channel->lock);
2263 pthread_mutex_unlock(&consumer_data.lock);
2264
2265 if (free_channel) {
2266 consumer_del_channel(channel);
2267 }
2268
2269 lttng_trace_chunk_put(stream->trace_chunk);
2270 stream->trace_chunk = NULL;
2271 consumer_stream_free(stream);
2272 }
2273
2274 /*
2275 * Action done with the metadata stream when adding it to the consumer internal
2276 * data structures to handle it.
2277 */
2278 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2279 {
2280 struct lttng_ht *ht = metadata_ht;
2281 struct lttng_ht_iter iter;
2282 struct lttng_ht_node_u64 *node;
2283
2284 assert(stream);
2285 assert(ht);
2286
2287 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2288
2289 pthread_mutex_lock(&consumer_data.lock);
2290 pthread_mutex_lock(&stream->chan->lock);
2291 pthread_mutex_lock(&stream->chan->timer_lock);
2292 pthread_mutex_lock(&stream->lock);
2293
2294 /*
2295 * From here, refcounts are updated so be _careful_ when returning an error
2296 * after this point.
2297 */
2298
2299 rcu_read_lock();
2300
2301 /*
2302 * Lookup the stream just to make sure it does not exist in our internal
2303 * state. This should NEVER happen.
2304 */
2305 lttng_ht_lookup(ht, &stream->key, &iter);
2306 node = lttng_ht_iter_get_node_u64(&iter);
2307 assert(!node);
2308
2309 /*
2310 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2311 * in terms of destroying the associated channel, because the action that
2312 * causes the count to become 0 also causes a stream to be added. The
2313 * channel deletion will thus be triggered by the following removal of this
2314 * stream.
2315 */
2316 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2317 /* Increment refcount before decrementing nb_init_stream_left */
2318 cmm_smp_wmb();
2319 uatomic_dec(&stream->chan->nb_init_stream_left);
2320 }
2321
2322 lttng_ht_add_unique_u64(ht, &stream->node);
2323
2324 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2325 &stream->node_channel_id);
2326
2327 /*
2328 * Add stream to the stream_list_ht of the consumer data. No need to steal
2329 * the key since the HT does not use it and we allow to add redundant keys
2330 * into this table.
2331 */
2332 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2333
2334 rcu_read_unlock();
2335
2336 pthread_mutex_unlock(&stream->lock);
2337 pthread_mutex_unlock(&stream->chan->lock);
2338 pthread_mutex_unlock(&stream->chan->timer_lock);
2339 pthread_mutex_unlock(&consumer_data.lock);
2340 }
2341
2342 /*
2343 * Delete data stream that are flagged for deletion (endpoint_status).
2344 */
2345 static void validate_endpoint_status_data_stream(void)
2346 {
2347 struct lttng_ht_iter iter;
2348 struct lttng_consumer_stream *stream;
2349
2350 DBG("Consumer delete flagged data stream");
2351
2352 rcu_read_lock();
2353 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2354 /* Validate delete flag of the stream */
2355 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2356 continue;
2357 }
2358 /* Delete it right now */
2359 consumer_del_stream(stream, data_ht);
2360 }
2361 rcu_read_unlock();
2362 }
2363
2364 /*
2365 * Delete metadata stream that are flagged for deletion (endpoint_status).
2366 */
2367 static void validate_endpoint_status_metadata_stream(
2368 struct lttng_poll_event *pollset)
2369 {
2370 struct lttng_ht_iter iter;
2371 struct lttng_consumer_stream *stream;
2372
2373 DBG("Consumer delete flagged metadata stream");
2374
2375 assert(pollset);
2376
2377 rcu_read_lock();
2378 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2379 /* Validate delete flag of the stream */
2380 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2381 continue;
2382 }
2383 /*
2384 * Remove from pollset so the metadata thread can continue without
2385 * blocking on a deleted stream.
2386 */
2387 lttng_poll_del(pollset, stream->wait_fd);
2388
2389 /* Delete it right now */
2390 consumer_del_metadata_stream(stream, metadata_ht);
2391 }
2392 rcu_read_unlock();
2393 }
2394
2395 /*
2396 * Thread polls on metadata file descriptor and write them on disk or on the
2397 * network.
2398 */
2399 void *consumer_thread_metadata_poll(void *data)
2400 {
2401 int ret, i, pollfd, err = -1;
2402 uint32_t revents, nb_fd;
2403 struct lttng_consumer_stream *stream = NULL;
2404 struct lttng_ht_iter iter;
2405 struct lttng_ht_node_u64 *node;
2406 struct lttng_poll_event events;
2407 struct lttng_consumer_local_data *ctx = data;
2408 ssize_t len;
2409
2410 rcu_register_thread();
2411
2412 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2413
2414 if (testpoint(consumerd_thread_metadata)) {
2415 goto error_testpoint;
2416 }
2417
2418 health_code_update();
2419
2420 DBG("Thread metadata poll started");
2421
2422 /* Size is set to 1 for the consumer_metadata pipe */
2423 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2424 if (ret < 0) {
2425 ERR("Poll set creation failed");
2426 goto end_poll;
2427 }
2428
2429 ret = lttng_poll_add(&events,
2430 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2431 if (ret < 0) {
2432 goto end;
2433 }
2434
2435 /* Main loop */
2436 DBG("Metadata main loop started");
2437
2438 while (1) {
2439 restart:
2440 health_code_update();
2441 health_poll_entry();
2442 DBG("Metadata poll wait");
2443 ret = lttng_poll_wait(&events, -1);
2444 DBG("Metadata poll return from wait with %d fd(s)",
2445 LTTNG_POLL_GETNB(&events));
2446 health_poll_exit();
2447 DBG("Metadata event caught in thread");
2448 if (ret < 0) {
2449 if (errno == EINTR) {
2450 ERR("Poll EINTR caught");
2451 goto restart;
2452 }
2453 if (LTTNG_POLL_GETNB(&events) == 0) {
2454 err = 0; /* All is OK */
2455 }
2456 goto end;
2457 }
2458
2459 nb_fd = ret;
2460
2461 /* From here, the event is a metadata wait fd */
2462 for (i = 0; i < nb_fd; i++) {
2463 health_code_update();
2464
2465 revents = LTTNG_POLL_GETEV(&events, i);
2466 pollfd = LTTNG_POLL_GETFD(&events, i);
2467
2468 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2469 if (revents & LPOLLIN) {
2470 ssize_t pipe_len;
2471
2472 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2473 &stream, sizeof(stream));
2474 if (pipe_len < sizeof(stream)) {
2475 if (pipe_len < 0) {
2476 PERROR("read metadata stream");
2477 }
2478 /*
2479 * Remove the pipe from the poll set and continue the loop
2480 * since their might be data to consume.
2481 */
2482 lttng_poll_del(&events,
2483 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2484 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2485 continue;
2486 }
2487
2488 /* A NULL stream means that the state has changed. */
2489 if (stream == NULL) {
2490 /* Check for deleted streams. */
2491 validate_endpoint_status_metadata_stream(&events);
2492 goto restart;
2493 }
2494
2495 DBG("Adding metadata stream %d to poll set",
2496 stream->wait_fd);
2497
2498 /* Add metadata stream to the global poll events list */
2499 lttng_poll_add(&events, stream->wait_fd,
2500 LPOLLIN | LPOLLPRI | LPOLLHUP);
2501 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2502 DBG("Metadata thread pipe hung up");
2503 /*
2504 * Remove the pipe from the poll set and continue the loop
2505 * since their might be data to consume.
2506 */
2507 lttng_poll_del(&events,
2508 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2509 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2510 continue;
2511 } else {
2512 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2513 goto end;
2514 }
2515
2516 /* Handle other stream */
2517 continue;
2518 }
2519
2520 rcu_read_lock();
2521 {
2522 uint64_t tmp_id = (uint64_t) pollfd;
2523
2524 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2525 }
2526 node = lttng_ht_iter_get_node_u64(&iter);
2527 assert(node);
2528
2529 stream = caa_container_of(node, struct lttng_consumer_stream,
2530 node);
2531
2532 if (revents & (LPOLLIN | LPOLLPRI)) {
2533 /* Get the data out of the metadata file descriptor */
2534 DBG("Metadata available on fd %d", pollfd);
2535 assert(stream->wait_fd == pollfd);
2536
2537 do {
2538 health_code_update();
2539
2540 len = ctx->on_buffer_ready(stream, ctx);
2541 /*
2542 * We don't check the return value here since if we get
2543 * a negative len, it means an error occurred thus we
2544 * simply remove it from the poll set and free the
2545 * stream.
2546 */
2547 } while (len > 0);
2548
2549 /* It's ok to have an unavailable sub-buffer */
2550 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2551 /* Clean up stream from consumer and free it. */
2552 lttng_poll_del(&events, stream->wait_fd);
2553 consumer_del_metadata_stream(stream, metadata_ht);
2554 }
2555 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2556 DBG("Metadata fd %d is hup|err.", pollfd);
2557 if (!stream->hangup_flush_done
2558 && (consumer_data.type == LTTNG_CONSUMER32_UST
2559 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2560 DBG("Attempting to flush and consume the UST buffers");
2561 lttng_ustconsumer_on_stream_hangup(stream);
2562
2563 /* We just flushed the stream now read it. */
2564 do {
2565 health_code_update();
2566
2567 len = ctx->on_buffer_ready(stream, ctx);
2568 /*
2569 * We don't check the return value here since if we get
2570 * a negative len, it means an error occurred thus we
2571 * simply remove it from the poll set and free the
2572 * stream.
2573 */
2574 } while (len > 0);
2575 }
2576
2577 lttng_poll_del(&events, stream->wait_fd);
2578 /*
2579 * This call update the channel states, closes file descriptors
2580 * and securely free the stream.
