Fix: stream_per_chan_id_ht should allow duplicates
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
545 uint64_t stream_key,
546 enum lttng_consumer_stream_state state,
547 const char *channel_name,
548 uid_t uid,
549 gid_t gid,
550 uint64_t relayd_id,
551 uint64_t session_id,
552 int cpu,
553 int *alloc_ret,
554 enum consumer_channel_type type,
555 unsigned int monitor)
556 {
557 int ret;
558 struct lttng_consumer_stream *stream;
559
560 stream = zmalloc(sizeof(*stream));
561 if (stream == NULL) {
562 PERROR("malloc struct lttng_consumer_stream");
563 ret = -ENOMEM;
564 goto end;
565 }
566
567 rcu_read_lock();
568
569 stream->key = stream_key;
570 stream->out_fd = -1;
571 stream->out_fd_offset = 0;
572 stream->output_written = 0;
573 stream->state = state;
574 stream->uid = uid;
575 stream->gid = gid;
576 stream->net_seq_idx = relayd_id;
577 stream->session_id = session_id;
578 stream->monitor = monitor;
579 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
580 stream->index_file = NULL;
581 stream->last_sequence_number = -1ULL;
582 pthread_mutex_init(&stream->lock, NULL);
583 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
584
585 /* If channel is the metadata, flag this stream as metadata. */
586 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
587 stream->metadata_flag = 1;
588 /* Metadata is flat out. */
589 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
590 /* Live rendez-vous point. */
591 pthread_cond_init(&stream->metadata_rdv, NULL);
592 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
593 } else {
594 /* Format stream name to <channel_name>_<cpu_number> */
595 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
596 channel_name, cpu);
597 if (ret < 0) {
598 PERROR("snprintf stream name");
599 goto error;
600 }
601 }
602
603 /* Key is always the wait_fd for streams. */
604 lttng_ht_node_init_u64(&stream->node, stream->key);
605
606 /* Init node per channel id key */
607 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
608
609 /* Init session id node with the stream session id */
610 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
611
612 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
613 " relayd_id %" PRIu64 ", session_id %" PRIu64,
614 stream->name, stream->key, channel_key,
615 stream->net_seq_idx, stream->session_id);
616
617 rcu_read_unlock();
618 return stream;
619
620 error:
621 rcu_read_unlock();
622 free(stream);
623 end:
624 if (alloc_ret) {
625 *alloc_ret = ret;
626 }
627 return NULL;
628 }
629
630 /*
631 * Add a stream to the global list protected by a mutex.
632 */
633 void consumer_add_data_stream(struct lttng_consumer_stream *stream)
634 {
635 struct lttng_ht *ht = data_ht;
636
637 assert(stream);
638 assert(ht);
639
640 DBG3("Adding consumer stream %" PRIu64, stream->key);
641
642 pthread_mutex_lock(&consumer_data.lock);
643 pthread_mutex_lock(&stream->chan->lock);
644 pthread_mutex_lock(&stream->chan->timer_lock);
645 pthread_mutex_lock(&stream->lock);
646 rcu_read_lock();
647
648 /* Steal stream identifier to avoid having streams with the same key */
649 steal_stream_key(stream->key, ht);
650
651 lttng_ht_add_unique_u64(ht, &stream->node);
652
653 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
654 &stream->node_channel_id);
655
656 /*
657 * Add stream to the stream_list_ht of the consumer data. No need to steal
658 * the key since the HT does not use it and we allow to add redundant keys
659 * into this table.
660 */
661 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
662
663 /*
664 * When nb_init_stream_left reaches 0, we don't need to trigger any action
665 * in terms of destroying the associated channel, because the action that
666 * causes the count to become 0 also causes a stream to be added. The
667 * channel deletion will thus be triggered by the following removal of this
668 * stream.
669 */
670 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
671 /* Increment refcount before decrementing nb_init_stream_left */
672 cmm_smp_wmb();
673 uatomic_dec(&stream->chan->nb_init_stream_left);
674 }
675
676 /* Update consumer data once the node is inserted. */
677 consumer_data.stream_count++;
678 consumer_data.need_update = 1;
679
680 rcu_read_unlock();
681 pthread_mutex_unlock(&stream->lock);
682 pthread_mutex_unlock(&stream->chan->timer_lock);
683 pthread_mutex_unlock(&stream->chan->lock);
684 pthread_mutex_unlock(&consumer_data.lock);
685 }
686
687 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
688 {
689 consumer_del_stream(stream, data_ht);
690 }
691
692 /*
693 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
694 * be acquired before calling this.
695 */
696 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
697 {
698 int ret = 0;
699 struct lttng_ht_node_u64 *node;
700 struct lttng_ht_iter iter;
701
702 assert(relayd);
703
704 lttng_ht_lookup(consumer_data.relayd_ht,
705 &relayd->net_seq_idx, &iter);
706 node = lttng_ht_iter_get_node_u64(&iter);
707 if (node != NULL) {
708 goto end;
709 }
710 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
711
712 end:
713 return ret;
714 }
715
716 /*
717 * Allocate and return a consumer relayd socket.
718 */
719 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
720 uint64_t net_seq_idx)
721 {
722 struct consumer_relayd_sock_pair *obj = NULL;
723
724 /* net sequence index of -1 is a failure */
725 if (net_seq_idx == (uint64_t) -1ULL) {
726 goto error;
727 }
728
729 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
730 if (obj == NULL) {
731 PERROR("zmalloc relayd sock");
732 goto error;
733 }
734
735 obj->net_seq_idx = net_seq_idx;
736 obj->refcount = 0;
737 obj->destroy_flag = 0;
738 obj->control_sock.sock.fd = -1;
739 obj->data_sock.sock.fd = -1;
740 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
741 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
742
743 error:
744 return obj;
745 }
746
747 /*
748 * Find a relayd socket pair in the global consumer data.
749 *
750 * Return the object if found else NULL.
751 * RCU read-side lock must be held across this call and while using the
752 * returned object.
753 */
754 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
755 {
756 struct lttng_ht_iter iter;
757 struct lttng_ht_node_u64 *node;
758 struct consumer_relayd_sock_pair *relayd = NULL;
759
760 /* Negative keys are lookup failures */
761 if (key == (uint64_t) -1ULL) {
762 goto error;
763 }
764
765 lttng_ht_lookup(consumer_data.relayd_ht, &key,
766 &iter);
767 node = lttng_ht_iter_get_node_u64(&iter);
768 if (node != NULL) {
769 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
770 }
771
772 error:
773 return relayd;
774 }
775
776 /*
777 * Find a relayd and send the stream
778 *
779 * Returns 0 on success, < 0 on error
780 */
781 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
782 char *path)
783 {
784 int ret = 0;
785 struct consumer_relayd_sock_pair *relayd;
786
787 assert(stream);
788 assert(stream->net_seq_idx != -1ULL);
789 assert(path);
790
791 /* The stream is not metadata. Get relayd reference if exists. */
792 rcu_read_lock();
793 relayd = consumer_find_relayd(stream->net_seq_idx);
794 if (relayd != NULL) {
795 /* Add stream on the relayd */
796 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
797 ret = relayd_add_stream(&relayd->control_sock, stream->name,
798 path, &stream->relayd_stream_id,
799 stream->chan->tracefile_size, stream->chan->tracefile_count);
800 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
801 if (ret < 0) {
802 goto end;
803 }
804
805 uatomic_inc(&relayd->refcount);
806 stream->sent_to_relayd = 1;
807 } else {
808 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
809 stream->key, stream->net_seq_idx);
810 ret = -1;
811 goto end;
812 }
813
814 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
815 stream->name, stream->key, stream->net_seq_idx);
816
817 end:
818 rcu_read_unlock();
819 return ret;
820 }
821
822 /*
823 * Find a relayd and send the streams sent message
824 *
825 * Returns 0 on success, < 0 on error
826 */
827 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
828 {
829 int ret = 0;
830 struct consumer_relayd_sock_pair *relayd;
831
832 assert(net_seq_idx != -1ULL);
833
834 /* The stream is not metadata. Get relayd reference if exists. */
835 rcu_read_lock();
836 relayd = consumer_find_relayd(net_seq_idx);
837 if (relayd != NULL) {
838 /* Add stream on the relayd */
839 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
840 ret = relayd_streams_sent(&relayd->control_sock);
841 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
842 if (ret < 0) {
843 goto end;
844 }
845 } else {
846 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
847 net_seq_idx);
848 ret = -1;
849 goto end;
850 }
851
852 ret = 0;
853 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
854
855 end:
856 rcu_read_unlock();
857 return ret;
858 }
859
860 /*
861 * Find a relayd and close the stream
862 */
863 void close_relayd_stream(struct lttng_consumer_stream *stream)
864 {
865 struct consumer_relayd_sock_pair *relayd;
866
867 /* The stream is not metadata. Get relayd reference if exists. */
868 rcu_read_lock();
869 relayd = consumer_find_relayd(stream->net_seq_idx);
870 if (relayd) {
871 consumer_stream_relayd_close(stream, relayd);
872 }
873 rcu_read_unlock();
874 }
875
876 /*
877 * Handle stream for relayd transmission if the stream applies for network
878 * streaming where the net sequence index is set.
879 *
880 * Return destination file descriptor or negative value on error.
881 */
882 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
883 size_t data_size, unsigned long padding,
884 struct consumer_relayd_sock_pair *relayd)
885 {
886 int outfd = -1, ret;
887 struct lttcomm_relayd_data_hdr data_hdr;
888
889 /* Safety net */
890 assert(stream);
891 assert(relayd);
892
893 /* Reset data header */
894 memset(&data_hdr, 0, sizeof(data_hdr));
895
896 if (stream->metadata_flag) {
897 /* Caller MUST acquire the relayd control socket lock */
898 ret = relayd_send_metadata(&relayd->control_sock, data_size);
899 if (ret < 0) {
900 goto error;
901 }
902
903 /* Metadata are always sent on the control socket. */
904 outfd = relayd->control_sock.sock.fd;
905 } else {
906 /* Set header with stream information */
907 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
908 data_hdr.data_size = htobe32(data_size);
909 data_hdr.padding_size = htobe32(padding);
910 /*
911 * Note that net_seq_num below is assigned with the *current* value of
912 * next_net_seq_num and only after that the next_net_seq_num will be
913 * increment. This is why when issuing a command on the relayd using
914 * this next value, 1 should always be substracted in order to compare
915 * the last seen sequence number on the relayd side to the last sent.
