Cleanup: keep the number of pipes used by poll in a variable
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
545 uint64_t stream_key,
546 enum lttng_consumer_stream_state state,
547 const char *channel_name,
548 uid_t uid,
549 gid_t gid,
550 uint64_t relayd_id,
551 uint64_t session_id,
552 int cpu,
553 int *alloc_ret,
554 enum consumer_channel_type type,
555 unsigned int monitor)
556 {
557 int ret;
558 struct lttng_consumer_stream *stream;
559
560 stream = zmalloc(sizeof(*stream));
561 if (stream == NULL) {
562 PERROR("malloc struct lttng_consumer_stream");
563 ret = -ENOMEM;
564 goto end;
565 }
566
567 rcu_read_lock();
568
569 stream->key = stream_key;
570 stream->out_fd = -1;
571 stream->out_fd_offset = 0;
572 stream->output_written = 0;
573 stream->state = state;
574 stream->uid = uid;
575 stream->gid = gid;
576 stream->net_seq_idx = relayd_id;
577 stream->session_id = session_id;
578 stream->monitor = monitor;
579 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
580 stream->index_file = NULL;
581 stream->last_sequence_number = -1ULL;
582 pthread_mutex_init(&stream->lock, NULL);
583 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
584
585 /* If channel is the metadata, flag this stream as metadata. */
586 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
587 stream->metadata_flag = 1;
588 /* Metadata is flat out. */
589 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
590 /* Live rendez-vous point. */
591 pthread_cond_init(&stream->metadata_rdv, NULL);
592 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
593 } else {
594 /* Format stream name to <channel_name>_<cpu_number> */
595 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
596 channel_name, cpu);
597 if (ret < 0) {
598 PERROR("snprintf stream name");
599 goto error;
600 }
601 }
602
603 /* Key is always the wait_fd for streams. */
604 lttng_ht_node_init_u64(&stream->node, stream->key);
605
606 /* Init node per channel id key */
607 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
608
609 /* Init session id node with the stream session id */
610 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
611
612 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
613 " relayd_id %" PRIu64 ", session_id %" PRIu64,
614 stream->name, stream->key, channel_key,
615 stream->net_seq_idx, stream->session_id);
616
617 rcu_read_unlock();
618 return stream;
619
620 error:
621 rcu_read_unlock();
622 free(stream);
623 end:
624 if (alloc_ret) {
625 *alloc_ret = ret;
626 }
627 return NULL;
628 }
629
630 /*
631 * Add a stream to the global list protected by a mutex.
632 */
633 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
634 {
635 struct lttng_ht *ht = data_ht;
636
637 assert(stream);
638 assert(ht);
639
640 DBG3("Adding consumer stream %" PRIu64, stream->key);
641
642 pthread_mutex_lock(&consumer_data.lock);
643 pthread_mutex_lock(&stream->chan->lock);
644 pthread_mutex_lock(&stream->chan->timer_lock);
645 pthread_mutex_lock(&stream->lock);
646 rcu_read_lock();
647
648 /* Steal stream identifier to avoid having streams with the same key */
649 steal_stream_key(stream->key, ht);
650
651 lttng_ht_add_unique_u64(ht, &stream->node);
652
653 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
654 &stream->node_channel_id);
655
656 /*
657 * Add stream to the stream_list_ht of the consumer data. No need to steal
658 * the key since the HT does not use it and we allow to add redundant keys
659 * into this table.
660 */
661 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
662
663 /*
664 * When nb_init_stream_left reaches 0, we don't need to trigger any action
665 * in terms of destroying the associated channel, because the action that
666 * causes the count to become 0 also causes a stream to be added. The
667 * channel deletion will thus be triggered by the following removal of this
668 * stream.
669 */
670 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
671 /* Increment refcount before decrementing nb_init_stream_left */
672 cmm_smp_wmb();
673 uatomic_dec(&stream->chan->nb_init_stream_left);
674 }
675
676 /* Update consumer data once the node is inserted. */
677 consumer_data.stream_count++;
678 consumer_data.need_update = 1;
679
680 rcu_read_unlock();
681 pthread_mutex_unlock(&stream->lock);
682 pthread_mutex_unlock(&stream->chan->timer_lock);
683 pthread_mutex_unlock(&stream->chan->lock);
684 pthread_mutex_unlock(&consumer_data.lock);
685 }
686
687 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
688 {
689 consumer_del_stream(stream, data_ht);
690 }
691
692 /*
693 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
694 * be acquired before calling this.
695 */
696 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
697 {
698 int ret = 0;
699 struct lttng_ht_node_u64 *node;
700 struct lttng_ht_iter iter;
701
702 assert(relayd);
703
704 lttng_ht_lookup(consumer_data.relayd_ht,
705 &relayd->net_seq_idx, &iter);
706 node = lttng_ht_iter_get_node_u64(&iter);
707 if (node != NULL) {
708 goto end;
709 }
710 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
711
712 end:
713 return ret;
714 }
715
716 /*
717 * Allocate and return a consumer relayd socket.
718 */
719 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
720 uint64_t net_seq_idx)
721 {
722 struct consumer_relayd_sock_pair *obj = NULL;
723
724 /* net sequence index of -1 is a failure */
725 if (net_seq_idx == (uint64_t) -1ULL) {
726 goto error;
727 }
728
729 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
730 if (obj == NULL) {
731 PERROR("zmalloc relayd sock");
732 goto error;
733 }
734
735 obj->net_seq_idx = net_seq_idx;
736 obj->refcount = 0;
737 obj->destroy_flag = 0;
738 obj->control_sock.sock.fd = -1;
739 obj->data_sock.sock.fd = -1;
740 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
741 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
742
743 error:
744 return obj;
745 }
746
747 /*
748 * Find a relayd socket pair in the global consumer data.
749 *
750 * Return the object if found else NULL.
751 * RCU read-side lock must be held across this call and while using the
752 * returned object.
753 */
754 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
755 {
756 struct lttng_ht_iter iter;
757 struct lttng_ht_node_u64 *node;
758 struct consumer_relayd_sock_pair *relayd = NULL;
759
760 /* Negative keys are lookup failures */
761 if (key == (uint64_t) -1ULL) {
762 goto error;
763 }
764
765 lttng_ht_lookup(consumer_data.relayd_ht, &key,
766 &iter);
767 node = lttng_ht_iter_get_node_u64(&iter);
768 if (node != NULL) {
769 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
770 }
771
772 error:
773 return relayd;
774 }
775
776 /*
777 * Find a relayd and send the stream
778 *
779 * Returns 0 on success, < 0 on error
780 */
781 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
782 char *path)
783 {
784 int ret = 0;
785 struct consumer_relayd_sock_pair *relayd;
786
787 assert(stream);
788 assert(stream->net_seq_idx != -1ULL);
789 assert(path);
790
791 /* The stream is not metadata. Get relayd reference if exists. */
792 rcu_read_lock();
793 relayd = consumer_find_relayd(stream->net_seq_idx);
794 if (relayd != NULL) {
795 /* Add stream on the relayd */
796 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
797 ret = relayd_add_stream(&relayd->control_sock, stream->name,
798 path, &stream->relayd_stream_id,
799 stream->chan->tracefile_size, stream->chan->tracefile_count);
800 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
801 if (ret < 0) {
802 goto end;
803 }
804
805 uatomic_inc(&relayd->refcount);
806 stream->sent_to_relayd = 1;
807 } else {
808 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
809 stream->key, stream->net_seq_idx);
810 ret = -1;
811 goto end;
812 }
813
814 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
815 stream->name, stream->key, stream->net_seq_idx);
816
817 end:
818 rcu_read_unlock();
819 return ret;
820 }
821
822 /*
823 * Find a relayd and send the streams sent message
824 *
825 * Returns 0 on success, < 0 on error
826 */
827 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
828 {
829 int ret = 0;
830 struct consumer_relayd_sock_pair *relayd;
831
832 assert(net_seq_idx != -1ULL);
833
834 /* The stream is not metadata. Get relayd reference if exists. */
835 rcu_read_lock();
836 relayd = consumer_find_relayd(net_seq_idx);
837 if (relayd != NULL) {
838 /* Add stream on the relayd */
839 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
840 ret = relayd_streams_sent(&relayd->control_sock);
841 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
842 if (ret < 0) {
843 goto end;
844 }
845 } else {
846 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
847 net_seq_idx);
848 ret = -1;
849 goto end;
850 }
851
852 ret = 0;
853 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
854
855 end:
856 rcu_read_unlock();
857 return ret;
858 }
859
860 /*
861 * Find a relayd and close the stream
862 */
863 void close_relayd_stream(struct lttng_consumer_stream *stream)
864 {
865 struct consumer_relayd_sock_pair *relayd;
866
867 /* The stream is not metadata. Get relayd reference if exists. */
868 rcu_read_lock();
869 relayd = consumer_find_relayd(stream->net_seq_idx);
870 if (relayd) {
871 consumer_stream_relayd_close(stream, relayd);
872 }
873 rcu_read_unlock();
874 }
875
876 /*
877 * Handle stream for relayd transmission if the stream applies for network
878 * streaming where the net sequence index is set.
879 *
880 * Return destination file descriptor or negative value on error.
881 */
882 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
883 size_t data_size, unsigned long padding,
884 struct consumer_relayd_sock_pair *relayd)
885 {
886 int outfd = -1, ret;
887 struct lttcomm_relayd_data_hdr data_hdr;
888
889 /* Safety net */
890 assert(stream);
891 assert(relayd);
892
893 /* Reset data header */
894 memset(&data_hdr, 0, sizeof(data_hdr));
895
896 if (stream->metadata_flag) {
897 /* Caller MUST acquire the relayd control socket lock */
898 ret = relayd_send_metadata(&relayd->control_sock, data_size);
899 if (ret < 0) {
900 goto error;
901 }
902
903 /* Metadata are always sent on the control socket. */
904 outfd = relayd->control_sock.sock.fd;
905 } else {
906 /* Set header with stream information */
907 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
908 data_hdr.data_size = htobe32(data_size);
909 data_hdr.padding_size = htobe32(padding);
910 /*
911 * Note that net_seq_num below is assigned with the *current* value of
912 * next_net_seq_num and only after that the next_net_seq_num will be
913 * increment. This is why when issuing a command on the relayd using
914 * this next value, 1 should always be substracted in order to compare
915 * the last seen sequence number on the relayd side to the last sent.
916 */
917 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
918 /* Other fields are zeroed previously */
919
920 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
921 sizeof(data_hdr));
922 if (ret < 0) {
923 goto error;
924 }
925
926 ++stream->next_net_seq_num;
927
928 /* Set to go on data socket */
929 outfd = relayd->data_sock.sock.fd;
930 }
931
932 error:
933 return outfd;
934 }
935
936 /*
937 * Allocate and return a new lttng_consumer_channel object using the given key
938 * to initialize the hash table node.
939 *
940 * On error, return NULL.
941 */
942 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
943 uint64_t session_id,
944 const char *pathname,
945 const char *name,
946 uid_t uid,
947 gid_t gid,
948 uint64_t relayd_id,
949 enum lttng_event_output output,
950 uint64_t tracefile_size,
951 uint64_t tracefile_count,
952 uint64_t session_id_per_pid,
953 unsigned int monitor,
954 unsigned int live_timer_interval,
955 const char *root_shm_path,
956 const char *shm_path)
957 {
958 struct lttng_consumer_channel *channel;
959
960 channel = zmalloc(sizeof(*channel));
961 if (channel == NULL) {
962 PERROR("malloc struct lttng_consumer_channel");
963 goto end;
964 }
965
966 channel->key = key;
967 channel->refcount = 0;
968 channel->session_id = session_id;
969 channel->session_id_per_pid = session_id_per_pid;
970 channel->uid = uid;
971 channel->gid = gid;
972 channel->relayd_id = relayd_id;
973 channel->tracefile_size = tracefile_size;
974 channel->tracefile_count = tracefile_count;
975 channel->monitor = monitor;
976 channel->live_timer_interval = live_timer_interval;
977 pthread_mutex_init(&channel->lock, NULL);
978 pthread_mutex_init(&channel->timer_lock, NULL);
979
980 switch (output) {
981 case LTTNG_EVENT_SPLICE:
982 channel->output = CONSUMER_CHANNEL_SPLICE;
983 break;
984 case LTTNG_EVENT_MMAP:
985 channel->output = CONSUMER_CHANNEL_MMAP;
986 break;
987 default:
988 assert(0);
989 free(channel);
990 channel = NULL;
991 goto end;
992 }
993
994 /*
995 * In monitor mode, the streams associated with the channel will be put in
996 * a special list ONLY owned by this channel. So, the refcount is set to 1
997 * here meaning that the channel itself has streams that are referenced.