2581 */
2582 consumer_del_metadata_stream(stream, metadata_ht);
2583 } else {
2584 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2585 rcu_read_unlock();
2586 goto end;
2587 }
2588 /* Release RCU lock for the stream looked up */
2589 rcu_read_unlock();
2590 }
2591 }
2592
2593 /* All is OK */
2594 err = 0;
2595 end:
2596 DBG("Metadata poll thread exiting");
2597
2598 lttng_poll_clean(&events);
2599 end_poll:
2600 error_testpoint:
2601 if (err) {
2602 health_error();
2603 ERR("Health error occurred in %s", __func__);
2604 }
2605 health_unregister(health_consumerd);
2606 rcu_unregister_thread();
2607 return NULL;
2608 }
2609
2610 /*
2611 * This thread polls the fds in the set to consume the data and write
2612 * it to tracefile if necessary.
2613 */
2614 void *consumer_thread_data_poll(void *data)
2615 {
2616 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2617 struct pollfd *pollfd = NULL;
2618 /* local view of the streams */
2619 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2620 /* local view of consumer_data.fds_count */
2621 int nb_fd = 0;
2622 /* 2 for the consumer_data_pipe and wake up pipe */
2623 const int nb_pipes_fd = 2;
2624 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2625 int nb_inactive_fd = 0;
2626 struct lttng_consumer_local_data *ctx = data;
2627 ssize_t len;
2628
2629 rcu_register_thread();
2630
2631 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2632
2633 if (testpoint(consumerd_thread_data)) {
2634 goto error_testpoint;
2635 }
2636
2637 health_code_update();
2638
2639 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2640 if (local_stream == NULL) {
2641 PERROR("local_stream malloc");
2642 goto end;
2643 }
2644
2645 while (1) {
2646 health_code_update();
2647
2648 high_prio = 0;
2649 num_hup = 0;
2650
2651 /*
2652 * the fds set has been updated, we need to update our
2653 * local array as well
2654 */
2655 pthread_mutex_lock(&consumer_data.lock);
2656 if (consumer_data.need_update) {
2657 free(pollfd);
2658 pollfd = NULL;
2659
2660 free(local_stream);
2661 local_stream = NULL;
2662
2663 /* Allocate for all fds */
2664 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2665 if (pollfd == NULL) {
2666 PERROR("pollfd malloc");
2667 pthread_mutex_unlock(&consumer_data.lock);
2668 goto end;
2669 }
2670
2671 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2672 sizeof(struct lttng_consumer_stream *));
2673 if (local_stream == NULL) {
2674 PERROR("local_stream malloc");
2675 pthread_mutex_unlock(&consumer_data.lock);
2676 goto end;
2677 }
2678 ret = update_poll_array(ctx, &pollfd, local_stream,
2679 data_ht, &nb_inactive_fd);
2680 if (ret < 0) {
2681 ERR("Error in allocating pollfd or local_outfds");
2682 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2683 pthread_mutex_unlock(&consumer_data.lock);
2684 goto end;
2685 }
2686 nb_fd = ret;
2687 consumer_data.need_update = 0;
2688 }
2689 pthread_mutex_unlock(&consumer_data.lock);
2690
2691 /* No FDs and consumer_quit, consumer_cleanup the thread */
2692 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2693 CMM_LOAD_SHARED(consumer_quit) == 1) {
2694 err = 0; /* All is OK */
2695 goto end;
2696 }
2697 /* poll on the array of fds */
2698 restart:
2699 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2700 if (testpoint(consumerd_thread_data_poll)) {
2701 goto end;
2702 }
2703 health_poll_entry();
2704 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2705 health_poll_exit();
2706 DBG("poll num_rdy : %d", num_rdy);
2707 if (num_rdy == -1) {
2708 /*
2709 * Restart interrupted system call.
2710 */
2711 if (errno == EINTR) {
2712 goto restart;
2713 }
2714 PERROR("Poll error");
2715 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2716 goto end;
2717 } else if (num_rdy == 0) {
2718 DBG("Polling thread timed out");
2719 goto end;
2720 }
2721
2722 if (caa_unlikely(data_consumption_paused)) {
2723 DBG("Data consumption paused, sleeping...");
2724 sleep(1);
2725 goto restart;
2726 }
2727
2728 /*
2729 * If the consumer_data_pipe triggered poll go directly to the
2730 * beginning of the loop to update the array. We want to prioritize
2731 * array update over low-priority reads.
2732 */
2733 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2734 ssize_t pipe_readlen;
2735
2736 DBG("consumer_data_pipe wake up");
2737 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2738 &new_stream, sizeof(new_stream));
2739 if (pipe_readlen < sizeof(new_stream)) {
2740 PERROR("Consumer data pipe");
2741 /* Continue so we can at least handle the current stream(s). */
2742 continue;
2743 }
2744
2745 /*
2746 * If the stream is NULL, just ignore it. It's also possible that
2747 * the sessiond poll thread changed the consumer_quit state and is
2748 * waking us up to test it.
2749 */
2750 if (new_stream == NULL) {
2751 validate_endpoint_status_data_stream();
2752 continue;
2753 }
2754
2755 /* Continue to update the local streams and handle prio ones */
2756 continue;
2757 }
2758
2759 /* Handle wakeup pipe. */
2760 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2761 char dummy;
2762 ssize_t pipe_readlen;
2763
2764 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2765 sizeof(dummy));
2766 if (pipe_readlen < 0) {
2767 PERROR("Consumer data wakeup pipe");
2768 }
2769 /* We've been awakened to handle stream(s). */
2770 ctx->has_wakeup = 0;
2771 }
2772
2773 /* Take care of high priority channels first. */
2774 for (i = 0; i < nb_fd; i++) {
2775 health_code_update();
2776
2777 if (local_stream[i] == NULL) {
2778 continue;
2779 }
2780 if (pollfd[i].revents & POLLPRI) {
2781 DBG("Urgent read on fd %d", pollfd[i].fd);
2782 high_prio = 1;
2783 len = ctx->on_buffer_ready(local_stream[i], ctx);
2784 /* it's ok to have an unavailable sub-buffer */
2785 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2786 /* Clean the stream and free it. */
2787 consumer_del_stream(local_stream[i], data_ht);
2788 local_stream[i] = NULL;
2789 } else if (len > 0) {
2790 local_stream[i]->data_read = 1;
2791 }
2792 }
2793 }
2794
2795 /*
2796 * If we read high prio channel in this loop, try again
2797 * for more high prio data.
2798 */
2799 if (high_prio) {
2800 continue;
2801 }
2802
2803 /* Take care of low priority channels. */
2804 for (i = 0; i < nb_fd; i++) {
2805 health_code_update();
2806
2807 if (local_stream[i] == NULL) {
2808 continue;
2809 }
2810 if ((pollfd[i].revents & POLLIN) ||
2811 local_stream[i]->hangup_flush_done ||
2812 local_stream[i]->has_data) {
2813 DBG("Normal read on fd %d", pollfd[i].fd);
2814 len = ctx->on_buffer_ready(local_stream[i], ctx);
2815 /* it's ok to have an unavailable sub-buffer */
2816 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2817 /* Clean the stream and free it. */
2818 consumer_del_stream(local_stream[i], data_ht);
2819 local_stream[i] = NULL;
2820 } else if (len > 0) {
2821 local_stream[i]->data_read = 1;
2822 }
2823 }
2824 }
2825
2826 /* Handle hangup and errors */
2827 for (i = 0; i < nb_fd; i++) {
2828 health_code_update();
2829
2830 if (local_stream[i] == NULL) {
2831 continue;
2832 }
2833 if (!local_stream[i]->hangup_flush_done
2834 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2835 && (consumer_data.type == LTTNG_CONSUMER32_UST
2836 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2837 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2838 pollfd[i].fd);
2839 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2840 /* Attempt read again, for the data we just flushed. */
2841 local_stream[i]->data_read = 1;
2842 }
2843 /*
2844 * If the poll flag is HUP/ERR/NVAL and we have
2845 * read no data in this pass, we can remove the
2846 * stream from its hash table.
2847 */
2848 if ((pollfd[i].revents & POLLHUP)) {
2849 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2850 if (!local_stream[i]->data_read) {
2851 consumer_del_stream(local_stream[i], data_ht);
2852 local_stream[i] = NULL;
2853 num_hup++;
2854 }
2855 } else if (pollfd[i].revents & POLLERR) {
2856 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2857 if (!local_stream[i]->data_read) {
2858 consumer_del_stream(local_stream[i], data_ht);
2859 local_stream[i] = NULL;
2860 num_hup++;
2861 }
2862 } else if (pollfd[i].revents & POLLNVAL) {
2863 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2864 if (!local_stream[i]->data_read) {
2865 consumer_del_stream(local_stream[i], data_ht);
2866 local_stream[i] = NULL;
2867 num_hup++;
2868 }
2869 }
2870 if (local_stream[i] != NULL) {
2871 local_stream[i]->data_read = 0;
2872 }
2873 }
2874 }
2875 /* All is OK */
2876 err = 0;
2877 end:
2878 DBG("polling thread exiting");
2879 free(pollfd);
2880 free(local_stream);
2881
2882 /*
2883 * Close the write side of the pipe so epoll_wait() in
2884 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2885 * read side of the pipe. If we close them both, epoll_wait strangely does
2886 * not return and could create a endless wait period if the pipe is the
2887 * only tracked fd in the poll set. The thread will take care of closing
2888 * the read side.
2889 */
2890 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2891
2892 error_testpoint:
2893 if (err) {
2894 health_error();
2895 ERR("Health error occurred in %s", __func__);
2896 }
2897 health_unregister(health_consumerd);
2898
2899 rcu_unregister_thread();
2900 return NULL;
2901 }
2902
2903 /*
2904 * Close wake-up end of each stream belonging to the channel. This will
2905 * allow the poll() on the stream read-side to detect when the
2906 * write-side (application) finally closes them.