916 */
917 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
918 /* Other fields are zeroed previously */
919
920 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
921 sizeof(data_hdr));
922 if (ret < 0) {
923 goto error;
924 }
925
926 ++stream->next_net_seq_num;
927
928 /* Set to go on data socket */
929 outfd = relayd->data_sock.sock.fd;
930 }
931
932 error:
933 return outfd;
934 }
935
936 /*
937 * Allocate and return a new lttng_consumer_channel object using the given key
938 * to initialize the hash table node.
939 *
940 * On error, return NULL.
941 */
942 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
943 uint64_t session_id,
944 const char *pathname,
945 const char *name,
946 uid_t uid,
947 gid_t gid,
948 uint64_t relayd_id,
949 enum lttng_event_output output,
950 uint64_t tracefile_size,
951 uint64_t tracefile_count,
952 uint64_t session_id_per_pid,
953 unsigned int monitor,
954 unsigned int live_timer_interval,
955 const char *root_shm_path,
956 const char *shm_path)
957 {
958 struct lttng_consumer_channel *channel;
959
960 channel = zmalloc(sizeof(*channel));
961 if (channel == NULL) {
962 PERROR("malloc struct lttng_consumer_channel");
963 goto end;
964 }
965
966 channel->key = key;
967 channel->refcount = 0;
968 channel->session_id = session_id;
969 channel->session_id_per_pid = session_id_per_pid;
970 channel->uid = uid;
971 channel->gid = gid;
972 channel->relayd_id = relayd_id;
973 channel->tracefile_size = tracefile_size;
974 channel->tracefile_count = tracefile_count;
975 channel->monitor = monitor;
976 channel->live_timer_interval = live_timer_interval;
977 pthread_mutex_init(&channel->lock, NULL);
978 pthread_mutex_init(&channel->timer_lock, NULL);
979
980 switch (output) {
981 case LTTNG_EVENT_SPLICE:
982 channel->output = CONSUMER_CHANNEL_SPLICE;
983 break;
984 case LTTNG_EVENT_MMAP:
985 channel->output = CONSUMER_CHANNEL_MMAP;
986 break;
987 default:
988 assert(0);
989 free(channel);
990 channel = NULL;
991 goto end;
992 }
993
994 /*
995 * In monitor mode, the streams associated with the channel will be put in
996 * a special list ONLY owned by this channel. So, the refcount is set to 1
997 * here meaning that the channel itself has streams that are referenced.
998 *
999 * On a channel deletion, once the channel is no longer visible, the
1000 * refcount is decremented and checked for a zero value to delete it. With
1001 * streams in no monitor mode, it will now be safe to destroy the channel.
1002 */
1003 if (!channel->monitor) {
1004 channel->refcount = 1;
1005 }
1006
1007 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1008 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1009
1010 strncpy(channel->name, name, sizeof(channel->name));
1011 channel->name[sizeof(channel->name) - 1] = '\0';
1012
1013 if (root_shm_path) {
1014 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1015 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1016 }
1017 if (shm_path) {
1018 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1019 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1020 }
1021
1022 lttng_ht_node_init_u64(&channel->node, channel->key);
1023
1024 channel->wait_fd = -1;
1025
1026 CDS_INIT_LIST_HEAD(&channel->streams.head);
1027
1028 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1029
1030 end:
1031 return channel;
1032 }
1033
1034 /*
1035 * Add a channel to the global list protected by a mutex.
1036 *
1037 * Always return 0 indicating success.
1038 */
1039 int consumer_add_channel(struct lttng_consumer_channel *channel,
1040 struct lttng_consumer_local_data *ctx)
1041 {
1042 pthread_mutex_lock(&consumer_data.lock);
1043 pthread_mutex_lock(&channel->lock);
1044 pthread_mutex_lock(&channel->timer_lock);
1045
1046 /*
1047 * This gives us a guarantee that the channel we are about to add to the
1048 * channel hash table will be unique. See this function comment on the why
1049 * we need to steel the channel key at this stage.
1050 */
1051 steal_channel_key(channel->key);
1052
1053 rcu_read_lock();
1054 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1055 rcu_read_unlock();
1056
1057 pthread_mutex_unlock(&channel->timer_lock);
1058 pthread_mutex_unlock(&channel->lock);
1059 pthread_mutex_unlock(&consumer_data.lock);
1060
1061 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1062 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * Allocate the pollfd structure and the local view of the out fds to avoid
1070 * doing a lookup in the linked list and concurrency issues when writing is
1071 * needed. Called with consumer_data.lock held.
1072 *
1073 * Returns the number of fds in the structures.
1074 */
1075 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1076 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1077 struct lttng_ht *ht, int *nb_inactive_fd)
1078 {
1079 int i = 0;
1080 struct lttng_ht_iter iter;
1081 struct lttng_consumer_stream *stream;
1082
1083 assert(ctx);
1084 assert(ht);
1085 assert(pollfd);
1086 assert(local_stream);
1087
1088 DBG("Updating poll fd array");
1089 *nb_inactive_fd = 0;
1090 rcu_read_lock();
1091 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1092 /*
1093 * Only active streams with an active end point can be added to the
1094 * poll set and local stream storage of the thread.
1095 *
1096 * There is a potential race here for endpoint_status to be updated
1097 * just after the check. However, this is OK since the stream(s) will
1098 * be deleted once the thread is notified that the end point state has
1099 * changed where this function will be called back again.
1100 *
1101 * We track the number of inactive FDs because they still need to be
1102 * closed by the polling thread after a wakeup on the data_pipe or
1103 * metadata_pipe.
1104 */
1105 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1106 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1107 (*nb_inactive_fd)++;
1108 continue;
1109 }
1110 /*
1111 * This clobbers way too much the debug output. Uncomment that if you
1112 * need it for debugging purposes.
1113 *
1114 * DBG("Active FD %d", stream->wait_fd);
1115 */
1116 (*pollfd)[i].fd = stream->wait_fd;
1117 (*pollfd)[i].events = POLLIN | POLLPRI;
1118 local_stream[i] = stream;
1119 i++;
1120 }
1121 rcu_read_unlock();
1122
1123 /*
1124 * Insert the consumer_data_pipe at the end of the array and don't
1125 * increment i so nb_fd is the number of real FD.
1126 */
1127 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1128 (*pollfd)[i].events = POLLIN | POLLPRI;
1129
1130 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1131 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1132 return i;
1133 }
1134
1135 /*
1136 * Poll on the should_quit pipe and the command socket return -1 on
1137 * error, 1 if should exit, 0 if data is available on the command socket
1138 */
1139 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1140 {
1141 int num_rdy;
1142
1143 restart:
1144 num_rdy = poll(consumer_sockpoll, 2, -1);
1145 if (num_rdy == -1) {
1146 /*
1147 * Restart interrupted system call.
1148 */
1149 if (errno == EINTR) {
1150 goto restart;
1151 }
1152 PERROR("Poll error");
1153 return -1;
1154 }
1155 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1156 DBG("consumer_should_quit wake up");
1157 return 1;
1158 }
1159 return 0;
1160 }
1161
1162 /*
1163 * Set the error socket.
1164 */
1165 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1166 int sock)
1167 {
1168 ctx->consumer_error_socket = sock;
1169 }
1170
1171 /*
1172 * Set the command socket path.
1173 */
1174 void lttng_consumer_set_command_sock_path(
1175 struct lttng_consumer_local_data *ctx, char *sock)
1176 {
1177 ctx->consumer_command_sock_path = sock;
1178 }
1179
1180 /*
1181 * Send return code to the session daemon.
1182 * If the socket is not defined, we return 0, it is not a fatal error
1183 */
1184 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1185 {
1186 if (ctx->consumer_error_socket > 0) {
1187 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1188 sizeof(enum lttcomm_sessiond_command));
1189 }
1190
1191 return 0;
1192 }
1193
1194 /*
1195 * Close all the tracefiles and stream fds and MUST be called when all
1196 * instances are destroyed i.e. when all threads were joined and are ended.
1197 */
1198 void lttng_consumer_cleanup(void)
1199 {
1200 struct lttng_ht_iter iter;
1201 struct lttng_consumer_channel *channel;
1202
1203 rcu_read_lock();
1204
1205 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1206 node.node) {
1207 consumer_del_channel(channel);
1208 }
1209
1210 rcu_read_unlock();
1211
1212 lttng_ht_destroy(consumer_data.channel_ht);
1213
1214 cleanup_relayd_ht();
1215
1216 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1217
1218 /*
1219 * This HT contains streams that are freed by either the metadata thread or
1220 * the data thread so we do *nothing* on the hash table and simply destroy
1221 * it.
1222 */
1223 lttng_ht_destroy(consumer_data.stream_list_ht);
1224 }
1225
1226 /*
1227 * Called from signal handler.
1228 */
1229 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1230 {
1231 ssize_t ret;
1232
1233 CMM_STORE_SHARED(consumer_quit, 1);
1234 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1235 if (ret < 1) {
1236 PERROR("write consumer quit");
1237 }
1238
1239 DBG("Consumer flag that it should quit");
1240 }
1241
1242
1243 /*
1244 * Flush pending writes to trace output disk file.
1245 */
1246 static
1247 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1248 off_t orig_offset)
1249 {
1250 int ret;
1251 int outfd = stream->out_fd;
1252
1253 /*
1254 * This does a blocking write-and-wait on any page that belongs to the
1255 * subbuffer prior to the one we just wrote.
1256 * Don't care about error values, as these are just hints and ways to
1257 * limit the amount of page cache used.
1258 */
1259 if (orig_offset < stream->max_sb_size) {
1260 return;
1261 }
1262 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1263 stream->max_sb_size,
1264 SYNC_FILE_RANGE_WAIT_BEFORE
1265 | SYNC_FILE_RANGE_WRITE
1266 | SYNC_FILE_RANGE_WAIT_AFTER);
1267 /*
1268 * Give hints to the kernel about how we access the file:
1269 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1270 * we write it.
1271 *
1272 * We need to call fadvise again after the file grows because the
1273 * kernel does not seem to apply fadvise to non-existing parts of the
1274 * file.
1275 *
1276 * Call fadvise _after_ having waited for the page writeback to
1277 * complete because the dirty page writeback semantic is not well
1278 * defined. So it can be expected to lead to lower throughput in
1279 * streaming.