998 *
999 * On a channel deletion, once the channel is no longer visible, the
1000 * refcount is decremented and checked for a zero value to delete it. With
1001 * streams in no monitor mode, it will now be safe to destroy the channel.
1002 */
1003 if (!channel->monitor) {
1004 channel->refcount = 1;
1005 }
1006
1007 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1008 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1009
1010 strncpy(channel->name, name, sizeof(channel->name));
1011 channel->name[sizeof(channel->name) - 1] = '\0';
1012
1013 if (root_shm_path) {
1014 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1015 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1016 }
1017 if (shm_path) {
1018 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1019 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1020 }
1021
1022 lttng_ht_node_init_u64(&channel->node, channel->key);
1023
1024 channel->wait_fd = -1;
1025
1026 CDS_INIT_LIST_HEAD(&channel->streams.head);
1027
1028 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1029
1030 end:
1031 return channel;
1032 }
1033
1034 /*
1035 * Add a channel to the global list protected by a mutex.
1036 *
1037 * Always return 0 indicating success.
1038 */
1039 int consumer_add_channel(struct lttng_consumer_channel *channel,
1040 struct lttng_consumer_local_data *ctx)
1041 {
1042 pthread_mutex_lock(&consumer_data.lock);
1043 pthread_mutex_lock(&channel->lock);
1044 pthread_mutex_lock(&channel->timer_lock);
1045
1046 /*
1047 * This gives us a guarantee that the channel we are about to add to the
1048 * channel hash table will be unique. See this function comment on the why
1049 * we need to steel the channel key at this stage.
1050 */
1051 steal_channel_key(channel->key);
1052
1053 rcu_read_lock();
1054 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1055 rcu_read_unlock();
1056
1057 pthread_mutex_unlock(&channel->timer_lock);
1058 pthread_mutex_unlock(&channel->lock);
1059 pthread_mutex_unlock(&consumer_data.lock);
1060
1061 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1062 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * Allocate the pollfd structure and the local view of the out fds to avoid
1070 * doing a lookup in the linked list and concurrency issues when writing is
1071 * needed. Called with consumer_data.lock held.
1072 *
1073 * Returns the number of fds in the structures.
1074 */
1075 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1076 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1077 struct lttng_ht *ht, int *nb_inactive_fd)
1078 {
1079 int i = 0;
1080 struct lttng_ht_iter iter;
1081 struct lttng_consumer_stream *stream;
1082
1083 assert(ctx);
1084 assert(ht);
1085 assert(pollfd);
1086 assert(local_stream);
1087
1088 DBG("Updating poll fd array");
1089 *nb_inactive_fd = 0;
1090 rcu_read_lock();
1091 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1092 /*
1093 * Only active streams with an active end point can be added to the
1094 * poll set and local stream storage of the thread.
1095 *
1096 * There is a potential race here for endpoint_status to be updated
1097 * just after the check. However, this is OK since the stream(s) will
1098 * be deleted once the thread is notified that the end point state has
1099 * changed where this function will be called back again.
1100 *
1101 * We track the number of inactive FDs because they still need to be
1102 * closed by the polling thread after a wakeup on the data_pipe or
1103 * metadata_pipe.
1104 */
1105 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1106 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1107 (*nb_inactive_fd)++;
1108 continue;
1109 }
1110 /*
1111 * This clobbers way too much the debug output. Uncomment that if you
1112 * need it for debugging purposes.
1113 *
1114 * DBG("Active FD %d", stream->wait_fd);
1115 */
1116 (*pollfd)[i].fd = stream->wait_fd;
1117 (*pollfd)[i].events = POLLIN | POLLPRI;
1118 local_stream[i] = stream;
1119 i++;
1120 }
1121 rcu_read_unlock();
1122
1123 /*
1124 * Insert the consumer_data_pipe at the end of the array and don't
1125 * increment i so nb_fd is the number of real FD.
1126 */
1127 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1128 (*pollfd)[i].events = POLLIN | POLLPRI;
1129
1130 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1131 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1132 return i;
1133 }
1134
1135 /*
1136 * Poll on the should_quit pipe and the command socket return -1 on
1137 * error, 1 if should exit, 0 if data is available on the command socket
1138 */
1139 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1140 {
1141 int num_rdy;
1142
1143 restart:
1144 num_rdy = poll(consumer_sockpoll, 2, -1);
1145 if (num_rdy == -1) {
1146 /*
1147 * Restart interrupted system call.
1148 */
1149 if (errno == EINTR) {
1150 goto restart;
1151 }
1152 PERROR("Poll error");
1153 return -1;
1154 }
1155 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1156 DBG("consumer_should_quit wake up");
1157 return 1;
1158 }
1159 return 0;
1160 }
1161
1162 /*
1163 * Set the error socket.
1164 */
1165 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1166 int sock)
1167 {
1168 ctx->consumer_error_socket = sock;
1169 }
1170
1171 /*
1172 * Set the command socket path.
1173 */
1174 void lttng_consumer_set_command_sock_path(
1175 struct lttng_consumer_local_data *ctx, char *sock)
1176 {
1177 ctx->consumer_command_sock_path = sock;
1178 }
1179
1180 /*
1181 * Send return code to the session daemon.
1182 * If the socket is not defined, we return 0, it is not a fatal error
1183 */
1184 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1185 {
1186 if (ctx->consumer_error_socket > 0) {
1187 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1188 sizeof(enum lttcomm_sessiond_command));
1189 }
1190
1191 return 0;
1192 }
1193
1194 /*
1195 * Close all the tracefiles and stream fds and MUST be called when all
1196 * instances are destroyed i.e. when all threads were joined and are ended.
1197 */
1198 void lttng_consumer_cleanup(void)
1199 {
1200 struct lttng_ht_iter iter;
1201 struct lttng_consumer_channel *channel;
1202
1203 rcu_read_lock();
1204
1205 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1206 node.node) {
1207 consumer_del_channel(channel);
1208 }
1209
1210 rcu_read_unlock();
1211
1212 lttng_ht_destroy(consumer_data.channel_ht);
1213
1214 cleanup_relayd_ht();
1215
1216 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1217
1218 /*
1219 * This HT contains streams that are freed by either the metadata thread or
1220 * the data thread so we do *nothing* on the hash table and simply destroy
1221 * it.
1222 */
1223 lttng_ht_destroy(consumer_data.stream_list_ht);
1224 }
1225
1226 /*
1227 * Called from signal handler.
1228 */
1229 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1230 {
1231 ssize_t ret;
1232
1233 CMM_STORE_SHARED(consumer_quit, 1);
1234 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1235 if (ret < 1) {
1236 PERROR("write consumer quit");
1237 }
1238
1239 DBG("Consumer flag that it should quit");
1240 }
1241
1242
1243 /*
1244 * Flush pending writes to trace output disk file.
1245 */
1246 static
1247 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1248 off_t orig_offset)
1249 {
1250 int ret;
1251 int outfd = stream->out_fd;
1252
1253 /*
1254 * This does a blocking write-and-wait on any page that belongs to the
1255 * subbuffer prior to the one we just wrote.
1256 * Don't care about error values, as these are just hints and ways to
1257 * limit the amount of page cache used.
1258 */
1259 if (orig_offset < stream->max_sb_size) {
1260 return;
1261 }
1262 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1263 stream->max_sb_size,
1264 SYNC_FILE_RANGE_WAIT_BEFORE
1265 | SYNC_FILE_RANGE_WRITE
1266 | SYNC_FILE_RANGE_WAIT_AFTER);
1267 /*
1268 * Give hints to the kernel about how we access the file:
1269 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1270 * we write it.
1271 *
1272 * We need to call fadvise again after the file grows because the
1273 * kernel does not seem to apply fadvise to non-existing parts of the
1274 * file.
1275 *
1276 * Call fadvise _after_ having waited for the page writeback to
1277 * complete because the dirty page writeback semantic is not well
1278 * defined. So it can be expected to lead to lower throughput in
1279 * streaming.
1280 */
1281 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1282 stream->max_sb_size, POSIX_FADV_DONTNEED);
1283 if (ret && ret != -ENOSYS) {
1284 errno = ret;
1285 PERROR("posix_fadvise on fd %i", outfd);
1286 }
1287 }
1288
1289 /*
1290 * Initialise the necessary environnement :
1291 * - create a new context
1292 * - create the poll_pipe
1293 * - create the should_quit pipe (for signal handler)
1294 * - create the thread pipe (for splice)
1295 *
1296 * Takes a function pointer as argument, this function is called when data is
1297 * available on a buffer. This function is responsible to do the
1298 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1299 * buffer configuration and then kernctl_put_next_subbuf at the end.
1300 *
1301 * Returns a pointer to the new context or NULL on error.
1302 */
1303 struct lttng_consumer_local_data *lttng_consumer_create(
1304 enum lttng_consumer_type type,
1305 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1306 struct lttng_consumer_local_data *ctx),
1307 int (*recv_channel)(struct lttng_consumer_channel *channel),
1308 int (*recv_stream)(struct lttng_consumer_stream *stream),
1309 int (*update_stream)(uint64_t stream_key, uint32_t state))
1310 {
1311 int ret;
1312 struct lttng_consumer_local_data *ctx;
1313
1314 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1315 consumer_data.type == type);
1316 consumer_data.type = type;
1317
1318 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1319 if (ctx == NULL) {
1320 PERROR("allocating context");
1321 goto error;
1322 }
1323
1324 ctx->consumer_error_socket = -1;
1325 ctx->consumer_metadata_socket = -1;
1326 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1327 /* assign the callbacks */
1328 ctx->on_buffer_ready = buffer_ready;
1329 ctx->on_recv_channel = recv_channel;
1330 ctx->on_recv_stream = recv_stream;
1331 ctx->on_update_stream = update_stream;
1332
1333 ctx->consumer_data_pipe = lttng_pipe_open(0);
1334 if (!ctx->consumer_data_pipe) {
1335 goto error_poll_pipe;
1336 }
1337
1338 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1339 if (!ctx->consumer_wakeup_pipe) {
1340 goto error_wakeup_pipe;
1341 }
1342
1343 ret = pipe(ctx->consumer_should_quit);
1344 if (ret < 0) {
1345 PERROR("Error creating recv pipe");
1346 goto error_quit_pipe;
1347 }
1348
1349 ret = pipe(ctx->consumer_channel_pipe);
1350 if (ret < 0) {
1351 PERROR("Error creating channel pipe");
1352 goto error_channel_pipe;
1353 }
1354
1355 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1356 if (!ctx->consumer_metadata_pipe) {
1357 goto error_metadata_pipe;
1358 }
1359
1360 ctx->channel_monitor_pipe = -1;
1361
1362 return ctx;
1363
1364 error_metadata_pipe:
1365 utils_close_pipe(ctx->consumer_channel_pipe);
1366 error_channel_pipe:
1367 utils_close_pipe(ctx->consumer_should_quit);
1368 error_quit_pipe:
1369 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1370 error_wakeup_pipe:
1371 lttng_pipe_destroy(ctx->consumer_data_pipe);
1372 error_poll_pipe:
1373 free(ctx);
1374 error:
1375 return NULL;
1376 }
1377
1378 /*
1379 * Iterate over all streams of the hashtable and free them properly.
1380 */
1381 static void destroy_data_stream_ht(struct lttng_ht *ht)
1382 {
1383 struct lttng_ht_iter iter;
1384 struct lttng_consumer_stream *stream;
1385
1386 if (ht == NULL) {
1387 return;
1388 }
1389
1390 rcu_read_lock();
1391 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1392 /*
1393 * Ignore return value since we are currently cleaning up so any error
1394 * can't be handled.
1395 */
1396 (void) consumer_del_stream(stream, ht);
1397 }
1398 rcu_read_unlock();
1399
1400 lttng_ht_destroy(ht);
1401 }
1402
1403 /*
1404 * Iterate over all streams of the metadata hashtable and free them
1405 * properly.