2907 */
2908 static
2909 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2910 {
2911 struct lttng_ht *ht;
2912 struct lttng_consumer_stream *stream;
2913 struct lttng_ht_iter iter;
2914
2915 ht = consumer_data.stream_per_chan_id_ht;
2916
2917 rcu_read_lock();
2918 cds_lfht_for_each_entry_duplicate(ht->ht,
2919 ht->hash_fct(&channel->key, lttng_ht_seed),
2920 ht->match_fct, &channel->key,
2921 &iter.iter, stream, node_channel_id.node) {
2922 /*
2923 * Protect against teardown with mutex.
2924 */
2925 pthread_mutex_lock(&stream->lock);
2926 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2927 goto next;
2928 }
2929 switch (consumer_data.type) {
2930 case LTTNG_CONSUMER_KERNEL:
2931 break;
2932 case LTTNG_CONSUMER32_UST:
2933 case LTTNG_CONSUMER64_UST:
2934 if (stream->metadata_flag) {
2935 /* Safe and protected by the stream lock. */
2936 lttng_ustconsumer_close_metadata(stream->chan);
2937 } else {
2938 /*
2939 * Note: a mutex is taken internally within
2940 * liblttng-ust-ctl to protect timer wakeup_fd
2941 * use from concurrent close.
2942 */
2943 lttng_ustconsumer_close_stream_wakeup(stream);
2944 }
2945 break;
2946 default:
2947 ERR("Unknown consumer_data type");
2948 assert(0);
2949 }
2950 next:
2951 pthread_mutex_unlock(&stream->lock);
2952 }
2953 rcu_read_unlock();
2954 }
2955
2956 static void destroy_channel_ht(struct lttng_ht *ht)
2957 {
2958 struct lttng_ht_iter iter;
2959 struct lttng_consumer_channel *channel;
2960 int ret;
2961
2962 if (ht == NULL) {
2963 return;
2964 }
2965
2966 rcu_read_lock();
2967 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2968 ret = lttng_ht_del(ht, &iter);
2969 assert(ret != 0);
2970 }
2971 rcu_read_unlock();
2972
2973 lttng_ht_destroy(ht);
2974 }
2975
2976 /*
2977 * This thread polls the channel fds to detect when they are being
2978 * closed. It closes all related streams if the channel is detected as
2979 * closed. It is currently only used as a shim layer for UST because the
2980 * consumerd needs to keep the per-stream wakeup end of pipes open for
2981 * periodical flush.
2982 */
2983 void *consumer_thread_channel_poll(void *data)
2984 {
2985 int ret, i, pollfd, err = -1;
2986 uint32_t revents, nb_fd;
2987 struct lttng_consumer_channel *chan = NULL;
2988 struct lttng_ht_iter iter;
2989 struct lttng_ht_node_u64 *node;
2990 struct lttng_poll_event events;
2991 struct lttng_consumer_local_data *ctx = data;
2992 struct lttng_ht *channel_ht;
2993
2994 rcu_register_thread();
2995
2996 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2997
2998 if (testpoint(consumerd_thread_channel)) {
2999 goto error_testpoint;
3000 }
3001
3002 health_code_update();
3003
3004 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3005 if (!channel_ht) {
3006 /* ENOMEM at this point. Better to bail out. */
3007 goto end_ht;
3008 }
3009
3010 DBG("Thread channel poll started");
3011
3012 /* Size is set to 1 for the consumer_channel pipe */
3013 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
3014 if (ret < 0) {
3015 ERR("Poll set creation failed");
3016 goto end_poll;
3017 }
3018
3019 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
3020 if (ret < 0) {
3021 goto end;
3022 }
3023
3024 /* Main loop */
3025 DBG("Channel main loop started");
3026
3027 while (1) {
3028 restart:
3029 health_code_update();
3030 DBG("Channel poll wait");
3031 health_poll_entry();
3032 ret = lttng_poll_wait(&events, -1);
3033 DBG("Channel poll return from wait with %d fd(s)",
3034 LTTNG_POLL_GETNB(&events));
3035 health_poll_exit();
3036 DBG("Channel event caught in thread");
3037 if (ret < 0) {
3038 if (errno == EINTR) {
3039 ERR("Poll EINTR caught");
3040 goto restart;
3041 }
3042 if (LTTNG_POLL_GETNB(&events) == 0) {
3043 err = 0; /* All is OK */
3044 }
3045 goto end;
3046 }
3047
3048 nb_fd = ret;
3049
3050 /* From here, the event is a channel wait fd */
3051 for (i = 0; i < nb_fd; i++) {
3052 health_code_update();
3053
3054 revents = LTTNG_POLL_GETEV(&events, i);
3055 pollfd = LTTNG_POLL_GETFD(&events, i);
3056
3057 if (pollfd == ctx->consumer_channel_pipe[0]) {
3058 if (revents & LPOLLIN) {
3059 enum consumer_channel_action action;
3060 uint64_t key;
3061
3062 ret = read_channel_pipe(ctx, &chan, &key, &action);
3063 if (ret <= 0) {
3064 if (ret < 0) {
3065 ERR("Error reading channel pipe");
3066 }
3067 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3068 continue;
3069 }
3070
3071 switch (action) {
3072 case CONSUMER_CHANNEL_ADD:
3073 DBG("Adding channel %d to poll set",
3074 chan->wait_fd);
3075
3076 lttng_ht_node_init_u64(&chan->wait_fd_node,
3077 chan->wait_fd);
3078 rcu_read_lock();
3079 lttng_ht_add_unique_u64(channel_ht,
3080 &chan->wait_fd_node);
3081 rcu_read_unlock();
3082 /* Add channel to the global poll events list */
3083 lttng_poll_add(&events, chan->wait_fd,
3084 LPOLLERR | LPOLLHUP);
3085 break;
3086 case CONSUMER_CHANNEL_DEL:
3087 {
3088 /*
3089 * This command should never be called if the channel
3090 * has streams monitored by either the data or metadata
3091 * thread. The consumer only notify this thread with a
3092 * channel del. command if it receives a destroy
3093 * channel command from the session daemon that send it
3094 * if a command prior to the GET_CHANNEL failed.
3095 */
3096
3097 rcu_read_lock();
3098 chan = consumer_find_channel(key);
3099 if (!chan) {
3100 rcu_read_unlock();
3101 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
3102 break;
3103 }
3104 lttng_poll_del(&events, chan->wait_fd);
3105 iter.iter.node = &chan->wait_fd_node.node;
3106 ret = lttng_ht_del(channel_ht, &iter);
3107 assert(ret == 0);
3108
3109 switch (consumer_data.type) {
3110 case LTTNG_CONSUMER_KERNEL:
3111 break;
3112 case LTTNG_CONSUMER32_UST:
3113 case LTTNG_CONSUMER64_UST:
3114 health_code_update();
3115 /* Destroy streams that might have been left in the stream list. */
3116 clean_channel_stream_list(chan);
3117 break;
3118 default:
3119 ERR("Unknown consumer_data type");
3120 assert(0);
3121 }
3122
3123 /*
3124 * Release our own refcount. Force channel deletion even if
3125 * streams were not initialized.
3126 */
3127 if (!uatomic_sub_return(&chan->refcount, 1)) {
3128 consumer_del_channel(chan);
3129 }
3130 rcu_read_unlock();
3131 goto restart;
3132 }
3133 case CONSUMER_CHANNEL_QUIT:
3134 /*
3135 * Remove the pipe from the poll set and continue the loop
3136 * since their might be data to consume.
3137 */
3138 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3139 continue;
3140 default:
3141 ERR("Unknown action");
3142 break;
3143 }
3144 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3145 DBG("Channel thread pipe hung up");
3146 /*
3147 * Remove the pipe from the poll set and continue the loop
3148 * since their might be data to consume.
3149 */
3150 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3151 continue;
3152 } else {
3153 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3154 goto end;
3155 }
3156
3157 /* Handle other stream */
3158 continue;
3159 }
3160
3161 rcu_read_lock();
3162 {
3163 uint64_t tmp_id = (uint64_t) pollfd;
3164
3165 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3166 }
3167 node = lttng_ht_iter_get_node_u64(&iter);
3168 assert(node);
3169
3170 chan = caa_container_of(node, struct lttng_consumer_channel,
3171 wait_fd_node);
3172
3173 /* Check for error event */
3174 if (revents & (LPOLLERR | LPOLLHUP)) {
3175 DBG("Channel fd %d is hup|err.", pollfd);
3176
3177 lttng_poll_del(&events, chan->wait_fd);
3178 ret = lttng_ht_del(channel_ht, &iter);
3179 assert(ret == 0);
3180
3181 /*
3182 * This will close the wait fd for each stream associated to
3183 * this channel AND monitored by the data/metadata thread thus
3184 * will be clean by the right thread.
3185 */
3186 consumer_close_channel_streams(chan);
3187
3188 /* Release our own refcount */
3189 if (!uatomic_sub_return(&chan->refcount, 1)
3190 && !uatomic_read(&chan->nb_init_stream_left)) {
3191 consumer_del_channel(chan);
3192 }
3193 } else {
3194 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3195 rcu_read_unlock();
3196 goto end;
3197 }
3198
3199 /* Release RCU lock for the channel looked up */
3200 rcu_read_unlock();
3201 }
3202 }
3203
3204 /* All is OK */
3205 err = 0;
3206 end:
3207 lttng_poll_clean(&events);
3208 end_poll:
3209 destroy_channel_ht(channel_ht);
3210 end_ht:
3211 error_testpoint:
3212 DBG("Channel poll thread exiting");
3213 if (err) {
3214 health_error();
3215 ERR("Health error occurred in %s", __func__);
3216 }
3217 health_unregister(health_consumerd);
3218 rcu_unregister_thread();
3219 return NULL;
3220 }
3221
3222 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3223 struct pollfd *sockpoll, int client_socket)
3224 {
3225 int ret;
3226
3227 assert(ctx);
3228 assert(sockpoll);
3229
3230 ret = lttng_consumer_poll_socket(sockpoll);
3231 if (ret) {
3232 goto error;
3233 }
3234 DBG("Metadata connection on client_socket");
3235
3236 /* Blocking call, waiting for transmission */
3237 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3238 if (ctx->consumer_metadata_socket < 0) {
3239 WARN("On accept metadata");
3240 ret = -1;
3241 goto error;
3242 }
3243 ret = 0;
3244
3245 error:
3246 return ret;
3247 }
3248
3249 /*
3250 * This thread listens on the consumerd socket and receives the file
3251 * descriptors from the session daemon.