1280 */
1281 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1282 stream->max_sb_size, POSIX_FADV_DONTNEED);
1283 if (ret && ret != -ENOSYS) {
1284 errno = ret;
1285 PERROR("posix_fadvise on fd %i", outfd);
1286 }
1287 }
1288
1289 /*
1290 * Initialise the necessary environnement :
1291 * - create a new context
1292 * - create the poll_pipe
1293 * - create the should_quit pipe (for signal handler)
1294 * - create the thread pipe (for splice)
1295 *
1296 * Takes a function pointer as argument, this function is called when data is
1297 * available on a buffer. This function is responsible to do the
1298 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1299 * buffer configuration and then kernctl_put_next_subbuf at the end.
1300 *
1301 * Returns a pointer to the new context or NULL on error.
1302 */
1303 struct lttng_consumer_local_data *lttng_consumer_create(
1304 enum lttng_consumer_type type,
1305 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1306 struct lttng_consumer_local_data *ctx),
1307 int (*recv_channel)(struct lttng_consumer_channel *channel),
1308 int (*recv_stream)(struct lttng_consumer_stream *stream),
1309 int (*update_stream)(uint64_t stream_key, uint32_t state))
1310 {
1311 int ret;
1312 struct lttng_consumer_local_data *ctx;
1313
1314 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1315 consumer_data.type == type);
1316 consumer_data.type = type;
1317
1318 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1319 if (ctx == NULL) {
1320 PERROR("allocating context");
1321 goto error;
1322 }
1323
1324 ctx->consumer_error_socket = -1;
1325 ctx->consumer_metadata_socket = -1;
1326 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1327 /* assign the callbacks */
1328 ctx->on_buffer_ready = buffer_ready;
1329 ctx->on_recv_channel = recv_channel;
1330 ctx->on_recv_stream = recv_stream;
1331 ctx->on_update_stream = update_stream;
1332
1333 ctx->consumer_data_pipe = lttng_pipe_open(0);
1334 if (!ctx->consumer_data_pipe) {
1335 goto error_poll_pipe;
1336 }
1337
1338 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1339 if (!ctx->consumer_wakeup_pipe) {
1340 goto error_wakeup_pipe;
1341 }
1342
1343 ret = pipe(ctx->consumer_should_quit);
1344 if (ret < 0) {
1345 PERROR("Error creating recv pipe");
1346 goto error_quit_pipe;
1347 }
1348
1349 ret = pipe(ctx->consumer_channel_pipe);
1350 if (ret < 0) {
1351 PERROR("Error creating channel pipe");
1352 goto error_channel_pipe;
1353 }
1354
1355 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1356 if (!ctx->consumer_metadata_pipe) {
1357 goto error_metadata_pipe;
1358 }
1359
1360 ctx->channel_monitor_pipe = -1;
1361
1362 return ctx;
1363
1364 error_metadata_pipe:
1365 utils_close_pipe(ctx->consumer_channel_pipe);
1366 error_channel_pipe:
1367 utils_close_pipe(ctx->consumer_should_quit);
1368 error_quit_pipe:
1369 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1370 error_wakeup_pipe:
1371 lttng_pipe_destroy(ctx->consumer_data_pipe);
1372 error_poll_pipe:
1373 free(ctx);
1374 error:
1375 return NULL;
1376 }
1377
1378 /*
1379 * Iterate over all streams of the hashtable and free them properly.
1380 */
1381 static void destroy_data_stream_ht(struct lttng_ht *ht)
1382 {
1383 struct lttng_ht_iter iter;
1384 struct lttng_consumer_stream *stream;
1385
1386 if (ht == NULL) {
1387 return;
1388 }
1389
1390 rcu_read_lock();
1391 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1392 /*
1393 * Ignore return value since we are currently cleaning up so any error
1394 * can't be handled.
1395 */
1396 (void) consumer_del_stream(stream, ht);
1397 }
1398 rcu_read_unlock();
1399
1400 lttng_ht_destroy(ht);
1401 }
1402
1403 /*
1404 * Iterate over all streams of the metadata hashtable and free them
1405 * properly.
1406 */
1407 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1408 {
1409 struct lttng_ht_iter iter;
1410 struct lttng_consumer_stream *stream;
1411
1412 if (ht == NULL) {
1413 return;
1414 }
1415
1416 rcu_read_lock();
1417 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1418 /*
1419 * Ignore return value since we are currently cleaning up so any error
1420 * can't be handled.
1421 */
1422 (void) consumer_del_metadata_stream(stream, ht);
1423 }
1424 rcu_read_unlock();
1425
1426 lttng_ht_destroy(ht);
1427 }
1428
1429 /*
1430 * Close all fds associated with the instance and free the context.
1431 */
1432 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1433 {
1434 int ret;
1435
1436 DBG("Consumer destroying it. Closing everything.");
1437
1438 if (!ctx) {
1439 return;
1440 }
1441
1442 destroy_data_stream_ht(data_ht);
1443 destroy_metadata_stream_ht(metadata_ht);
1444
1445 ret = close(ctx->consumer_error_socket);
1446 if (ret) {
1447 PERROR("close");
1448 }
1449 ret = close(ctx->consumer_metadata_socket);
1450 if (ret) {
1451 PERROR("close");
1452 }
1453 utils_close_pipe(ctx->consumer_channel_pipe);
1454 lttng_pipe_destroy(ctx->consumer_data_pipe);
1455 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1456 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1457 utils_close_pipe(ctx->consumer_should_quit);
1458
1459 unlink(ctx->consumer_command_sock_path);
1460 free(ctx);
1461 }
1462
1463 /*
1464 * Write the metadata stream id on the specified file descriptor.
1465 */
1466 static int write_relayd_metadata_id(int fd,
1467 struct lttng_consumer_stream *stream,
1468 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1469 {
1470 ssize_t ret;
1471 struct lttcomm_relayd_metadata_payload hdr;
1472
1473 hdr.stream_id = htobe64(stream->relayd_stream_id);
1474 hdr.padding_size = htobe32(padding);
1475 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1476 if (ret < sizeof(hdr)) {
1477 /*
1478 * This error means that the fd's end is closed so ignore the PERROR
1479 * not to clubber the error output since this can happen in a normal
1480 * code path.
1481 */
1482 if (errno != EPIPE) {
1483 PERROR("write metadata stream id");
1484 }
1485 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1486 /*
1487 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1488 * handle writting the missing part so report that as an error and
1489 * don't lie to the caller.
1490 */
1491 ret = -1;
1492 goto end;
1493 }
1494 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1495 stream->relayd_stream_id, padding);
1496
1497 end:
1498 return (int) ret;
1499 }
1500
1501 /*
1502 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1503 * core function for writing trace buffers to either the local filesystem or
1504 * the network.
1505 *
1506 * It must be called with the stream lock held.
1507 *
1508 * Careful review MUST be put if any changes occur!
1509 *
1510 * Returns the number of bytes written
1511 */
1512 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1513 struct lttng_consumer_local_data *ctx,
1514 struct lttng_consumer_stream *stream, unsigned long len,
1515 unsigned long padding,
1516 struct ctf_packet_index *index)
1517 {
1518 unsigned long mmap_offset;
1519 void *mmap_base;
1520 ssize_t ret = 0;
1521 off_t orig_offset = stream->out_fd_offset;
1522 /* Default is on the disk */
1523 int outfd = stream->out_fd;
1524 struct consumer_relayd_sock_pair *relayd = NULL;
1525 unsigned int relayd_hang_up = 0;
1526
1527 /* RCU lock for the relayd pointer */
1528 rcu_read_lock();
1529
1530 /* Flag that the current stream if set for network streaming. */
1531 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1532 relayd = consumer_find_relayd(stream->net_seq_idx);
1533 if (relayd == NULL) {
1534 ret = -EPIPE;
1535 goto end;
1536 }
1537 }
1538
1539 /* get the offset inside the fd to mmap */
1540 switch (consumer_data.type) {
1541 case LTTNG_CONSUMER_KERNEL:
1542 mmap_base = stream->mmap_base;
1543 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1544 if (ret < 0) {
1545 PERROR("tracer ctl get_mmap_read_offset");
1546 goto end;
1547 }
1548 break;
1549 case LTTNG_CONSUMER32_UST:
1550 case LTTNG_CONSUMER64_UST:
1551 mmap_base = lttng_ustctl_get_mmap_base(stream);
1552 if (!mmap_base) {
1553 ERR("read mmap get mmap base for stream %s", stream->name);
1554 ret = -EPERM;
1555 goto end;
1556 }
1557 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1558 if (ret != 0) {
1559 PERROR("tracer ctl get_mmap_read_offset");
1560 ret = -EINVAL;
1561 goto end;
1562 }
1563 break;
1564 default:
1565 ERR("Unknown consumer_data type");
1566 assert(0);
1567 }
1568
1569 /* Handle stream on the relayd if the output is on the network */
1570 if (relayd) {
1571 unsigned long netlen = len;
1572
1573 /*
1574 * Lock the control socket for the complete duration of the function
1575 * since from this point on we will use the socket.
1576 */
1577 if (stream->metadata_flag) {
1578 /* Metadata requires the control socket. */
1579 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1580 if (stream->reset_metadata_flag) {
1581 ret = relayd_reset_metadata(&relayd->control_sock,
1582 stream->relayd_stream_id,
1583 stream->metadata_version);
1584 if (ret < 0) {
1585 relayd_hang_up = 1;
1586 goto write_error;
1587 }
1588 stream->reset_metadata_flag = 0;
1589 }
1590 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1591 }
1592
1593 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1594 if (ret < 0) {
1595 relayd_hang_up = 1;
1596 goto write_error;
1597 }
1598 /* Use the returned socket. */
1599 outfd = ret;
1600
1601 /* Write metadata stream id before payload */
1602 if (stream->metadata_flag) {
1603 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1604 if (ret < 0) {
1605 relayd_hang_up = 1;
1606 goto write_error;
1607 }
1608 }
1609 } else {
1610 /* No streaming, we have to set the len with the full padding */
1611 len += padding;
1612
1613 if (stream->metadata_flag && stream->reset_metadata_flag) {
1614 ret = utils_truncate_stream_file(stream->out_fd, 0);
1615 if (ret < 0) {
1616 ERR("Reset metadata file");
1617 goto end;
1618 }
1619 stream->reset_metadata_flag = 0;
1620 }
1621
1622 /*
1623 * Check if we need to change the tracefile before writing the packet.