1406 */
1407 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1408 {
1409 struct lttng_ht_iter iter;
1410 struct lttng_consumer_stream *stream;
1411
1412 if (ht == NULL) {
1413 return;
1414 }
1415
1416 rcu_read_lock();
1417 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1418 /*
1419 * Ignore return value since we are currently cleaning up so any error
1420 * can't be handled.
1421 */
1422 (void) consumer_del_metadata_stream(stream, ht);
1423 }
1424 rcu_read_unlock();
1425
1426 lttng_ht_destroy(ht);
1427 }
1428
1429 /*
1430 * Close all fds associated with the instance and free the context.
1431 */
1432 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1433 {
1434 int ret;
1435
1436 DBG("Consumer destroying it. Closing everything.");
1437
1438 if (!ctx) {
1439 return;
1440 }
1441
1442 destroy_data_stream_ht(data_ht);
1443 destroy_metadata_stream_ht(metadata_ht);
1444
1445 ret = close(ctx->consumer_error_socket);
1446 if (ret) {
1447 PERROR("close");
1448 }
1449 ret = close(ctx->consumer_metadata_socket);
1450 if (ret) {
1451 PERROR("close");
1452 }
1453 utils_close_pipe(ctx->consumer_channel_pipe);
1454 lttng_pipe_destroy(ctx->consumer_data_pipe);
1455 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1456 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1457 utils_close_pipe(ctx->consumer_should_quit);
1458
1459 unlink(ctx->consumer_command_sock_path);
1460 free(ctx);
1461 }
1462
1463 /*
1464 * Write the metadata stream id on the specified file descriptor.
1465 */
1466 static int write_relayd_metadata_id(int fd,
1467 struct lttng_consumer_stream *stream,
1468 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1469 {
1470 ssize_t ret;
1471 struct lttcomm_relayd_metadata_payload hdr;
1472
1473 hdr.stream_id = htobe64(stream->relayd_stream_id);
1474 hdr.padding_size = htobe32(padding);
1475 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1476 if (ret < sizeof(hdr)) {
1477 /*
1478 * This error means that the fd's end is closed so ignore the PERROR
1479 * not to clubber the error output since this can happen in a normal
1480 * code path.
1481 */
1482 if (errno != EPIPE) {
1483 PERROR("write metadata stream id");
1484 }
1485 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1486 /*
1487 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1488 * handle writting the missing part so report that as an error and
1489 * don't lie to the caller.
1490 */
1491 ret = -1;
1492 goto end;
1493 }
1494 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1495 stream->relayd_stream_id, padding);
1496
1497 end:
1498 return (int) ret;
1499 }
1500
1501 /*
1502 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1503 * core function for writing trace buffers to either the local filesystem or
1504 * the network.
1505 *
1506 * It must be called with the stream lock held.
1507 *
1508 * Careful review MUST be put if any changes occur!
1509 *
1510 * Returns the number of bytes written
1511 */
1512 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1513 struct lttng_consumer_local_data *ctx,
1514 struct lttng_consumer_stream *stream, unsigned long len,
1515 unsigned long padding,
1516 struct ctf_packet_index *index)
1517 {
1518 unsigned long mmap_offset;
1519 void *mmap_base;
1520 ssize_t ret = 0;
1521 off_t orig_offset = stream->out_fd_offset;
1522 /* Default is on the disk */
1523 int outfd = stream->out_fd;
1524 struct consumer_relayd_sock_pair *relayd = NULL;
1525 unsigned int relayd_hang_up = 0;
1526
1527 /* RCU lock for the relayd pointer */
1528 rcu_read_lock();
1529
1530 /* Flag that the current stream if set for network streaming. */
1531 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1532 relayd = consumer_find_relayd(stream->net_seq_idx);
1533 if (relayd == NULL) {
1534 ret = -EPIPE;
1535 goto end;
1536 }
1537 }
1538
1539 /* get the offset inside the fd to mmap */
1540 switch (consumer_data.type) {
1541 case LTTNG_CONSUMER_KERNEL:
1542 mmap_base = stream->mmap_base;
1543 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1544 if (ret < 0) {
1545 PERROR("tracer ctl get_mmap_read_offset");
1546 goto end;
1547 }
1548 break;
1549 case LTTNG_CONSUMER32_UST:
1550 case LTTNG_CONSUMER64_UST:
1551 mmap_base = lttng_ustctl_get_mmap_base(stream);
1552 if (!mmap_base) {
1553 ERR("read mmap get mmap base for stream %s", stream->name);
1554 ret = -EPERM;
1555 goto end;
1556 }
1557 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1558 if (ret != 0) {
1559 PERROR("tracer ctl get_mmap_read_offset");
1560 ret = -EINVAL;
1561 goto end;
1562 }
1563 break;
1564 default:
1565 ERR("Unknown consumer_data type");
1566 assert(0);
1567 }
1568
1569 /* Handle stream on the relayd if the output is on the network */
1570 if (relayd) {
1571 unsigned long netlen = len;
1572
1573 /*
1574 * Lock the control socket for the complete duration of the function
1575 * since from this point on we will use the socket.
1576 */
1577 if (stream->metadata_flag) {
1578 /* Metadata requires the control socket. */
1579 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1580 if (stream->reset_metadata_flag) {
1581 ret = relayd_reset_metadata(&relayd->control_sock,
1582 stream->relayd_stream_id,
1583 stream->metadata_version);
1584 if (ret < 0) {
1585 relayd_hang_up = 1;
1586 goto write_error;
1587 }
1588 stream->reset_metadata_flag = 0;
1589 }
1590 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1591 }
1592
1593 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1594 if (ret < 0) {
1595 relayd_hang_up = 1;
1596 goto write_error;
1597 }
1598 /* Use the returned socket. */
1599 outfd = ret;
1600
1601 /* Write metadata stream id before payload */
1602 if (stream->metadata_flag) {
1603 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1604 if (ret < 0) {
1605 relayd_hang_up = 1;
1606 goto write_error;
1607 }
1608 }
1609 } else {
1610 /* No streaming, we have to set the len with the full padding */
1611 len += padding;
1612
1613 if (stream->metadata_flag && stream->reset_metadata_flag) {
1614 ret = utils_truncate_stream_file(stream->out_fd, 0);
1615 if (ret < 0) {
1616 ERR("Reset metadata file");
1617 goto end;
1618 }
1619 stream->reset_metadata_flag = 0;
1620 }
1621
1622 /*
1623 * Check if we need to change the tracefile before writing the packet.
1624 */
1625 if (stream->chan->tracefile_size > 0 &&
1626 (stream->tracefile_size_current + len) >
1627 stream->chan->tracefile_size) {
1628 ret = utils_rotate_stream_file(stream->chan->pathname,
1629 stream->name, stream->chan->tracefile_size,
1630 stream->chan->tracefile_count, stream->uid, stream->gid,
1631 stream->out_fd, &(stream->tracefile_count_current),
1632 &stream->out_fd);
1633 if (ret < 0) {
1634 ERR("Rotating output file");
1635 goto end;
1636 }
1637 outfd = stream->out_fd;
1638
1639 if (stream->index_file) {
1640 lttng_index_file_put(stream->index_file);
1641 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1642 stream->name, stream->uid, stream->gid,
1643 stream->chan->tracefile_size,
1644 stream->tracefile_count_current,
1645 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1646 if (!stream->index_file) {
1647 goto end;
1648 }
1649 }
1650
1651 /* Reset current size because we just perform a rotation. */
1652 stream->tracefile_size_current = 0;
1653 stream->out_fd_offset = 0;
1654 orig_offset = 0;
1655 }
1656 stream->tracefile_size_current += len;
1657 if (index) {
1658 index->offset = htobe64(stream->out_fd_offset);
1659 }
1660 }
1661
1662 /*
1663 * This call guarantee that len or less is returned. It's impossible to
1664 * receive a ret value that is bigger than len.
1665 */
1666 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1667 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1668 if (ret < 0 || ((size_t) ret != len)) {
1669 /*
1670 * Report error to caller if nothing was written else at least send the
1671 * amount written.
1672 */
1673 if (ret < 0) {
1674 ret = -errno;
1675 }
1676 relayd_hang_up = 1;
1677
1678 /* Socket operation failed. We consider the relayd dead */
1679 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1680 /*
1681 * This is possible if the fd is closed on the other side
1682 * (outfd) or any write problem. It can be verbose a bit for a
1683 * normal execution if for instance the relayd is stopped
1684 * abruptly. This can happen so set this to a DBG statement.
1685 */
1686 DBG("Consumer mmap write detected relayd hang up");
1687 } else {
1688 /* Unhandled error, print it and stop function right now. */
1689 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1690 }
1691 goto write_error;
1692 }
1693 stream->output_written += ret;
1694
1695 /* This call is useless on a socket so better save a syscall. */
1696 if (!relayd) {
1697 /* This won't block, but will start writeout asynchronously */
1698 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1699 SYNC_FILE_RANGE_WRITE);
1700 stream->out_fd_offset += len;
1701 lttng_consumer_sync_trace_file(stream, orig_offset);
1702 }
1703
1704 write_error:
1705 /*
1706 * This is a special case that the relayd has closed its socket. Let's
1707 * cleanup the relayd object and all associated streams.
1708 */
1709 if (relayd && relayd_hang_up) {
1710 cleanup_relayd(relayd, ctx);
1711 }
1712
1713 end:
1714 /* Unlock only if ctrl socket used */
1715 if (relayd && stream->metadata_flag) {
1716 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1717 }
1718
1719 rcu_read_unlock();
1720 return ret;
1721 }
1722
1723 /*
1724 * Splice the data from the ring buffer to the tracefile.
1725 *
1726 * It must be called with the stream lock held.
1727 *
1728 * Returns the number of bytes spliced.
1729 */
1730 ssize_t lttng_consumer_on_read_subbuffer_splice(
1731 struct lttng_consumer_local_data *ctx,
1732 struct lttng_consumer_stream *stream, unsigned long len,
1733 unsigned long padding,
1734 struct ctf_packet_index *index)
1735 {
1736 ssize_t ret = 0, written = 0, ret_splice = 0;
1737 loff_t offset = 0;
1738 off_t orig_offset = stream->out_fd_offset;
1739 int fd = stream->wait_fd;
1740 /* Default is on the disk */
1741 int outfd = stream->out_fd;
1742 struct consumer_relayd_sock_pair *relayd = NULL;
1743 int *splice_pipe;
1744 unsigned int relayd_hang_up = 0;
1745
1746 switch (consumer_data.type) {
1747 case LTTNG_CONSUMER_KERNEL:
1748 break;
1749 case LTTNG_CONSUMER32_UST:
1750 case LTTNG_CONSUMER64_UST:
1751 /* Not supported for user space tracing */
1752 return -ENOSYS;
1753 default:
1754 ERR("Unknown consumer_data type");
1755 assert(0);
1756 }
1757
1758 /* RCU lock for the relayd pointer */
1759 rcu_read_lock();
1760
1761 /* Flag that the current stream if set for network streaming. */
1762 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1763 relayd = consumer_find_relayd(stream->net_seq_idx);
1764 if (relayd == NULL) {
1765 written = -ret;
1766 goto end;
1767 }
1768 }
1769 splice_pipe = stream->splice_pipe;
1770
1771 /* Write metadata stream id before payload */
1772 if (relayd) {
1773 unsigned long total_len = len;
1774
1775 if (stream->metadata_flag) {
1776 /*
1777 * Lock the control socket for the complete duration of the function
1778 * since from this point on we will use the socket.
1779 */
1780 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1781
1782 if (stream->reset_metadata_flag) {
1783 ret = relayd_reset_metadata(&relayd->control_sock,
1784 stream->relayd_stream_id,
1785 stream->metadata_version);
1786 if (ret < 0) {
1787 relayd_hang_up = 1;
1788 goto write_error;
1789 }
1790 stream->reset_metadata_flag = 0;
1791 }
1792 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1793 padding);
1794 if (ret < 0) {
1795 written = ret;
1796 relayd_hang_up = 1;
1797 goto write_error;
1798 }
1799
1800 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1801 }
1802
1803 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1804 if (ret < 0) {
1805 written = ret;
1806 relayd_hang_up = 1;
1807 goto write_error;
1808 }
1809 /* Use the returned socket. */
1810 outfd = ret;
1811 } else {
1812 /* No streaming, we have to set the len with the full padding */
1813 len += padding;
1814
1815 if (stream->metadata_flag && stream->reset_metadata_flag) {
1816 ret = utils_truncate_stream_file(stream->out_fd, 0);
1817 if (ret < 0) {
1818 ERR("Reset metadata file");
1819 goto end;
1820 }
1821 stream->reset_metadata_flag = 0;
1822 }
1823 /*
1824 * Check if we need to change the tracefile before writing the packet.