3252 */
3253 void *consumer_thread_sessiond_poll(void *data)
3254 {
3255 int sock = -1, client_socket, ret, err = -1;
3256 /*
3257 * structure to poll for incoming data on communication socket avoids
3258 * making blocking sockets.
3259 */
3260 struct pollfd consumer_sockpoll[2];
3261 struct lttng_consumer_local_data *ctx = data;
3262
3263 rcu_register_thread();
3264
3265 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3266
3267 if (testpoint(consumerd_thread_sessiond)) {
3268 goto error_testpoint;
3269 }
3270
3271 health_code_update();
3272
3273 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3274 unlink(ctx->consumer_command_sock_path);
3275 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3276 if (client_socket < 0) {
3277 ERR("Cannot create command socket");
3278 goto end;
3279 }
3280
3281 ret = lttcomm_listen_unix_sock(client_socket);
3282 if (ret < 0) {
3283 goto end;
3284 }
3285
3286 DBG("Sending ready command to lttng-sessiond");
3287 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3288 /* return < 0 on error, but == 0 is not fatal */
3289 if (ret < 0) {
3290 ERR("Error sending ready command to lttng-sessiond");
3291 goto end;
3292 }
3293
3294 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3295 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3296 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3297 consumer_sockpoll[1].fd = client_socket;
3298 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3299
3300 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3301 if (ret) {
3302 if (ret > 0) {
3303 /* should exit */
3304 err = 0;
3305 }
3306 goto end;
3307 }
3308 DBG("Connection on client_socket");
3309
3310 /* Blocking call, waiting for transmission */
3311 sock = lttcomm_accept_unix_sock(client_socket);
3312 if (sock < 0) {
3313 WARN("On accept");
3314 goto end;
3315 }
3316
3317 /*
3318 * Setup metadata socket which is the second socket connection on the
3319 * command unix socket.
3320 */
3321 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3322 if (ret) {
3323 if (ret > 0) {
3324 /* should exit */
3325 err = 0;
3326 }
3327 goto end;
3328 }
3329
3330 /* This socket is not useful anymore. */
3331 ret = close(client_socket);
3332 if (ret < 0) {
3333 PERROR("close client_socket");
3334 }
3335 client_socket = -1;
3336
3337 /* update the polling structure to poll on the established socket */
3338 consumer_sockpoll[1].fd = sock;
3339 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3340
3341 while (1) {
3342 health_code_update();
3343
3344 health_poll_entry();
3345 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3346 health_poll_exit();
3347 if (ret) {
3348 if (ret > 0) {
3349 /* should exit */
3350 err = 0;
3351 }
3352 goto end;
3353 }
3354 DBG("Incoming command on sock");
3355 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3356 if (ret <= 0) {
3357 /*
3358 * This could simply be a session daemon quitting. Don't output
3359 * ERR() here.
3360 */
3361 DBG("Communication interrupted on command socket");
3362 err = 0;
3363 goto end;
3364 }
3365 if (CMM_LOAD_SHARED(consumer_quit)) {
3366 DBG("consumer_thread_receive_fds received quit from signal");
3367 err = 0; /* All is OK */
3368 goto end;
3369 }
3370 DBG("received command on sock");
3371 }
3372 /* All is OK */
3373 err = 0;
3374
3375 end:
3376 DBG("Consumer thread sessiond poll exiting");
3377
3378 /*
3379 * Close metadata streams since the producer is the session daemon which
3380 * just died.
3381 *
3382 * NOTE: for now, this only applies to the UST tracer.
3383 */
3384 lttng_consumer_close_all_metadata();
3385
3386 /*
3387 * when all fds have hung up, the polling thread
3388 * can exit cleanly
3389 */
3390 CMM_STORE_SHARED(consumer_quit, 1);
3391
3392 /*
3393 * Notify the data poll thread to poll back again and test the
3394 * consumer_quit state that we just set so to quit gracefully.
3395 */
3396 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3397
3398 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3399
3400 notify_health_quit_pipe(health_quit_pipe);
3401
3402 /* Cleaning up possibly open sockets. */
3403 if (sock >= 0) {
3404 ret = close(sock);
3405 if (ret < 0) {
3406 PERROR("close sock sessiond poll");
3407 }
3408 }
3409 if (client_socket >= 0) {
3410 ret = close(client_socket);
3411 if (ret < 0) {
3412 PERROR("close client_socket sessiond poll");
3413 }
3414 }
3415
3416 error_testpoint:
3417 if (err) {
3418 health_error();
3419 ERR("Health error occurred in %s", __func__);
3420 }
3421 health_unregister(health_consumerd);
3422
3423 rcu_unregister_thread();
3424 return NULL;
3425 }
3426
3427 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3428 struct lttng_consumer_local_data *ctx)
3429 {
3430 ssize_t ret;
3431
3432 pthread_mutex_lock(&stream->chan->lock);
3433 pthread_mutex_lock(&stream->lock);
3434 if (stream->metadata_flag) {
3435 pthread_mutex_lock(&stream->metadata_rdv_lock);
3436 }
3437
3438 switch (consumer_data.type) {
3439 case LTTNG_CONSUMER_KERNEL:
3440 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3441 break;
3442 case LTTNG_CONSUMER32_UST:
3443 case LTTNG_CONSUMER64_UST:
3444 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3445 break;
3446 default:
3447 ERR("Unknown consumer_data type");
3448 assert(0);
3449 ret = -ENOSYS;
3450 break;
3451 }
3452
3453 if (stream->metadata_flag) {
3454 pthread_cond_broadcast(&stream->metadata_rdv);
3455 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3456 }
3457 pthread_mutex_unlock(&stream->lock);
3458 pthread_mutex_unlock(&stream->chan->lock);
3459
3460 return ret;
3461 }
3462
3463 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3464 {
3465 switch (consumer_data.type) {
3466 case LTTNG_CONSUMER_KERNEL:
3467 return lttng_kconsumer_on_recv_stream(stream);
3468 case LTTNG_CONSUMER32_UST:
3469 case LTTNG_CONSUMER64_UST:
3470 return lttng_ustconsumer_on_recv_stream(stream);
3471 default:
3472 ERR("Unknown consumer_data type");
3473 assert(0);
3474 return -ENOSYS;
3475 }
3476 }
3477
3478 /*
3479 * Allocate and set consumer data hash tables.
3480 */
3481 int lttng_consumer_init(void)
3482 {
3483 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3484 if (!consumer_data.channel_ht) {
3485 goto error;
3486 }
3487
3488 consumer_data.channels_by_session_id_ht =
3489 lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3490 if (!consumer_data.channels_by_session_id_ht) {
3491 goto error;
3492 }
3493
3494 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3495 if (!consumer_data.relayd_ht) {
3496 goto error;
3497 }
3498
3499 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3500 if (!consumer_data.stream_list_ht) {
3501 goto error;
3502 }
3503
3504 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3505 if (!consumer_data.stream_per_chan_id_ht) {
3506 goto error;
3507 }
3508
3509 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3510 if (!data_ht) {
3511 goto error;
3512 }
3513
3514 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3515 if (!metadata_ht) {
3516 goto error;
3517 }
3518
3519 consumer_data.chunk_registry = lttng_trace_chunk_registry_create();
3520 if (!consumer_data.chunk_registry) {
3521 goto error;
3522 }
3523
3524 return 0;
3525
3526 error:
3527 return -1;
3528 }
3529
3530 /*
3531 * Process the ADD_RELAYD command receive by a consumer.
3532 *
3533 * This will create a relayd socket pair and add it to the relayd hash table.
3534 * The caller MUST acquire a RCU read side lock before calling it.
3535 */
3536 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3537 struct lttng_consumer_local_data *ctx, int sock,
3538 struct pollfd *consumer_sockpoll,
3539 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3540 uint64_t relayd_session_id)
3541 {
3542 int fd = -1, ret = -1, relayd_created = 0;
3543 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3544 struct consumer_relayd_sock_pair *relayd = NULL;
3545
3546 assert(ctx);
3547 assert(relayd_sock);
3548
3549 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3550
3551 /* Get relayd reference if exists. */
3552 relayd = consumer_find_relayd(net_seq_idx);
3553 if (relayd == NULL) {
3554 assert(sock_type == LTTNG_STREAM_CONTROL);
3555 /* Not found. Allocate one. */
3556 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3557 if (relayd == NULL) {
3558 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3559 goto error;
3560 } else {
3561 relayd->sessiond_session_id = sessiond_id;
3562 relayd_created = 1;
3563 }
3564
3565 /*
3566 * This code path MUST continue to the consumer send status message to
3567 * we can notify the session daemon and continue our work without
3568 * killing everything.
3569 */
3570 } else {
3571 /*
3572 * relayd key should never be found for control socket.
3573 */
3574 assert(sock_type != LTTNG_STREAM_CONTROL);
3575 }
3576
3577 /* First send a status message before receiving the fds. */
3578 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3579 if (ret < 0) {
3580 /* Somehow, the session daemon is not responding anymore. */
3581 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3582 goto error_nosignal;
3583 }
3584
3585 /* Poll on consumer socket. */
3586 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3587 if (ret) {
3588 /* Needing to exit in the middle of a command: error. */
3589 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3590 goto error_nosignal;
3591 }
3592
3593 /* Get relayd socket from session daemon */
3594 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3595 if (ret != sizeof(fd)) {
3596 fd = -1; /* Just in case it gets set with an invalid value. */
3597
3598 /*
3599 * Failing to receive FDs might indicate a major problem such as
3600 * reaching a fd limit during the receive where the kernel returns a
3601 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3602 * don't take any chances and stop everything.