1624 */
1625 if (stream->chan->tracefile_size > 0 &&
1626 (stream->tracefile_size_current + len) >
1627 stream->chan->tracefile_size) {
1628 ret = utils_rotate_stream_file(stream->chan->pathname,
1629 stream->name, stream->chan->tracefile_size,
1630 stream->chan->tracefile_count, stream->uid, stream->gid,
1631 stream->out_fd, &(stream->tracefile_count_current),
1632 &stream->out_fd);
1633 if (ret < 0) {
1634 ERR("Rotating output file");
1635 goto end;
1636 }
1637 outfd = stream->out_fd;
1638
1639 if (stream->index_file) {
1640 lttng_index_file_put(stream->index_file);
1641 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1642 stream->name, stream->uid, stream->gid,
1643 stream->chan->tracefile_size,
1644 stream->tracefile_count_current,
1645 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1646 if (!stream->index_file) {
1647 goto end;
1648 }
1649 }
1650
1651 /* Reset current size because we just perform a rotation. */
1652 stream->tracefile_size_current = 0;
1653 stream->out_fd_offset = 0;
1654 orig_offset = 0;
1655 }
1656 stream->tracefile_size_current += len;
1657 if (index) {
1658 index->offset = htobe64(stream->out_fd_offset);
1659 }
1660 }
1661
1662 /*
1663 * This call guarantee that len or less is returned. It's impossible to
1664 * receive a ret value that is bigger than len.
1665 */
1666 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1667 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1668 if (ret < 0 || ((size_t) ret != len)) {
1669 /*
1670 * Report error to caller if nothing was written else at least send the
1671 * amount written.
1672 */
1673 if (ret < 0) {
1674 ret = -errno;
1675 }
1676 relayd_hang_up = 1;
1677
1678 /* Socket operation failed. We consider the relayd dead */
1679 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1680 /*
1681 * This is possible if the fd is closed on the other side
1682 * (outfd) or any write problem. It can be verbose a bit for a
1683 * normal execution if for instance the relayd is stopped
1684 * abruptly. This can happen so set this to a DBG statement.
1685 */
1686 DBG("Consumer mmap write detected relayd hang up");
1687 } else {
1688 /* Unhandled error, print it and stop function right now. */
1689 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1690 }
1691 goto write_error;
1692 }
1693 stream->output_written += ret;
1694
1695 /* This call is useless on a socket so better save a syscall. */
1696 if (!relayd) {
1697 /* This won't block, but will start writeout asynchronously */
1698 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1699 SYNC_FILE_RANGE_WRITE);
1700 stream->out_fd_offset += len;
1701 lttng_consumer_sync_trace_file(stream, orig_offset);
1702 }
1703
1704 write_error:
1705 /*
1706 * This is a special case that the relayd has closed its socket. Let's
1707 * cleanup the relayd object and all associated streams.
1708 */
1709 if (relayd && relayd_hang_up) {
1710 cleanup_relayd(relayd, ctx);
1711 }
1712
1713 end:
1714 /* Unlock only if ctrl socket used */
1715 if (relayd && stream->metadata_flag) {
1716 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1717 }
1718
1719 rcu_read_unlock();
1720 return ret;
1721 }
1722
1723 /*
1724 * Splice the data from the ring buffer to the tracefile.
1725 *
1726 * It must be called with the stream lock held.
1727 *
1728 * Returns the number of bytes spliced.
1729 */
1730 ssize_t lttng_consumer_on_read_subbuffer_splice(
1731 struct lttng_consumer_local_data *ctx,
1732 struct lttng_consumer_stream *stream, unsigned long len,
1733 unsigned long padding,
1734 struct ctf_packet_index *index)
1735 {
1736 ssize_t ret = 0, written = 0, ret_splice = 0;
1737 loff_t offset = 0;
1738 off_t orig_offset = stream->out_fd_offset;
1739 int fd = stream->wait_fd;
1740 /* Default is on the disk */
1741 int outfd = stream->out_fd;
1742 struct consumer_relayd_sock_pair *relayd = NULL;
1743 int *splice_pipe;
1744 unsigned int relayd_hang_up = 0;
1745
1746 switch (consumer_data.type) {
1747 case LTTNG_CONSUMER_KERNEL:
1748 break;
1749 case LTTNG_CONSUMER32_UST:
1750 case LTTNG_CONSUMER64_UST:
1751 /* Not supported for user space tracing */
1752 return -ENOSYS;
1753 default:
1754 ERR("Unknown consumer_data type");
1755 assert(0);
1756 }
1757
1758 /* RCU lock for the relayd pointer */
1759 rcu_read_lock();
1760
1761 /* Flag that the current stream if set for network streaming. */
1762 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1763 relayd = consumer_find_relayd(stream->net_seq_idx);
1764 if (relayd == NULL) {
1765 written = -ret;
1766 goto end;
1767 }
1768 }
1769 splice_pipe = stream->splice_pipe;
1770
1771 /* Write metadata stream id before payload */
1772 if (relayd) {
1773 unsigned long total_len = len;
1774
1775 if (stream->metadata_flag) {
1776 /*
1777 * Lock the control socket for the complete duration of the function
1778 * since from this point on we will use the socket.
1779 */
1780 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1781
1782 if (stream->reset_metadata_flag) {
1783 ret = relayd_reset_metadata(&relayd->control_sock,
1784 stream->relayd_stream_id,
1785 stream->metadata_version);
1786 if (ret < 0) {
1787 relayd_hang_up = 1;
1788 goto write_error;
1789 }
1790 stream->reset_metadata_flag = 0;
1791 }
1792 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1793 padding);
1794 if (ret < 0) {
1795 written = ret;
1796 relayd_hang_up = 1;
1797 goto write_error;
1798 }
1799
1800 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1801 }
1802
1803 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1804 if (ret < 0) {
1805 written = ret;
1806 relayd_hang_up = 1;
1807 goto write_error;
1808 }
1809 /* Use the returned socket. */
1810 outfd = ret;
1811 } else {
1812 /* No streaming, we have to set the len with the full padding */
1813 len += padding;
1814
1815 if (stream->metadata_flag && stream->reset_metadata_flag) {
1816 ret = utils_truncate_stream_file(stream->out_fd, 0);
1817 if (ret < 0) {
1818 ERR("Reset metadata file");
1819 goto end;
1820 }
1821 stream->reset_metadata_flag = 0;
1822 }
1823 /*
1824 * Check if we need to change the tracefile before writing the packet.
1825 */
1826 if (stream->chan->tracefile_size > 0 &&
1827 (stream->tracefile_size_current + len) >
1828 stream->chan->tracefile_size) {
1829 ret = utils_rotate_stream_file(stream->chan->pathname,
1830 stream->name, stream->chan->tracefile_size,
1831 stream->chan->tracefile_count, stream->uid, stream->gid,
1832 stream->out_fd, &(stream->tracefile_count_current),
1833 &stream->out_fd);
1834 if (ret < 0) {
1835 written = ret;
1836 ERR("Rotating output file");
1837 goto end;
1838 }
1839 outfd = stream->out_fd;
1840
1841 if (stream->index_file) {
1842 lttng_index_file_put(stream->index_file);
1843 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1844 stream->name, stream->uid, stream->gid,
1845 stream->chan->tracefile_size,
1846 stream->tracefile_count_current,
1847 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1848 if (!stream->index_file) {
1849 goto end;
1850 }
1851 }
1852
1853 /* Reset current size because we just perform a rotation. */
1854 stream->tracefile_size_current = 0;
1855 stream->out_fd_offset = 0;
1856 orig_offset = 0;
1857 }
1858 stream->tracefile_size_current += len;
1859 index->offset = htobe64(stream->out_fd_offset);
1860 }
1861
1862 while (len > 0) {
1863 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1864 (unsigned long)offset, len, fd, splice_pipe[1]);
1865 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1866 SPLICE_F_MOVE | SPLICE_F_MORE);
1867 DBG("splice chan to pipe, ret %zd", ret_splice);
1868 if (ret_splice < 0) {
1869 ret = errno;
1870 written = -ret;
1871 PERROR("Error in relay splice");
1872 goto splice_error;
1873 }
1874
1875 /* Handle stream on the relayd if the output is on the network */
1876 if (relayd && stream->metadata_flag) {
1877 size_t metadata_payload_size =
1878 sizeof(struct lttcomm_relayd_metadata_payload);
1879
1880 /* Update counter to fit the spliced data */
1881 ret_splice += metadata_payload_size;
1882 len += metadata_payload_size;
1883 /*
1884 * We do this so the return value can match the len passed as
1885 * argument to this function.
1886 */
1887 written -= metadata_payload_size;
1888 }
1889
1890 /* Splice data out */
1891 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1892 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1893 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1894 outfd, ret_splice);
1895 if (ret_splice < 0) {
1896 ret = errno;
1897 written = -ret;
1898 relayd_hang_up = 1;
1899 goto write_error;
1900 } else if (ret_splice > len) {
1901 /*
1902 * We don't expect this code path to be executed but you never know
1903 * so this is an extra protection agains a buggy splice().
1904 */
1905 ret = errno;
1906 written += ret_splice;
1907 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1908 len);
1909 goto splice_error;
1910 } else {
1911 /* All good, update current len and continue. */
1912 len -= ret_splice;
1913 }
1914
1915 /* This call is useless on a socket so better save a syscall. */
1916 if (!relayd) {
1917 /* This won't block, but will start writeout asynchronously */
1918 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1919 SYNC_FILE_RANGE_WRITE);
1920 stream->out_fd_offset += ret_splice;
1921 }
1922 stream->output_written += ret_splice;
1923 written += ret_splice;
1924 }
1925 if (!relayd) {
1926 lttng_consumer_sync_trace_file(stream, orig_offset);
1927 }
1928 goto end;
1929
1930 write_error:
1931 /*
1932 * This is a special case that the relayd has closed its socket. Let's
1933 * cleanup the relayd object and all associated streams.
