Common consumer functions to read current positions
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 void consumer_stream_update_channel_attributes(
545 struct lttng_consumer_stream *stream,
546 struct lttng_consumer_channel *channel)
547 {
548 stream->channel_read_only_attributes.tracefile_size =
549 channel->tracefile_size;
550 memcpy(stream->channel_read_only_attributes.path, channel->pathname,
551 sizeof(stream->channel_read_only_attributes.path));
552 }
553
554 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
555 uint64_t stream_key,
556 enum lttng_consumer_stream_state state,
557 const char *channel_name,
558 uid_t uid,
559 gid_t gid,
560 uint64_t relayd_id,
561 uint64_t session_id,
562 int cpu,
563 int *alloc_ret,
564 enum consumer_channel_type type,
565 unsigned int monitor)
566 {
567 int ret;
568 struct lttng_consumer_stream *stream;
569
570 stream = zmalloc(sizeof(*stream));
571 if (stream == NULL) {
572 PERROR("malloc struct lttng_consumer_stream");
573 ret = -ENOMEM;
574 goto end;
575 }
576
577 rcu_read_lock();
578
579 stream->key = stream_key;
580 stream->out_fd = -1;
581 stream->out_fd_offset = 0;
582 stream->output_written = 0;
583 stream->state = state;
584 stream->uid = uid;
585 stream->gid = gid;
586 stream->net_seq_idx = relayd_id;
587 stream->session_id = session_id;
588 stream->monitor = monitor;
589 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
590 stream->index_file = NULL;
591 stream->last_sequence_number = -1ULL;
592 pthread_mutex_init(&stream->lock, NULL);
593 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
594
595 /* If channel is the metadata, flag this stream as metadata. */
596 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
597 stream->metadata_flag = 1;
598 /* Metadata is flat out. */
599 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
600 /* Live rendez-vous point. */
601 pthread_cond_init(&stream->metadata_rdv, NULL);
602 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
603 } else {
604 /* Format stream name to <channel_name>_<cpu_number> */
605 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
606 channel_name, cpu);
607 if (ret < 0) {
608 PERROR("snprintf stream name");
609 goto error;
610 }
611 }
612
613 /* Key is always the wait_fd for streams. */
614 lttng_ht_node_init_u64(&stream->node, stream->key);
615
616 /* Init node per channel id key */
617 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
618
619 /* Init session id node with the stream session id */
620 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
621
622 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
623 " relayd_id %" PRIu64 ", session_id %" PRIu64,
624 stream->name, stream->key, channel_key,
625 stream->net_seq_idx, stream->session_id);
626
627 rcu_read_unlock();
628 return stream;
629
630 error:
631 rcu_read_unlock();
632 free(stream);
633 end:
634 if (alloc_ret) {
635 *alloc_ret = ret;
636 }
637 return NULL;
638 }
639
640 /*
641 * Add a stream to the global list protected by a mutex.
642 */
643 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
644 {
645 struct lttng_ht *ht = data_ht;
646
647 assert(stream);
648 assert(ht);
649
650 DBG3("Adding consumer stream %" PRIu64, stream->key);
651
652 pthread_mutex_lock(&consumer_data.lock);
653 pthread_mutex_lock(&stream->chan->lock);
654 pthread_mutex_lock(&stream->chan->timer_lock);
655 pthread_mutex_lock(&stream->lock);
656 rcu_read_lock();
657
658 /* Steal stream identifier to avoid having streams with the same key */
659 steal_stream_key(stream->key, ht);
660
661 lttng_ht_add_unique_u64(ht, &stream->node);
662
663 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
664 &stream->node_channel_id);
665
666 /*
667 * Add stream to the stream_list_ht of the consumer data. No need to steal
668 * the key since the HT does not use it and we allow to add redundant keys
669 * into this table.
670 */
671 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
672
673 /*
674 * When nb_init_stream_left reaches 0, we don't need to trigger any action
675 * in terms of destroying the associated channel, because the action that
676 * causes the count to become 0 also causes a stream to be added. The
677 * channel deletion will thus be triggered by the following removal of this
678 * stream.
679 */
680 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
681 /* Increment refcount before decrementing nb_init_stream_left */
682 cmm_smp_wmb();
683 uatomic_dec(&stream->chan->nb_init_stream_left);
684 }
685
686 /* Update consumer data once the node is inserted. */
687 consumer_data.stream_count++;
688 consumer_data.need_update = 1;
689
690 rcu_read_unlock();
691 pthread_mutex_unlock(&stream->lock);
692 pthread_mutex_unlock(&stream->chan->timer_lock);
693 pthread_mutex_unlock(&stream->chan->lock);
694 pthread_mutex_unlock(&consumer_data.lock);
695 }
696
697 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
698 {
699 consumer_del_stream(stream, data_ht);
700 }
701
702 /*
703 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
704 * be acquired before calling this.
705 */
706 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
707 {
708 int ret = 0;
709 struct lttng_ht_node_u64 *node;
710 struct lttng_ht_iter iter;
711
712 assert(relayd);
713
714 lttng_ht_lookup(consumer_data.relayd_ht,
715 &relayd->net_seq_idx, &iter);
716 node = lttng_ht_iter_get_node_u64(&iter);
717 if (node != NULL) {
718 goto end;
719 }
720 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
721
722 end:
723 return ret;
724 }
725
726 /*
727 * Allocate and return a consumer relayd socket.
728 */
729 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
730 uint64_t net_seq_idx)
731 {
732 struct consumer_relayd_sock_pair *obj = NULL;
733
734 /* net sequence index of -1 is a failure */
735 if (net_seq_idx == (uint64_t) -1ULL) {
736 goto error;
737 }
738
739 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
740 if (obj == NULL) {
741 PERROR("zmalloc relayd sock");
742 goto error;
743 }
744
745 obj->net_seq_idx = net_seq_idx;
746 obj->refcount = 0;
747 obj->destroy_flag = 0;
748 obj->control_sock.sock.fd = -1;
749 obj->data_sock.sock.fd = -1;
750 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
751 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
752
753 error:
754 return obj;
755 }
756
757 /*
758 * Find a relayd socket pair in the global consumer data.
759 *
760 * Return the object if found else NULL.
761 * RCU read-side lock must be held across this call and while using the
762 * returned object.
763 */
764 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
765 {
766 struct lttng_ht_iter iter;
767 struct lttng_ht_node_u64 *node;
768 struct consumer_relayd_sock_pair *relayd = NULL;
769
770 /* Negative keys are lookup failures */
771 if (key == (uint64_t) -1ULL) {
772 goto error;
773 }
774
775 lttng_ht_lookup(consumer_data.relayd_ht, &key,
776 &iter);
777 node = lttng_ht_iter_get_node_u64(&iter);
778 if (node != NULL) {
779 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
780 }
781
782 error:
783 return relayd;
784 }
785
786 /*
787 * Find a relayd and send the stream
788 *
789 * Returns 0 on success, < 0 on error
790 */
791 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
792 char *path)
793 {
794 int ret = 0;
795 struct consumer_relayd_sock_pair *relayd;
796
797 assert(stream);
798 assert(stream->net_seq_idx != -1ULL);
799 assert(path);
800
801 /* The stream is not metadata. Get relayd reference if exists. */
802 rcu_read_lock();
803 relayd = consumer_find_relayd(stream->net_seq_idx);
804 if (relayd != NULL) {
805 /* Add stream on the relayd */
806 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
807 ret = relayd_add_stream(&relayd->control_sock, stream->name,
808 path, &stream->relayd_stream_id,
809 stream->chan->tracefile_size, stream->chan->tracefile_count);
810 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
811 if (ret < 0) {
812 goto end;
813 }
814
815 uatomic_inc(&relayd->refcount);
816 stream->sent_to_relayd = 1;
817 } else {
818 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
819 stream->key, stream->net_seq_idx);
820 ret = -1;
821 goto end;
822 }
823
824 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
825 stream->name, stream->key, stream->net_seq_idx);
826
827 end:
828 rcu_read_unlock();
829 return ret;
830 }
831
832 /*
833 * Find a relayd and send the streams sent message
834 *
835 * Returns 0 on success, < 0 on error
836 */
837 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
838 {
839 int ret = 0;
840 struct consumer_relayd_sock_pair *relayd;
841
842 assert(net_seq_idx != -1ULL);
843
844 /* The stream is not metadata. Get relayd reference if exists. */
845 rcu_read_lock();
846 relayd = consumer_find_relayd(net_seq_idx);
847 if (relayd != NULL) {
848 /* Add stream on the relayd */
849 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
850 ret = relayd_streams_sent(&relayd->control_sock);
851 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
852 if (ret < 0) {
853 goto end;
854 }
855 } else {
856 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
857 net_seq_idx);
858 ret = -1;
859 goto end;
860 }
861
862 ret = 0;
863 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
864
865 end:
866 rcu_read_unlock();
867 return ret;
868 }
869
870 /*
871 * Find a relayd and close the stream
872 */
873 void close_relayd_stream(struct lttng_consumer_stream *stream)
874 {
875 struct consumer_relayd_sock_pair *relayd;
876
877 /* The stream is not metadata. Get relayd reference if exists. */
878 rcu_read_lock();
879 relayd = consumer_find_relayd(stream->net_seq_idx);
880 if (relayd) {
881 consumer_stream_relayd_close(stream, relayd);
882 }
883 rcu_read_unlock();
884 }
885
886 /*
887 * Handle stream for relayd transmission if the stream applies for network
888 * streaming where the net sequence index is set.
889 *
890 * Return destination file descriptor or negative value on error.
891 */
892 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
893 size_t data_size, unsigned long padding,
894 struct consumer_relayd_sock_pair *relayd)
895 {
896 int outfd = -1, ret;
897 struct lttcomm_relayd_data_hdr data_hdr;
898
899 /* Safety net */
900 assert(stream);
901 assert(relayd);
902
903 /* Reset data header */
904 memset(&data_hdr, 0, sizeof(data_hdr));
905
906 if (stream->metadata_flag) {
907 /* Caller MUST acquire the relayd control socket lock */
908 ret = relayd_send_metadata(&relayd->control_sock, data_size);
909 if (ret < 0) {
910 goto error;
911 }
912
913 /* Metadata are always sent on the control socket. */
914 outfd = relayd->control_sock.sock.fd;
915 } else {
916 /* Set header with stream information */
917 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
918 data_hdr.data_size = htobe32(data_size);
919 data_hdr.padding_size = htobe32(padding);
920 /*
921 * Note that net_seq_num below is assigned with the *current* value of
922 * next_net_seq_num and only after that the next_net_seq_num will be
923 * increment. This is why when issuing a command on the relayd using
924 * this next value, 1 should always be substracted in order to compare
925 * the last seen sequence number on the relayd side to the last sent.
926 */
927 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
928 /* Other fields are zeroed previously */
929
930 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
931 sizeof(data_hdr));
932 if (ret < 0) {
933 goto error;
934 }
935
936 ++stream->next_net_seq_num;
937
938 /* Set to go on data socket */
939 outfd = relayd->data_sock.sock.fd;
940 }
941
942 error:
943 return outfd;
944 }
945
946 /*
947 * Allocate and return a new lttng_consumer_channel object using the given key
948 * to initialize the hash table node.
949 *
950 * On error, return NULL.
951 */
952 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
953 uint64_t session_id,
954 const char *pathname,
955 const char *name,
956 uid_t uid,
957 gid_t gid,
958 uint64_t relayd_id,
959 enum lttng_event_output output,
960 uint64_t tracefile_size,
961 uint64_t tracefile_count,
962 uint64_t session_id_per_pid,
963 unsigned int monitor,
964 unsigned int live_timer_interval,
965 const char *root_shm_path,
966 const char *shm_path)
967 {
968 struct lttng_consumer_channel *channel;
969
970 channel = zmalloc(sizeof(*channel));
971 if (channel == NULL) {
972 PERROR("malloc struct lttng_consumer_channel");
973 goto end;
974 }
975
976 channel->key = key;
977 channel->refcount = 0;
978 channel->session_id = session_id;
979 channel->session_id_per_pid = session_id_per_pid;
980 channel->uid = uid;
981 channel->gid = gid;
982 channel->relayd_id = relayd_id;
983 channel->tracefile_size = tracefile_size;
984 channel->tracefile_count = tracefile_count;
985 channel->monitor = monitor;
986 channel->live_timer_interval = live_timer_interval;
987 pthread_mutex_init(&channel->lock, NULL);
988 pthread_mutex_init(&channel->timer_lock, NULL);
989
990 switch (output) {
991 case LTTNG_EVENT_SPLICE:
992 channel->output = CONSUMER_CHANNEL_SPLICE;
993 break;
994 case LTTNG_EVENT_MMAP:
995 channel->output = CONSUMER_CHANNEL_MMAP;
996 break;
997 default:
998 assert(0);
999 free(channel);
1000 channel = NULL;
1001 goto end;
1002 }
1003
1004 /*
1005 * In monitor mode, the streams associated with the channel will be put in
1006 * a special list ONLY owned by this channel. So, the refcount is set to 1
1007 * here meaning that the channel itself has streams that are referenced.