1825 */
1826 if (stream->chan->tracefile_size > 0 &&
1827 (stream->tracefile_size_current + len) >
1828 stream->chan->tracefile_size) {
1829 ret = utils_rotate_stream_file(stream->chan->pathname,
1830 stream->name, stream->chan->tracefile_size,
1831 stream->chan->tracefile_count, stream->uid, stream->gid,
1832 stream->out_fd, &(stream->tracefile_count_current),
1833 &stream->out_fd);
1834 if (ret < 0) {
1835 written = ret;
1836 ERR("Rotating output file");
1837 goto end;
1838 }
1839 outfd = stream->out_fd;
1840
1841 if (stream->index_file) {
1842 lttng_index_file_put(stream->index_file);
1843 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1844 stream->name, stream->uid, stream->gid,
1845 stream->chan->tracefile_size,
1846 stream->tracefile_count_current,
1847 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1848 if (!stream->index_file) {
1849 goto end;
1850 }
1851 }
1852
1853 /* Reset current size because we just perform a rotation. */
1854 stream->tracefile_size_current = 0;
1855 stream->out_fd_offset = 0;
1856 orig_offset = 0;
1857 }
1858 stream->tracefile_size_current += len;
1859 index->offset = htobe64(stream->out_fd_offset);
1860 }
1861
1862 while (len > 0) {
1863 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1864 (unsigned long)offset, len, fd, splice_pipe[1]);
1865 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1866 SPLICE_F_MOVE | SPLICE_F_MORE);
1867 DBG("splice chan to pipe, ret %zd", ret_splice);
1868 if (ret_splice < 0) {
1869 ret = errno;
1870 written = -ret;
1871 PERROR("Error in relay splice");
1872 goto splice_error;
1873 }
1874
1875 /* Handle stream on the relayd if the output is on the network */
1876 if (relayd && stream->metadata_flag) {
1877 size_t metadata_payload_size =
1878 sizeof(struct lttcomm_relayd_metadata_payload);
1879
1880 /* Update counter to fit the spliced data */
1881 ret_splice += metadata_payload_size;
1882 len += metadata_payload_size;
1883 /*
1884 * We do this so the return value can match the len passed as
1885 * argument to this function.
1886 */
1887 written -= metadata_payload_size;
1888 }
1889
1890 /* Splice data out */
1891 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1892 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1893 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1894 outfd, ret_splice);
1895 if (ret_splice < 0) {
1896 ret = errno;
1897 written = -ret;
1898 relayd_hang_up = 1;
1899 goto write_error;
1900 } else if (ret_splice > len) {
1901 /*
1902 * We don't expect this code path to be executed but you never know
1903 * so this is an extra protection agains a buggy splice().
1904 */
1905 ret = errno;
1906 written += ret_splice;
1907 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1908 len);
1909 goto splice_error;
1910 } else {
1911 /* All good, update current len and continue. */
1912 len -= ret_splice;
1913 }
1914
1915 /* This call is useless on a socket so better save a syscall. */
1916 if (!relayd) {
1917 /* This won't block, but will start writeout asynchronously */
1918 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1919 SYNC_FILE_RANGE_WRITE);
1920 stream->out_fd_offset += ret_splice;
1921 }
1922 stream->output_written += ret_splice;
1923 written += ret_splice;
1924 }
1925 if (!relayd) {
1926 lttng_consumer_sync_trace_file(stream, orig_offset);
1927 }
1928 goto end;
1929
1930 write_error:
1931 /*
1932 * This is a special case that the relayd has closed its socket. Let's
1933 * cleanup the relayd object and all associated streams.
1934 */
1935 if (relayd && relayd_hang_up) {
1936 cleanup_relayd(relayd, ctx);
1937 /* Skip splice error so the consumer does not fail */
1938 goto end;
1939 }
1940
1941 splice_error:
1942 /* send the appropriate error description to sessiond */
1943 switch (ret) {
1944 case EINVAL:
1945 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1946 break;
1947 case ENOMEM:
1948 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1949 break;
1950 case ESPIPE:
1951 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1952 break;
1953 }
1954
1955 end:
1956 if (relayd && stream->metadata_flag) {
1957 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1958 }
1959
1960 rcu_read_unlock();
1961 return written;
1962 }
1963
1964 /*
1965 * Take a snapshot for a specific fd
1966 *
1967 * Returns 0 on success, < 0 on error
1968 */
1969 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1970 {
1971 switch (consumer_data.type) {
1972 case LTTNG_CONSUMER_KERNEL:
1973 return lttng_kconsumer_take_snapshot(stream);
1974 case LTTNG_CONSUMER32_UST:
1975 case LTTNG_CONSUMER64_UST:
1976 return lttng_ustconsumer_take_snapshot(stream);
1977 default:
1978 ERR("Unknown consumer_data type");
1979 assert(0);
1980 return -ENOSYS;
1981 }
1982 }
1983
1984 /*
1985 * Get the produced position
1986 *
1987 * Returns 0 on success, < 0 on error
1988 */
1989 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1990 unsigned long *pos)
1991 {
1992 switch (consumer_data.type) {
1993 case LTTNG_CONSUMER_KERNEL:
1994 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1995 case LTTNG_CONSUMER32_UST:
1996 case LTTNG_CONSUMER64_UST:
1997 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1998 default:
1999 ERR("Unknown consumer_data type");
2000 assert(0);
2001 return -ENOSYS;
2002 }
2003 }
2004
2005 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2006 int sock, struct pollfd *consumer_sockpoll)
2007 {
2008 switch (consumer_data.type) {
2009 case LTTNG_CONSUMER_KERNEL:
2010 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2011 case LTTNG_CONSUMER32_UST:
2012 case LTTNG_CONSUMER64_UST:
2013 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2014 default:
2015 ERR("Unknown consumer_data type");
2016 assert(0);
2017 return -ENOSYS;
2018 }
2019 }
2020
2021 void lttng_consumer_close_all_metadata(void)
2022 {
2023 switch (consumer_data.type) {
2024 case LTTNG_CONSUMER_KERNEL:
2025 /*
2026 * The Kernel consumer has a different metadata scheme so we don't
2027 * close anything because the stream will be closed by the session
2028 * daemon.
2029 */
2030 break;
2031 case LTTNG_CONSUMER32_UST:
2032 case LTTNG_CONSUMER64_UST:
2033 /*
2034 * Close all metadata streams. The metadata hash table is passed and
2035 * this call iterates over it by closing all wakeup fd. This is safe
2036 * because at this point we are sure that the metadata producer is
2037 * either dead or blocked.
2038 */
2039 lttng_ustconsumer_close_all_metadata(metadata_ht);
2040 break;
2041 default:
2042 ERR("Unknown consumer_data type");
2043 assert(0);
2044 }
2045 }
2046
2047 /*
2048 * Clean up a metadata stream and free its memory.
2049 */
2050 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2051 struct lttng_ht *ht)
2052 {
2053 struct lttng_consumer_channel *free_chan = NULL;
2054
2055 assert(stream);
2056 /*
2057 * This call should NEVER receive regular stream. It must always be
2058 * metadata stream and this is crucial for data structure synchronization.
2059 */
2060 assert(stream->metadata_flag);
2061
2062 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2063
2064 pthread_mutex_lock(&consumer_data.lock);
2065 pthread_mutex_lock(&stream->chan->lock);
2066 pthread_mutex_lock(&stream->lock);
2067 if (stream->chan->metadata_cache) {
2068 /* Only applicable to userspace consumers. */
2069 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2070 }
2071
2072 /* Remove any reference to that stream. */
2073 consumer_stream_delete(stream, ht);
2074
2075 /* Close down everything including the relayd if one. */
2076 consumer_stream_close(stream);
2077 /* Destroy tracer buffers of the stream. */
2078 consumer_stream_destroy_buffers(stream);
2079
2080 /* Atomically decrement channel refcount since other threads can use it. */
2081 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2082 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2083 /* Go for channel deletion! */
2084 free_chan = stream->chan;
2085 }
2086
2087 /*
2088 * Nullify the stream reference so it is not used after deletion. The
2089 * channel lock MUST be acquired before being able to check for a NULL
2090 * pointer value.
2091 */
2092 stream->chan->metadata_stream = NULL;
2093
2094 if (stream->chan->metadata_cache) {
2095 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2096 }
2097 pthread_mutex_unlock(&stream->lock);
2098 pthread_mutex_unlock(&stream->chan->lock);
2099 pthread_mutex_unlock(&consumer_data.lock);
2100
2101 if (free_chan) {
2102 consumer_del_channel(free_chan);
2103 }
2104
2105 consumer_stream_free(stream);
2106 }
2107
2108 /*
2109 * Action done with the metadata stream when adding it to the consumer internal
2110 * data structures to handle it.
2111 */
2112 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2113 {
2114 struct lttng_ht *ht = metadata_ht;
2115 struct lttng_ht_iter iter;
2116 struct lttng_ht_node_u64 *node;
2117
2118 assert(stream);
2119 assert(ht);
2120
2121 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2122
2123 pthread_mutex_lock(&consumer_data.lock);
2124 pthread_mutex_lock(&stream->chan->lock);
2125 pthread_mutex_lock(&stream->chan->timer_lock);
2126 pthread_mutex_lock(&stream->lock);
2127
2128 /*
2129 * From here, refcounts are updated so be _careful_ when returning an error
2130 * after this point.
2131 */
2132
2133 rcu_read_lock();
2134
2135 /*
2136 * Lookup the stream just to make sure it does not exist in our internal
2137 * state. This should NEVER happen.
2138 */
2139 lttng_ht_lookup(ht, &stream->key, &iter);
2140 node = lttng_ht_iter_get_node_u64(&iter);
2141 assert(!node);
2142
2143 /*
2144 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2145 * in terms of destroying the associated channel, because the action that
2146 * causes the count to become 0 also causes a stream to be added. The
2147 * channel deletion will thus be triggered by the following removal of this
2148 * stream.
2149 */
2150 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2151 /* Increment refcount before decrementing nb_init_stream_left */
2152 cmm_smp_wmb();
2153 uatomic_dec(&stream->chan->nb_init_stream_left);
2154 }
2155
2156 lttng_ht_add_unique_u64(ht, &stream->node);
2157
2158 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2159 &stream->node_channel_id);
2160
2161 /*
2162 * Add stream to the stream_list_ht of the consumer data. No need to steal
2163 * the key since the HT does not use it and we allow to add redundant keys
2164 * into this table.
2165 */
2166 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2167
2168 rcu_read_unlock();
2169
2170 pthread_mutex_unlock(&stream->lock);
2171 pthread_mutex_unlock(&stream->chan->lock);
2172 pthread_mutex_unlock(&stream->chan->timer_lock);
2173 pthread_mutex_unlock(&consumer_data.lock);
2174 }
2175
2176 /*
2177 * Delete data stream that are flagged for deletion (endpoint_status).
2178 */
2179 static void validate_endpoint_status_data_stream(void)
2180 {
2181 struct lttng_ht_iter iter;
2182 struct lttng_consumer_stream *stream;
2183
2184 DBG("Consumer delete flagged data stream");
2185
2186 rcu_read_lock();
2187 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2188 /* Validate delete flag of the stream */
2189 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2190 continue;
2191 }
2192 /* Delete it right now */
2193 consumer_del_stream(stream, data_ht);
2194 }
2195 rcu_read_unlock();
2196 }
2197
2198 /*
2199 * Delete metadata stream that are flagged for deletion (endpoint_status).
2200 */
2201 static void validate_endpoint_status_metadata_stream(
2202 struct lttng_poll_event *pollset)
2203 {
2204 struct lttng_ht_iter iter;
2205 struct lttng_consumer_stream *stream;
2206
2207 DBG("Consumer delete flagged metadata stream");
2208
2209 assert(pollset);
2210
2211 rcu_read_lock();
2212 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2213 /* Validate delete flag of the stream */
2214 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2215 continue;
2216 }
2217 /*
2218 * Remove from pollset so the metadata thread can continue without
2219 * blocking on a deleted stream.