1934 */
1935 if (relayd && relayd_hang_up) {
1936 cleanup_relayd(relayd, ctx);
1937 /* Skip splice error so the consumer does not fail */
1938 goto end;
1939 }
1940
1941 splice_error:
1942 /* send the appropriate error description to sessiond */
1943 switch (ret) {
1944 case EINVAL:
1945 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1946 break;
1947 case ENOMEM:
1948 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1949 break;
1950 case ESPIPE:
1951 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1952 break;
1953 }
1954
1955 end:
1956 if (relayd && stream->metadata_flag) {
1957 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1958 }
1959
1960 rcu_read_unlock();
1961 return written;
1962 }
1963
1964 /*
1965 * Take a snapshot for a specific fd
1966 *
1967 * Returns 0 on success, < 0 on error
1968 */
1969 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1970 {
1971 switch (consumer_data.type) {
1972 case LTTNG_CONSUMER_KERNEL:
1973 return lttng_kconsumer_take_snapshot(stream);
1974 case LTTNG_CONSUMER32_UST:
1975 case LTTNG_CONSUMER64_UST:
1976 return lttng_ustconsumer_take_snapshot(stream);
1977 default:
1978 ERR("Unknown consumer_data type");
1979 assert(0);
1980 return -ENOSYS;
1981 }
1982 }
1983
1984 /*
1985 * Get the produced position
1986 *
1987 * Returns 0 on success, < 0 on error
1988 */
1989 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1990 unsigned long *pos)
1991 {
1992 switch (consumer_data.type) {
1993 case LTTNG_CONSUMER_KERNEL:
1994 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1995 case LTTNG_CONSUMER32_UST:
1996 case LTTNG_CONSUMER64_UST:
1997 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1998 default:
1999 ERR("Unknown consumer_data type");
2000 assert(0);
2001 return -ENOSYS;
2002 }
2003 }
2004
2005 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2006 int sock, struct pollfd *consumer_sockpoll)
2007 {
2008 switch (consumer_data.type) {
2009 case LTTNG_CONSUMER_KERNEL:
2010 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2011 case LTTNG_CONSUMER32_UST:
2012 case LTTNG_CONSUMER64_UST:
2013 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2014 default:
2015 ERR("Unknown consumer_data type");
2016 assert(0);
2017 return -ENOSYS;
2018 }
2019 }
2020
2021 void lttng_consumer_close_all_metadata(void)
2022 {
2023 switch (consumer_data.type) {
2024 case LTTNG_CONSUMER_KERNEL:
2025 /*
2026 * The Kernel consumer has a different metadata scheme so we don't
2027 * close anything because the stream will be closed by the session
2028 * daemon.
2029 */
2030 break;
2031 case LTTNG_CONSUMER32_UST:
2032 case LTTNG_CONSUMER64_UST:
2033 /*
2034 * Close all metadata streams. The metadata hash table is passed and
2035 * this call iterates over it by closing all wakeup fd. This is safe
2036 * because at this point we are sure that the metadata producer is
2037 * either dead or blocked.
2038 */
2039 lttng_ustconsumer_close_all_metadata(metadata_ht);
2040 break;
2041 default:
2042 ERR("Unknown consumer_data type");
2043 assert(0);
2044 }
2045 }
2046
2047 /*
2048 * Clean up a metadata stream and free its memory.
2049 */
2050 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2051 struct lttng_ht *ht)
2052 {
2053 struct lttng_consumer_channel *free_chan = NULL;
2054
2055 assert(stream);
2056 /*
2057 * This call should NEVER receive regular stream. It must always be
2058 * metadata stream and this is crucial for data structure synchronization.
2059 */
2060 assert(stream->metadata_flag);
2061
2062 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2063
2064 pthread_mutex_lock(&consumer_data.lock);
2065 pthread_mutex_lock(&stream->chan->lock);
2066 pthread_mutex_lock(&stream->lock);
2067 if (stream->chan->metadata_cache) {
2068 /* Only applicable to userspace consumers. */
2069 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2070 }
2071
2072 /* Remove any reference to that stream. */
2073 consumer_stream_delete(stream, ht);
2074
2075 /* Close down everything including the relayd if one. */
2076 consumer_stream_close(stream);
2077 /* Destroy tracer buffers of the stream. */
2078 consumer_stream_destroy_buffers(stream);
2079
2080 /* Atomically decrement channel refcount since other threads can use it. */
2081 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2082 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2083 /* Go for channel deletion! */
2084 free_chan = stream->chan;
2085 }
2086
2087 /*
2088 * Nullify the stream reference so it is not used after deletion. The
2089 * channel lock MUST be acquired before being able to check for a NULL
2090 * pointer value.
2091 */
2092 stream->chan->metadata_stream = NULL;
2093
2094 if (stream->chan->metadata_cache) {
2095 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2096 }
2097 pthread_mutex_unlock(&stream->lock);
2098 pthread_mutex_unlock(&stream->chan->lock);
2099 pthread_mutex_unlock(&consumer_data.lock);
2100
2101 if (free_chan) {
2102 consumer_del_channel(free_chan);
2103 }
2104
2105 consumer_stream_free(stream);
2106 }
2107
2108 /*
2109 * Action done with the metadata stream when adding it to the consumer internal
2110 * data structures to handle it.
2111 */
2112 void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2113 {
2114 struct lttng_ht *ht = metadata_ht;
2115 struct lttng_ht_iter iter;
2116 struct lttng_ht_node_u64 *node;
2117
2118 assert(stream);
2119 assert(ht);
2120
2121 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2122
2123 pthread_mutex_lock(&consumer_data.lock);
2124 pthread_mutex_lock(&stream->chan->lock);
2125 pthread_mutex_lock(&stream->chan->timer_lock);
2126 pthread_mutex_lock(&stream->lock);
2127
2128 /*
2129 * From here, refcounts are updated so be _careful_ when returning an error
2130 * after this point.
2131 */
2132
2133 rcu_read_lock();
2134
2135 /*
2136 * Lookup the stream just to make sure it does not exist in our internal
2137 * state. This should NEVER happen.
2138 */
2139 lttng_ht_lookup(ht, &stream->key, &iter);
2140 node = lttng_ht_iter_get_node_u64(&iter);
2141 assert(!node);
2142
2143 /*
2144 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2145 * in terms of destroying the associated channel, because the action that
2146 * causes the count to become 0 also causes a stream to be added. The
2147 * channel deletion will thus be triggered by the following removal of this
2148 * stream.
2149 */
2150 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2151 /* Increment refcount before decrementing nb_init_stream_left */
2152 cmm_smp_wmb();
2153 uatomic_dec(&stream->chan->nb_init_stream_left);
2154 }
2155
2156 lttng_ht_add_unique_u64(ht, &stream->node);
2157
2158 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
2159 &stream->node_channel_id);
2160
2161 /*
2162 * Add stream to the stream_list_ht of the consumer data. No need to steal
2163 * the key since the HT does not use it and we allow to add redundant keys
2164 * into this table.
2165 */
2166 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2167
2168 rcu_read_unlock();
2169
2170 pthread_mutex_unlock(&stream->lock);
2171 pthread_mutex_unlock(&stream->chan->lock);
2172 pthread_mutex_unlock(&stream->chan->timer_lock);
2173 pthread_mutex_unlock(&consumer_data.lock);
2174 }
2175
2176 /*
2177 * Delete data stream that are flagged for deletion (endpoint_status).
2178 */
2179 static void validate_endpoint_status_data_stream(void)
2180 {
2181 struct lttng_ht_iter iter;
2182 struct lttng_consumer_stream *stream;
2183
2184 DBG("Consumer delete flagged data stream");
2185
2186 rcu_read_lock();
2187 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2188 /* Validate delete flag of the stream */
2189 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2190 continue;
2191 }
2192 /* Delete it right now */
2193 consumer_del_stream(stream, data_ht);
2194 }
2195 rcu_read_unlock();
2196 }
2197
2198 /*
2199 * Delete metadata stream that are flagged for deletion (endpoint_status).
2200 */
2201 static void validate_endpoint_status_metadata_stream(
2202 struct lttng_poll_event *pollset)
2203 {
2204 struct lttng_ht_iter iter;
2205 struct lttng_consumer_stream *stream;
2206
2207 DBG("Consumer delete flagged metadata stream");
2208
2209 assert(pollset);
2210
2211 rcu_read_lock();
2212 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2213 /* Validate delete flag of the stream */
2214 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2215 continue;
2216 }
2217 /*
2218 * Remove from pollset so the metadata thread can continue without
2219 * blocking on a deleted stream.
2220 */
2221 lttng_poll_del(pollset, stream->wait_fd);
2222
2223 /* Delete it right now */
2224 consumer_del_metadata_stream(stream, metadata_ht);
2225 }
2226 rcu_read_unlock();
2227 }
2228
2229 /*
2230 * Thread polls on metadata file descriptor and write them on disk or on the
2231 * network.
2232 */
2233 void *consumer_thread_metadata_poll(void *data)
2234 {
2235 int ret, i, pollfd, err = -1;
2236 uint32_t revents, nb_fd;
2237 struct lttng_consumer_stream *stream = NULL;
2238 struct lttng_ht_iter iter;
2239 struct lttng_ht_node_u64 *node;
2240 struct lttng_poll_event events;
2241 struct lttng_consumer_local_data *ctx = data;
2242 ssize_t len;
2243
2244 rcu_register_thread();
2245
2246 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2247
2248 if (testpoint(consumerd_thread_metadata)) {
2249 goto error_testpoint;
2250 }
2251
2252 health_code_update();
2253
2254 DBG("Thread metadata poll started");
2255
2256 /* Size is set to 1 for the consumer_metadata pipe */
2257 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2258 if (ret < 0) {
2259 ERR("Poll set creation failed");
2260 goto end_poll;
2261 }
2262
2263 ret = lttng_poll_add(&events,
2264 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2265 if (ret < 0) {
2266 goto end;
2267 }
2268
2269 /* Main loop */
2270 DBG("Metadata main loop started");
2271
2272 while (1) {
2273 restart:
2274 health_code_update();
2275 health_poll_entry();
2276 DBG("Metadata poll wait");
2277 ret = lttng_poll_wait(&events, -1);
2278 DBG("Metadata poll return from wait with %d fd(s)",
2279 LTTNG_POLL_GETNB(&events));
2280 health_poll_exit();
2281 DBG("Metadata event caught in thread");
2282 if (ret < 0) {
2283 if (errno == EINTR) {
2284 ERR("Poll EINTR caught");
2285 goto restart;
2286 }
2287 if (LTTNG_POLL_GETNB(&events) == 0) {
2288 err = 0; /* All is OK */
2289 }
2290 goto end;
2291 }
2292
2293 nb_fd = ret;
2294
2295 /* From here, the event is a metadata wait fd */
2296 for (i = 0; i < nb_fd; i++) {
2297 health_code_update();
2298
2299 revents = LTTNG_POLL_GETEV(&events, i);
2300 pollfd = LTTNG_POLL_GETFD(&events, i);
2301
2302 if (!revents) {
2303 /* No activity for this FD (poll implementation). */
2304 continue;
2305 }
2306
2307 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2308 if (revents & LPOLLIN) {
2309 ssize_t pipe_len;
2310
2311 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2312 &stream, sizeof(stream));
2313 if (pipe_len < sizeof(stream)) {
2314 if (pipe_len < 0) {
2315 PERROR("read metadata stream");
2316 }
2317 /*
2318 * Remove the pipe from the poll set and continue the loop
2319 * since their might be data to consume.