3603 *
3604 * XXX: Feature request #558 will fix that and avoid this possible
3605 * issue when reaching the fd limit.
3606 */
3607 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3608 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3609 goto error;
3610 }
3611
3612 /* Copy socket information and received FD */
3613 switch (sock_type) {
3614 case LTTNG_STREAM_CONTROL:
3615 /* Copy received lttcomm socket */
3616 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3617 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3618 /* Handle create_sock error. */
3619 if (ret < 0) {
3620 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3621 goto error;
3622 }
3623 /*
3624 * Close the socket created internally by
3625 * lttcomm_create_sock, so we can replace it by the one
3626 * received from sessiond.
3627 */
3628 if (close(relayd->control_sock.sock.fd)) {
3629 PERROR("close");
3630 }
3631
3632 /* Assign new file descriptor */
3633 relayd->control_sock.sock.fd = fd;
3634 /* Assign version values. */
3635 relayd->control_sock.major = relayd_sock->major;
3636 relayd->control_sock.minor = relayd_sock->minor;
3637
3638 relayd->relayd_session_id = relayd_session_id;
3639
3640 break;
3641 case LTTNG_STREAM_DATA:
3642 /* Copy received lttcomm socket */
3643 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3644 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3645 /* Handle create_sock error. */
3646 if (ret < 0) {
3647 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3648 goto error;
3649 }
3650 /*
3651 * Close the socket created internally by
3652 * lttcomm_create_sock, so we can replace it by the one
3653 * received from sessiond.
3654 */
3655 if (close(relayd->data_sock.sock.fd)) {
3656 PERROR("close");
3657 }
3658
3659 /* Assign new file descriptor */
3660 relayd->data_sock.sock.fd = fd;
3661 /* Assign version values. */
3662 relayd->data_sock.major = relayd_sock->major;
3663 relayd->data_sock.minor = relayd_sock->minor;
3664 break;
3665 default:
3666 ERR("Unknown relayd socket type (%d)", sock_type);
3667 ret_code = LTTCOMM_CONSUMERD_FATAL;
3668 goto error;
3669 }
3670
3671 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3672 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3673 relayd->net_seq_idx, fd);
3674 /*
3675 * We gave the ownership of the fd to the relayd structure. Set the
3676 * fd to -1 so we don't call close() on it in the error path below.
3677 */
3678 fd = -1;
3679
3680 /* We successfully added the socket. Send status back. */
3681 ret = consumer_send_status_msg(sock, ret_code);
3682 if (ret < 0) {
3683 /* Somehow, the session daemon is not responding anymore. */
3684 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3685 goto error_nosignal;
3686 }
3687
3688 /*
3689 * Add relayd socket pair to consumer data hashtable. If object already
3690 * exists or on error, the function gracefully returns.
3691 */
3692 relayd->ctx = ctx;
3693 add_relayd(relayd);
3694
3695 /* All good! */
3696 return;
3697
3698 error:
3699 if (consumer_send_status_msg(sock, ret_code) < 0) {
3700 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3701 }
3702
3703 error_nosignal:
3704 /* Close received socket if valid. */
3705 if (fd >= 0) {
3706 if (close(fd)) {
3707 PERROR("close received socket");
3708 }
3709 }
3710
3711 if (relayd_created) {
3712 free(relayd);
3713 }
3714 }
3715
3716 /*
3717 * Search for a relayd associated to the session id and return the reference.
3718 *
3719 * A rcu read side lock MUST be acquire before calling this function and locked
3720 * until the relayd object is no longer necessary.
3721 */
3722 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3723 {
3724 struct lttng_ht_iter iter;
3725 struct consumer_relayd_sock_pair *relayd = NULL;
3726
3727 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3728 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3729 node.node) {
3730 /*
3731 * Check by sessiond id which is unique here where the relayd session
3732 * id might not be when having multiple relayd.
3733 */
3734 if (relayd->sessiond_session_id == id) {
3735 /* Found the relayd. There can be only one per id. */
3736 goto found;
3737 }
3738 }
3739
3740 return NULL;
3741
3742 found:
3743 return relayd;
3744 }
3745
3746 /*
3747 * Check if for a given session id there is still data needed to be extract
3748 * from the buffers.
3749 *
3750 * Return 1 if data is pending or else 0 meaning ready to be read.
3751 */
3752 int consumer_data_pending(uint64_t id)
3753 {
3754 int ret;
3755 struct lttng_ht_iter iter;
3756 struct lttng_ht *ht;
3757 struct lttng_consumer_stream *stream;
3758 struct consumer_relayd_sock_pair *relayd = NULL;
3759 int (*data_pending)(struct lttng_consumer_stream *);
3760
3761 DBG("Consumer data pending command on session id %" PRIu64, id);
3762
3763 rcu_read_lock();
3764 pthread_mutex_lock(&consumer_data.lock);
3765
3766 switch (consumer_data.type) {
3767 case LTTNG_CONSUMER_KERNEL:
3768 data_pending = lttng_kconsumer_data_pending;
3769 break;
3770 case LTTNG_CONSUMER32_UST:
3771 case LTTNG_CONSUMER64_UST:
3772 data_pending = lttng_ustconsumer_data_pending;
3773 break;
3774 default:
3775 ERR("Unknown consumer data type");
3776 assert(0);
3777 }
3778
3779 /* Ease our life a bit */
3780 ht = consumer_data.stream_list_ht;
3781
3782 cds_lfht_for_each_entry_duplicate(ht->ht,
3783 ht->hash_fct(&id, lttng_ht_seed),
3784 ht->match_fct, &id,
3785 &iter.iter, stream, node_session_id.node) {
3786 pthread_mutex_lock(&stream->lock);
3787
3788 /*
3789 * A removed node from the hash table indicates that the stream has
3790 * been deleted thus having a guarantee that the buffers are closed
3791 * on the consumer side. However, data can still be transmitted
3792 * over the network so don't skip the relayd check.
3793 */
3794 ret = cds_lfht_is_node_deleted(&stream->node.node);
3795 if (!ret) {
3796 /* Check the stream if there is data in the buffers. */
3797 ret = data_pending(stream);
3798 if (ret == 1) {
3799 pthread_mutex_unlock(&stream->lock);
3800 goto data_pending;
3801 }
3802 }
3803
3804 pthread_mutex_unlock(&stream->lock);
3805 }
3806
3807 relayd = find_relayd_by_session_id(id);
3808 if (relayd) {
3809 unsigned int is_data_inflight = 0;
3810
3811 /* Send init command for data pending. */
3812 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3813 ret = relayd_begin_data_pending(&relayd->control_sock,
3814 relayd->relayd_session_id);
3815 if (ret < 0) {
3816 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3817 /* Communication error thus the relayd so no data pending. */
3818 goto data_not_pending;
3819 }
3820
3821 cds_lfht_for_each_entry_duplicate(ht->ht,
3822 ht->hash_fct(&id, lttng_ht_seed),
3823 ht->match_fct, &id,
3824 &iter.iter, stream, node_session_id.node) {
3825 if (stream->metadata_flag) {
3826 ret = relayd_quiescent_control(&relayd->control_sock,
3827 stream->relayd_stream_id);
3828 } else {
3829 ret = relayd_data_pending(&relayd->control_sock,
3830 stream->relayd_stream_id,
3831 stream->next_net_seq_num - 1);
3832 }
3833
3834 if (ret == 1) {
3835 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3836 goto data_pending;
3837 } else if (ret < 0) {
3838 ERR("Relayd data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3839 lttng_consumer_cleanup_relayd(relayd);
3840 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3841 goto data_not_pending;
3842 }
3843 }
3844
3845 /* Send end command for data pending. */
3846 ret = relayd_end_data_pending(&relayd->control_sock,
3847 relayd->relayd_session_id, &is_data_inflight);
3848 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3849 if (ret < 0) {
3850 ERR("Relayd end data pending failed. Cleaning up relayd %" PRIu64".", relayd->net_seq_idx);
3851 lttng_consumer_cleanup_relayd(relayd);
3852 goto data_not_pending;
3853 }
3854 if (is_data_inflight) {
3855 goto data_pending;
3856 }
3857 }
3858
3859 /*
3860 * Finding _no_ node in the hash table and no inflight data means that the
3861 * stream(s) have been removed thus data is guaranteed to be available for
3862 * analysis from the trace files.
3863 */
3864
3865 data_not_pending:
3866 /* Data is available to be read by a viewer. */
3867 pthread_mutex_unlock(&consumer_data.lock);
3868 rcu_read_unlock();
3869 return 0;
3870
3871 data_pending:
3872 /* Data is still being extracted from buffers. */
3873 pthread_mutex_unlock(&consumer_data.lock);
3874 rcu_read_unlock();
3875 return 1;
3876 }
3877
3878 /*
3879 * Send a ret code status message to the sessiond daemon.
3880 *
3881 * Return the sendmsg() return value.
3882 */
3883 int consumer_send_status_msg(int sock, int ret_code)
3884 {
3885 struct lttcomm_consumer_status_msg msg;
3886
3887 memset(&msg, 0, sizeof(msg));
3888 msg.ret_code = ret_code;
3889
3890 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3891 }
3892
3893 /*
3894 * Send a channel status message to the sessiond daemon.
3895 *
3896 * Return the sendmsg() return value.