2220 */
2221 lttng_poll_del(pollset, stream->wait_fd);
2222
2223 /* Delete it right now */
2224 consumer_del_metadata_stream(stream, metadata_ht);
2225 }
2226 rcu_read_unlock();
2227 }
2228
2229 /*
2230 * Thread polls on metadata file descriptor and write them on disk or on the
2231 * network.
2232 */
2233 void *consumer_thread_metadata_poll(void *data)
2234 {
2235 int ret, i, pollfd, err = -1;
2236 uint32_t revents, nb_fd;
2237 struct lttng_consumer_stream *stream = NULL;
2238 struct lttng_ht_iter iter;
2239 struct lttng_ht_node_u64 *node;
2240 struct lttng_poll_event events;
2241 struct lttng_consumer_local_data *ctx = data;
2242 ssize_t len;
2243
2244 rcu_register_thread();
2245
2246 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2247
2248 if (testpoint(consumerd_thread_metadata)) {
2249 goto error_testpoint;
2250 }
2251
2252 health_code_update();
2253
2254 DBG("Thread metadata poll started");
2255
2256 /* Size is set to 1 for the consumer_metadata pipe */
2257 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2258 if (ret < 0) {
2259 ERR("Poll set creation failed");
2260 goto end_poll;
2261 }
2262
2263 ret = lttng_poll_add(&events,
2264 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2265 if (ret < 0) {
2266 goto end;
2267 }
2268
2269 /* Main loop */
2270 DBG("Metadata main loop started");
2271
2272 while (1) {
2273 restart:
2274 health_code_update();
2275 health_poll_entry();
2276 DBG("Metadata poll wait");
2277 ret = lttng_poll_wait(&events, -1);
2278 DBG("Metadata poll return from wait with %d fd(s)",
2279 LTTNG_POLL_GETNB(&events));
2280 health_poll_exit();
2281 DBG("Metadata event caught in thread");
2282 if (ret < 0) {
2283 if (errno == EINTR) {
2284 ERR("Poll EINTR caught");
2285 goto restart;
2286 }
2287 if (LTTNG_POLL_GETNB(&events) == 0) {
2288 err = 0; /* All is OK */
2289 }
2290 goto end;
2291 }
2292
2293 nb_fd = ret;
2294
2295 /* From here, the event is a metadata wait fd */
2296 for (i = 0; i < nb_fd; i++) {
2297 health_code_update();
2298
2299 revents = LTTNG_POLL_GETEV(&events, i);
2300 pollfd = LTTNG_POLL_GETFD(&events, i);
2301
2302 if (!revents) {
2303 /* No activity for this FD (poll implementation). */
2304 continue;
2305 }
2306
2307 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2308 if (revents & LPOLLIN) {
2309 ssize_t pipe_len;
2310
2311 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2312 &stream, sizeof(stream));
2313 if (pipe_len < sizeof(stream)) {
2314 if (pipe_len < 0) {
2315 PERROR("read metadata stream");
2316 }
2317 /*
2318 * Remove the pipe from the poll set and continue the loop
2319 * since their might be data to consume.
2320 */
2321 lttng_poll_del(&events,
2322 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2323 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2324 continue;
2325 }
2326
2327 /* A NULL stream means that the state has changed. */
2328 if (stream == NULL) {
2329 /* Check for deleted streams. */
2330 validate_endpoint_status_metadata_stream(&events);
2331 goto restart;
2332 }
2333
2334 DBG("Adding metadata stream %d to poll set",
2335 stream->wait_fd);
2336
2337 /* Add metadata stream to the global poll events list */
2338 lttng_poll_add(&events, stream->wait_fd,
2339 LPOLLIN | LPOLLPRI | LPOLLHUP);
2340 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2341 DBG("Metadata thread pipe hung up");
2342 /*
2343 * Remove the pipe from the poll set and continue the loop
2344 * since their might be data to consume.
2345 */
2346 lttng_poll_del(&events,
2347 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2348 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2349 continue;
2350 } else {
2351 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2352 goto end;
2353 }
2354
2355 /* Handle other stream */
2356 continue;
2357 }
2358
2359 rcu_read_lock();
2360 {
2361 uint64_t tmp_id = (uint64_t) pollfd;
2362
2363 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2364 }
2365 node = lttng_ht_iter_get_node_u64(&iter);
2366 assert(node);
2367
2368 stream = caa_container_of(node, struct lttng_consumer_stream,
2369 node);
2370
2371 if (revents & (LPOLLIN | LPOLLPRI)) {
2372 /* Get the data out of the metadata file descriptor */
2373 DBG("Metadata available on fd %d", pollfd);
2374 assert(stream->wait_fd == pollfd);
2375
2376 do {
2377 health_code_update();
2378
2379 len = ctx->on_buffer_ready(stream, ctx);
2380 /*
2381 * We don't check the return value here since if we get
2382 * a negative len, it means an error occurred thus we
2383 * simply remove it from the poll set and free the
2384 * stream.
2385 */
2386 } while (len > 0);
2387
2388 /* It's ok to have an unavailable sub-buffer */
2389 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2390 /* Clean up stream from consumer and free it. */
2391 lttng_poll_del(&events, stream->wait_fd);
2392 consumer_del_metadata_stream(stream, metadata_ht);
2393 }
2394 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2395 DBG("Metadata fd %d is hup|err.", pollfd);
2396 if (!stream->hangup_flush_done
2397 && (consumer_data.type == LTTNG_CONSUMER32_UST
2398 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2399 DBG("Attempting to flush and consume the UST buffers");
2400 lttng_ustconsumer_on_stream_hangup(stream);
2401
2402 /* We just flushed the stream now read it. */
2403 do {
2404 health_code_update();
2405
2406 len = ctx->on_buffer_ready(stream, ctx);
2407 /*
2408 * We don't check the return value here since if we get
2409 * a negative len, it means an error occurred thus we
2410 * simply remove it from the poll set and free the
2411 * stream.
2412 */
2413 } while (len > 0);
2414 }
2415
2416 lttng_poll_del(&events, stream->wait_fd);
2417 /*
2418 * This call update the channel states, closes file descriptors
2419 * and securely free the stream.
2420 */
2421 consumer_del_metadata_stream(stream, metadata_ht);
2422 } else {
2423 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2424 rcu_read_unlock();
2425 goto end;
2426 }
2427 /* Release RCU lock for the stream looked up */
2428 rcu_read_unlock();
2429 }
2430 }
2431
2432 /* All is OK */
2433 err = 0;
2434 end:
2435 DBG("Metadata poll thread exiting");
2436
2437 lttng_poll_clean(&events);
2438 end_poll:
2439 error_testpoint:
2440 if (err) {
2441 health_error();
2442 ERR("Health error occurred in %s", __func__);
2443 }
2444 health_unregister(health_consumerd);
2445 rcu_unregister_thread();
2446 return NULL;
2447 }
2448
2449 /*
2450 * This thread polls the fds in the set to consume the data and write
2451 * it to tracefile if necessary.
2452 */
2453 void *consumer_thread_data_poll(void *data)
2454 {
2455 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2456 struct pollfd *pollfd = NULL;
2457 /* local view of the streams */
2458 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2459 /* local view of consumer_data.fds_count */
2460 int nb_fd = 0, nb_pipes_fd;
2461 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2462 int nb_inactive_fd = 0;
2463 struct lttng_consumer_local_data *ctx = data;
2464 ssize_t len;
2465
2466 rcu_register_thread();
2467
2468 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2469
2470 if (testpoint(consumerd_thread_data)) {
2471 goto error_testpoint;
2472 }
2473
2474 health_code_update();
2475
2476 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2477 if (local_stream == NULL) {
2478 PERROR("local_stream malloc");
2479 goto end;
2480 }
2481
2482 while (1) {
2483 health_code_update();
2484
2485 high_prio = 0;
2486 num_hup = 0;
2487
2488 /*
2489 * the fds set has been updated, we need to update our
2490 * local array as well
2491 */
2492 pthread_mutex_lock(&consumer_data.lock);
2493 if (consumer_data.need_update) {
2494 free(pollfd);
2495 pollfd = NULL;
2496
2497 free(local_stream);
2498 local_stream = NULL;
2499
2500 /*
2501 * Allocate for all fds + 2:
2502 * +1 for the consumer_data_pipe
2503 * +1 for wake up pipe
2504 */
2505 nb_pipes_fd = 2;
2506 pollfd = zmalloc((consumer_data.stream_count + nb_pipes_fd) * sizeof(struct pollfd));
2507 if (pollfd == NULL) {
2508 PERROR("pollfd malloc");
2509 pthread_mutex_unlock(&consumer_data.lock);
2510 goto end;
2511 }
2512
2513 local_stream = zmalloc((consumer_data.stream_count + nb_pipes_fd) *
2514 sizeof(struct lttng_consumer_stream *));
2515 if (local_stream == NULL) {
2516 PERROR("local_stream malloc");
2517 pthread_mutex_unlock(&consumer_data.lock);
2518 goto end;
2519 }
2520 ret = update_poll_array(ctx, &pollfd, local_stream,
2521 data_ht, &nb_inactive_fd);
2522 if (ret < 0) {
2523 ERR("Error in allocating pollfd or local_outfds");
2524 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2525 pthread_mutex_unlock(&consumer_data.lock);
2526 goto end;
2527 }
2528 nb_fd = ret;
2529 consumer_data.need_update = 0;
2530 }
2531 pthread_mutex_unlock(&consumer_data.lock);
2532
2533 /* No FDs and consumer_quit, consumer_cleanup the thread */
2534 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2535 CMM_LOAD_SHARED(consumer_quit) == 1) {
2536 err = 0; /* All is OK */
2537 goto end;
2538 }
2539 /* poll on the array of fds */
2540 restart:
2541 DBG("polling on %d fd", nb_fd + nb_pipes_fd);
2542 if (testpoint(consumerd_thread_data_poll)) {
2543 goto end;
2544 }
2545 health_poll_entry();
2546 num_rdy = poll(pollfd, nb_fd + nb_pipes_fd, -1);
2547 health_poll_exit();
2548 DBG("poll num_rdy : %d", num_rdy);
2549 if (num_rdy == -1) {
2550 /*
2551 * Restart interrupted system call.
2552 */
2553 if (errno == EINTR) {
2554 goto restart;
2555 }
2556 PERROR("Poll error");
2557 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2558 goto end;
2559 } else if (num_rdy == 0) {
2560 DBG("Polling thread timed out");
2561 goto end;
2562 }
2563
2564 if (caa_unlikely(data_consumption_paused)) {
2565 DBG("Data consumption paused, sleeping...");
2566 sleep(1);
2567 goto restart;
2568 }
2569
2570 /*
2571 * If the consumer_data_pipe triggered poll go directly to the
2572 * beginning of the loop to update the array. We want to prioritize
2573 * array update over low-priority reads.
2574 */
2575 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2576 ssize_t pipe_readlen;
2577
2578 DBG("consumer_data_pipe wake up");
2579 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2580 &new_stream, sizeof(new_stream));
2581 if (pipe_readlen < sizeof(new_stream)) {
2582 PERROR("Consumer data pipe");
2583 /* Continue so we can at least handle the current stream(s). */
2584 continue;
2585 }
2586
2587 /*
2588 * If the stream is NULL, just ignore it. It's also possible that
2589 * the sessiond poll thread changed the consumer_quit state and is
2590 * waking us up to test it.
2591 */
2592 if (new_stream == NULL) {
2593 validate_endpoint_status_data_stream();
2594 continue;
2595 }
2596
2597 /* Continue to update the local streams and handle prio ones */
2598 continue;
2599 }
2600
2601 /* Handle wakeup pipe. */
2602 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2603 char dummy;
2604 ssize_t pipe_readlen;
2605
2606 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2607 sizeof(dummy));
2608 if (pipe_readlen < 0) {
2609 PERROR("Consumer data wakeup pipe");
2610 }
2611 /* We've been awakened to handle stream(s). */
2612 ctx->has_wakeup = 0;
2613 }
2614
2615 /* Take care of high priority channels first. */
2616 for (i = 0; i < nb_fd; i++) {
2617 health_code_update();
2618
2619 if (local_stream[i] == NULL) {
2620 continue;
2621 }
2622 if (pollfd[i].revents & POLLPRI) {
2623 DBG("Urgent read on fd %d", pollfd[i].fd);
2624 high_prio = 1;
2625 len = ctx->on_buffer_ready(local_stream[i], ctx);
2626 /* it's ok to have an unavailable sub-buffer */
2627 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2628 /* Clean the stream and free it. */
2629 consumer_del_stream(local_stream[i], data_ht);
2630 local_stream[i] = NULL;
2631 } else if (len > 0) {
2632 local_stream[i]->data_read = 1;
2633 }
2634 }
2635 }
2636
2637 /*
2638 * If we read high prio channel in this loop, try again
2639 * for more high prio data.