2320 */
2321 lttng_poll_del(&events,
2322 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2323 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2324 continue;
2325 }
2326
2327 /* A NULL stream means that the state has changed. */
2328 if (stream == NULL) {
2329 /* Check for deleted streams. */
2330 validate_endpoint_status_metadata_stream(&events);
2331 goto restart;
2332 }
2333
2334 DBG("Adding metadata stream %d to poll set",
2335 stream->wait_fd);
2336
2337 /* Add metadata stream to the global poll events list */
2338 lttng_poll_add(&events, stream->wait_fd,
2339 LPOLLIN | LPOLLPRI | LPOLLHUP);
2340 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2341 DBG("Metadata thread pipe hung up");
2342 /*
2343 * Remove the pipe from the poll set and continue the loop
2344 * since their might be data to consume.
2345 */
2346 lttng_poll_del(&events,
2347 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2348 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2349 continue;
2350 } else {
2351 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2352 goto end;
2353 }
2354
2355 /* Handle other stream */
2356 continue;
2357 }
2358
2359 rcu_read_lock();
2360 {
2361 uint64_t tmp_id = (uint64_t) pollfd;
2362
2363 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2364 }
2365 node = lttng_ht_iter_get_node_u64(&iter);
2366 assert(node);
2367
2368 stream = caa_container_of(node, struct lttng_consumer_stream,
2369 node);
2370
2371 if (revents & (LPOLLIN | LPOLLPRI)) {
2372 /* Get the data out of the metadata file descriptor */
2373 DBG("Metadata available on fd %d", pollfd);
2374 assert(stream->wait_fd == pollfd);
2375
2376 do {
2377 health_code_update();
2378
2379 len = ctx->on_buffer_ready(stream, ctx);
2380 /*
2381 * We don't check the return value here since if we get
2382 * a negative len, it means an error occurred thus we
2383 * simply remove it from the poll set and free the
2384 * stream.
2385 */
2386 } while (len > 0);
2387
2388 /* It's ok to have an unavailable sub-buffer */
2389 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2390 /* Clean up stream from consumer and free it. */
2391 lttng_poll_del(&events, stream->wait_fd);
2392 consumer_del_metadata_stream(stream, metadata_ht);
2393 }
2394 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2395 DBG("Metadata fd %d is hup|err.", pollfd);
2396 if (!stream->hangup_flush_done
2397 && (consumer_data.type == LTTNG_CONSUMER32_UST
2398 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2399 DBG("Attempting to flush and consume the UST buffers");
2400 lttng_ustconsumer_on_stream_hangup(stream);
2401
2402 /* We just flushed the stream now read it. */
2403 do {
2404 health_code_update();
2405
2406 len = ctx->on_buffer_ready(stream, ctx);
2407 /*
2408 * We don't check the return value here since if we get
2409 * a negative len, it means an error occurred thus we
2410 * simply remove it from the poll set and free the
2411 * stream.
2412 */
2413 } while (len > 0);
2414 }
2415
2416 lttng_poll_del(&events, stream->wait_fd);
2417 /*
2418 * This call update the channel states, closes file descriptors
2419 * and securely free the stream.
2420 */
2421 consumer_del_metadata_stream(stream, metadata_ht);
2422 } else {
2423 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2424 rcu_read_unlock();
2425 goto end;
2426 }
2427 /* Release RCU lock for the stream looked up */
2428 rcu_read_unlock();
2429 }
2430 }
2431
2432 /* All is OK */
2433 err = 0;
2434 end:
2435 DBG("Metadata poll thread exiting");
2436
2437 lttng_poll_clean(&events);
2438 end_poll:
2439 error_testpoint:
2440 if (err) {
2441 health_error();
2442 ERR("Health error occurred in %s", __func__);
2443 }
2444 health_unregister(health_consumerd);
2445 rcu_unregister_thread();
2446 return NULL;
2447 }
2448
2449 /*
2450 * This thread polls the fds in the set to consume the data and write
2451 * it to tracefile if necessary.
2452 */
2453 void *consumer_thread_data_poll(void *data)
2454 {
2455 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2456 struct pollfd *pollfd = NULL;
2457 /* local view of the streams */
2458 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2459 /* local view of consumer_data.fds_count */
2460 int nb_fd = 0;
2461 /* Number of FDs with CONSUMER_ENDPOINT_INACTIVE but still open. */
2462 int nb_inactive_fd = 0;
2463 struct lttng_consumer_local_data *ctx = data;
2464 ssize_t len;
2465
2466 rcu_register_thread();
2467
2468 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2469
2470 if (testpoint(consumerd_thread_data)) {
2471 goto error_testpoint;
2472 }
2473
2474 health_code_update();
2475
2476 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2477 if (local_stream == NULL) {
2478 PERROR("local_stream malloc");
2479 goto end;
2480 }
2481
2482 while (1) {
2483 health_code_update();
2484
2485 high_prio = 0;
2486 num_hup = 0;
2487
2488 /*
2489 * the fds set has been updated, we need to update our
2490 * local array as well
2491 */
2492 pthread_mutex_lock(&consumer_data.lock);
2493 if (consumer_data.need_update) {
2494 free(pollfd);
2495 pollfd = NULL;
2496
2497 free(local_stream);
2498 local_stream = NULL;
2499
2500 /*
2501 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2502 * wake up pipe.
2503 */
2504 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2505 if (pollfd == NULL) {
2506 PERROR("pollfd malloc");
2507 pthread_mutex_unlock(&consumer_data.lock);
2508 goto end;
2509 }
2510
2511 local_stream = zmalloc((consumer_data.stream_count + 2) *
2512 sizeof(struct lttng_consumer_stream *));
2513 if (local_stream == NULL) {
2514 PERROR("local_stream malloc");
2515 pthread_mutex_unlock(&consumer_data.lock);
2516 goto end;
2517 }
2518 ret = update_poll_array(ctx, &pollfd, local_stream,
2519 data_ht, &nb_inactive_fd);
2520 if (ret < 0) {
2521 ERR("Error in allocating pollfd or local_outfds");
2522 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2523 pthread_mutex_unlock(&consumer_data.lock);
2524 goto end;
2525 }
2526 nb_fd = ret;
2527 consumer_data.need_update = 0;
2528 }
2529 pthread_mutex_unlock(&consumer_data.lock);
2530
2531 /* No FDs and consumer_quit, consumer_cleanup the thread */
2532 if (nb_fd == 0 && nb_inactive_fd == 0 &&
2533 CMM_LOAD_SHARED(consumer_quit) == 1) {
2534 err = 0; /* All is OK */
2535 goto end;
2536 }
2537 /* poll on the array of fds */
2538 restart:
2539 DBG("polling on %d fd", nb_fd + 2);
2540 if (testpoint(consumerd_thread_data_poll)) {
2541 goto end;
2542 }
2543 health_poll_entry();
2544 num_rdy = poll(pollfd, nb_fd + 2, -1);
2545 health_poll_exit();
2546 DBG("poll num_rdy : %d", num_rdy);
2547 if (num_rdy == -1) {
2548 /*
2549 * Restart interrupted system call.
2550 */
2551 if (errno == EINTR) {
2552 goto restart;
2553 }
2554 PERROR("Poll error");
2555 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2556 goto end;
2557 } else if (num_rdy == 0) {
2558 DBG("Polling thread timed out");
2559 goto end;
2560 }
2561
2562 if (caa_unlikely(data_consumption_paused)) {
2563 DBG("Data consumption paused, sleeping...");
2564 sleep(1);
2565 goto restart;
2566 }
2567
2568 /*
2569 * If the consumer_data_pipe triggered poll go directly to the
2570 * beginning of the loop to update the array. We want to prioritize
2571 * array update over low-priority reads.
2572 */
2573 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2574 ssize_t pipe_readlen;
2575
2576 DBG("consumer_data_pipe wake up");
2577 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2578 &new_stream, sizeof(new_stream));
2579 if (pipe_readlen < sizeof(new_stream)) {
2580 PERROR("Consumer data pipe");
2581 /* Continue so we can at least handle the current stream(s). */
2582 continue;
2583 }
2584
2585 /*
2586 * If the stream is NULL, just ignore it. It's also possible that
2587 * the sessiond poll thread changed the consumer_quit state and is
2588 * waking us up to test it.
2589 */
2590 if (new_stream == NULL) {
2591 validate_endpoint_status_data_stream();
2592 continue;
2593 }
2594
2595 /* Continue to update the local streams and handle prio ones */
2596 continue;
2597 }
2598
2599 /* Handle wakeup pipe. */
2600 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2601 char dummy;
2602 ssize_t pipe_readlen;
2603
2604 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2605 sizeof(dummy));
2606 if (pipe_readlen < 0) {
2607 PERROR("Consumer data wakeup pipe");
2608 }
2609 /* We've been awakened to handle stream(s). */
2610 ctx->has_wakeup = 0;
2611 }
2612
2613 /* Take care of high priority channels first. */
2614 for (i = 0; i < nb_fd; i++) {
2615 health_code_update();
2616
2617 if (local_stream[i] == NULL) {
2618 continue;
2619 }
2620 if (pollfd[i].revents & POLLPRI) {
2621 DBG("Urgent read on fd %d", pollfd[i].fd);
2622 high_prio = 1;
2623 len = ctx->on_buffer_ready(local_stream[i], ctx);
2624 /* it's ok to have an unavailable sub-buffer */
2625 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2626 /* Clean the stream and free it. */
2627 consumer_del_stream(local_stream[i], data_ht);
2628 local_stream[i] = NULL;
2629 } else if (len > 0) {
2630 local_stream[i]->data_read = 1;
2631 }
2632 }
2633 }
2634
2635 /*
2636 * If we read high prio channel in this loop, try again
2637 * for more high prio data.
2638 */
2639 if (high_prio) {
2640 continue;
2641 }
2642
2643 /* Take care of low priority channels. */
2644 for (i = 0; i < nb_fd; i++) {
2645 health_code_update();
2646
2647 if (local_stream[i] == NULL) {
2648 continue;
2649 }
2650 if ((pollfd[i].revents & POLLIN) ||
2651 local_stream[i]->hangup_flush_done ||
2652 local_stream[i]->has_data) {
2653 DBG("Normal read on fd %d", pollfd[i].fd);
2654 len = ctx->on_buffer_ready(local_stream[i], ctx);
2655 /* it's ok to have an unavailable sub-buffer */
2656 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2657 /* Clean the stream and free it. */
2658 consumer_del_stream(local_stream[i], data_ht);
2659 local_stream[i] = NULL;
2660 } else if (len > 0) {
2661 local_stream[i]->data_read = 1;
2662 }
2663 }
2664 }
2665
2666 /* Handle hangup and errors */
2667 for (i = 0; i < nb_fd; i++) {
2668 health_code_update();
2669
2670 if (local_stream[i] == NULL) {
2671 continue;
2672 }
2673 if (!local_stream[i]->hangup_flush_done
2674 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2675 && (consumer_data.type == LTTNG_CONSUMER32_UST
2676 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2677 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2678 pollfd[i].fd);
2679 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2680 /* Attempt read again, for the data we just flushed. */
2681 local_stream[i]->data_read = 1;
2682 }
2683 /*
2684 * If the poll flag is HUP/ERR/NVAL and we have
2685 * read no data in this pass, we can remove the
2686 * stream from its hash table.