3897 */
3898 int consumer_send_status_channel(int sock,
3899 struct lttng_consumer_channel *channel)
3900 {
3901 struct lttcomm_consumer_status_channel msg;
3902
3903 assert(sock >= 0);
3904
3905 memset(&msg, 0, sizeof(msg));
3906 if (!channel) {
3907 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3908 } else {
3909 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3910 msg.key = channel->key;
3911 msg.stream_count = channel->streams.count;
3912 }
3913
3914 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3915 }
3916
3917 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3918 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3919 uint64_t max_sb_size)
3920 {
3921 unsigned long start_pos;
3922
3923 if (!nb_packets_per_stream) {
3924 return consumed_pos; /* Grab everything */
3925 }
3926 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3927 start_pos -= max_sb_size * nb_packets_per_stream;
3928 if ((long) (start_pos - consumed_pos) < 0) {
3929 return consumed_pos; /* Grab everything */
3930 }
3931 return start_pos;
3932 }
3933
3934 static
3935 int consumer_flush_buffer(struct lttng_consumer_stream *stream, int producer_active)
3936 {
3937 int ret = 0;
3938
3939 switch (consumer_data.type) {
3940 case LTTNG_CONSUMER_KERNEL:
3941 ret = kernctl_buffer_flush(stream->wait_fd);
3942 if (ret < 0) {
3943 ERR("Failed to flush kernel stream");
3944 goto end;
3945 }
3946 break;
3947 case LTTNG_CONSUMER32_UST:
3948 case LTTNG_CONSUMER64_UST:
3949 lttng_ustctl_flush_buffer(stream, producer_active);
3950 break;
3951 default:
3952 ERR("Unknown consumer_data type");
3953 abort();
3954 }
3955
3956 end:
3957 return ret;
3958 }
3959
3960 /*
3961 * Sample the rotate position for all the streams of a channel. If a stream
3962 * is already at the rotate position (produced == consumed), we flag it as
3963 * ready for rotation. The rotation of ready streams occurs after we have
3964 * replied to the session daemon that we have finished sampling the positions.
3965 * Must be called with RCU read-side lock held to ensure existence of channel.
3966 *
3967 * Returns 0 on success, < 0 on error
3968 */
3969 int lttng_consumer_rotate_channel(struct lttng_consumer_channel *channel,
3970 uint64_t key, uint64_t relayd_id, uint32_t metadata,
3971 struct lttng_consumer_local_data *ctx)
3972 {
3973 int ret;
3974 struct lttng_consumer_stream *stream;
3975 struct lttng_ht_iter iter;
3976 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
3977 struct lttng_dynamic_array stream_rotation_positions;
3978 uint64_t next_chunk_id, stream_count = 0;
3979 enum lttng_trace_chunk_status chunk_status;
3980 const bool is_local_trace = relayd_id == -1ULL;
3981 struct consumer_relayd_sock_pair *relayd = NULL;
3982 bool rotating_to_new_chunk = true;
3983
3984 DBG("Consumer sample rotate position for channel %" PRIu64, key);
3985
3986 lttng_dynamic_array_init(&stream_rotation_positions,
3987 sizeof(struct relayd_stream_rotation_position), NULL);
3988
3989 rcu_read_lock();
3990
3991 pthread_mutex_lock(&channel->lock);
3992 assert(channel->trace_chunk);
3993 chunk_status = lttng_trace_chunk_get_id(channel->trace_chunk,
3994 &next_chunk_id);
3995 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
3996 ret = -1;
3997 goto end_unlock_channel;
3998 }
3999
4000 cds_lfht_for_each_entry_duplicate(ht->ht,
4001 ht->hash_fct(&channel->key, lttng_ht_seed),
4002 ht->match_fct, &channel->key, &iter.iter,
4003 stream, node_channel_id.node) {
4004 unsigned long consumed_pos;
4005
4006 health_code_update();
4007
4008 /*
4009 * Lock stream because we are about to change its state.
4010 */
4011 pthread_mutex_lock(&stream->lock);
4012
4013 if (stream->trace_chunk == stream->chan->trace_chunk) {
4014 rotating_to_new_chunk = false;
4015 }
4016
4017 ret = lttng_consumer_sample_snapshot_positions(stream);
4018 if (ret < 0) {
4019 ERR("Failed to sample snapshot position during channel rotation");
4020 goto end_unlock_stream;
4021 }
4022
4023 ret = lttng_consumer_get_produced_snapshot(stream,
4024 &stream->rotate_position);
4025 if (ret < 0) {
4026 ERR("Failed to sample produced position during channel rotation");
4027 goto end_unlock_stream;
4028 }
4029
4030 lttng_consumer_get_consumed_snapshot(stream,
4031 &consumed_pos);
4032 if (consumed_pos == stream->rotate_position) {
4033 stream->rotate_ready = true;
4034 }
4035
4036 /*
4037 * Active flush; has no effect if the production position
4038 * is at a packet boundary.
4039 */
4040 ret = consumer_flush_buffer(stream, 1);
4041 if (ret < 0) {
4042 ERR("Failed to flush stream %" PRIu64 " during channel rotation",
4043 stream->key);
4044 goto end_unlock_stream;
4045 }
4046
4047 if (!is_local_trace) {
4048 /*
4049 * The relay daemon control protocol expects a rotation
4050 * position as "the sequence number of the first packet
4051 * _after_ the current trace chunk.
4052 *
4053 * At the moment when the positions of the buffers are
4054 * sampled, the production position does not necessarily
4055 * sit at a packet boundary. The 'active' flush
4056 * operation above will push the production position to
4057 * the next packet boundary _if_ it is not already
4058 * sitting at such a boundary.
4059 *
4060 * Assuming a current production position that is not
4061 * on the bound of a packet, the 'target' sequence
4062 * number is
4063 * (consumed_pos / subbuffer_size) + 1
4064 * Note the '+ 1' to ensure the current packet is
4065 * part of the current trace chunk.
4066 *
4067 * However, if the production position is already at
4068 * a packet boundary, the '+ 1' is not necessary as the
4069 * last packet of the current chunk is already
4070 * 'complete'.
4071 */
4072 const struct relayd_stream_rotation_position position = {
4073 .stream_id = stream->relayd_stream_id,
4074 .rotate_at_seq_num = (stream->rotate_position / stream->max_sb_size) +
4075 !!(stream->rotate_position % stream->max_sb_size),
4076 };
4077
4078 ret = lttng_dynamic_array_add_element(
4079 &stream_rotation_positions,
4080 &position);
4081 if (ret) {
4082 ERR("Failed to allocate stream rotation position");
4083 goto end_unlock_stream;
4084 }
4085 stream_count++;
4086 }
4087 pthread_mutex_unlock(&stream->lock);
4088 }
4089 stream = NULL;
4090 pthread_mutex_unlock(&channel->lock);
4091
4092 if (is_local_trace) {
4093 ret = 0;
4094 goto end;
4095 }
4096
4097 relayd = consumer_find_relayd(relayd_id);
4098 if (!relayd) {
4099 ERR("Failed to find relayd %" PRIu64, relayd_id);
4100 ret = -1;
4101 goto end;
4102 }
4103
4104 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4105 ret = relayd_rotate_streams(&relayd->control_sock, stream_count,
4106 rotating_to_new_chunk ? &next_chunk_id : NULL,
4107 (const struct relayd_stream_rotation_position *)
4108 stream_rotation_positions.buffer.data);
4109 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4110 if (ret < 0) {
4111 ERR("Relayd rotate stream failed. Cleaning up relayd %" PRIu64,
4112 relayd->net_seq_idx);
4113 lttng_consumer_cleanup_relayd(relayd);
4114 goto end;
4115 }
4116
4117 ret = 0;
4118 goto end;
4119
4120 end_unlock_stream:
4121 pthread_mutex_unlock(&stream->lock);
4122 end_unlock_channel:
4123 pthread_mutex_unlock(&channel->lock);
4124 end:
4125 rcu_read_unlock();
4126 lttng_dynamic_array_reset(&stream_rotation_positions);
4127 return ret;
4128 }
4129
4130 /*
4131 * Check if a stream is ready to be rotated after extracting it.
4132 *
4133 * Return 1 if it is ready for rotation, 0 if it is not, a negative value on
4134 * error. Stream lock must be held.
4135 */
4136 int lttng_consumer_stream_is_rotate_ready(struct lttng_consumer_stream *stream)
4137 {
4138 int ret;
4139 unsigned long consumed_pos;
4140
4141 if (!stream->rotate_position && !stream->rotate_ready) {
4142 ret = 0;
4143 goto end;
4144 }
4145
4146 if (stream->rotate_ready) {
4147 ret = 1;
4148 goto end;
4149 }
4150
4151 /*
4152 * If we don't have the rotate_ready flag, check the consumed position
4153 * to determine if we need to rotate.
4154 */
4155 ret = lttng_consumer_sample_snapshot_positions(stream);
4156 if (ret < 0) {
4157 ERR("Taking snapshot positions");
4158 goto end;
4159 }
4160
4161 ret = lttng_consumer_get_consumed_snapshot(stream, &consumed_pos);
4162 if (ret < 0) {
4163 ERR("Consumed snapshot position");
4164 goto end;
4165 }
4166
4167 /* Rotate position not reached yet (with check for overflow). */
4168 if ((long) (consumed_pos - stream->rotate_position) < 0) {
4169 ret = 0;
4170 goto end;
4171 }
4172 ret = 1;
4173
4174 end:
4175 return ret;
4176 }
4177
4178 /*
4179 * Reset the state for a stream after a rotation occurred.
4180 */
4181 void lttng_consumer_reset_stream_rotate_state(struct lttng_consumer_stream *stream)
4182 {
4183 stream->rotate_position = 0;
4184 stream->rotate_ready = false;
4185 }
4186
4187 /*
4188 * Perform the rotation a local stream file.