2640 */
2641 if (high_prio) {
2642 continue;
2643 }
2644
2645 /* Take care of low priority channels. */
2646 for (i = 0; i < nb_fd; i++) {
2647 health_code_update();
2648
2649 if (local_stream[i] == NULL) {
2650 continue;
2651 }
2652 if ((pollfd[i].revents & POLLIN) ||
2653 local_stream[i]->hangup_flush_done ||
2654 local_stream[i]->has_data) {
2655 DBG("Normal read on fd %d", pollfd[i].fd);
2656 len = ctx->on_buffer_ready(local_stream[i], ctx);
2657 /* it's ok to have an unavailable sub-buffer */
2658 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2659 /* Clean the stream and free it. */
2660 consumer_del_stream(local_stream[i], data_ht);
2661 local_stream[i] = NULL;
2662 } else if (len > 0) {
2663 local_stream[i]->data_read = 1;
2664 }
2665 }
2666 }
2667
2668 /* Handle hangup and errors */
2669 for (i = 0; i < nb_fd; i++) {
2670 health_code_update();
2671
2672 if (local_stream[i] == NULL) {
2673 continue;
2674 }
2675 if (!local_stream[i]->hangup_flush_done
2676 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2677 && (consumer_data.type == LTTNG_CONSUMER32_UST
2678 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2679 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2680 pollfd[i].fd);
2681 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2682 /* Attempt read again, for the data we just flushed. */
2683 local_stream[i]->data_read = 1;
2684 }
2685 /*
2686 * If the poll flag is HUP/ERR/NVAL and we have
2687 * read no data in this pass, we can remove the
2688 * stream from its hash table.
2689 */
2690 if ((pollfd[i].revents & POLLHUP)) {
2691 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2692 if (!local_stream[i]->data_read) {
2693 consumer_del_stream(local_stream[i], data_ht);
2694 local_stream[i] = NULL;
2695 num_hup++;
2696 }
2697 } else if (pollfd[i].revents & POLLERR) {
2698 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2699 if (!local_stream[i]->data_read) {
2700 consumer_del_stream(local_stream[i], data_ht);
2701 local_stream[i] = NULL;
2702 num_hup++;
2703 }
2704 } else if (pollfd[i].revents & POLLNVAL) {
2705 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2706 if (!local_stream[i]->data_read) {
2707 consumer_del_stream(local_stream[i], data_ht);
2708 local_stream[i] = NULL;
2709 num_hup++;
2710 }
2711 }
2712 if (local_stream[i] != NULL) {
2713 local_stream[i]->data_read = 0;
2714 }
2715 }
2716 }
2717 /* All is OK */
2718 err = 0;
2719 end:
2720 DBG("polling thread exiting");
2721 free(pollfd);
2722 free(local_stream);
2723
2724 /*
2725 * Close the write side of the pipe so epoll_wait() in
2726 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2727 * read side of the pipe. If we close them both, epoll_wait strangely does
2728 * not return and could create a endless wait period if the pipe is the
2729 * only tracked fd in the poll set. The thread will take care of closing
2730 * the read side.
2731 */
2732 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2733
2734 error_testpoint:
2735 if (err) {
2736 health_error();
2737 ERR("Health error occurred in %s", __func__);
2738 }
2739 health_unregister(health_consumerd);
2740
2741 rcu_unregister_thread();
2742 return NULL;
2743 }
2744
2745 /*
2746 * Close wake-up end of each stream belonging to the channel. This will
2747 * allow the poll() on the stream read-side to detect when the
2748 * write-side (application) finally closes them.
2749 */
2750 static
2751 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2752 {
2753 struct lttng_ht *ht;
2754 struct lttng_consumer_stream *stream;
2755 struct lttng_ht_iter iter;
2756
2757 ht = consumer_data.stream_per_chan_id_ht;
2758
2759 rcu_read_lock();
2760 cds_lfht_for_each_entry_duplicate(ht->ht,
2761 ht->hash_fct(&channel->key, lttng_ht_seed),
2762 ht->match_fct, &channel->key,
2763 &iter.iter, stream, node_channel_id.node) {
2764 /*
2765 * Protect against teardown with mutex.
2766 */
2767 pthread_mutex_lock(&stream->lock);
2768 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2769 goto next;
2770 }
2771 switch (consumer_data.type) {
2772 case LTTNG_CONSUMER_KERNEL:
2773 break;
2774 case LTTNG_CONSUMER32_UST:
2775 case LTTNG_CONSUMER64_UST:
2776 if (stream->metadata_flag) {
2777 /* Safe and protected by the stream lock. */
2778 lttng_ustconsumer_close_metadata(stream->chan);
2779 } else {
2780 /*
2781 * Note: a mutex is taken internally within
2782 * liblttng-ust-ctl to protect timer wakeup_fd
2783 * use from concurrent close.
2784 */
2785 lttng_ustconsumer_close_stream_wakeup(stream);
2786 }
2787 break;
2788 default:
2789 ERR("Unknown consumer_data type");
2790 assert(0);
2791 }
2792 next:
2793 pthread_mutex_unlock(&stream->lock);
2794 }
2795 rcu_read_unlock();
2796 }
2797
2798 static void destroy_channel_ht(struct lttng_ht *ht)
2799 {
2800 struct lttng_ht_iter iter;
2801 struct lttng_consumer_channel *channel;
2802 int ret;
2803
2804 if (ht == NULL) {
2805 return;
2806 }
2807
2808 rcu_read_lock();
2809 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2810 ret = lttng_ht_del(ht, &iter);
2811 assert(ret != 0);
2812 }
2813 rcu_read_unlock();
2814
2815 lttng_ht_destroy(ht);
2816 }
2817
2818 /*
2819 * This thread polls the channel fds to detect when they are being
2820 * closed. It closes all related streams if the channel is detected as
2821 * closed. It is currently only used as a shim layer for UST because the
2822 * consumerd needs to keep the per-stream wakeup end of pipes open for
2823 * periodical flush.
2824 */
2825 void *consumer_thread_channel_poll(void *data)
2826 {
2827 int ret, i, pollfd, err = -1;
2828 uint32_t revents, nb_fd;
2829 struct lttng_consumer_channel *chan = NULL;
2830 struct lttng_ht_iter iter;
2831 struct lttng_ht_node_u64 *node;
2832 struct lttng_poll_event events;
2833 struct lttng_consumer_local_data *ctx = data;
2834 struct lttng_ht *channel_ht;
2835
2836 rcu_register_thread();
2837
2838 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2839
2840 if (testpoint(consumerd_thread_channel)) {
2841 goto error_testpoint;
2842 }
2843
2844 health_code_update();
2845
2846 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2847 if (!channel_ht) {
2848 /* ENOMEM at this point. Better to bail out. */
2849 goto end_ht;
2850 }
2851
2852 DBG("Thread channel poll started");
2853
2854 /* Size is set to 1 for the consumer_channel pipe */
2855 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2856 if (ret < 0) {
2857 ERR("Poll set creation failed");
2858 goto end_poll;
2859 }
2860
2861 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2862 if (ret < 0) {
2863 goto end;
2864 }
2865
2866 /* Main loop */
2867 DBG("Channel main loop started");
2868
2869 while (1) {
2870 restart:
2871 health_code_update();
2872 DBG("Channel poll wait");
2873 health_poll_entry();
2874 ret = lttng_poll_wait(&events, -1);
2875 DBG("Channel poll return from wait with %d fd(s)",
2876 LTTNG_POLL_GETNB(&events));
2877 health_poll_exit();
2878 DBG("Channel event caught in thread");
2879 if (ret < 0) {
2880 if (errno == EINTR) {
2881 ERR("Poll EINTR caught");
2882 goto restart;
2883 }
2884 if (LTTNG_POLL_GETNB(&events) == 0) {
2885 err = 0; /* All is OK */
2886 }
2887 goto end;
2888 }
2889
2890 nb_fd = ret;
2891
2892 /* From here, the event is a channel wait fd */
2893 for (i = 0; i < nb_fd; i++) {
2894 health_code_update();
2895
2896 revents = LTTNG_POLL_GETEV(&events, i);
2897 pollfd = LTTNG_POLL_GETFD(&events, i);
2898
2899 if (!revents) {
2900 /* No activity for this FD (poll implementation). */
2901 continue;
2902 }
2903
2904 if (pollfd == ctx->consumer_channel_pipe[0]) {
2905 if (revents & LPOLLIN) {
2906 enum consumer_channel_action action;
2907 uint64_t key;
2908
2909 ret = read_channel_pipe(ctx, &chan, &key, &action);
2910 if (ret <= 0) {
2911 if (ret < 0) {
2912 ERR("Error reading channel pipe");
2913 }
2914 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2915 continue;
2916 }
2917
2918 switch (action) {
2919 case CONSUMER_CHANNEL_ADD:
2920 DBG("Adding channel %d to poll set",
2921 chan->wait_fd);
2922
2923 lttng_ht_node_init_u64(&chan->wait_fd_node,
2924 chan->wait_fd);
2925 rcu_read_lock();
2926 lttng_ht_add_unique_u64(channel_ht,
2927 &chan->wait_fd_node);
2928 rcu_read_unlock();
2929 /* Add channel to the global poll events list */
2930 lttng_poll_add(&events, chan->wait_fd,
2931 LPOLLERR | LPOLLHUP);
2932 break;
2933 case CONSUMER_CHANNEL_DEL:
2934 {
2935 /*
2936 * This command should never be called if the channel
2937 * has streams monitored by either the data or metadata
2938 * thread. The consumer only notify this thread with a
2939 * channel del. command if it receives a destroy
2940 * channel command from the session daemon that send it
2941 * if a command prior to the GET_CHANNEL failed.
2942 */
2943
2944 rcu_read_lock();
2945 chan = consumer_find_channel(key);
2946 if (!chan) {
2947 rcu_read_unlock();
2948 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2949 break;
2950 }
2951 lttng_poll_del(&events, chan->wait_fd);
2952 iter.iter.node = &chan->wait_fd_node.node;
2953 ret = lttng_ht_del(channel_ht, &iter);
2954 assert(ret == 0);
2955
2956 switch (consumer_data.type) {
2957 case LTTNG_CONSUMER_KERNEL:
2958 break;
2959 case LTTNG_CONSUMER32_UST:
2960 case LTTNG_CONSUMER64_UST:
2961 health_code_update();
2962 /* Destroy streams that might have been left in the stream list. */
2963 clean_channel_stream_list(chan);
2964 break;
2965 default:
2966 ERR("Unknown consumer_data type");
2967 assert(0);
2968 }
2969
2970 /*
2971 * Release our own refcount. Force channel deletion even if
2972 * streams were not initialized.
2973 */
2974 if (!uatomic_sub_return(&chan->refcount, 1)) {
2975 consumer_del_channel(chan);
2976 }
2977 rcu_read_unlock();
2978 goto restart;
2979 }
2980 case CONSUMER_CHANNEL_QUIT:
2981 /*
2982 * Remove the pipe from the poll set and continue the loop
2983 * since their might be data to consume.
2984 */
2985 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2986 continue;
2987 default:
2988 ERR("Unknown action");
2989 break;
2990 }
2991 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2992 DBG("Channel thread pipe hung up");
2993 /*
2994 * Remove the pipe from the poll set and continue the loop
2995 * since their might be data to consume.
2996 */
2997 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2998 continue;
2999 } else {
3000 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3001 goto end;
3002 }
3003
3004 /* Handle other stream */
3005 continue;
3006 }
3007
3008 rcu_read_lock();
3009 {
3010 uint64_t tmp_id = (uint64_t) pollfd;
3011
3012 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3013 }
3014 node = lttng_ht_iter_get_node_u64(&iter);
3015 assert(node);
3016
3017 chan = caa_container_of(node, struct lttng_consumer_channel,
3018 wait_fd_node);
3019
3020 /* Check for error event */
3021 if (revents & (LPOLLERR | LPOLLHUP)) {
3022 DBG("Channel fd %d is hup|err.", pollfd);
3023
3024 lttng_poll_del(&events, chan->wait_fd);
3025 ret = lttng_ht_del(channel_ht, &iter);
3026 assert(ret == 0);
3027
3028 /*
3029 * This will close the wait fd for each stream associated to
3030 * this channel AND monitored by the data/metadata thread thus
3031 * will be clean by the right thread.