1008 *
1009 * On a channel deletion, once the channel is no longer visible, the
1010 * refcount is decremented and checked for a zero value to delete it. With
1011 * streams in no monitor mode, it will now be safe to destroy the channel.
1012 */
1013 if (!channel->monitor) {
1014 channel->refcount = 1;
1015 }
1016
1017 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1018 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1019
1020 strncpy(channel->name, name, sizeof(channel->name));
1021 channel->name[sizeof(channel->name) - 1] = '\0';
1022
1023 if (root_shm_path) {
1024 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1025 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1026 }
1027 if (shm_path) {
1028 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1029 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1030 }
1031
1032 lttng_ht_node_init_u64(&channel->node, channel->key);
1033
1034 channel->wait_fd = -1;
1035
1036 CDS_INIT_LIST_HEAD(&channel->streams.head);
1037
1038 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1039
1040 end:
1041 return channel;
1042 }
1043
1044 /*
1045 * Add a channel to the global list protected by a mutex.
1046 *
1047 * Always return 0 indicating success.
1048 */
1049 int consumer_add_channel(struct lttng_consumer_channel *channel,
1050 struct lttng_consumer_local_data *ctx)
1051 {
1052 pthread_mutex_lock(&consumer_data.lock);
1053 pthread_mutex_lock(&channel->lock);
1054 pthread_mutex_lock(&channel->timer_lock);
1055
1056 /*
1057 * This gives us a guarantee that the channel we are about to add to the
1058 * channel hash table will be unique. See this function comment on the why
1059 * we need to steel the channel key at this stage.
1060 */
1061 steal_channel_key(channel->key);
1062
1063 rcu_read_lock();
1064 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1065 rcu_read_unlock();
1066
1067 pthread_mutex_unlock(&channel->timer_lock);
1068 pthread_mutex_unlock(&channel->lock);
1069 pthread_mutex_unlock(&consumer_data.lock);
1070
1071 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1072 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1073 }
1074
1075 return 0;
1076 }
1077
1078 /*
1079 * Allocate the pollfd structure and the local view of the out fds to avoid
1080 * doing a lookup in the linked list and concurrency issues when writing is
1081 * needed. Called with consumer_data.lock held.
1082 *
1083 * Returns the number of fds in the structures.
1084 */
1085 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1086 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1087 struct lttng_ht *ht, int *nb_inactive_fd)
1088 {
1089 int i = 0;
1090 struct lttng_ht_iter iter;
1091 struct lttng_consumer_stream *stream;
1092
1093 assert(ctx);
1094 assert(ht);
1095 assert(pollfd);
1096 assert(local_stream);
1097
1098 DBG("Updating poll fd array");
1099 *nb_inactive_fd = 0;
1100 rcu_read_lock();
1101 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1102 /*
1103 * Only active streams with an active end point can be added to the
1104 * poll set and local stream storage of the thread.
1105 *
1106 * There is a potential race here for endpoint_status to be updated
1107 * just after the check. However, this is OK since the stream(s) will
1108 * be deleted once the thread is notified that the end point state has
1109 * changed where this function will be called back again.
1110 *
1111 * We track the number of inactive FDs because they still need to be
1112 * closed by the polling thread after a wakeup on the data_pipe or
1113 * metadata_pipe.
1114 */
1115 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1116 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1117 (*nb_inactive_fd)++;
1118 continue;
1119 }
1120 /*
1121 * This clobbers way too much the debug output. Uncomment that if you
1122 * need it for debugging purposes.
1123 *
1124 * DBG("Active FD %d", stream->wait_fd);
1125 */
1126 (*pollfd)[i].fd = stream->wait_fd;
1127 (*pollfd)[i].events = POLLIN | POLLPRI;
1128 local_stream[i] = stream;
1129 i++;
1130 }
1131 rcu_read_unlock();
1132
1133 /*
1134 * Insert the consumer_data_pipe at the end of the array and don't
1135 * increment i so nb_fd is the number of real FD.
1136 */
1137 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1138 (*pollfd)[i].events = POLLIN | POLLPRI;
1139
1140 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1141 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1142 return i;
1143 }
1144
1145 /*
1146 * Poll on the should_quit pipe and the command socket return -1 on
1147 * error, 1 if should exit, 0 if data is available on the command socket
1148 */
1149 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1150 {
1151 int num_rdy;
1152
1153 restart:
1154 num_rdy = poll(consumer_sockpoll, 2, -1);
1155 if (num_rdy == -1) {
1156 /*
1157 * Restart interrupted system call.
1158 */
1159 if (errno == EINTR) {
1160 goto restart;
1161 }
1162 PERROR("Poll error");
1163 return -1;
1164 }
1165 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1166 DBG("consumer_should_quit wake up");
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 /*
1173 * Set the error socket.
1174 */
1175 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1176 int sock)
1177 {
1178 ctx->consumer_error_socket = sock;
1179 }
1180
1181 /*
1182 * Set the command socket path.
1183 */
1184 void lttng_consumer_set_command_sock_path(
1185 struct lttng_consumer_local_data *ctx, char *sock)
1186 {
1187 ctx->consumer_command_sock_path = sock;
1188 }
1189
1190 /*
1191 * Send return code to the session daemon.
1192 * If the socket is not defined, we return 0, it is not a fatal error
1193 */
1194 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1195 {
1196 if (ctx->consumer_error_socket > 0) {
1197 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1198 sizeof(enum lttcomm_sessiond_command));
1199 }
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * Close all the tracefiles and stream fds and MUST be called when all
1206 * instances are destroyed i.e. when all threads were joined and are ended.
1207 */
1208 void lttng_consumer_cleanup(void)
1209 {
1210 struct lttng_ht_iter iter;
1211 struct lttng_consumer_channel *channel;
1212
1213 rcu_read_lock();
1214
1215 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1216 node.node) {
1217 consumer_del_channel(channel);
1218 }
1219
1220 rcu_read_unlock();
1221
1222 lttng_ht_destroy(consumer_data.channel_ht);
1223
1224 cleanup_relayd_ht();
1225
1226 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1227
1228 /*
1229 * This HT contains streams that are freed by either the metadata thread or
1230 * the data thread so we do *nothing* on the hash table and simply destroy
1231 * it.
1232 */
1233 lttng_ht_destroy(consumer_data.stream_list_ht);
1234 }
1235
1236 /*
1237 * Called from signal handler.
1238 */
1239 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1240 {
1241 ssize_t ret;
1242
1243 CMM_STORE_SHARED(consumer_quit, 1);
1244 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1245 if (ret < 1) {
1246 PERROR("write consumer quit");
1247 }
1248
1249 DBG("Consumer flag that it should quit");
1250 }
1251
1252
1253 /*
1254 * Flush pending writes to trace output disk file.
1255 */
1256 static
1257 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1258 off_t orig_offset)
1259 {
1260 int ret;
1261 int outfd = stream->out_fd;
1262
1263 /*
1264 * This does a blocking write-and-wait on any page that belongs to the
1265 * subbuffer prior to the one we just wrote.
1266 * Don't care about error values, as these are just hints and ways to
1267 * limit the amount of page cache used.
1268 */
1269 if (orig_offset < stream->max_sb_size) {
1270 return;
1271 }
1272 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1273 stream->max_sb_size,
1274 SYNC_FILE_RANGE_WAIT_BEFORE
1275 | SYNC_FILE_RANGE_WRITE
1276 | SYNC_FILE_RANGE_WAIT_AFTER);
1277 /*
1278 * Give hints to the kernel about how we access the file:
1279 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1280 * we write it.
1281 *
1282 * We need to call fadvise again after the file grows because the
1283 * kernel does not seem to apply fadvise to non-existing parts of the
1284 * file.
1285 *
1286 * Call fadvise _after_ having waited for the page writeback to
1287 * complete because the dirty page writeback semantic is not well
1288 * defined. So it can be expected to lead to lower throughput in
1289 * streaming.
1290 */
1291 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1292 stream->max_sb_size, POSIX_FADV_DONTNEED);
1293 if (ret && ret != -ENOSYS) {
1294 errno = ret;
1295 PERROR("posix_fadvise on fd %i", outfd);
1296 }
1297 }
1298
1299 /*
1300 * Initialise the necessary environnement :
1301 * - create a new context
1302 * - create the poll_pipe
1303 * - create the should_quit pipe (for signal handler)
1304 * - create the thread pipe (for splice)
1305 *
1306 * Takes a function pointer as argument, this function is called when data is
1307 * available on a buffer. This function is responsible to do the
1308 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1309 * buffer configuration and then kernctl_put_next_subbuf at the end.
1310 *
1311 * Returns a pointer to the new context or NULL on error.
1312 */
1313 struct lttng_consumer_local_data *lttng_consumer_create(
1314 enum lttng_consumer_type type,
1315 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1316 struct lttng_consumer_local_data *ctx),
1317 int (*recv_channel)(struct lttng_consumer_channel *channel),
1318 int (*recv_stream)(struct lttng_consumer_stream *stream),
1319 int (*update_stream)(uint64_t stream_key, uint32_t state))
1320 {
1321 int ret;
1322 struct lttng_consumer_local_data *ctx;
1323
1324 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1325 consumer_data.type == type);
1326 consumer_data.type = type;
1327
1328 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1329 if (ctx == NULL) {
1330 PERROR("allocating context");
1331 goto error;
1332 }
1333
1334 ctx->consumer_error_socket = -1;
1335 ctx->consumer_metadata_socket = -1;
1336 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1337 /* assign the callbacks */
1338 ctx->on_buffer_ready = buffer_ready;
1339 ctx->on_recv_channel = recv_channel;
1340 ctx->on_recv_stream = recv_stream;
1341 ctx->on_update_stream = update_stream;
1342
1343 ctx->consumer_data_pipe = lttng_pipe_open(0);
1344 if (!ctx->consumer_data_pipe) {
1345 goto error_poll_pipe;
1346 }
1347
1348 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1349 if (!ctx->consumer_wakeup_pipe) {
1350 goto error_wakeup_pipe;
1351 }
1352
1353 ret = pipe(ctx->consumer_should_quit);
1354 if (ret < 0) {
1355 PERROR("Error creating recv pipe");
1356 goto error_quit_pipe;
1357 }
1358
1359 ret = pipe(ctx->consumer_channel_pipe);
1360 if (ret < 0) {
1361 PERROR("Error creating channel pipe");
1362 goto error_channel_pipe;
1363 }
1364
1365 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1366 if (!ctx->consumer_metadata_pipe) {
1367 goto error_metadata_pipe;
1368 }
1369
1370 ctx->channel_monitor_pipe = -1;
1371
1372 return ctx;
1373
1374 error_metadata_pipe:
1375 utils_close_pipe(ctx->consumer_channel_pipe);
1376 error_channel_pipe:
1377 utils_close_pipe(ctx->consumer_should_quit);
1378 error_quit_pipe:
1379 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1380 error_wakeup_pipe:
1381 lttng_pipe_destroy(ctx->consumer_data_pipe);
1382 error_poll_pipe:
1383 free(ctx);
1384 error:
1385 return NULL;
1386 }
1387
1388 /*
1389 * Iterate over all streams of the hashtable and free them properly.
1390 */
1391 static void destroy_data_stream_ht(struct lttng_ht *ht)
1392 {
1393 struct lttng_ht_iter iter;
1394 struct lttng_consumer_stream *stream;
1395
1396 if (ht == NULL) {
1397 return;
1398 }
1399
1400 rcu_read_lock();
1401 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1402 /*
1403 * Ignore return value since we are currently cleaning up so any error
1404 * can't be handled.
1405 */
1406 (void) consumer_del_stream(stream, ht);
1407 }
1408 rcu_read_unlock();
1409
1410 lttng_ht_destroy(ht);
1411 }
1412
1413 /*
1414 * Iterate over all streams of the metadata hashtable and free them
1415 * properly.
1416 */
1417 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1418 {
1419 struct lttng_ht_iter iter;
1420 struct lttng_consumer_stream *stream;
1421
1422 if (ht == NULL) {
1423 return;
1424 }
1425
1426 rcu_read_lock();
1427 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1428 /*
1429 * Ignore return value since we are currently cleaning up so any error
1430 * can't be handled.