4189 */
4190 static
4191 int rotate_local_stream(struct lttng_consumer_local_data *ctx,
4192 struct lttng_consumer_stream *stream)
4193 {
4194 int ret = 0;
4195
4196 DBG("Rotate local stream: stream key %" PRIu64 ", channel key %" PRIu64,
4197 stream->key,
4198 stream->chan->key);
4199 stream->tracefile_size_current = 0;
4200 stream->tracefile_count_current = 0;
4201
4202 if (stream->out_fd >= 0) {
4203 ret = close(stream->out_fd);
4204 if (ret) {
4205 PERROR("Failed to close stream out_fd of channel \"%s\"",
4206 stream->chan->name);
4207 }
4208 stream->out_fd = -1;
4209 }
4210
4211 if (stream->index_file) {
4212 lttng_index_file_put(stream->index_file);
4213 stream->index_file = NULL;
4214 }
4215
4216 if (!stream->trace_chunk) {
4217 goto end;
4218 }
4219
4220 ret = consumer_stream_create_output_files(stream, true);
4221 end:
4222 return ret;
4223 }
4224
4225 /*
4226 * Performs the stream rotation for the rotate session feature if needed.
4227 * It must be called with the channel and stream locks held.
4228 *
4229 * Return 0 on success, a negative number of error.
4230 */
4231 int lttng_consumer_rotate_stream(struct lttng_consumer_local_data *ctx,
4232 struct lttng_consumer_stream *stream)
4233 {
4234 int ret;
4235
4236 DBG("Consumer rotate stream %" PRIu64, stream->key);
4237
4238 /*
4239 * Update the stream's 'current' chunk to the session's (channel)
4240 * now-current chunk.
4241 */
4242 lttng_trace_chunk_put(stream->trace_chunk);
4243 if (stream->chan->trace_chunk == stream->trace_chunk) {
4244 /*
4245 * A channel can be rotated and not have a "next" chunk
4246 * to transition to. In that case, the channel's "current chunk"
4247 * has not been closed yet, but it has not been updated to
4248 * a "next" trace chunk either. Hence, the stream, like its
4249 * parent channel, becomes part of no chunk and can't output
4250 * anything until a new trace chunk is created.
4251 */
4252 stream->trace_chunk = NULL;
4253 } else if (stream->chan->trace_chunk &&
4254 !lttng_trace_chunk_get(stream->chan->trace_chunk)) {
4255 ERR("Failed to acquire a reference to channel's trace chunk during stream rotation");
4256 ret = -1;
4257 goto error;
4258 } else {
4259 /*
4260 * Update the stream's trace chunk to its parent channel's
4261 * current trace chunk.
4262 */
4263 stream->trace_chunk = stream->chan->trace_chunk;
4264 }
4265
4266 if (stream->net_seq_idx == (uint64_t) -1ULL) {
4267 ret = rotate_local_stream(ctx, stream);
4268 if (ret < 0) {
4269 ERR("Failed to rotate stream, ret = %i", ret);
4270 goto error;
4271 }
4272 }
4273
4274 if (stream->metadata_flag && stream->trace_chunk) {
4275 /*
4276 * If the stream has transitioned to a new trace
4277 * chunk, the metadata should be re-dumped to the
4278 * newest chunk.
4279 *
4280 * However, it is possible for a stream to transition to
4281 * a "no-chunk" state. This can happen if a rotation
4282 * occurs on an inactive session. In such cases, the metadata
4283 * regeneration will happen when the next trace chunk is
4284 * created.
4285 */
4286 ret = consumer_metadata_stream_dump(stream);
4287 if (ret) {
4288 goto error;
4289 }
4290 }
4291 lttng_consumer_reset_stream_rotate_state(stream);
4292
4293 ret = 0;
4294
4295 error:
4296 return ret;
4297 }
4298
4299 /*
4300 * Rotate all the ready streams now.
4301 *
4302 * This is especially important for low throughput streams that have already
4303 * been consumed, we cannot wait for their next packet to perform the
4304 * rotation.
4305 * Need to be called with RCU read-side lock held to ensure existence of
4306 * channel.
4307 *
4308 * Returns 0 on success, < 0 on error
4309 */
4310 int lttng_consumer_rotate_ready_streams(struct lttng_consumer_channel *channel,
4311 uint64_t key, struct lttng_consumer_local_data *ctx)
4312 {
4313 int ret;
4314 struct lttng_consumer_stream *stream;
4315 struct lttng_ht_iter iter;
4316 struct lttng_ht *ht = consumer_data.stream_per_chan_id_ht;
4317
4318 rcu_read_lock();
4319
4320 DBG("Consumer rotate ready streams in channel %" PRIu64, key);
4321
4322 cds_lfht_for_each_entry_duplicate(ht->ht,
4323 ht->hash_fct(&channel->key, lttng_ht_seed),
4324 ht->match_fct, &channel->key, &iter.iter,
4325 stream, node_channel_id.node) {
4326 health_code_update();
4327
4328 pthread_mutex_lock(&stream->chan->lock);
4329 pthread_mutex_lock(&stream->lock);
4330
4331 if (!stream->rotate_ready) {
4332 pthread_mutex_unlock(&stream->lock);
4333 pthread_mutex_unlock(&stream->chan->lock);
4334 continue;
4335 }
4336 DBG("Consumer rotate ready stream %" PRIu64, stream->key);
4337
4338 ret = lttng_consumer_rotate_stream(ctx, stream);
4339 pthread_mutex_unlock(&stream->lock);
4340 pthread_mutex_unlock(&stream->chan->lock);
4341 if (ret) {
4342 goto end;
4343 }
4344 }
4345
4346 ret = 0;
4347
4348 end:
4349 rcu_read_unlock();
4350 return ret;
4351 }
4352
4353 enum lttcomm_return_code lttng_consumer_init_command(
4354 struct lttng_consumer_local_data *ctx,
4355 const lttng_uuid sessiond_uuid)
4356 {
4357 enum lttcomm_return_code ret;
4358 char uuid_str[LTTNG_UUID_STR_LEN];
4359
4360 if (ctx->sessiond_uuid.is_set) {
4361 ret = LTTCOMM_CONSUMERD_ALREADY_SET;
4362 goto end;
4363 }
4364
4365 ctx->sessiond_uuid.is_set = true;
4366 memcpy(ctx->sessiond_uuid.value, sessiond_uuid, sizeof(lttng_uuid));
4367 ret = LTTCOMM_CONSUMERD_SUCCESS;
4368 lttng_uuid_to_str(sessiond_uuid, uuid_str);
4369 DBG("Received session daemon UUID: %s", uuid_str);
4370 end:
4371 return ret;
4372 }
4373
4374 enum lttcomm_return_code lttng_consumer_create_trace_chunk(
4375 const uint64_t *relayd_id, uint64_t session_id,
4376 uint64_t chunk_id,
4377 time_t chunk_creation_timestamp,
4378 const char *chunk_override_name,
4379 const struct lttng_credentials *credentials,
4380 struct lttng_directory_handle *chunk_directory_handle)
4381 {
4382 int ret;
4383 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4384 struct lttng_trace_chunk *created_chunk = NULL, *published_chunk = NULL;
4385 enum lttng_trace_chunk_status chunk_status;
4386 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4387 char creation_timestamp_buffer[ISO8601_STR_LEN];
4388 const char *relayd_id_str = "(none)";
4389 const char *creation_timestamp_str;
4390 struct lttng_ht_iter iter;
4391 struct lttng_consumer_channel *channel;
4392
4393 if (relayd_id) {
4394 /* Only used for logging purposes. */
4395 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4396 "%" PRIu64, *relayd_id);
4397 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4398 relayd_id_str = relayd_id_buffer;
4399 } else {
4400 relayd_id_str = "(formatting error)";
4401 }
4402 }
4403
4404 /* Local protocol error. */
4405 assert(chunk_creation_timestamp);
4406 ret = time_to_iso8601_str(chunk_creation_timestamp,
4407 creation_timestamp_buffer,
4408 sizeof(creation_timestamp_buffer));
4409 creation_timestamp_str = !ret ? creation_timestamp_buffer :
4410 "(formatting error)";
4411
4412 DBG("Consumer create trace chunk command: relay_id = %s"
4413 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4414 ", chunk_override_name = %s"
4415 ", chunk_creation_timestamp = %s",
4416 relayd_id_str, session_id, chunk_id,
4417 chunk_override_name ? : "(none)",
4418 creation_timestamp_str);
4419
4420 /*
4421 * The trace chunk registry, as used by the consumer daemon, implicitly
4422 * owns the trace chunks. This is only needed in the consumer since
4423 * the consumer has no notion of a session beyond session IDs being
4424 * used to identify other objects.
4425 *
4426 * The lttng_trace_chunk_registry_publish() call below provides a
4427 * reference which is not released; it implicitly becomes the session
4428 * daemon's reference to the chunk in the consumer daemon.
4429 *
4430 * The lifetime of trace chunks in the consumer daemon is managed by
4431 * the session daemon through the LTTNG_CONSUMER_CREATE_TRACE_CHUNK
4432 * and LTTNG_CONSUMER_DESTROY_TRACE_CHUNK commands.
4433 */
4434 created_chunk = lttng_trace_chunk_create(chunk_id,
4435 chunk_creation_timestamp);
4436 if (!created_chunk) {
4437 ERR("Failed to create trace chunk");
4438 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4439 goto error;
4440 }
4441
4442 if (chunk_override_name) {
4443 chunk_status = lttng_trace_chunk_override_name(created_chunk,
4444 chunk_override_name);
4445 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4446 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4447 goto error;
4448 }
4449 }
4450
4451 if (chunk_directory_handle) {
4452 chunk_status = lttng_trace_chunk_set_credentials(created_chunk,
4453 credentials);
4454 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4455 ERR("Failed to set trace chunk credentials");
4456 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4457 goto error;
4458 }
4459 /*
4460 * The consumer daemon has no ownership of the chunk output
4461 * directory.