2687 */
2688 if ((pollfd[i].revents & POLLHUP)) {
2689 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2690 if (!local_stream[i]->data_read) {
2691 consumer_del_stream(local_stream[i], data_ht);
2692 local_stream[i] = NULL;
2693 num_hup++;
2694 }
2695 } else if (pollfd[i].revents & POLLERR) {
2696 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2697 if (!local_stream[i]->data_read) {
2698 consumer_del_stream(local_stream[i], data_ht);
2699 local_stream[i] = NULL;
2700 num_hup++;
2701 }
2702 } else if (pollfd[i].revents & POLLNVAL) {
2703 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2704 if (!local_stream[i]->data_read) {
2705 consumer_del_stream(local_stream[i], data_ht);
2706 local_stream[i] = NULL;
2707 num_hup++;
2708 }
2709 }
2710 if (local_stream[i] != NULL) {
2711 local_stream[i]->data_read = 0;
2712 }
2713 }
2714 }
2715 /* All is OK */
2716 err = 0;
2717 end:
2718 DBG("polling thread exiting");
2719 free(pollfd);
2720 free(local_stream);
2721
2722 /*
2723 * Close the write side of the pipe so epoll_wait() in
2724 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2725 * read side of the pipe. If we close them both, epoll_wait strangely does
2726 * not return and could create a endless wait period if the pipe is the
2727 * only tracked fd in the poll set. The thread will take care of closing
2728 * the read side.
2729 */
2730 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2731
2732 error_testpoint:
2733 if (err) {
2734 health_error();
2735 ERR("Health error occurred in %s", __func__);
2736 }
2737 health_unregister(health_consumerd);
2738
2739 rcu_unregister_thread();
2740 return NULL;
2741 }
2742
2743 /*
2744 * Close wake-up end of each stream belonging to the channel. This will
2745 * allow the poll() on the stream read-side to detect when the
2746 * write-side (application) finally closes them.
2747 */
2748 static
2749 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2750 {
2751 struct lttng_ht *ht;
2752 struct lttng_consumer_stream *stream;
2753 struct lttng_ht_iter iter;
2754
2755 ht = consumer_data.stream_per_chan_id_ht;
2756
2757 rcu_read_lock();
2758 cds_lfht_for_each_entry_duplicate(ht->ht,
2759 ht->hash_fct(&channel->key, lttng_ht_seed),
2760 ht->match_fct, &channel->key,
2761 &iter.iter, stream, node_channel_id.node) {
2762 /*
2763 * Protect against teardown with mutex.
2764 */
2765 pthread_mutex_lock(&stream->lock);
2766 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2767 goto next;
2768 }
2769 switch (consumer_data.type) {
2770 case LTTNG_CONSUMER_KERNEL:
2771 break;
2772 case LTTNG_CONSUMER32_UST:
2773 case LTTNG_CONSUMER64_UST:
2774 if (stream->metadata_flag) {
2775 /* Safe and protected by the stream lock. */
2776 lttng_ustconsumer_close_metadata(stream->chan);
2777 } else {
2778 /*
2779 * Note: a mutex is taken internally within
2780 * liblttng-ust-ctl to protect timer wakeup_fd
2781 * use from concurrent close.
2782 */
2783 lttng_ustconsumer_close_stream_wakeup(stream);
2784 }
2785 break;
2786 default:
2787 ERR("Unknown consumer_data type");
2788 assert(0);
2789 }
2790 next:
2791 pthread_mutex_unlock(&stream->lock);
2792 }
2793 rcu_read_unlock();
2794 }
2795
2796 static void destroy_channel_ht(struct lttng_ht *ht)
2797 {
2798 struct lttng_ht_iter iter;
2799 struct lttng_consumer_channel *channel;
2800 int ret;
2801
2802 if (ht == NULL) {
2803 return;
2804 }
2805
2806 rcu_read_lock();
2807 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2808 ret = lttng_ht_del(ht, &iter);
2809 assert(ret != 0);
2810 }
2811 rcu_read_unlock();
2812
2813 lttng_ht_destroy(ht);
2814 }
2815
2816 /*
2817 * This thread polls the channel fds to detect when they are being
2818 * closed. It closes all related streams if the channel is detected as
2819 * closed. It is currently only used as a shim layer for UST because the
2820 * consumerd needs to keep the per-stream wakeup end of pipes open for
2821 * periodical flush.
2822 */
2823 void *consumer_thread_channel_poll(void *data)
2824 {
2825 int ret, i, pollfd, err = -1;
2826 uint32_t revents, nb_fd;
2827 struct lttng_consumer_channel *chan = NULL;
2828 struct lttng_ht_iter iter;
2829 struct lttng_ht_node_u64 *node;
2830 struct lttng_poll_event events;
2831 struct lttng_consumer_local_data *ctx = data;
2832 struct lttng_ht *channel_ht;
2833
2834 rcu_register_thread();
2835
2836 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2837
2838 if (testpoint(consumerd_thread_channel)) {
2839 goto error_testpoint;
2840 }
2841
2842 health_code_update();
2843
2844 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2845 if (!channel_ht) {
2846 /* ENOMEM at this point. Better to bail out. */
2847 goto end_ht;
2848 }
2849
2850 DBG("Thread channel poll started");
2851
2852 /* Size is set to 1 for the consumer_channel pipe */
2853 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2854 if (ret < 0) {
2855 ERR("Poll set creation failed");
2856 goto end_poll;
2857 }
2858
2859 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2860 if (ret < 0) {
2861 goto end;
2862 }
2863
2864 /* Main loop */
2865 DBG("Channel main loop started");
2866
2867 while (1) {
2868 restart:
2869 health_code_update();
2870 DBG("Channel poll wait");
2871 health_poll_entry();
2872 ret = lttng_poll_wait(&events, -1);
2873 DBG("Channel poll return from wait with %d fd(s)",
2874 LTTNG_POLL_GETNB(&events));
2875 health_poll_exit();
2876 DBG("Channel event caught in thread");
2877 if (ret < 0) {
2878 if (errno == EINTR) {
2879 ERR("Poll EINTR caught");
2880 goto restart;
2881 }
2882 if (LTTNG_POLL_GETNB(&events) == 0) {
2883 err = 0; /* All is OK */
2884 }
2885 goto end;
2886 }
2887
2888 nb_fd = ret;
2889
2890 /* From here, the event is a channel wait fd */
2891 for (i = 0; i < nb_fd; i++) {
2892 health_code_update();
2893
2894 revents = LTTNG_POLL_GETEV(&events, i);
2895 pollfd = LTTNG_POLL_GETFD(&events, i);
2896
2897 if (!revents) {
2898 /* No activity for this FD (poll implementation). */
2899 continue;
2900 }
2901
2902 if (pollfd == ctx->consumer_channel_pipe[0]) {
2903 if (revents & LPOLLIN) {
2904 enum consumer_channel_action action;
2905 uint64_t key;
2906
2907 ret = read_channel_pipe(ctx, &chan, &key, &action);
2908 if (ret <= 0) {
2909 if (ret < 0) {
2910 ERR("Error reading channel pipe");
2911 }
2912 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2913 continue;
2914 }
2915
2916 switch (action) {
2917 case CONSUMER_CHANNEL_ADD:
2918 DBG("Adding channel %d to poll set",
2919 chan->wait_fd);
2920
2921 lttng_ht_node_init_u64(&chan->wait_fd_node,
2922 chan->wait_fd);
2923 rcu_read_lock();
2924 lttng_ht_add_unique_u64(channel_ht,
2925 &chan->wait_fd_node);
2926 rcu_read_unlock();
2927 /* Add channel to the global poll events list */
2928 lttng_poll_add(&events, chan->wait_fd,
2929 LPOLLERR | LPOLLHUP);
2930 break;
2931 case CONSUMER_CHANNEL_DEL:
2932 {
2933 /*
2934 * This command should never be called if the channel
2935 * has streams monitored by either the data or metadata
2936 * thread. The consumer only notify this thread with a
2937 * channel del. command if it receives a destroy
2938 * channel command from the session daemon that send it
2939 * if a command prior to the GET_CHANNEL failed.
2940 */
2941
2942 rcu_read_lock();
2943 chan = consumer_find_channel(key);
2944 if (!chan) {
2945 rcu_read_unlock();
2946 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2947 break;
2948 }
2949 lttng_poll_del(&events, chan->wait_fd);
2950 iter.iter.node = &chan->wait_fd_node.node;
2951 ret = lttng_ht_del(channel_ht, &iter);
2952 assert(ret == 0);
2953
2954 switch (consumer_data.type) {
2955 case LTTNG_CONSUMER_KERNEL:
2956 break;
2957 case LTTNG_CONSUMER32_UST:
2958 case LTTNG_CONSUMER64_UST:
2959 health_code_update();
2960 /* Destroy streams that might have been left in the stream list. */
2961 clean_channel_stream_list(chan);
2962 break;
2963 default:
2964 ERR("Unknown consumer_data type");
2965 assert(0);
2966 }
2967
2968 /*
2969 * Release our own refcount. Force channel deletion even if
2970 * streams were not initialized.
2971 */
2972 if (!uatomic_sub_return(&chan->refcount, 1)) {
2973 consumer_del_channel(chan);
2974 }
2975 rcu_read_unlock();
2976 goto restart;
2977 }
2978 case CONSUMER_CHANNEL_QUIT:
2979 /*
2980 * Remove the pipe from the poll set and continue the loop
2981 * since their might be data to consume.
2982 */
2983 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2984 continue;
2985 default:
2986 ERR("Unknown action");
2987 break;
2988 }
2989 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2990 DBG("Channel thread pipe hung up");
2991 /*
2992 * Remove the pipe from the poll set and continue the loop
2993 * since their might be data to consume.