1431 */
1432 (void) consumer_del_metadata_stream(stream, ht);
1433 }
1434 rcu_read_unlock();
1435
1436 lttng_ht_destroy(ht);
1437 }
1438
1439 /*
1440 * Close all fds associated with the instance and free the context.
1441 */
1442 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1443 {
1444 int ret;
1445
1446 DBG("Consumer destroying it. Closing everything.");
1447
1448 if (!ctx) {
1449 return;
1450 }
1451
1452 destroy_data_stream_ht(data_ht);
1453 destroy_metadata_stream_ht(metadata_ht);
1454
1455 ret = close(ctx->consumer_error_socket);
1456 if (ret) {
1457 PERROR("close");
1458 }
1459 ret = close(ctx->consumer_metadata_socket);
1460 if (ret) {
1461 PERROR("close");
1462 }
1463 utils_close_pipe(ctx->consumer_channel_pipe);
1464 lttng_pipe_destroy(ctx->consumer_data_pipe);
1465 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1466 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1467 utils_close_pipe(ctx->consumer_should_quit);
1468
1469 unlink(ctx->consumer_command_sock_path);
1470 free(ctx);
1471 }
1472
1473 /*
1474 * Write the metadata stream id on the specified file descriptor.
1475 */
1476 static int write_relayd_metadata_id(int fd,
1477 struct lttng_consumer_stream *stream,
1478 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1479 {
1480 ssize_t ret;
1481 struct lttcomm_relayd_metadata_payload hdr;
1482
1483 hdr.stream_id = htobe64(stream->relayd_stream_id);
1484 hdr.padding_size = htobe32(padding);
1485 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1486 if (ret < sizeof(hdr)) {
1487 /*
1488 * This error means that the fd's end is closed so ignore the PERROR
1489 * not to clubber the error output since this can happen in a normal
1490 * code path.
1491 */
1492 if (errno != EPIPE) {
1493 PERROR("write metadata stream id");
1494 }
1495 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1496 /*
1497 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1498 * handle writting the missing part so report that as an error and
1499 * don't lie to the caller.
1500 */
1501 ret = -1;
1502 goto end;
1503 }
1504 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1505 stream->relayd_stream_id, padding);
1506
1507 end:
1508 return (int) ret;
1509 }
1510
1511 /*
1512 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1513 * core function for writing trace buffers to either the local filesystem or
1514 * the network.
1515 *
1516 * It must be called with the stream lock held.
1517 *
1518 * Careful review MUST be put if any changes occur!
1519 *
1520 * Returns the number of bytes written
1521 */
1522 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1523 struct lttng_consumer_local_data *ctx,
1524 struct lttng_consumer_stream *stream, unsigned long len,
1525 unsigned long padding,
1526 struct ctf_packet_index *index)
1527 {
1528 unsigned long mmap_offset;
1529 void *mmap_base;
1530 ssize_t ret = 0;
1531 off_t orig_offset = stream->out_fd_offset;
1532 /* Default is on the disk */
1533 int outfd = stream->out_fd;
1534 struct consumer_relayd_sock_pair *relayd = NULL;
1535 unsigned int relayd_hang_up = 0;
1536
1537 /* RCU lock for the relayd pointer */
1538 rcu_read_lock();
1539
1540 /* Flag that the current stream if set for network streaming. */
1541 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1542 relayd = consumer_find_relayd(stream->net_seq_idx);
1543 if (relayd == NULL) {
1544 ret = -EPIPE;
1545 goto end;
1546 }
1547 }
1548
1549 /* get the offset inside the fd to mmap */
1550 switch (consumer_data.type) {
1551 case LTTNG_CONSUMER_KERNEL:
1552 mmap_base = stream->mmap_base;
1553 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1554 if (ret < 0) {
1555 PERROR("tracer ctl get_mmap_read_offset");
1556 goto end;
1557 }
1558 break;
1559 case LTTNG_CONSUMER32_UST:
1560 case LTTNG_CONSUMER64_UST:
1561 mmap_base = lttng_ustctl_get_mmap_base(stream);
1562 if (!mmap_base) {
1563 ERR("read mmap get mmap base for stream %s", stream->name);
1564 ret = -EPERM;
1565 goto end;
1566 }
1567 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1568 if (ret != 0) {
1569 PERROR("tracer ctl get_mmap_read_offset");
1570 ret = -EINVAL;
1571 goto end;
1572 }
1573 break;
1574 default:
1575 ERR("Unknown consumer_data type");
1576 assert(0);
1577 }
1578
1579 /* Handle stream on the relayd if the output is on the network */
1580 if (relayd) {
1581 unsigned long netlen = len;
1582
1583 /*
1584 * Lock the control socket for the complete duration of the function
1585 * since from this point on we will use the socket.
1586 */
1587 if (stream->metadata_flag) {
1588 /* Metadata requires the control socket. */
1589 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1590 if (stream->reset_metadata_flag) {
1591 ret = relayd_reset_metadata(&relayd->control_sock,
1592 stream->relayd_stream_id,
1593 stream->metadata_version);
1594 if (ret < 0) {
1595 relayd_hang_up = 1;
1596 goto write_error;
1597 }
1598 stream->reset_metadata_flag = 0;
1599 }
1600 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1601 }
1602
1603 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1604 if (ret < 0) {
1605 relayd_hang_up = 1;
1606 goto write_error;
1607 }
1608 /* Use the returned socket. */
1609 outfd = ret;
1610
1611 /* Write metadata stream id before payload */
1612 if (stream->metadata_flag) {
1613 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1614 if (ret < 0) {
1615 relayd_hang_up = 1;
1616 goto write_error;
1617 }
1618 }
1619 } else {
1620 /* No streaming, we have to set the len with the full padding */
1621 len += padding;
1622
1623 if (stream->metadata_flag && stream->reset_metadata_flag) {
1624 ret = utils_truncate_stream_file(stream->out_fd, 0);
1625 if (ret < 0) {
1626 ERR("Reset metadata file");
1627 goto end;
1628 }
1629 stream->reset_metadata_flag = 0;
1630 }
1631
1632 /*
1633 * Check if we need to change the tracefile before writing the packet.
1634 */
1635 if (stream->chan->tracefile_size > 0 &&
1636 (stream->tracefile_size_current + len) >
1637 stream->chan->tracefile_size) {
1638 ret = utils_rotate_stream_file(stream->chan->pathname,
1639 stream->name, stream->chan->tracefile_size,
1640 stream->chan->tracefile_count, stream->uid, stream->gid,
1641 stream->out_fd, &(stream->tracefile_count_current),
1642 &stream->out_fd);
1643 if (ret < 0) {
1644 ERR("Rotating output file");
1645 goto end;
1646 }
1647 outfd = stream->out_fd;
1648
1649 if (stream->index_file) {
1650 lttng_index_file_put(stream->index_file);
1651 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1652 stream->name, stream->uid, stream->gid,
1653 stream->chan->tracefile_size,
1654 stream->tracefile_count_current,
1655 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1656 if (!stream->index_file) {
1657 goto end;
1658 }
1659 }
1660
1661 /* Reset current size because we just perform a rotation. */
1662 stream->tracefile_size_current = 0;
1663 stream->out_fd_offset = 0;
1664 orig_offset = 0;
1665 }
1666 stream->tracefile_size_current += len;
1667 if (index) {
1668 index->offset = htobe64(stream->out_fd_offset);
1669 }
1670 }
1671
1672 /*
1673 * This call guarantee that len or less is returned. It's impossible to
1674 * receive a ret value that is bigger than len.
1675 */
1676 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1677 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1678 if (ret < 0 || ((size_t) ret != len)) {
1679 /*
1680 * Report error to caller if nothing was written else at least send the
1681 * amount written.
1682 */
1683 if (ret < 0) {
1684 ret = -errno;
1685 }
1686 relayd_hang_up = 1;
1687
1688 /* Socket operation failed. We consider the relayd dead */
1689 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1690 /*
1691 * This is possible if the fd is closed on the other side
1692 * (outfd) or any write problem. It can be verbose a bit for a
1693 * normal execution if for instance the relayd is stopped
1694 * abruptly. This can happen so set this to a DBG statement.
1695 */
1696 DBG("Consumer mmap write detected relayd hang up");
1697 } else {
1698 /* Unhandled error, print it and stop function right now. */
1699 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1700 }
1701 goto write_error;
1702 }
1703 stream->output_written += ret;
1704
1705 /* This call is useless on a socket so better save a syscall. */
1706 if (!relayd) {
1707 /* This won't block, but will start writeout asynchronously */
1708 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1709 SYNC_FILE_RANGE_WRITE);
1710 stream->out_fd_offset += len;
1711 lttng_consumer_sync_trace_file(stream, orig_offset);
1712 }
1713
1714 write_error:
1715 /*
1716 * This is a special case that the relayd has closed its socket. Let's
1717 * cleanup the relayd object and all associated streams.
1718 */
1719 if (relayd && relayd_hang_up) {
1720 cleanup_relayd(relayd, ctx);
1721 }
1722
1723 end:
1724 /* Unlock only if ctrl socket used */
1725 if (relayd && stream->metadata_flag) {
1726 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1727 }
1728
1729 rcu_read_unlock();
1730 return ret;
1731 }
1732
1733 /*
1734 * Splice the data from the ring buffer to the tracefile.
1735 *
1736 * It must be called with the stream lock held.
1737 *
1738 * Returns the number of bytes spliced.
1739 */
1740 ssize_t lttng_consumer_on_read_subbuffer_splice(
1741 struct lttng_consumer_local_data *ctx,
1742 struct lttng_consumer_stream *stream, unsigned long len,
1743 unsigned long padding,
1744 struct ctf_packet_index *index)
1745 {
1746 ssize_t ret = 0, written = 0, ret_splice = 0;
1747 loff_t offset = 0;
1748 off_t orig_offset = stream->out_fd_offset;
1749 int fd = stream->wait_fd;
1750 /* Default is on the disk */
1751 int outfd = stream->out_fd;
1752 struct consumer_relayd_sock_pair *relayd = NULL;
1753 int *splice_pipe;
1754 unsigned int relayd_hang_up = 0;
1755
1756 switch (consumer_data.type) {
1757 case LTTNG_CONSUMER_KERNEL:
1758 break;
1759 case LTTNG_CONSUMER32_UST:
1760 case LTTNG_CONSUMER64_UST:
1761 /* Not supported for user space tracing */
1762 return -ENOSYS;
1763 default:
1764 ERR("Unknown consumer_data type");
1765 assert(0);
1766 }
1767
1768 /* RCU lock for the relayd pointer */
1769 rcu_read_lock();
1770
1771 /* Flag that the current stream if set for network streaming. */
1772 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1773 relayd = consumer_find_relayd(stream->net_seq_idx);
1774 if (relayd == NULL) {
1775 written = -ret;
1776 goto end;
1777 }
1778 }
1779 splice_pipe = stream->splice_pipe;
1780
1781 /* Write metadata stream id before payload */
1782 if (relayd) {
1783 unsigned long total_len = len;
1784
1785 if (stream->metadata_flag) {
1786 /*
1787 * Lock the control socket for the complete duration of the function
1788 * since from this point on we will use the socket.
1789 */
1790 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1791
1792 if (stream->reset_metadata_flag) {
1793 ret = relayd_reset_metadata(&relayd->control_sock,
1794 stream->relayd_stream_id,
1795 stream->metadata_version);
1796 if (ret < 0) {
1797 relayd_hang_up = 1;
1798 goto write_error;
1799 }
1800 stream->reset_metadata_flag = 0;
1801 }
1802 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1803 padding);
1804 if (ret < 0) {
1805 written = ret;
1806 relayd_hang_up = 1;
1807 goto write_error;
1808 }
1809
1810 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1811 }
1812
1813 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1814 if (ret < 0) {
1815 written = ret;
1816 relayd_hang_up = 1;
1817 goto write_error;
1818 }
1819 /* Use the returned socket. */
1820 outfd = ret;
1821 } else {
1822 /* No streaming, we have to set the len with the full padding */
1823 len += padding;
1824
1825 if (stream->metadata_flag && stream->reset_metadata_flag) {
1826 ret = utils_truncate_stream_file(stream->out_fd, 0);
1827 if (ret < 0) {
1828 ERR("Reset metadata file");
1829 goto end;
1830 }
1831 stream->reset_metadata_flag = 0;
1832 }
1833 /*
1834 * Check if we need to change the tracefile before writing the packet.