4462 */
4463 chunk_status = lttng_trace_chunk_set_as_user(created_chunk,
4464 chunk_directory_handle);
4465 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4466 ERR("Failed to set trace chunk's directory handle");
4467 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4468 goto error;
4469 }
4470 }
4471
4472 published_chunk = lttng_trace_chunk_registry_publish_chunk(
4473 consumer_data.chunk_registry, session_id,
4474 created_chunk);
4475 lttng_trace_chunk_put(created_chunk);
4476 created_chunk = NULL;
4477 if (!published_chunk) {
4478 ERR("Failed to publish trace chunk");
4479 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4480 goto error;
4481 }
4482
4483 rcu_read_lock();
4484 cds_lfht_for_each_entry_duplicate(consumer_data.channels_by_session_id_ht->ht,
4485 consumer_data.channels_by_session_id_ht->hash_fct(
4486 &session_id, lttng_ht_seed),
4487 consumer_data.channels_by_session_id_ht->match_fct,
4488 &session_id, &iter.iter, channel,
4489 channels_by_session_id_ht_node.node) {
4490 ret = lttng_consumer_channel_set_trace_chunk(channel,
4491 published_chunk);
4492 if (ret) {
4493 /*
4494 * Roll-back the creation of this chunk.
4495 *
4496 * This is important since the session daemon will
4497 * assume that the creation of this chunk failed and
4498 * will never ask for it to be closed, resulting
4499 * in a leak and an inconsistent state for some
4500 * channels.
4501 */
4502 enum lttcomm_return_code close_ret;
4503 char path[LTTNG_PATH_MAX];
4504
4505 DBG("Failed to set new trace chunk on existing channels, rolling back");
4506 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4507 session_id, chunk_id,
4508 chunk_creation_timestamp, NULL,
4509 path);
4510 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4511 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4512 session_id, chunk_id);
4513 }
4514
4515 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4516 break;
4517 }
4518 }
4519
4520 if (relayd_id) {
4521 struct consumer_relayd_sock_pair *relayd;
4522
4523 relayd = consumer_find_relayd(*relayd_id);
4524 if (relayd) {
4525 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4526 ret = relayd_create_trace_chunk(
4527 &relayd->control_sock, published_chunk);
4528 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4529 } else {
4530 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64, *relayd_id);
4531 }
4532
4533 if (!relayd || ret) {
4534 enum lttcomm_return_code close_ret;
4535 char path[LTTNG_PATH_MAX];
4536
4537 close_ret = lttng_consumer_close_trace_chunk(relayd_id,
4538 session_id,
4539 chunk_id,
4540 chunk_creation_timestamp,
4541 NULL, path);
4542 if (close_ret != LTTCOMM_CONSUMERD_SUCCESS) {
4543 ERR("Failed to roll-back the creation of new chunk: session_id = %" PRIu64 ", chunk_id = %" PRIu64,
4544 session_id,
4545 chunk_id);
4546 }
4547
4548 ret_code = LTTCOMM_CONSUMERD_CREATE_TRACE_CHUNK_FAILED;
4549 goto error_unlock;
4550 }
4551 }
4552 error_unlock:
4553 rcu_read_unlock();
4554 error:
4555 /* Release the reference returned by the "publish" operation. */
4556 lttng_trace_chunk_put(published_chunk);
4557 lttng_trace_chunk_put(created_chunk);
4558 return ret_code;
4559 }
4560
4561 enum lttcomm_return_code lttng_consumer_close_trace_chunk(
4562 const uint64_t *relayd_id, uint64_t session_id,
4563 uint64_t chunk_id, time_t chunk_close_timestamp,
4564 const enum lttng_trace_chunk_command_type *close_command,
4565 char *path)
4566 {
4567 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
4568 struct lttng_trace_chunk *chunk;
4569 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4570 const char *relayd_id_str = "(none)";
4571 const char *close_command_name = "none";
4572 struct lttng_ht_iter iter;
4573 struct lttng_consumer_channel *channel;
4574 enum lttng_trace_chunk_status chunk_status;
4575
4576 if (relayd_id) {
4577 int ret;
4578
4579 /* Only used for logging purposes. */
4580 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4581 "%" PRIu64, *relayd_id);
4582 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4583 relayd_id_str = relayd_id_buffer;
4584 } else {
4585 relayd_id_str = "(formatting error)";
4586 }
4587 }
4588 if (close_command) {
4589 close_command_name = lttng_trace_chunk_command_type_get_name(
4590 *close_command);
4591 }
4592
4593 DBG("Consumer close trace chunk command: relayd_id = %s"
4594 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
4595 ", close command = %s",
4596 relayd_id_str, session_id, chunk_id,
4597 close_command_name);
4598
4599 chunk = lttng_trace_chunk_registry_find_chunk(
4600 consumer_data.chunk_registry, session_id, chunk_id);
4601 if (!chunk) {
4602 ERR("Failed to find chunk: session_id = %" PRIu64
4603 ", chunk_id = %" PRIu64,
4604 session_id, chunk_id);
4605 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4606 goto end;
4607 }
4608
4609 chunk_status = lttng_trace_chunk_set_close_timestamp(chunk,
4610 chunk_close_timestamp);
4611 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4612 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4613 goto end;
4614 }
4615
4616 if (close_command) {
4617 chunk_status = lttng_trace_chunk_set_close_command(
4618 chunk, *close_command);
4619 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
4620 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4621 goto end;
4622 }
4623 }
4624
4625 /*
4626 * chunk is now invalid to access as we no longer hold a reference to
4627 * it; it is only kept around to compare it (by address) to the
4628 * current chunk found in the session's channels.
4629 */
4630 rcu_read_lock();
4631 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter,
4632 channel, node.node) {
4633 int ret;
4634
4635 /*
4636 * Only change the channel's chunk to NULL if it still
4637 * references the chunk being closed. The channel may
4638 * reference a newer channel in the case of a session
4639 * rotation. When a session rotation occurs, the "next"
4640 * chunk is created before the "current" chunk is closed.
4641 */
4642 if (channel->trace_chunk != chunk) {
4643 continue;
4644 }
4645 ret = lttng_consumer_channel_set_trace_chunk(channel, NULL);
4646 if (ret) {
4647 /*
4648 * Attempt to close the chunk on as many channels as
4649 * possible.
4650 */
4651 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4652 }
4653 }
4654
4655 if (relayd_id) {
4656 int ret;
4657 struct consumer_relayd_sock_pair *relayd;
4658
4659 relayd = consumer_find_relayd(*relayd_id);
4660 if (relayd) {
4661 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4662 ret = relayd_close_trace_chunk(
4663 &relayd->control_sock, chunk,
4664 path);
4665 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4666 } else {
4667 ERR("Failed to find relay daemon socket: relayd_id = %" PRIu64,
4668 *relayd_id);
4669 }
4670
4671 if (!relayd || ret) {
4672 ret_code = LTTCOMM_CONSUMERD_CLOSE_TRACE_CHUNK_FAILED;
4673 goto error_unlock;
4674 }
4675 }
4676 error_unlock:
4677 rcu_read_unlock();
4678 end:
4679 /*
4680 * Release the reference returned by the "find" operation and
4681 * the session daemon's implicit reference to the chunk.
4682 */
4683 lttng_trace_chunk_put(chunk);
4684 lttng_trace_chunk_put(chunk);
4685
4686 return ret_code;
4687 }
4688
4689 enum lttcomm_return_code lttng_consumer_trace_chunk_exists(
4690 const uint64_t *relayd_id, uint64_t session_id,
4691 uint64_t chunk_id)
4692 {
4693 int ret;
4694 enum lttcomm_return_code ret_code;
4695 char relayd_id_buffer[MAX_INT_DEC_LEN(*relayd_id)];
4696 const char *relayd_id_str = "(none)";
4697 const bool is_local_trace = !relayd_id;
4698 struct consumer_relayd_sock_pair *relayd = NULL;
4699 bool chunk_exists_local, chunk_exists_remote;
4700
4701 if (relayd_id) {
4702 int ret;
4703
4704 /* Only used for logging purposes. */
4705 ret = snprintf(relayd_id_buffer, sizeof(relayd_id_buffer),
4706 "%" PRIu64, *relayd_id);
4707 if (ret > 0 && ret < sizeof(relayd_id_buffer)) {
4708 relayd_id_str = relayd_id_buffer;
4709 } else {
4710 relayd_id_str = "(formatting error)";
4711 }
4712 }
4713
4714 DBG("Consumer trace chunk exists command: relayd_id = %s"
4715 ", chunk_id = %" PRIu64, relayd_id_str,
4716 chunk_id);
4717 ret = lttng_trace_chunk_registry_chunk_exists(
4718 consumer_data.chunk_registry, session_id,
4719 chunk_id, &chunk_exists_local);
4720 if (ret) {
4721 /* Internal error. */
4722 ERR("Failed to query the existence of a trace chunk");
4723 ret_code = LTTCOMM_CONSUMERD_FATAL;
4724 goto end;
4725 }
4726 DBG("Trace chunk %s locally",
4727 chunk_exists_local ? "exists" : "does not exist");
4728 if (chunk_exists_local) {
4729 ret_code = LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL;
4730 goto end;
4731 } else if (is_local_trace) {
4732 ret_code = LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4733 goto end;
4734 }
4735
4736 rcu_read_lock();
4737 relayd = consumer_find_relayd(*relayd_id);
4738 if (!relayd) {
4739 ERR("Failed to find relayd %" PRIu64, *relayd_id);
4740 ret_code = LTTCOMM_CONSUMERD_INVALID_PARAMETERS;
4741 goto end_rcu_unlock;
4742 }
4743 DBG("Looking up existence of trace chunk on relay daemon");
4744 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
4745 ret = relayd_trace_chunk_exists(&relayd->control_sock, chunk_id,
4746 &chunk_exists_remote);
4747 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
4748 if (ret < 0) {
4749 ERR("Failed to look-up the existence of trace chunk on relay daemon");
4750 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
4751 goto end_rcu_unlock;
4752 }
4753
4754 ret_code = chunk_exists_remote ?
4755 LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE :
4756 LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK;
4757 DBG("Trace chunk %s on relay daemon",
4758 chunk_exists_remote ? "exists" : "does not exist");
4759
4760 end_rcu_unlock:
4761 rcu_read_unlock();
4762 end:
4763 return ret_code;
4764 }
This page took 0.189599 seconds and 5 git commands to generate.