3032 */
3033 consumer_close_channel_streams(chan);
3034
3035 /* Release our own refcount */
3036 if (!uatomic_sub_return(&chan->refcount, 1)
3037 && !uatomic_read(&chan->nb_init_stream_left)) {
3038 consumer_del_channel(chan);
3039 }
3040 } else {
3041 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3042 rcu_read_unlock();
3043 goto end;
3044 }
3045
3046 /* Release RCU lock for the channel looked up */
3047 rcu_read_unlock();
3048 }
3049 }
3050
3051 /* All is OK */
3052 err = 0;
3053 end:
3054 lttng_poll_clean(&events);
3055 end_poll:
3056 destroy_channel_ht(channel_ht);
3057 end_ht:
3058 error_testpoint:
3059 DBG("Channel poll thread exiting");
3060 if (err) {
3061 health_error();
3062 ERR("Health error occurred in %s", __func__);
3063 }
3064 health_unregister(health_consumerd);
3065 rcu_unregister_thread();
3066 return NULL;
3067 }
3068
3069 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3070 struct pollfd *sockpoll, int client_socket)
3071 {
3072 int ret;
3073
3074 assert(ctx);
3075 assert(sockpoll);
3076
3077 ret = lttng_consumer_poll_socket(sockpoll);
3078 if (ret) {
3079 goto error;
3080 }
3081 DBG("Metadata connection on client_socket");
3082
3083 /* Blocking call, waiting for transmission */
3084 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3085 if (ctx->consumer_metadata_socket < 0) {
3086 WARN("On accept metadata");
3087 ret = -1;
3088 goto error;
3089 }
3090 ret = 0;
3091
3092 error:
3093 return ret;
3094 }
3095
3096 /*
3097 * This thread listens on the consumerd socket and receives the file
3098 * descriptors from the session daemon.
3099 */
3100 void *consumer_thread_sessiond_poll(void *data)
3101 {
3102 int sock = -1, client_socket, ret, err = -1;
3103 /*
3104 * structure to poll for incoming data on communication socket avoids
3105 * making blocking sockets.
3106 */
3107 struct pollfd consumer_sockpoll[2];
3108 struct lttng_consumer_local_data *ctx = data;
3109
3110 rcu_register_thread();
3111
3112 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3113
3114 if (testpoint(consumerd_thread_sessiond)) {
3115 goto error_testpoint;
3116 }
3117
3118 health_code_update();
3119
3120 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3121 unlink(ctx->consumer_command_sock_path);
3122 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3123 if (client_socket < 0) {
3124 ERR("Cannot create command socket");
3125 goto end;
3126 }
3127
3128 ret = lttcomm_listen_unix_sock(client_socket);
3129 if (ret < 0) {
3130 goto end;
3131 }
3132
3133 DBG("Sending ready command to lttng-sessiond");
3134 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3135 /* return < 0 on error, but == 0 is not fatal */
3136 if (ret < 0) {
3137 ERR("Error sending ready command to lttng-sessiond");
3138 goto end;
3139 }
3140
3141 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3142 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3143 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3144 consumer_sockpoll[1].fd = client_socket;
3145 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3146
3147 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3148 if (ret) {
3149 if (ret > 0) {
3150 /* should exit */
3151 err = 0;
3152 }
3153 goto end;
3154 }
3155 DBG("Connection on client_socket");
3156
3157 /* Blocking call, waiting for transmission */
3158 sock = lttcomm_accept_unix_sock(client_socket);
3159 if (sock < 0) {
3160 WARN("On accept");
3161 goto end;
3162 }
3163
3164 /*
3165 * Setup metadata socket which is the second socket connection on the
3166 * command unix socket.
3167 */
3168 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3169 if (ret) {
3170 if (ret > 0) {
3171 /* should exit */
3172 err = 0;
3173 }
3174 goto end;
3175 }
3176
3177 /* This socket is not useful anymore. */
3178 ret = close(client_socket);
3179 if (ret < 0) {
3180 PERROR("close client_socket");
3181 }
3182 client_socket = -1;
3183
3184 /* update the polling structure to poll on the established socket */
3185 consumer_sockpoll[1].fd = sock;
3186 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3187
3188 while (1) {
3189 health_code_update();
3190
3191 health_poll_entry();
3192 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3193 health_poll_exit();
3194 if (ret) {
3195 if (ret > 0) {
3196 /* should exit */
3197 err = 0;
3198 }
3199 goto end;
3200 }
3201 DBG("Incoming command on sock");
3202 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3203 if (ret <= 0) {
3204 /*
3205 * This could simply be a session daemon quitting. Don't output
3206 * ERR() here.
3207 */
3208 DBG("Communication interrupted on command socket");
3209 err = 0;
3210 goto end;
3211 }
3212 if (CMM_LOAD_SHARED(consumer_quit)) {
3213 DBG("consumer_thread_receive_fds received quit from signal");
3214 err = 0; /* All is OK */
3215 goto end;
3216 }
3217 DBG("received command on sock");
3218 }
3219 /* All is OK */
3220 err = 0;
3221
3222 end:
3223 DBG("Consumer thread sessiond poll exiting");
3224
3225 /*
3226 * Close metadata streams since the producer is the session daemon which
3227 * just died.
3228 *
3229 * NOTE: for now, this only applies to the UST tracer.
3230 */
3231 lttng_consumer_close_all_metadata();
3232
3233 /*
3234 * when all fds have hung up, the polling thread
3235 * can exit cleanly
3236 */
3237 CMM_STORE_SHARED(consumer_quit, 1);
3238
3239 /*
3240 * Notify the data poll thread to poll back again and test the
3241 * consumer_quit state that we just set so to quit gracefully.
3242 */
3243 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3244
3245 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3246
3247 notify_health_quit_pipe(health_quit_pipe);
3248
3249 /* Cleaning up possibly open sockets. */
3250 if (sock >= 0) {
3251 ret = close(sock);
3252 if (ret < 0) {
3253 PERROR("close sock sessiond poll");
3254 }
3255 }
3256 if (client_socket >= 0) {
3257 ret = close(client_socket);
3258 if (ret < 0) {
3259 PERROR("close client_socket sessiond poll");
3260 }
3261 }
3262
3263 error_testpoint:
3264 if (err) {
3265 health_error();
3266 ERR("Health error occurred in %s", __func__);
3267 }
3268 health_unregister(health_consumerd);
3269
3270 rcu_unregister_thread();
3271 return NULL;
3272 }
3273
3274 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3275 struct lttng_consumer_local_data *ctx)
3276 {
3277 ssize_t ret;
3278
3279 pthread_mutex_lock(&stream->lock);
3280 if (stream->metadata_flag) {
3281 pthread_mutex_lock(&stream->metadata_rdv_lock);
3282 }
3283
3284 switch (consumer_data.type) {
3285 case LTTNG_CONSUMER_KERNEL:
3286 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3287 break;
3288 case LTTNG_CONSUMER32_UST:
3289 case LTTNG_CONSUMER64_UST:
3290 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3291 break;
3292 default:
3293 ERR("Unknown consumer_data type");
3294 assert(0);
3295 ret = -ENOSYS;
3296 break;
3297 }
3298
3299 if (stream->metadata_flag) {
3300 pthread_cond_broadcast(&stream->metadata_rdv);
3301 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3302 }
3303 pthread_mutex_unlock(&stream->lock);
3304 return ret;
3305 }
3306
3307 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3308 {
3309 switch (consumer_data.type) {
3310 case LTTNG_CONSUMER_KERNEL:
3311 return lttng_kconsumer_on_recv_stream(stream);
3312 case LTTNG_CONSUMER32_UST:
3313 case LTTNG_CONSUMER64_UST:
3314 return lttng_ustconsumer_on_recv_stream(stream);
3315 default:
3316 ERR("Unknown consumer_data type");
3317 assert(0);
3318 return -ENOSYS;
3319 }
3320 }
3321
3322 /*
3323 * Allocate and set consumer data hash tables.
3324 */
3325 int lttng_consumer_init(void)
3326 {
3327 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3328 if (!consumer_data.channel_ht) {
3329 goto error;
3330 }
3331
3332 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3333 if (!consumer_data.relayd_ht) {
3334 goto error;
3335 }
3336
3337 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3338 if (!consumer_data.stream_list_ht) {
3339 goto error;
3340 }
3341
3342 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3343 if (!consumer_data.stream_per_chan_id_ht) {
3344 goto error;
3345 }
3346
3347 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3348 if (!data_ht) {
3349 goto error;
3350 }
3351
3352 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3353 if (!metadata_ht) {
3354 goto error;
3355 }
3356
3357 return 0;
3358
3359 error:
3360 return -1;
3361 }
3362
3363 /*
3364 * Process the ADD_RELAYD command receive by a consumer.
3365 *
3366 * This will create a relayd socket pair and add it to the relayd hash table.
3367 * The caller MUST acquire a RCU read side lock before calling it.
3368 */
3369 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3370 struct lttng_consumer_local_data *ctx, int sock,
3371 struct pollfd *consumer_sockpoll,
3372 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3373 uint64_t relayd_session_id)
3374 {
3375 int fd = -1, ret = -1, relayd_created = 0;
3376 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3377 struct consumer_relayd_sock_pair *relayd = NULL;
3378
3379 assert(ctx);
3380 assert(relayd_sock);
3381
3382 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3383
3384 /* Get relayd reference if exists. */
3385 relayd = consumer_find_relayd(net_seq_idx);
3386 if (relayd == NULL) {
3387 assert(sock_type == LTTNG_STREAM_CONTROL);
3388 /* Not found. Allocate one. */
3389 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3390 if (relayd == NULL) {
3391 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3392 goto error;
3393 } else {
3394 relayd->sessiond_session_id = sessiond_id;
3395 relayd_created = 1;
3396 }
3397
3398 /*
3399 * This code path MUST continue to the consumer send status message to
3400 * we can notify the session daemon and continue our work without
3401 * killing everything.
3402 */
3403 } else {
3404 /*
3405 * relayd key should never be found for control socket.
3406 */
3407 assert(sock_type != LTTNG_STREAM_CONTROL);
3408 }
3409
3410 /* First send a status message before receiving the fds. */
3411 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3412 if (ret < 0) {
3413 /* Somehow, the session daemon is not responding anymore. */
3414 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3415 goto error_nosignal;
3416 }
3417
3418 /* Poll on consumer socket. */
3419 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3420 if (ret) {
3421 /* Needing to exit in the middle of a command: error. */
3422 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3423 goto error_nosignal;
3424 }
3425
3426 /* Get relayd socket from session daemon */
3427 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3428 if (ret != sizeof(fd)) {
3429 fd = -1; /* Just in case it gets set with an invalid value. */
3430
3431 /*
3432 * Failing to receive FDs might indicate a major problem such as
3433 * reaching a fd limit during the receive where the kernel returns a
3434 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3435 * don't take any chances and stop everything.
3436 *
3437 * XXX: Feature request #558 will fix that and avoid this possible
3438 * issue when reaching the fd limit.
3439 */
3440 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3441 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3442 goto error;
3443 }
3444
3445 /* Copy socket information and received FD */
3446 switch (sock_type) {
3447 case LTTNG_STREAM_CONTROL:
3448 /* Copy received lttcomm socket */
3449 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3450 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3451 /* Handle create_sock error. */
3452 if (ret < 0) {
3453 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3454 goto error;
3455 }
3456 /*
3457 * Close the socket created internally by
3458 * lttcomm_create_sock, so we can replace it by the one
3459 * received from sessiond.
3460 */
3461 if (close(relayd->control_sock.sock.fd)) {
3462 PERROR("close");
3463 }
3464
3465 /* Assign new file descriptor */
3466 relayd->control_sock.sock.fd = fd;
3467 fd = -1; /* For error path */
3468 /* Assign version values. */
3469 relayd->control_sock.major = relayd_sock->major;
3470 relayd->control_sock.minor = relayd_sock->minor;
3471
3472 relayd->relayd_session_id = relayd_session_id;
3473
3474 break;
3475 case LTTNG_STREAM_DATA:
3476 /* Copy received lttcomm socket */
3477 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3478 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3479 /* Handle create_sock error. */
3480 if (ret < 0) {
3481 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3482 goto error;
3483 }
3484 /*
3485 * Close the socket created internally by
3486 * lttcomm_create_sock, so we can replace it by the one
3487 * received from sessiond.