1835 */
1836 if (stream->chan->tracefile_size > 0 &&
1837 (stream->tracefile_size_current + len) >
1838 stream->chan->tracefile_size) {
1839 ret = utils_rotate_stream_file(stream->chan->pathname,
1840 stream->name, stream->chan->tracefile_size,
1841 stream->chan->tracefile_count, stream->uid, stream->gid,
1842 stream->out_fd, &(stream->tracefile_count_current),
1843 &stream->out_fd);
1844 if (ret < 0) {
1845 written = ret;
1846 ERR("Rotating output file");
1847 goto end;
1848 }
1849 outfd = stream->out_fd;
1850
1851 if (stream->index_file) {
1852 lttng_index_file_put(stream->index_file);
1853 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1854 stream->name, stream->uid, stream->gid,
1855 stream->chan->tracefile_size,
1856 stream->tracefile_count_current,
1857 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1858 if (!stream->index_file) {
1859 goto end;
1860 }
1861 }
1862
1863 /* Reset current size because we just perform a rotation. */
1864 stream->tracefile_size_current = 0;
1865 stream->out_fd_offset = 0;
1866 orig_offset = 0;
1867 }
1868 stream->tracefile_size_current += len;
1869 index->offset = htobe64(stream->out_fd_offset);
1870 }
1871
1872 while (len > 0) {
1873 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1874 (unsigned long)offset, len, fd, splice_pipe[1]);
1875 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1876 SPLICE_F_MOVE | SPLICE_F_MORE);
1877 DBG("splice chan to pipe, ret %zd", ret_splice);
1878 if (ret_splice < 0) {
1879 ret = errno;
1880 written = -ret;
1881 PERROR("Error in relay splice");
1882 goto splice_error;
1883 }
1884
1885 /* Handle stream on the relayd if the output is on the network */
1886 if (relayd && stream->metadata_flag) {
1887 size_t metadata_payload_size =
1888 sizeof(struct lttcomm_relayd_metadata_payload);
1889
1890 /* Update counter to fit the spliced data */
1891 ret_splice += metadata_payload_size;
1892 len += metadata_payload_size;
1893 /*
1894 * We do this so the return value can match the len passed as
1895 * argument to this function.
1896 */
1897 written -= metadata_payload_size;
1898 }
1899
1900 /* Splice data out */
1901 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1902 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1903 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1904 outfd, ret_splice);
1905 if (ret_splice < 0) {
1906 ret = errno;
1907 written = -ret;
1908 relayd_hang_up = 1;
1909 goto write_error;
1910 } else if (ret_splice > len) {
1911 /*
1912 * We don't expect this code path to be executed but you never know
1913 * so this is an extra protection agains a buggy splice().
1914 */
1915 ret = errno;
1916 written += ret_splice;
1917 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1918 len);
1919 goto splice_error;
1920 } else {
1921 /* All good, update current len and continue. */
1922 len -= ret_splice;
1923 }
1924
1925 /* This call is useless on a socket so better save a syscall. */
1926 if (!relayd) {
1927 /* This won't block, but will start writeout asynchronously */
1928 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1929 SYNC_FILE_RANGE_WRITE);
1930 stream->out_fd_offset += ret_splice;
1931 }
1932 stream->output_written += ret_splice;
1933 written += ret_splice;
1934 }
1935 if (!relayd) {
1936 lttng_consumer_sync_trace_file(stream, orig_offset);
1937 }
1938 goto end;
1939
1940 write_error:
1941 /*
1942 * This is a special case that the relayd has closed its socket. Let's
1943 * cleanup the relayd object and all associated streams.
1944 */
1945 if (relayd && relayd_hang_up) {
1946 cleanup_relayd(relayd, ctx);
1947 /* Skip splice error so the consumer does not fail */
1948 goto end;
1949 }
1950
1951 splice_error:
1952 /* send the appropriate error description to sessiond */
1953 switch (ret) {
1954 case EINVAL:
1955 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1956 break;
1957 case ENOMEM:
1958 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1959 break;
1960 case ESPIPE:
1961 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1962 break;
1963 }
1964
1965 end:
1966 if (relayd && stream->metadata_flag) {
1967 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1968 }
1969
1970 rcu_read_unlock();
1971 return written;
1972 }
1973
1974 /*
1975 * Sample the snapshot positions for a specific fd
1976 *
1977 * Returns 0 on success, < 0 on error
1978 */
1979 int lttng_consumer_sample_snapshot_positions(struct lttng_consumer_stream *stream)
1980 {
1981 switch (consumer_data.type) {
1982 case LTTNG_CONSUMER_KERNEL:
1983 return lttng_kconsumer_sample_snapshot_positions(stream);
1984 case LTTNG_CONSUMER32_UST:
1985 case LTTNG_CONSUMER64_UST:
1986 return lttng_ustconsumer_sample_snapshot_positions(stream);
1987 default:
1988 ERR("Unknown consumer_data type");
1989 assert(0);
1990 return -ENOSYS;
1991 }
1992 }
1993 /*
1994 * Take a snapshot for a specific fd
1995 *
1996 * Returns 0 on success, < 0 on error
1997 */
1998 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1999 {
2000 switch (consumer_data.type) {
2001 case LTTNG_CONSUMER_KERNEL:
2002 return lttng_kconsumer_take_snapshot(stream);
2003 case LTTNG_CONSUMER32_UST:
2004 case LTTNG_CONSUMER64_UST:
2005 return lttng_ustconsumer_take_snapshot(stream);
2006 default:
2007 ERR("Unknown consumer_data type");
2008 assert(0);
2009 return -ENOSYS;
2010 }
2011 }
2012
2013 /*
2014 * Get the produced position
2015 *
2016 * Returns 0 on success, < 0 on error
2017 */
2018 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
2019 unsigned long *pos)
2020 {
2021 switch (consumer_data.type) {
2022 case LTTNG_CONSUMER_KERNEL:
2023 return lttng_kconsumer_get_produced_snapshot(stream, pos);
2024 case LTTNG_CONSUMER32_UST:
2025 case LTTNG_CONSUMER64_UST:
2026 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
2027 default:
2028 ERR("Unknown consumer_data type");
2029 assert(0);
2030 return -ENOSYS;
2031 }
2032 }
2033
2034 /*
2035 * Get the consumed position (free-running counter position in bytes).
2036 *
2037 * Returns 0 on success, < 0 on error
2038 */
2039 int lttng_consumer_get_consumed_snapshot(struct lttng_consumer_stream *stream,
2040 unsigned long *pos)
2041 {
2042 switch (consumer_data.type) {
2043 case LTTNG_CONSUMER_KERNEL:
2044 return lttng_kconsumer_get_consumed_snapshot(stream, pos);
2045 case LTTNG_CONSUMER32_UST:
2046 case LTTNG_CONSUMER64_UST:
2047 return lttng_ustconsumer_get_consumed_snapshot(stream, pos);
2048 default:
2049 ERR("Unknown consumer_data type");
2050 assert(0);
2051 return -ENOSYS;
2052 }
2053 }
2054
2055 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2056 int sock, struct pollfd *consumer_sockpoll)
2057 {
2058 switch (consumer_data.type) {
2059 case LTTNG_CONSUMER_KERNEL:
2060 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2061 case LTTNG_CONSUMER32_UST:
2062 case LTTNG_CONSUMER64_UST:
2063 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2064 default:
2065 ERR("Unknown consumer_data type");
2066 assert(0);
2067 return -ENOSYS;
2068 }
2069 }
2070
2071 void lttng_consumer_close_all_metadata(void)
2072 {
2073 switch (consumer_data.type) {
2074 case LTTNG_CONSUMER_KERNEL:
2075 /*
2076 * The Kernel consumer has a different metadata scheme so we don't
2077 * close anything because the stream will be closed by the session
2078 * daemon.
2079 */
2080 break;
2081 case LTTNG_CONSUMER32_UST:
2082 case LTTNG_CONSUMER64_UST:
2083 /*
2084 * Close all metadata streams. The metadata hash table is passed and
2085 * this call iterates over it by closing all wakeup fd. This is safe
2086 * because at this point we are sure that the metadata producer is
2087 * either dead or blocked.
2088 */
2089 lttng_ustconsumer_close_all_metadata(metadata_ht);
2090 break;
2091 default:
2092 ERR("Unknown consumer_data type");
2093 assert(0);
2094 }
2095 }
2096
2097 /*
2098 * Clean up a metadata stream and free its memory.
2099 */
2100 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2101 struct lttng_ht *ht)
2102 {
2103 struct lttng_consumer_channel *free_chan = NULL;
2104
2105 assert(stream);
2106 /*
2107 * This call should NEVER receive regular stream. It must always be
2108 * metadata stream and this is crucial for data structure synchronization.
2109 */
2110 assert(stream->metadata_flag);
2111
2112 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2113
2114 pthread_mutex_lock(&consumer_data.lock);
2115 pthread_mutex_lock(&stream->chan->lock);
2116 pthread_mutex_lock(&stream->lock);
2117 if (stream->chan->metadata_cache) {
2118 /* Only applicable to userspace consumers. */
2119 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2120 }
2121
2122 /* Remove any reference to that stream. */
2123 consumer_stream_delete(stream, ht);
2124
2125 /* Close down everything including the relayd if one. */
2126 consumer_stream_close(stream);
2127 /* Destroy tracer buffers of the stream. */
2128 consumer_stream_destroy_buffers(stream);
2129
2130 /* Atomically decrement channel refcount since other threads can use it. */
2131 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2132 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2133 /* Go for channel deletion! */
2134 free_chan = stream->chan;
2135 }
2136
2137 /*
2138 * Nullify the stream reference so it is not used after deletion. The
2139 * channel lock MUST be acquired before being able to check for a NULL
2140 * pointer value.
2141 */
2142 stream->chan->metadata_stream = NULL;
2143
2144 if (stream->chan->metadata_cache) {
2145 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2146 }
2147 pthread_mutex_unlock(&stream->lock);
2148 pthread_mutex_unlock(&stream->chan->lock);
2149 pthread_mutex_unlock(&consumer_data.lock);
2150
2151 if (free_chan) {
2152 consumer_del_channel(free_chan);
2153 }
2154
2155 consumer_stream_free(stream);
2156 }
2157
2158 /*
2159 * Action done with the metadata stream when adding it to the consumer internal
2160 * data structures to handle it.
2161 */
2162 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2163 {
2164 struct lttng_ht *ht = metadata_ht;
2165 struct lttng_ht_iter iter;
2166 struct lttng_ht_node_u64 *node;
2167
2168 assert(stream);
2169 assert(ht);
2170
2171 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2172
2173 pthread_mutex_lock(&consumer_data.lock);
2174 pthread_mutex_lock(&stream->chan->lock);
2175 pthread_mutex_lock(&stream->chan->timer_lock);
2176 pthread_mutex_lock(&stream->lock);
2177
2178 /*
2179 * From here, refcounts are updated so be _careful_ when returning an error
2180 * after this point.
2181 */
2182
2183 rcu_read_lock();
2184
2185 /*
2186 * Lookup the stream just to make sure it does not exist in our internal
2187 * state. This should NEVER happen.
2188 */
2189 lttng_ht_lookup(ht, &stream->key, &iter);
2190 node = lttng_ht_iter_get_node_u64(&iter);
2191 assert(!node);
2192
2193 /*
2194 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2195 * in terms of destroying the associated channel, because the action that
2196 * causes the count to become 0 also causes a stream to be added. The
2197 * channel deletion will thus be triggered by the following removal of this
2198 * stream.
2199 */
2200 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2201 /* Increment refcount before decrementing nb_init_stream_left */
2202 cmm_smp_wmb();
2203 uatomic_dec(&stream->chan->nb_init_stream_left);
2204 }
2205
2206 lttng_ht_add_unique_u64(ht, &stream->node);
2207
2208 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2209 &stream->node_channel_id);
2210
2211 /*
2212 * Add stream to the stream_list_ht of the consumer data. No need to steal
2213 * the key since the HT does not use it and we allow to add redundant keys
2214 * into this table.
2215 */
2216 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2217
2218 rcu_read_unlock();
2219
2220 pthread_mutex_unlock(&stream->lock);
2221 pthread_mutex_unlock(&stream->chan->lock);
2222 pthread_mutex_unlock(&stream->chan->timer_lock);
2223 pthread_mutex_unlock(&consumer_data.lock);
2224 }
2225
2226 /*
2227 * Delete data stream that are flagged for deletion (endpoint_status).
2228 */
2229 static void validate_endpoint_status_data_stream(void)
2230 {
2231 struct lttng_ht_iter iter;
2232 struct lttng_consumer_stream *stream;
2233
2234 DBG("Consumer delete flagged data stream");
2235
2236 rcu_read_lock();
2237 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2238 /* Validate delete flag of the stream */
2239 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2240 continue;
2241 }
2242 /* Delete it right now */
2243 consumer_del_stream(stream, data_ht);
2244 }
2245 rcu_read_unlock();
2246 }
2247
2248 /*
2249 * Delete metadata stream that are flagged for deletion (endpoint_status).
2250 */
2251 static void validate_endpoint_status_metadata_stream(
2252 struct lttng_poll_event *pollset)
2253 {
2254 struct lttng_ht_iter iter;
2255 struct lttng_consumer_stream *stream;
2256
2257 DBG("Consumer delete flagged metadata stream");
2258
2259 assert(pollset);
2260
2261 rcu_read_lock();
2262 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2263 /* Validate delete flag of the stream */
2264 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2265 continue;
2266 }
2267 /*
2268 * Remove from pollset so the metadata thread can continue without
2269 * blocking on a deleted stream.
2270 */
2271 lttng_poll_del(pollset, stream->wait_fd);
2272
2273 /* Delete it right now */
2274 consumer_del_metadata_stream(stream, metadata_ht);
2275 }
2276 rcu_read_unlock();
2277 }
2278
2279 /*
2280 * Thread polls on metadata file descriptor and write them on disk or on the
2281 * network.
2282 */
2283 void *consumer_thread_metadata_poll(void *data)
2284 {
2285 int ret, i, pollfd, err = -1;
2286 uint32_t revents, nb_fd;
2287 struct lttng_consumer_stream *stream = NULL;
2288 struct lttng_ht_iter iter;
2289 struct lttng_ht_node_u64 *node;
2290 struct lttng_poll_event events;
2291 struct lttng_consumer_local_data *ctx = data;
2292 ssize_t len;
2293
2294 rcu_register_thread();
2295
2296 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2297
2298 if (testpoint(consumerd_thread_metadata)) {
2299 goto error_testpoint;
2300 }
2301
2302 health_code_update();
2303
2304 DBG("Thread metadata poll started");
2305
2306 /* Size is set to 1 for the consumer_metadata pipe */
2307 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2308 if (ret < 0) {
2309 ERR("Poll set creation failed");
2310 goto end_poll;
2311 }
2312
2313 ret = lttng_poll_add(&events,
2314 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2315 if (ret < 0) {
2316 goto end;
2317 }
2318
2319 /* Main loop */
2320 DBG("Metadata main loop started");
2321
2322 while (1) {
2323 restart:
2324 health_code_update();
2325 health_poll_entry();
2326 DBG("Metadata poll wait");
2327 ret = lttng_poll_wait(&events, -1);
2328 DBG("Metadata poll return from wait with %d fd(s)",
2329 LTTNG_POLL_GETNB(&events));
2330 health_poll_exit();
2331 DBG("Metadata event caught in thread");
2332 if (ret < 0) {
2333 if (errno == EINTR) {
2334 ERR("Poll EINTR caught");
2335 goto restart;
2336 }
2337 if (LTTNG_POLL_GETNB(&events) == 0) {
2338 err = 0; /* All is OK */
2339 }
2340 goto end;
2341 }
2342
2343 nb_fd = ret;
2344
2345 /* From here, the event is a metadata wait fd */
2346 for (i = 0; i < nb_fd; i++) {
2347 health_code_update();
2348
2349 revents = LTTNG_POLL_GETEV(&events, i);
2350 pollfd = LTTNG_POLL_GETFD(&events, i);
2351
2352 if (!revents) {
2353 /* No activity for this FD (poll implementation). */
2354 continue;
2355 }
2356
2357 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2358 if (revents & LPOLLIN) {
2359 ssize_t pipe_len;
2360
2361 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2362 &stream, sizeof(stream));
2363 if (pipe_len < sizeof(stream)) {
2364 if (pipe_len < 0) {
2365 PERROR("read metadata stream");
2366 }
2367 /*
2368 * Remove the pipe from the poll set and continue the loop
2369 * since their might be data to consume.
2370 */
2371 lttng_poll_del(&events,
2372 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2373 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2374 continue;
2375 }
2376
2377 /* A NULL stream means that the state has changed. */
2378 if (stream == NULL) {
2379 /* Check for deleted streams. */
2380 validate_endpoint_status_metadata_stream(&events);
2381 goto restart;
2382 }
2383
2384 DBG("Adding metadata stream %d to poll set",
2385 stream->wait_fd);
2386
2387 /* Add metadata stream to the global poll events list */
2388 lttng_poll_add(&events, stream->wait_fd,
2389 LPOLLIN | LPOLLPRI | LPOLLHUP);
2390 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2391 DBG("Metadata thread pipe hung up");
2392 /*
2393 * Remove the pipe from the poll set and continue the loop
2394 * since their might be data to consume.
2395 */
2396 lttng_poll_del(&events,
2397 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2398 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2399 continue;
2400 } else {
2401 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2402 goto end;
2403 }
2404
2405 /* Handle other stream */
2406 continue;
2407 }
2408
2409 rcu_read_lock();
2410 {
2411 uint64_t tmp_id = (uint64_t) pollfd;
2412
2413 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2414 }
2415 node = lttng_ht_iter_get_node_u64(&iter);
2416 assert(node);
2417
2418 stream = caa_container_of(node, struct lttng_consumer_stream,
2419 node);
2420
2421 if (revents & (LPOLLIN | LPOLLPRI)) {
2422 /* Get the data out of the metadata file descriptor */
2423 DBG("Metadata available on fd %d", pollfd);
2424 assert(stream->wait_fd == pollfd);
2425
2426 do {
2427 health_code_update();
2428
2429 len = ctx->on_buffer_ready(stream, ctx);
2430 /*
2431 * We don't check the return value here since if we get
2432 * a negative len, it means an error occurred thus we
2433 * simply remove it from the poll set and free the
2434 * stream.
2435 */
2436 } while (len > 0);
2437
2438 /* It's ok to have an unavailable sub-buffer */
2439 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2440 /* Clean up stream from consumer and free it. */
2441 lttng_poll_del(&events, stream->wait_fd);
2442 consumer_del_metadata_stream(stream, metadata_ht);
2443 }
2444 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2445 DBG("Metadata fd %d is hup|err.", pollfd);
2446 if (!stream->hangup_flush_done
2447 && (consumer_data.type == LTTNG_CONSUMER32_UST
2448 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2449 DBG("Attempting to flush and consume the UST buffers");
2450 lttng_ustconsumer_on_stream_hangup(stream);
2451
2452 /* We just flushed the stream now read it. */
2453 do {
2454 health_code_update();
2455
2456 len = ctx->on_buffer_ready(stream, ctx);
2457 /*
2458 * We don't check the return value here since if we get
2459 * a negative len, it means an error occurred thus we
2460 * simply remove it from the poll set and free the
2461 * stream.
2462 */
2463 } while (len > 0);
2464 }
2465
2466 lttng_poll_del(&events, stream->wait_fd);
2467 /*
2468 * This call update the channel states, closes file descriptors
2469 * and securely free the stream.
2470 */
2471 consumer_del_metadata_stream(stream, metadata_ht);
2472 } else {
2473 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2474 rcu_read_unlock();
2475 goto end;
2476 }
2477 /* Release RCU lock for the stream looked up */
2478 rcu_read_unlock();
2479 }
2480 }
2481
2482 /* All is OK */
2483 err = 0;
2484 end:
2485 DBG("Metadata poll thread exiting");
2486
2487 lttng_poll_clean(&events);
2488 end_poll:
2489 error_testpoint:
2490 if (err) {
2491 health_error();
2492 ERR("Health error occurred in %s", __func__);
2493 }
2494 health_unregister(health_consumerd);
2495 rcu_unregister_thread();
2496 return NULL;
2497 }
2498
2499 /*
2500 * This thread polls the fds in the set to consume the data and write
2501 * it to tracefile if necessary.
2502 */
2503 void *consumer_thread_data_poll(void *data)
2504 {
2505 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2506 struct pollfd *pollfd = NULL;
2507 /* local view of the streams */
2508 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2509 /* local view of consumer_data.fds_count */
2510 int nb_fd = 0, nb_pipes_fd;
2511 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2512 int nb_inactive_fd = 0;
2513 struct lttng_consumer_local_data *ctx = data;
2514 ssize_t len;
2515
2516 rcu_register_thread();
2517
2518 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2519
2520 if (testpoint(consumerd_thread_data)) {
2521 goto error_testpoint;
2522 }
2523
2524 health_code_update();
2525
2526 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2527 if (local_stream == NULL) {
2528 PERROR("local_stream malloc");
2529 goto end;
2530 }
2531
2532 while (1) {
2533 health_code_update();
2534
2535 high_prio = 0;
2536 num_hup = 0;
2537
2538 /*
2539 * the fds set has been updated, we need to update our
2540 * local array as well
2541 */
2542 pthread_mutex_lock(&consumer_data.lock);
2543 if (consumer_data.need_update) {
2544 free(pollfd);
2545 pollfd = NULL;
2546
2547 free(local_stream);
2548 local_stream = NULL;
2549
2550 /*
2551 * Allocate for all fds + 2:
2552 * +1 for the consumer_data_pipe
2553 * +1 for wake up pipe
2554 */
2555 nb_pipes_fd = 2;
2556 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2557 if (pollfd == NULL) {
2558 PERROR("pollfd malloc");
2559 pthread_mutex_unlock(&consumer_data.lock);
2560 goto end;
2561 }
2562
2563 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2564 sizeof(struct lttng_consumer_stream *));
2565 if (local_stream == NULL) {
2566 PERROR("local_stream malloc");
2567 pthread_mutex_unlock(&consumer_data.lock);
2568 goto end;
2569 }
2570 ret = update_poll_array(ctx, &pollfd, local_stream,
2571 data_ht, &nb_inactive_fd);
2572 if (ret < 0) {
2573 ERR("Error in allocating pollfd or local_outfds");
2574 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2575 pthread_mutex_unlock(&consumer_data.lock);
2576 goto end;
2577 }
2578 nb_fd = ret;
2579 consumer_data.need_update = 0;
2580 }
2581 pthread_mutex_unlock(&consumer_data.lock);
2582
2583 /* No FDs and consumer_quit, consumer_cleanup the thread */
2584 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2585 CMM_LOAD_SHARED(consumer_quit) == 1) {
2586 err = 0; /* All is OK */
2587 goto end;
2588 }
2589 /* poll on the array of fds */
2590 restart:
2591 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2592 if (testpoint(consumerd_thread_data_poll)) {
2593 goto end;
2594 }
2595 health_poll_entry();
2596 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2597 health_poll_exit();
2598 DBG("poll num_rdy : %d", num_rdy);
2599 if (num_rdy == -1) {
2600 /*
2601 * Restart interrupted system call.
2602 */
2603 if (errno == EINTR) {
2604 goto restart;
2605 }
2606 PERROR("Poll error");
2607 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2608 goto end;
2609 } else if (num_rdy == 0) {
2610 DBG("Polling thread timed out");
2611 goto end;
2612 }
2613
2614 if (caa_unlikely(data_consumption_paused)) {
2615 DBG("Data consumption paused, sleeping...");
2616 sleep(1);
2617 goto restart;
2618 }
2619
2620 /*
2621 * If the consumer_data_pipe triggered poll go directly to the
2622 * beginning of the loop to update the array. We want to prioritize
2623 * array update over low-priority reads.
2624 */
2625 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2626 ssize_t pipe_readlen;
2627
2628 DBG("consumer_data_pipe wake up");
2629 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2630 &new_stream, sizeof(new_stream));
2631 if (pipe_readlen < sizeof(new_stream)) {
2632 PERROR("Consumer data pipe");
2633 /* Continue so we can at least handle the current stream(s). */
2634 continue;
2635 }
2636
2637 /*
2638 * If the stream is NULL, just ignore it. It's also possible that
2639 * the sessiond poll thread changed the consumer_quit state and is
2640 * waking us up to test it.