3488 */
3489 if (close(relayd->data_sock.sock.fd)) {
3490 PERROR("close");
3491 }
3492
3493 /* Assign new file descriptor */
3494 relayd->data_sock.sock.fd = fd;
3495 fd = -1; /* for eventual error paths */
3496 /* Assign version values. */
3497 relayd->data_sock.major = relayd_sock->major;
3498 relayd->data_sock.minor = relayd_sock->minor;
3499 break;
3500 default:
3501 ERR("Unknown relayd socket type (%d)", sock_type);
3502 ret_code = LTTCOMM_CONSUMERD_FATAL;
3503 goto error;
3504 }
3505
3506 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3507 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3508 relayd->net_seq_idx, fd);
3509
3510 /* We successfully added the socket. Send status back. */
3511 ret = consumer_send_status_msg(sock, ret_code);
3512 if (ret < 0) {
3513 /* Somehow, the session daemon is not responding anymore. */
3514 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3515 goto error_nosignal;
3516 }
3517
3518 /*
3519 * Add relayd socket pair to consumer data hashtable. If object already
3520 * exists or on error, the function gracefully returns.
3521 */
3522 add_relayd(relayd);
3523
3524 /* All good! */
3525 return;
3526
3527 error:
3528 if (consumer_send_status_msg(sock, ret_code) < 0) {
3529 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3530 }
3531
3532 error_nosignal:
3533 /* Close received socket if valid. */
3534 if (fd >= 0) {
3535 if (close(fd)) {
3536 PERROR("close received socket");
3537 }
3538 }
3539
3540 if (relayd_created) {
3541 free(relayd);
3542 }
3543 }
3544
3545 /*
3546 * Try to lock the stream mutex.
3547 *
3548 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3549 */
3550 static int stream_try_lock(struct lttng_consumer_stream *stream)
3551 {
3552 int ret;
3553
3554 assert(stream);
3555
3556 /*
3557 * Try to lock the stream mutex. On failure, we know that the stream is
3558 * being used else where hence there is data still being extracted.
3559 */
3560 ret = pthread_mutex_trylock(&stream->lock);
3561 if (ret) {
3562 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3563 ret = 0;
3564 goto end;
3565 }
3566
3567 ret = 1;
3568
3569 end:
3570 return ret;
3571 }
3572
3573 /*
3574 * Search for a relayd associated to the session id and return the reference.
3575 *
3576 * A rcu read side lock MUST be acquire before calling this function and locked
3577 * until the relayd object is no longer necessary.
3578 */
3579 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3580 {
3581 struct lttng_ht_iter iter;
3582 struct consumer_relayd_sock_pair *relayd = NULL;
3583
3584 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3585 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3586 node.node) {
3587 /*
3588 * Check by sessiond id which is unique here where the relayd session
3589 * id might not be when having multiple relayd.
3590 */
3591 if (relayd->sessiond_session_id == id) {
3592 /* Found the relayd. There can be only one per id. */
3593 goto found;
3594 }
3595 }
3596
3597 return NULL;
3598
3599 found:
3600 return relayd;
3601 }
3602
3603 /*
3604 * Check if for a given session id there is still data needed to be extract
3605 * from the buffers.
3606 *
3607 * Return 1 if data is pending or else 0 meaning ready to be read.
3608 */
3609 int consumer_data_pending(uint64_t id)
3610 {
3611 int ret;
3612 struct lttng_ht_iter iter;
3613 struct lttng_ht *ht;
3614 struct lttng_consumer_stream *stream;
3615 struct consumer_relayd_sock_pair *relayd = NULL;
3616 int (*data_pending)(struct lttng_consumer_stream *);
3617
3618 DBG("Consumer data pending command on session id %" PRIu64, id);
3619
3620 rcu_read_lock();
3621 pthread_mutex_lock(&consumer_data.lock);
3622
3623 switch (consumer_data.type) {
3624 case LTTNG_CONSUMER_KERNEL:
3625 data_pending = lttng_kconsumer_data_pending;
3626 break;
3627 case LTTNG_CONSUMER32_UST:
3628 case LTTNG_CONSUMER64_UST:
3629 data_pending = lttng_ustconsumer_data_pending;
3630 break;
3631 default:
3632 ERR("Unknown consumer data type");
3633 assert(0);
3634 }
3635
3636 /* Ease our life a bit */
3637 ht = consumer_data.stream_list_ht;
3638
3639 relayd = find_relayd_by_session_id(id);
3640 if (relayd) {
3641 /* Send init command for data pending. */
3642 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3643 ret = relayd_begin_data_pending(&relayd->control_sock,
3644 relayd->relayd_session_id);
3645 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3646 if (ret < 0) {
3647 /* Communication error thus the relayd so no data pending. */
3648 goto data_not_pending;
3649 }
3650 }
3651
3652 cds_lfht_for_each_entry_duplicate(ht->ht,
3653 ht->hash_fct(&id, lttng_ht_seed),
3654 ht->match_fct, &id,
3655 &iter.iter, stream, node_session_id.node) {
3656 /* If this call fails, the stream is being used hence data pending. */
3657 ret = stream_try_lock(stream);
3658 if (!ret) {
3659 goto data_pending;
3660 }
3661
3662 /*
3663 * A removed node from the hash table indicates that the stream has
3664 * been deleted thus having a guarantee that the buffers are closed
3665 * on the consumer side. However, data can still be transmitted
3666 * over the network so don't skip the relayd check.
3667 */
3668 ret = cds_lfht_is_node_deleted(&stream->node.node);
3669 if (!ret) {
3670 /* Check the stream if there is data in the buffers. */
3671 ret = data_pending(stream);
3672 if (ret == 1) {
3673 pthread_mutex_unlock(&stream->lock);
3674 goto data_pending;
3675 }
3676 }
3677
3678 /* Relayd check */
3679 if (relayd) {
3680 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3681 if (stream->metadata_flag) {
3682 ret = relayd_quiescent_control(&relayd->control_sock,
3683 stream->relayd_stream_id);
3684 } else {
3685 ret = relayd_data_pending(&relayd->control_sock,
3686 stream->relayd_stream_id,
3687 stream->next_net_seq_num - 1);
3688 }
3689 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3690 if (ret == 1) {
3691 pthread_mutex_unlock(&stream->lock);
3692 goto data_pending;
3693 }
3694 }
3695 pthread_mutex_unlock(&stream->lock);
3696 }
3697
3698 if (relayd) {
3699 unsigned int is_data_inflight = 0;
3700
3701 /* Send init command for data pending. */
3702 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3703 ret = relayd_end_data_pending(&relayd->control_sock,
3704 relayd->relayd_session_id, &is_data_inflight);
3705 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3706 if (ret < 0) {
3707 goto data_not_pending;
3708 }
3709 if (is_data_inflight) {
3710 goto data_pending;
3711 }
3712 }
3713
3714 /*
3715 * Finding _no_ node in the hash table and no inflight data means that the
3716 * stream(s) have been removed thus data is guaranteed to be available for
3717 * analysis from the trace files.
3718 */
3719
3720 data_not_pending:
3721 /* Data is available to be read by a viewer. */
3722 pthread_mutex_unlock(&consumer_data.lock);
3723 rcu_read_unlock();
3724 return 0;
3725
3726 data_pending:
3727 /* Data is still being extracted from buffers. */
3728 pthread_mutex_unlock(&consumer_data.lock);
3729 rcu_read_unlock();
3730 return 1;
3731 }
3732
3733 /*
3734 * Send a ret code status message to the sessiond daemon.
3735 *
3736 * Return the sendmsg() return value.
3737 */
3738 int consumer_send_status_msg(int sock, int ret_code)
3739 {
3740 struct lttcomm_consumer_status_msg msg;
3741
3742 memset(&msg, 0, sizeof(msg));
3743 msg.ret_code = ret_code;
3744
3745 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3746 }
3747
3748 /*
3749 * Send a channel status message to the sessiond daemon.
3750 *
3751 * Return the sendmsg() return value.
3752 */
3753 int consumer_send_status_channel(int sock,
3754 struct lttng_consumer_channel *channel)
3755 {
3756 struct lttcomm_consumer_status_channel msg;
3757
3758 assert(sock >= 0);
3759
3760 memset(&msg, 0, sizeof(msg));
3761 if (!channel) {
3762 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3763 } else {
3764 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3765 msg.key = channel->key;
3766 msg.stream_count = channel->streams.count;
3767 }
3768
3769 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3770 }
3771
3772 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3773 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3774 uint64_t max_sb_size)
3775 {
3776 unsigned long start_pos;
3777
3778 if (!nb_packets_per_stream) {
3779 return consumed_pos; /* Grab everything */
3780 }
3781 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3782 start_pos -= max_sb_size * nb_packets_per_stream;
3783 if ((long) (start_pos - consumed_pos) < 0) {
3784 return consumed_pos; /* Grab everything */
3785 }
3786 return start_pos;
3787 }
3788
3789 static
3790 int rotate_rename_local(const char *old_path, const char *new_path,
3791 uid_t uid, gid_t gid)
3792 {
3793 int ret;
3794
3795 assert(old_path);
3796 assert(new_path);
3797
3798 ret = utils_mkdir_recursive(new_path, S_IRWXU | S_IRWXG, uid, gid);
3799 if (ret < 0) {
3800 ERR("Create directory on rotate");
3801 goto end;
3802 }
3803
3804 ret = rename(old_path, new_path);
3805 if (ret < 0 && errno != ENOENT) {
3806 PERROR("Rename completed rotation chunk");
3807 goto end;
3808 }
3809
3810 ret = 0;
3811 end:
3812 return ret;
3813 }
3814
3815 static
3816 int rotate_rename_relay(const char *old_path, const char *new_path,
3817 uint64_t relayd_id)
3818 {
3819 int ret;
3820 struct consumer_relayd_sock_pair *relayd;
3821
3822 relayd = consumer_find_relayd(relayd_id);
3823 if (!relayd) {
3824 ERR("Failed to find relayd while running rotate_rename_relay command");
3825 ret = -1;
3826 goto end;
3827 }
3828
3829 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3830 ret = relayd_rotate_rename(&relayd->control_sock, old_path, new_path);
3831 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3832 end:
3833 return ret;
3834 }
3835
3836 int lttng_consumer_rotate_rename(const char *old_path, const char *new_path,
3837 uid_t uid, gid_t gid, uint64_t relayd_id)
3838 {
3839 if (relayd_id != -1ULL) {
3840 return rotate_rename_relay(old_path, new_path, relayd_id);
3841 } else {
3842 return rotate_rename_local(old_path, new_path, uid, gid);
3843 }
3844 }
3845
3846 static
3847 int mkdir_local(const char *path, uid_t uid, gid_t gid)
3848 {
3849 int ret;
3850
3851 ret = utils_mkdir_recursive(path, S_IRWXU | S_IRWXG, uid, gid);
3852 if (ret < 0) {
3853 /* utils_mkdir_recursive logs an error. */
3854 goto end;
3855 }
3856
3857 ret = 0;
3858 end:
3859 return ret;
3860 }
3861
3862 static
3863 int mkdir_relay(const char *path, uint64_t relayd_id)
3864 {
3865 int ret;
3866 struct consumer_relayd_sock_pair *relayd;
3867
3868 relayd = consumer_find_relayd(relayd_id);
3869 if (!relayd) {
3870 ERR("Failed to find relayd");
3871 ret = -1;
3872 goto end;
3873 }
3874
3875 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3876 ret = relayd_mkdir(&relayd->control_sock, path);
3877 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3878
3879 end:
3880 return ret;
3881
3882 }
3883
3884 int lttng_consumer_mkdir(const char *path, uid_t uid, gid_t gid,
3885 uint64_t relayd_id)
3886 {
3887 if (relayd_id != -1ULL) {
3888 return mkdir_relay(path, relayd_id);
3889 } else {
3890 return mkdir_local(path, uid, gid);
3891 }
3892 }
This page took 0.427591 seconds and 6 git commands to generate.