2641 */
2642 if (new_stream == NULL) {
2643 validate_endpoint_status_data_stream();
2644 continue;
2645 }
2646
2647 /* Continue to update the local streams and handle prio ones */
2648 continue;
2649 }
2650
2651 /* Handle wakeup pipe. */
2652 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2653 char dummy;
2654 ssize_t pipe_readlen;
2655
2656 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2657 sizeof(dummy));
2658 if (pipe_readlen < 0) {
2659 PERROR("Consumer data wakeup pipe");
2660 }
2661 /* We've been awakened to handle stream(s). */
2662 ctx->has_wakeup = 0;
2663 }
2664
2665 /* Take care of high priority channels first. */
2666 for (i = 0; i < nb_fd; i++) {
2667 health_code_update();
2668
2669 if (local_stream[i] == NULL) {
2670 continue;
2671 }
2672 if (pollfd[i].revents & POLLPRI) {
2673 DBG("Urgent read on fd %d", pollfd[i].fd);
2674 high_prio = 1;
2675 len = ctx->on_buffer_ready(local_stream[i], ctx);
2676 /* it's ok to have an unavailable sub-buffer */
2677 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2678 /* Clean the stream and free it. */
2679 consumer_del_stream(local_stream[i], data_ht);
2680 local_stream[i] = NULL;
2681 } else if (len > 0) {
2682 local_stream[i]->data_read = 1;
2683 }
2684 }
2685 }
2686
2687 /*
2688 * If we read high prio channel in this loop, try again
2689 * for more high prio data.
2690 */
2691 if (high_prio) {
2692 continue;
2693 }
2694
2695 /* Take care of low priority channels. */
2696 for (i = 0; i < nb_fd; i++) {
2697 health_code_update();
2698
2699 if (local_stream[i] == NULL) {
2700 continue;
2701 }
2702 if ((pollfd[i].revents & POLLIN) ||
2703 local_stream[i]->hangup_flush_done ||
2704 local_stream[i]->has_data) {
2705 DBG("Normal read on fd %d", pollfd[i].fd);
2706 len = ctx->on_buffer_ready(local_stream[i], ctx);
2707 /* it's ok to have an unavailable sub-buffer */
2708 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2709 /* Clean the stream and free it. */
2710 consumer_del_stream(local_stream[i], data_ht);
2711 local_stream[i] = NULL;
2712 } else if (len > 0) {
2713 local_stream[i]->data_read = 1;
2714 }
2715 }
2716 }
2717
2718 /* Handle hangup and errors */
2719 for (i = 0; i < nb_fd; i++) {
2720 health_code_update();
2721
2722 if (local_stream[i] == NULL) {
2723 continue;
2724 }
2725 if (!local_stream[i]->hangup_flush_done
2726 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2727 && (consumer_data.type == LTTNG_CONSUMER32_UST
2728 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2729 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2730 pollfd[i].fd);
2731 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2732 /* Attempt read again, for the data we just flushed. */
2733 local_stream[i]->data_read = 1;
2734 }
2735 /*
2736 * If the poll flag is HUP/ERR/NVAL and we have
2737 * read no data in this pass, we can remove the
2738 * stream from its hash table.
2739 */
2740 if ((pollfd[i].revents & POLLHUP)) {
2741 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2742 if (!local_stream[i]->data_read) {
2743 consumer_del_stream(local_stream[i], data_ht);
2744 local_stream[i] = NULL;
2745 num_hup++;
2746 }
2747 } else if (pollfd[i].revents & POLLERR) {
2748 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2749 if (!local_stream[i]->data_read) {
2750 consumer_del_stream(local_stream[i], data_ht);
2751 local_stream[i] = NULL;
2752 num_hup++;
2753 }
2754 } else if (pollfd[i].revents & POLLNVAL) {
2755 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2756 if (!local_stream[i]->data_read) {
2757 consumer_del_stream(local_stream[i], data_ht);
2758 local_stream[i] = NULL;
2759 num_hup++;
2760 }
2761 }
2762 if (local_stream[i] != NULL) {
2763 local_stream[i]->data_read = 0;
2764 }
2765 }
2766 }
2767 /* All is OK */
2768 err = 0;
2769 end:
2770 DBG("polling thread exiting");
2771 free(pollfd);
2772 free(local_stream);
2773
2774 /*
2775 * Close the write side of the pipe so epoll_wait() in
2776 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2777 * read side of the pipe. If we close them both, epoll_wait strangely does
2778 * not return and could create a endless wait period if the pipe is the
2779 * only tracked fd in the poll set. The thread will take care of closing
2780 * the read side.
2781 */
2782 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2783
2784 error_testpoint:
2785 if (err) {
2786 health_error();
2787 ERR("Health error occurred in %s", __func__);
2788 }
2789 health_unregister(health_consumerd);
2790
2791 rcu_unregister_thread();
2792 return NULL;
2793 }
2794
2795 /*
2796 * Close wake-up end of each stream belonging to the channel. This will
2797 * allow the poll() on the stream read-side to detect when the
2798 * write-side (application) finally closes them.
2799 */
2800 static
2801 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2802 {
2803 struct lttng_ht *ht;
2804 struct lttng_consumer_stream *stream;
2805 struct lttng_ht_iter iter;
2806
2807 ht = consumer_data.stream_per_chan_id_ht;
2808
2809 rcu_read_lock();
2810 cds_lfht_for_each_entry_duplicate(ht->ht,
2811 ht->hash_fct(&channel->key, lttng_ht_seed),
2812 ht->match_fct, &channel->key,
2813 &iter.iter, stream, node_channel_id.node) {
2814 /*
2815 * Protect against teardown with mutex.
2816 */
2817 pthread_mutex_lock(&stream->lock);
2818 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2819 goto next;
2820 }
2821 switch (consumer_data.type) {
2822 case LTTNG_CONSUMER_KERNEL:
2823 break;
2824 case LTTNG_CONSUMER32_UST:
2825 case LTTNG_CONSUMER64_UST:
2826 if (stream->metadata_flag) {
2827 /* Safe and protected by the stream lock. */
2828 lttng_ustconsumer_close_metadata(stream->chan);
2829 } else {
2830 /*
2831 * Note: a mutex is taken internally within
2832 * liblttng-ust-ctl to protect timer wakeup_fd
2833 * use from concurrent close.
2834 */
2835 lttng_ustconsumer_close_stream_wakeup(stream);
2836 }
2837 break;
2838 default:
2839 ERR("Unknown consumer_data type");
2840 assert(0);
2841 }
2842 next:
2843 pthread_mutex_unlock(&stream->lock);
2844 }
2845 rcu_read_unlock();
2846 }
2847
2848 static void destroy_channel_ht(struct lttng_ht *ht)
2849 {
2850 struct lttng_ht_iter iter;
2851 struct lttng_consumer_channel *channel;
2852 int ret;
2853
2854 if (ht == NULL) {
2855 return;
2856 }
2857
2858 rcu_read_lock();
2859 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2860 ret = lttng_ht_del(ht, &iter);
2861 assert(ret != 0);
2862 }
2863 rcu_read_unlock();
2864
2865 lttng_ht_destroy(ht);
2866 }
2867
2868 /*
2869 * This thread polls the channel fds to detect when they are being
2870 * closed. It closes all related streams if the channel is detected as
2871 * closed. It is currently only used as a shim layer for UST because the
2872 * consumerd needs to keep the per-stream wakeup end of pipes open for
2873 * periodical flush.
2874 */
2875 void *consumer_thread_channel_poll(void *data)
2876 {
2877 int ret, i, pollfd, err = -1;
2878 uint32_t revents, nb_fd;
2879 struct lttng_consumer_channel *chan = NULL;
2880 struct lttng_ht_iter iter;
2881 struct lttng_ht_node_u64 *node;
2882 struct lttng_poll_event events;
2883 struct lttng_consumer_local_data *ctx = data;
2884 struct lttng_ht *channel_ht;
2885
2886 rcu_register_thread();
2887
2888 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2889
2890 if (testpoint(consumerd_thread_channel)) {
2891 goto error_testpoint;
2892 }
2893
2894 health_code_update();
2895
2896 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2897 if (!channel_ht) {
2898 /* ENOMEM at this point. Better to bail out. */
2899 goto end_ht;
2900 }
2901
2902 DBG("Thread channel poll started");
2903
2904 /* Size is set to 1 for the consumer_channel pipe */
2905 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2906 if (ret < 0) {
2907 ERR("Poll set creation failed");
2908 goto end_poll;
2909 }
2910
2911 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2912 if (ret < 0) {
2913 goto end;
2914 }
2915
2916 /* Main loop */
2917 DBG("Channel main loop started");
2918
2919 while (1) {
2920 restart:
2921 health_code_update();
2922 DBG("Channel poll wait");
2923 health_poll_entry();
2924 ret = lttng_poll_wait(&events, -1);
2925 DBG("Channel poll return from wait with %d fd(s)",
2926 LTTNG_POLL_GETNB(&events));
2927 health_poll_exit();
2928 DBG("Channel event caught in thread");
2929 if (ret < 0) {
2930 if (errno == EINTR) {
2931 ERR("Poll EINTR caught");
2932 goto restart;
2933 }
2934 if (LTTNG_POLL_GETNB(&events) == 0) {
2935 err = 0; /* All is OK */
2936 }
2937 goto end;
2938 }
2939
2940 nb_fd = ret;
2941
2942 /* From here, the event is a channel wait fd */
2943 for (i = 0; i < nb_fd; i++) {
2944 health_code_update();
2945
2946 revents = LTTNG_POLL_GETEV(&events, i);
2947 pollfd = LTTNG_POLL_GETFD(&events, i);
2948
2949 if (!revents) {
2950 /* No activity for this FD (poll implementation). */
2951 continue;
2952 }
2953
2954 if (pollfd == ctx->consumer_channel_pipe[0]) {
2955 if (revents & LPOLLIN) {
2956 enum consumer_channel_action action;
2957 uint64_t key;
2958
2959 ret = read_channel_pipe(ctx, &chan, &key, &action);
2960 if (ret <= 0) {
2961 if (ret < 0) {
2962 ERR("Error reading channel pipe");
2963 }
2964 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2965 continue;
2966 }
2967
2968 switch (action) {
2969 case CONSUMER_CHANNEL_ADD:
2970 DBG("Adding channel %d to poll set",
2971 chan->wait_fd);
2972
2973 lttng_ht_node_init_u64(&chan->wait_fd_node,
2974 chan->wait_fd);
2975 rcu_read_lock();
2976 lttng_ht_add_unique_u64(channel_ht,
2977 &chan->wait_fd_node);
2978 rcu_read_unlock();
2979 /* Add channel to the global poll events list */
2980 lttng_poll_add(&events, chan->wait_fd,
2981 LPOLLERR | LPOLLHUP);
2982 break;
2983 case CONSUMER_CHANNEL_DEL:
2984 {
2985 /*
2986 * This command should never be called if the channel
2987 * has streams monitored by either the data or metadata
2988 * thread. The consumer only notify this thread with a
2989 * channel del. command if it receives a destroy
2990 * channel command from the session daemon that send it
2991 * if a command prior to the GET_CHANNEL failed.
2992 */
2993
2994 rcu_read_lock();
2995 chan = consumer_find_channel(key);
2996 if (!chan) {
2997 rcu_read_unlock();
2998 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2999 break;
3000 }
3001 lttng_poll_del(&events, chan->wait_fd);
3002 iter.iter.node = &chan->wait_fd_node.node;
3003 ret = lttng_ht_del(channel_ht, &iter);
3004 assert(ret == 0);
3005
3006 switch (consumer_data.type) {
3007 case LTTNG_CONSUMER_KERNEL:
3008 break;
3009 case LTTNG_CONSUMER32_UST:
3010 case LTTNG_CONSUMER64_UST:
3011 health_code_update();
3012 /* Destroy streams that might have been left in the stream list. */
3013 clean_channel_stream_list(chan);
3014 break;
3015 default:
3016 ERR("Unknown consumer_data type");
3017 assert(0);
3018 }
3019
3020 /*
3021 * Release our own refcount. Force channel deletion even if
3022 * streams were not initialized.
3023 */
3024 if (!uatomic_sub_return(&chan->refcount, 1)) {
3025 consumer_del_channel(chan);
3026 }
3027 rcu_read_unlock();
3028 goto restart;
3029 }
3030 case CONSUMER_CHANNEL_QUIT:
3031 /*
3032 * Remove the pipe from the poll set and continue the loop
3033 * since their might be data to consume.
3034 */
3035 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3036 continue;
3037 default:
3038 ERR("Unknown action");
3039 break;
3040 }
3041 } else if (revents & (LPOLLERR | LPOLLHUP)) {
3042 DBG("Channel thread pipe hung up");
3043 /*
3044 * Remove the pipe from the poll set and continue the loop
3045 * since their might be data to consume.
3046 */
3047 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
3048 continue;
3049 } else {
3050 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3051 goto end;
3052 }
3053
3054 /* Handle other stream */
3055 continue;
3056 }
3057
3058 rcu_read_lock();
3059 {
3060 uint64_t tmp_id = (uint64_t) pollfd;
3061
3062 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3063 }
3064 node = lttng_ht_iter_get_node_u64(&iter);
3065 assert(node);
3066
3067 chan = caa_container_of(node, struct lttng_consumer_channel,
3068 wait_fd_node);
3069
3070 /* Check for error event */
3071 if (revents & (LPOLLERR | LPOLLHUP)) {
3072 DBG("Channel fd %d is hup|err.", pollfd);
3073
3074 lttng_poll_del(&events, chan->wait_fd);
3075 ret = lttng_ht_del(channel_ht, &iter);
3076 assert(ret == 0);
3077
3078 /*
3079 * This will close the wait fd for each stream associated to
3080 * this channel AND monitored by the data/metadata thread thus
3081 * will be clean by the right thread.
3082 */
3083 consumer_close_channel_streams(chan);
3084
3085 /* Release our own refcount */
3086 if (!uatomic_sub_return(&chan->refcount, 1)
3087 && !uatomic_read(&chan->nb_init_stream_left)) {
3088 consumer_del_channel(chan);
3089 }
3090 } else {
3091 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3092 rcu_read_unlock();
3093 goto end;
3094 }
3095
3096 /* Release RCU lock for the channel looked up */
3097 rcu_read_unlock();
3098 }
3099 }
3100
3101 /* All is OK */
3102 err = 0;
3103 end:
3104 lttng_poll_clean(&events);
3105 end_poll:
3106 destroy_channel_ht(channel_ht);
3107 end_ht:
3108 error_testpoint:
3109 DBG("Channel poll thread exiting");
3110 if (err) {
3111 health_error();
3112 ERR("Health error occurred in %s", __func__);
3113 }
3114 health_unregister(health_consumerd);
3115 rcu_unregister_thread();
3116 return NULL;
3117 }
3118
3119 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3120 struct pollfd *sockpoll, int client_socket)
3121 {
3122 int ret;
3123
3124 assert(ctx);
3125 assert(sockpoll);
3126
3127 ret = lttng_consumer_poll_socket(sockpoll);
3128 if (ret) {
3129 goto error;
3130 }
3131 DBG("Metadata connection on client_socket");
3132
3133 /* Blocking call, waiting for transmission */
3134 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3135 if (ctx->consumer_metadata_socket < 0) {
3136 WARN("On accept metadata");
3137 ret = -1;
3138 goto error;
3139 }
3140 ret = 0;
3141
3142 error:
3143 return ret;
3144 }
3145
3146 /*
3147 * This thread listens on the consumerd socket and receives the file
3148 * descriptors from the session daemon.
3149 */
3150 void *consumer_thread_sessiond_poll(void *data)
3151 {
3152 int sock = -1, client_socket, ret, err = -1;
3153 /*
3154 * structure to poll for incoming data on communication socket avoids
3155 * making blocking sockets.
3156 */
3157 struct pollfd consumer_sockpoll[2];
3158 struct lttng_consumer_local_data *ctx = data;
3159
3160 rcu_register_thread();
3161
3162 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3163
3164 if (testpoint(consumerd_thread_sessiond)) {
3165 goto error_testpoint;
3166 }
3167
3168 health_code_update();
3169
3170 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3171 unlink(ctx->consumer_command_sock_path);
3172 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3173 if (client_socket < 0) {
3174 ERR("Cannot create command socket");
3175 goto end;
3176 }
3177
3178 ret = lttcomm_listen_unix_sock(client_socket);
3179 if (ret < 0) {
3180 goto end;
3181 }
3182
3183 DBG("Sending ready command to lttng-sessiond");
3184 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3185 /* return < 0 on error, but == 0 is not fatal */
3186 if (ret < 0) {
3187 ERR("Error sending ready command to lttng-sessiond");
3188 goto end;
3189 }
3190
3191 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3192 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3193 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3194 consumer_sockpoll[1].fd = client_socket;
3195 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3196
3197 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3198 if (ret) {
3199 if (ret > 0) {
3200 /* should exit */
3201 err = 0;
3202 }
3203 goto end;
3204 }
3205 DBG("Connection on client_socket");
3206
3207 /* Blocking call, waiting for transmission */
3208 sock = lttcomm_accept_unix_sock(client_socket);
3209 if (sock < 0) {
3210 WARN("On accept");
3211 goto end;
3212 }
3213
3214 /*
3215 * Setup metadata socket which is the second socket connection on the
3216 * command unix socket.
3217 */
3218 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3219 if (ret) {
3220 if (ret > 0) {
3221 /* should exit */
3222 err = 0;
3223 }
3224 goto end;
3225 }
3226
3227 /* This socket is not useful anymore. */
3228 ret = close(client_socket);
3229 if (ret < 0) {
3230 PERROR("close client_socket");
3231 }
3232 client_socket = -1;
3233
3234 /* update the polling structure to poll on the established socket */
3235 consumer_sockpoll[1].fd = sock;
3236 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3237
3238 while (1) {
3239 health_code_update();
3240
3241 health_poll_entry();
3242 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3243 health_poll_exit();
3244 if (ret) {
3245 if (ret > 0) {
3246 /* should exit */
3247 err = 0;
3248 }
3249 goto end;
3250 }
3251 DBG("Incoming command on sock");
3252 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3253 if (ret <= 0) {
3254 /*
3255 * This could simply be a session daemon quitting. Don't output
3256 * ERR() here.
3257 */
3258 DBG("Communication interrupted on command socket");
3259 err = 0;
3260 goto end;
3261 }
3262 if (CMM_LOAD_SHARED(consumer_quit)) {
3263 DBG("consumer_thread_receive_fds received quit from signal");
3264 err = 0; /* All is OK */
3265 goto end;
3266 }
3267 DBG("received command on sock");
3268 }
3269 /* All is OK */
3270 err = 0;
3271
3272 end:
3273 DBG("Consumer thread sessiond poll exiting");
3274
3275 /*
3276 * Close metadata streams since the producer is the session daemon which
3277 * just died.
3278 *
3279 * NOTE: for now, this only applies to the UST tracer.
3280 */
3281 lttng_consumer_close_all_metadata();
3282
3283 /*
3284 * when all fds have hung up, the polling thread
3285 * can exit cleanly
3286 */
3287 CMM_STORE_SHARED(consumer_quit, 1);
3288
3289 /*
3290 * Notify the data poll thread to poll back again and test the
3291 * consumer_quit state that we just set so to quit gracefully.
3292 */
3293 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3294
3295 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3296
3297 notify_health_quit_pipe(health_quit_pipe);
3298
3299 /* Cleaning up possibly open sockets. */
3300 if (sock >= 0) {
3301 ret = close(sock);
3302 if (ret < 0) {
3303 PERROR("close sock sessiond poll");
3304 }
3305 }
3306 if (client_socket >= 0) {
3307 ret = close(client_socket);
3308 if (ret < 0) {
3309 PERROR("close client_socket sessiond poll");
3310 }
3311 }
3312
3313 error_testpoint:
3314 if (err) {
3315 health_error();
3316 ERR("Health error occurred in %s", __func__);
3317 }
3318 health_unregister(health_consumerd);
3319
3320 rcu_unregister_thread();
3321 return NULL;
3322 }
3323
3324 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3325 struct lttng_consumer_local_data *ctx)
3326 {
3327 ssize_t ret;
3328
3329 pthread_mutex_lock(&stream->lock);
3330 if (stream->metadata_flag) {
3331 pthread_mutex_lock(&stream->metadata_rdv_lock);
3332 }
3333
3334 switch (consumer_data.type) {
3335 case LTTNG_CONSUMER_KERNEL:
3336 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3337 break;
3338 case LTTNG_CONSUMER32_UST:
3339 case LTTNG_CONSUMER64_UST:
3340 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3341 break;
3342 default:
3343 ERR("Unknown consumer_data type");
3344 assert(0);
3345 ret = -ENOSYS;
3346 break;
3347 }
3348
3349 if (stream->metadata_flag) {
3350 pthread_cond_broadcast(&stream->metadata_rdv);
3351 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3352 }
3353 pthread_mutex_unlock(&stream->lock);
3354 return ret;
3355 }
3356
3357 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3358 {
3359 switch (consumer_data.type) {
3360 case LTTNG_CONSUMER_KERNEL:
3361 return lttng_kconsumer_on_recv_stream(stream);
3362 case LTTNG_CONSUMER32_UST:
3363 case LTTNG_CONSUMER64_UST:
3364 return lttng_ustconsumer_on_recv_stream(stream);
3365 default:
3366 ERR("Unknown consumer_data type");
3367 assert(0);
3368 return -ENOSYS;
3369 }
3370 }
3371
3372 /*
3373 * Allocate and set consumer data hash tables.
3374 */
3375 int lttng_consumer_init(void)
3376 {
3377 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3378 if (!consumer_data.channel_ht) {
3379 goto error;
3380 }
3381
3382 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3383 if (!consumer_data.relayd_ht) {
3384 goto error;
3385 }
3386
3387 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3388 if (!consumer_data.stream_list_ht) {
3389 goto error;
3390 }
3391
3392 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3393 if (!consumer_data.stream_per_chan_id_ht) {
3394 goto error;
3395 }
3396
3397 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3398 if (!data_ht) {
3399 goto error;
3400 }
3401
3402 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3403 if (!metadata_ht) {
3404 goto error;
3405 }
3406
3407 return 0;
3408
3409 error:
3410 return -1;
3411 }
3412
3413 /*
3414 * Process the ADD_RELAYD command receive by a consumer.
3415 *
3416 * This will create a relayd socket pair and add it to the relayd hash table.
3417 * The caller MUST acquire a RCU read side lock before calling it.
3418 */
3419 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3420 struct lttng_consumer_local_data *ctx, int sock,
3421 struct pollfd *consumer_sockpoll,
3422 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3423 uint64_t relayd_session_id)
3424 {
3425 int fd = -1, ret = -1, relayd_created = 0;
3426 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3427 struct consumer_relayd_sock_pair *relayd = NULL;
3428
3429 assert(ctx);
3430 assert(relayd_sock);
3431
3432 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3433
3434 /* Get relayd reference if exists. */
3435 relayd = consumer_find_relayd(net_seq_idx);
3436 if (relayd == NULL) {
3437 assert(sock_type == LTTNG_STREAM_CONTROL);
3438 /* Not found. Allocate one. */
3439 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3440 if (relayd == NULL) {
3441 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3442 goto error;
3443 } else {
3444 relayd->sessiond_session_id = sessiond_id;
3445 relayd_created = 1;
3446 }
3447
3448 /*
3449 * This code path MUST continue to the consumer send status message to
3450 * we can notify the session daemon and continue our work without
3451 * killing everything.
3452 */
3453 } else {
3454 /*
3455 * relayd key should never be found for control socket.
3456 */
3457 assert(sock_type != LTTNG_STREAM_CONTROL);
3458 }
3459
3460 /* First send a status message before receiving the fds. */
3461 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3462 if (ret < 0) {
3463 /* Somehow, the session daemon is not responding anymore. */
3464 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3465 goto error_nosignal;
3466 }
3467
3468 /* Poll on consumer socket. */
3469 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3470 if (ret) {
3471 /* Needing to exit in the middle of a command: error. */
3472 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3473 goto error_nosignal;
3474 }
3475
3476 /* Get relayd socket from session daemon */
3477 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3478 if (ret != sizeof(fd)) {
3479 fd = -1; /* Just in case it gets set with an invalid value. */
3480
3481 /*
3482 * Failing to receive FDs might indicate a major problem such as
3483 * reaching a fd limit during the receive where the kernel returns a
3484 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3485 * don't take any chances and stop everything.
3486 *
3487 * XXX: Feature request #558 will fix that and avoid this possible
3488 * issue when reaching the fd limit.
3489 */
3490 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3491 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3492 goto error;
3493 }
3494
3495 /* Copy socket information and received FD */
3496 switch (sock_type) {
3497 case LTTNG_STREAM_CONTROL:
3498 /* Copy received lttcomm socket */
3499 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3500 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3501 /* Handle create_sock error. */
3502 if (ret < 0) {
3503 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3504 goto error;
3505 }
3506 /*
3507 * Close the socket created internally by
3508 * lttcomm_create_sock, so we can replace it by the one
3509 * received from sessiond.
3510 */
3511 if (close(relayd->control_sock.sock.fd)) {
3512 PERROR("close");
3513 }
3514
3515 /* Assign new file descriptor */
3516 relayd->control_sock.sock.fd = fd;
3517 fd = -1; /* For error path */
3518 /* Assign version values. */
3519 relayd->control_sock.major = relayd_sock->major;
3520 relayd->control_sock.minor = relayd_sock->minor;
3521
3522 relayd->relayd_session_id = relayd_session_id;
3523
3524 break;
3525 case LTTNG_STREAM_DATA:
3526 /* Copy received lttcomm socket */
3527 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3528 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3529 /* Handle create_sock error. */
3530 if (ret < 0) {
3531 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3532 goto error;
3533 }
3534 /*
3535 * Close the socket created internally by
3536 * lttcomm_create_sock, so we can replace it by the one
3537 * received from sessiond.
3538 */
3539 if (close(relayd->data_sock.sock.fd)) {
3540 PERROR("close");
3541 }
3542
3543 /* Assign new file descriptor */
3544 relayd->data_sock.sock.fd = fd;
3545 fd = -1; /* for eventual error paths */
3546 /* Assign version values. */
3547 relayd->data_sock.major = relayd_sock->major;
3548 relayd->data_sock.minor = relayd_sock->minor;
3549 break;
3550 default:
3551 ERR("Unknown relayd socket type (%d)", sock_type);
3552 ret_code = LTTCOMM_CONSUMERD_FATAL;
3553 goto error;
3554 }
3555
3556 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3557 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3558 relayd->net_seq_idx, fd);
3559
3560 /* We successfully added the socket. Send status back. */
3561 ret = consumer_send_status_msg(sock, ret_code);
3562 if (ret < 0) {
3563 /* Somehow, the session daemon is not responding anymore. */
3564 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3565 goto error_nosignal;
3566 }
3567
3568 /*
3569 * Add relayd socket pair to consumer data hashtable. If object already
3570 * exists or on error, the function gracefully returns.
3571 */
3572 add_relayd(relayd);
3573
3574 /* All good! */
3575 return;
3576
3577 error:
3578 if (consumer_send_status_msg(sock, ret_code) < 0) {
3579 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3580 }
3581
3582 error_nosignal:
3583 /* Close received socket if valid. */
3584 if (fd >= 0) {
3585 if (close(fd)) {
3586 PERROR("close received socket");
3587 }
3588 }
3589
3590 if (relayd_created) {
3591 free(relayd);
3592 }
3593 }
3594
3595 /*
3596 * Try to lock the stream mutex.
3597 *
3598 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3599 */
3600 static int stream_try_lock(struct lttng_consumer_stream *stream)
3601 {
3602 int ret;
3603
3604 assert(stream);
3605
3606 /*
3607 * Try to lock the stream mutex. On failure, we know that the stream is
3608 * being used else where hence there is data still being extracted.
3609 */
3610 ret = pthread_mutex_trylock(&stream->lock);
3611 if (ret) {
3612 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3613 ret = 0;
3614 goto end;
3615 }
3616
3617 ret = 1;
3618
3619 end:
3620 return ret;
3621 }
3622
3623 /*
3624 * Search for a relayd associated to the session id and return the reference.
3625 *
3626 * A rcu read side lock MUST be acquire before calling this function and locked
3627 * until the relayd object is no longer necessary.
3628 */
3629 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3630 {
3631 struct lttng_ht_iter iter;
3632 struct consumer_relayd_sock_pair *relayd = NULL;
3633
3634 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3635 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3636 node.node) {
3637 /*
3638 * Check by sessiond id which is unique here where the relayd session
3639 * id might not be when having multiple relayd.
3640 */
3641 if (relayd->sessiond_session_id == id) {
3642 /* Found the relayd. There can be only one per id. */
3643 goto found;
3644 }
3645 }
3646
3647 return NULL;
3648
3649 found:
3650 return relayd;
3651 }
3652
3653 /*
3654 * Check if for a given session id there is still data needed to be extract
3655 * from the buffers.
3656 *
3657 * Return 1 if data is pending or else 0 meaning ready to be read.
3658 */
3659 int consumer_data_pending(uint64_t id)
3660 {
3661 int ret;
3662 struct lttng_ht_iter iter;
3663 struct lttng_ht *ht;
3664 struct lttng_consumer_stream *stream;
3665 struct consumer_relayd_sock_pair *relayd = NULL;
3666 int (*data_pending)(struct lttng_consumer_stream *);
3667
3668 DBG("Consumer data pending command on session id %" PRIu64, id);
3669
3670 rcu_read_lock();
3671 pthread_mutex_lock(&consumer_data.lock);
3672
3673 switch (consumer_data.type) {
3674 case LTTNG_CONSUMER_KERNEL:
3675 data_pending = lttng_kconsumer_data_pending;
3676 break;
3677 case LTTNG_CONSUMER32_UST:
3678 case LTTNG_CONSUMER64_UST:
3679 data_pending = lttng_ustconsumer_data_pending;
3680 break;
3681 default:
3682 ERR("Unknown consumer data type");
3683 assert(0);
3684 }
3685
3686 /* Ease our life a bit */
3687 ht = consumer_data.stream_list_ht;
3688
3689 relayd = find_relayd_by_session_id(id);
3690 if (relayd) {
3691 /* Send init command for data pending. */
3692 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3693 ret = relayd_begin_data_pending(&relayd->control_sock,
3694 relayd->relayd_session_id);
3695 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3696 if (ret < 0) {
3697 /* Communication error thus the relayd so no data pending. */
3698 goto data_not_pending;
3699 }
3700 }
3701
3702 cds_lfht_for_each_entry_duplicate(ht->ht,
3703 ht->hash_fct(&id, lttng_ht_seed),
3704 ht->match_fct, &id,
3705 &iter.iter, stream, node_session_id.node) {
3706 /* If this call fails, the stream is being used hence data pending. */
3707 ret = stream_try_lock(stream);
3708 if (!ret) {
3709 goto data_pending;
3710 }
3711
3712 /*
3713 * A removed node from the hash table indicates that the stream has
3714 * been deleted thus having a guarantee that the buffers are closed
3715 * on the consumer side. However, data can still be transmitted
3716 * over the network so don't skip the relayd check.
3717 */
3718 ret = cds_lfht_is_node_deleted(&stream->node.node);
3719 if (!ret) {
3720 /* Check the stream if there is data in the buffers. */
3721 ret = data_pending(stream);
3722 if (ret == 1) {
3723 pthread_mutex_unlock(&stream->lock);
3724 goto data_pending;
3725 }
3726 }
3727
3728 /* Relayd check */
3729 if (relayd) {
3730 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3731 if (stream->metadata_flag) {
3732 ret = relayd_quiescent_control(&relayd->control_sock,
3733 stream->relayd_stream_id);
3734 } else {
3735 ret = relayd_data_pending(&relayd->control_sock,
3736 stream->relayd_stream_id,
3737 stream->next_net_seq_num - 1);
3738 }
3739 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3740 if (ret == 1) {
3741 pthread_mutex_unlock(&stream->lock);
3742 goto data_pending;
3743 }
3744 }
3745 pthread_mutex_unlock(&stream->lock);
3746 }
3747
3748 if (relayd) {
3749 unsigned int is_data_inflight = 0;
3750
3751 /* Send init command for data pending. */
3752 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3753 ret = relayd_end_data_pending(&relayd->control_sock,
3754 relayd->relayd_session_id, &is_data_inflight);
3755 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3756 if (ret < 0) {
3757 goto data_not_pending;
3758 }
3759 if (is_data_inflight) {
3760 goto data_pending;
3761 }
3762 }
3763
3764 /*
3765 * Finding _no_ node in the hash table and no inflight data means that the
3766 * stream(s) have been removed thus data is guaranteed to be available for
3767 * analysis from the trace files.
3768 */
3769
3770 data_not_pending:
3771 /* Data is available to be read by a viewer. */
3772 pthread_mutex_unlock(&consumer_data.lock);
3773 rcu_read_unlock();
3774 return 0;
3775
3776 data_pending:
3777 /* Data is still being extracted from buffers. */
3778 pthread_mutex_unlock(&consumer_data.lock);
3779 rcu_read_unlock();
3780 return 1;
3781 }
3782
3783 /*
3784 * Send a ret code status message to the sessiond daemon.
3785 *
3786 * Return the sendmsg() return value.
3787 */
3788 int consumer_send_status_msg(int sock, int ret_code)
3789 {
3790 struct lttcomm_consumer_status_msg msg;
3791
3792 memset(&msg, 0, sizeof(msg));
3793 msg.ret_code = ret_code;
3794
3795 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3796 }
3797
3798 /*
3799 * Send a channel status message to the sessiond daemon.
3800 *
3801 * Return the sendmsg() return value.
3802 */
3803 int consumer_send_status_channel(int sock,
3804 struct lttng_consumer_channel *channel)
3805 {
3806 struct lttcomm_consumer_status_channel msg;
3807
3808 assert(sock >= 0);
3809
3810 memset(&msg, 0, sizeof(msg));
3811 if (!channel) {
3812 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3813 } else {
3814 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3815 msg.key = channel->key;
3816 msg.stream_count = channel->streams.count;
3817 }
3818
3819 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3820 }
3821
3822 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3823 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3824 uint64_t max_sb_size)
3825 {
3826 unsigned long start_pos;
3827
3828 if (!nb_packets_per_stream) {
3829 return consumed_pos; /* Grab everything */
3830 }
3831 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3832 start_pos -= max_sb_size * nb_packets_per_stream;
3833 if ((long) (start_pos - consumed_pos) < 0) {
3834 return consumed_pos; /* Grab everything */
3835 }
3836 return start_pos;
3837 }
3838
3839 static
3840 int rotate_rename_local(const char *old_path, const char *new_path,
3841 uid_t uid, gid_t gid)
3842 {
3843 int ret;
3844
3845 assert(old_path);
3846 assert(new_path);
3847
3848 ret = utils_mkdir_recursive(new_path, S_IRWXU | S_IRWXG, uid, gid);
3849 if (ret < 0) {
3850 ERR("Create directory on rotate");
3851 goto end;
3852 }
3853
3854 ret = rename(old_path, new_path);
3855 if (ret < 0 && errno != ENOENT) {
3856 PERROR("Rename completed rotation chunk");
3857 goto end;
3858 }
3859
3860 ret = 0;
3861 end:
3862 return ret;
3863 }
3864
3865 static
3866 int rotate_rename_relay(const char *old_path, const char *new_path,
3867 uint64_t relayd_id)
3868 {
3869 int ret;
3870 struct consumer_relayd_sock_pair *relayd;
3871
3872 relayd = consumer_find_relayd(relayd_id);
3873 if (!relayd) {
3874 ERR("Failed to find relayd while running rotate_rename_relay command");
3875 ret = -1;
3876 goto end;
3877 }
3878
3879 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3880 ret = relayd_rotate_rename(&relayd->control_sock, old_path, new_path);
3881 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3882 end:
3883 return ret;
3884 }
3885
3886 int lttng_consumer_rotate_rename(const char *old_path, const char *new_path,
3887 uid_t uid, gid_t gid, uint64_t relayd_id)
3888 {
3889 if (relayd_id != -1ULL) {
3890 return rotate_rename_relay(old_path, new_path, relayd_id);
3891 } else {
3892 return rotate_rename_local(old_path, new_path, uid, gid);
3893 }
3894 }
3895
3896 static
3897 int mkdir_local(const char *path, uid_t uid, gid_t gid)
3898 {
3899 int ret;
3900
3901 ret = utils_mkdir_recursive(path, S_IRWXU | S_IRWXG, uid, gid);
3902 if (ret < 0) {
3903 /* utils_mkdir_recursive logs an error. */
3904 goto end;
3905 }
3906
3907 ret = 0;
3908 end:
3909 return ret;
3910 }
3911
3912 static
3913 int mkdir_relay(const char *path, uint64_t relayd_id)
3914 {
3915 int ret;
3916 struct consumer_relayd_sock_pair *relayd;
3917
3918 relayd = consumer_find_relayd(relayd_id);
3919 if (!relayd) {
3920 ERR("Failed to find relayd");
3921 ret = -1;
3922 goto end;
3923 }
3924
3925 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3926 ret = relayd_mkdir(&relayd->control_sock, path);
3927 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3928
3929 end:
3930 return ret;
3931
3932 }
3933
3934 int lttng_consumer_mkdir(const char *path, uid_t uid, gid_t gid,
3935 uint64_t relayd_id)
3936 {
3937 if (relayd_id != -1ULL) {
3938 return mkdir_relay(path, relayd_id);
3939 } else {
3940 return mkdir_local(path, uid, gid);
3941 }
3942 }
This page took 0.205292 seconds and 6 git commands to generate.