2994 */
2995 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2996 continue;
2997 } else {
2998 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2999 goto end;
3000 }
3001
3002 /* Handle other stream */
3003 continue;
3004 }
3005
3006 rcu_read_lock();
3007 {
3008 uint64_t tmp_id = (uint64_t) pollfd;
3009
3010 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3011 }
3012 node = lttng_ht_iter_get_node_u64(&iter);
3013 assert(node);
3014
3015 chan = caa_container_of(node, struct lttng_consumer_channel,
3016 wait_fd_node);
3017
3018 /* Check for error event */
3019 if (revents & (LPOLLERR | LPOLLHUP)) {
3020 DBG("Channel fd %d is hup|err.", pollfd);
3021
3022 lttng_poll_del(&events, chan->wait_fd);
3023 ret = lttng_ht_del(channel_ht, &iter);
3024 assert(ret == 0);
3025
3026 /*
3027 * This will close the wait fd for each stream associated to
3028 * this channel AND monitored by the data/metadata thread thus
3029 * will be clean by the right thread.
3030 */
3031 consumer_close_channel_streams(chan);
3032
3033 /* Release our own refcount */
3034 if (!uatomic_sub_return(&chan->refcount, 1)
3035 && !uatomic_read(&chan->nb_init_stream_left)) {
3036 consumer_del_channel(chan);
3037 }
3038 } else {
3039 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3040 rcu_read_unlock();
3041 goto end;
3042 }
3043
3044 /* Release RCU lock for the channel looked up */
3045 rcu_read_unlock();
3046 }
3047 }
3048
3049 /* All is OK */
3050 err = 0;
3051 end:
3052 lttng_poll_clean(&events);
3053 end_poll:
3054 destroy_channel_ht(channel_ht);
3055 end_ht:
3056 error_testpoint:
3057 DBG("Channel poll thread exiting");
3058 if (err) {
3059 health_error();
3060 ERR("Health error occurred in %s", __func__);
3061 }
3062 health_unregister(health_consumerd);
3063 rcu_unregister_thread();
3064 return NULL;
3065 }
3066
3067 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3068 struct pollfd *sockpoll, int client_socket)
3069 {
3070 int ret;
3071
3072 assert(ctx);
3073 assert(sockpoll);
3074
3075 ret = lttng_consumer_poll_socket(sockpoll);
3076 if (ret) {
3077 goto error;
3078 }
3079 DBG("Metadata connection on client_socket");
3080
3081 /* Blocking call, waiting for transmission */
3082 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3083 if (ctx->consumer_metadata_socket < 0) {
3084 WARN("On accept metadata");
3085 ret = -1;
3086 goto error;
3087 }
3088 ret = 0;
3089
3090 error:
3091 return ret;
3092 }
3093
3094 /*
3095 * This thread listens on the consumerd socket and receives the file
3096 * descriptors from the session daemon.
3097 */
3098 void *consumer_thread_sessiond_poll(void *data)
3099 {
3100 int sock = -1, client_socket, ret, err = -1;
3101 /*
3102 * structure to poll for incoming data on communication socket avoids
3103 * making blocking sockets.
3104 */
3105 struct pollfd consumer_sockpoll[2];
3106 struct lttng_consumer_local_data *ctx = data;
3107
3108 rcu_register_thread();
3109
3110 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3111
3112 if (testpoint(consumerd_thread_sessiond)) {
3113 goto error_testpoint;
3114 }
3115
3116 health_code_update();
3117
3118 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3119 unlink(ctx->consumer_command_sock_path);
3120 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3121 if (client_socket < 0) {
3122 ERR("Cannot create command socket");
3123 goto end;
3124 }
3125
3126 ret = lttcomm_listen_unix_sock(client_socket);
3127 if (ret < 0) {
3128 goto end;
3129 }
3130
3131 DBG("Sending ready command to lttng-sessiond");
3132 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3133 /* return < 0 on error, but == 0 is not fatal */
3134 if (ret < 0) {
3135 ERR("Error sending ready command to lttng-sessiond");
3136 goto end;
3137 }
3138
3139 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3140 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3141 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3142 consumer_sockpoll[1].fd = client_socket;
3143 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3144
3145 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3146 if (ret) {
3147 if (ret > 0) {
3148 /* should exit */
3149 err = 0;
3150 }
3151 goto end;
3152 }
3153 DBG("Connection on client_socket");
3154
3155 /* Blocking call, waiting for transmission */
3156 sock = lttcomm_accept_unix_sock(client_socket);
3157 if (sock < 0) {
3158 WARN("On accept");
3159 goto end;
3160 }
3161
3162 /*
3163 * Setup metadata socket which is the second socket connection on the
3164 * command unix socket.
3165 */
3166 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3167 if (ret) {
3168 if (ret > 0) {
3169 /* should exit */
3170 err = 0;
3171 }
3172 goto end;
3173 }
3174
3175 /* This socket is not useful anymore. */
3176 ret = close(client_socket);
3177 if (ret < 0) {
3178 PERROR("close client_socket");
3179 }
3180 client_socket = -1;
3181
3182 /* update the polling structure to poll on the established socket */
3183 consumer_sockpoll[1].fd = sock;
3184 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3185
3186 while (1) {
3187 health_code_update();
3188
3189 health_poll_entry();
3190 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3191 health_poll_exit();
3192 if (ret) {
3193 if (ret > 0) {
3194 /* should exit */
3195 err = 0;
3196 }
3197 goto end;
3198 }
3199 DBG("Incoming command on sock");
3200 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3201 if (ret <= 0) {
3202 /*
3203 * This could simply be a session daemon quitting. Don't output
3204 * ERR() here.
3205 */
3206 DBG("Communication interrupted on command socket");
3207 err = 0;
3208 goto end;
3209 }
3210 if (CMM_LOAD_SHARED(consumer_quit)) {
3211 DBG("consumer_thread_receive_fds received quit from signal");
3212 err = 0; /* All is OK */
3213 goto end;
3214 }
3215 DBG("received command on sock");
3216 }
3217 /* All is OK */
3218 err = 0;
3219
3220 end:
3221 DBG("Consumer thread sessiond poll exiting");
3222
3223 /*
3224 * Close metadata streams since the producer is the session daemon which
3225 * just died.
3226 *
3227 * NOTE: for now, this only applies to the UST tracer.
3228 */
3229 lttng_consumer_close_all_metadata();
3230
3231 /*
3232 * when all fds have hung up, the polling thread
3233 * can exit cleanly
3234 */
3235 CMM_STORE_SHARED(consumer_quit, 1);
3236
3237 /*
3238 * Notify the data poll thread to poll back again and test the
3239 * consumer_quit state that we just set so to quit gracefully.
3240 */
3241 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3242
3243 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3244
3245 notify_health_quit_pipe(health_quit_pipe);
3246
3247 /* Cleaning up possibly open sockets. */
3248 if (sock >= 0) {
3249 ret = close(sock);
3250 if (ret < 0) {
3251 PERROR("close sock sessiond poll");
3252 }
3253 }
3254 if (client_socket >= 0) {
3255 ret = close(client_socket);
3256 if (ret < 0) {
3257 PERROR("close client_socket sessiond poll");
3258 }
3259 }
3260
3261 error_testpoint:
3262 if (err) {
3263 health_error();
3264 ERR("Health error occurred in %s", __func__);
3265 }
3266 health_unregister(health_consumerd);
3267
3268 rcu_unregister_thread();
3269 return NULL;
3270 }
3271
3272 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3273 struct lttng_consumer_local_data *ctx)
3274 {
3275 ssize_t ret;
3276
3277 pthread_mutex_lock(&stream->lock);
3278 if (stream->metadata_flag) {
3279 pthread_mutex_lock(&stream->metadata_rdv_lock);
3280 }
3281
3282 switch (consumer_data.type) {
3283 case LTTNG_CONSUMER_KERNEL:
3284 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3285 break;
3286 case LTTNG_CONSUMER32_UST:
3287 case LTTNG_CONSUMER64_UST:
3288 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3289 break;
3290 default:
3291 ERR("Unknown consumer_data type");
3292 assert(0);
3293 ret = -ENOSYS;
3294 break;
3295 }
3296
3297 if (stream->metadata_flag) {
3298 pthread_cond_broadcast(&stream->metadata_rdv);
3299 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3300 }
3301 pthread_mutex_unlock(&stream->lock);
3302 return ret;
3303 }
3304
3305 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3306 {
3307 switch (consumer_data.type) {
3308 case LTTNG_CONSUMER_KERNEL:
3309 return lttng_kconsumer_on_recv_stream(stream);
3310 case LTTNG_CONSUMER32_UST:
3311 case LTTNG_CONSUMER64_UST:
3312 return lttng_ustconsumer_on_recv_stream(stream);
3313 default:
3314 ERR("Unknown consumer_data type");
3315 assert(0);
3316 return -ENOSYS;
3317 }
3318 }
3319
3320 /*
3321 * Allocate and set consumer data hash tables.
3322 */
3323 int lttng_consumer_init(void)
3324 {
3325 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3326 if (!consumer_data.channel_ht) {
3327 goto error;
3328 }
3329
3330 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3331 if (!consumer_data.relayd_ht) {
3332 goto error;
3333 }
3334
3335 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3336 if (!consumer_data.stream_list_ht) {
3337 goto error;
3338 }
3339
3340 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3341 if (!consumer_data.stream_per_chan_id_ht) {
3342 goto error;
3343 }
3344
3345 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3346 if (!data_ht) {
3347 goto error;
3348 }
3349
3350 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3351 if (!metadata_ht) {
3352 goto error;
3353 }
3354
3355 return 0;
3356
3357 error:
3358 return -1;
3359 }
3360
3361 /*
3362 * Process the ADD_RELAYD command receive by a consumer.
3363 *
3364 * This will create a relayd socket pair and add it to the relayd hash table.
3365 * The caller MUST acquire a RCU read side lock before calling it.
3366 */
3367 void consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3368 struct lttng_consumer_local_data *ctx, int sock,
3369 struct pollfd *consumer_sockpoll,
3370 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3371 uint64_t relayd_session_id)
3372 {
3373 int fd = -1, ret = -1, relayd_created = 0;
3374 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3375 struct consumer_relayd_sock_pair *relayd = NULL;
3376
3377 assert(ctx);
3378 assert(relayd_sock);
3379
3380 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3381
3382 /* Get relayd reference if exists. */
3383 relayd = consumer_find_relayd(net_seq_idx);
3384 if (relayd == NULL) {
3385 assert(sock_type == LTTNG_STREAM_CONTROL);
3386 /* Not found. Allocate one. */
3387 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3388 if (relayd == NULL) {
3389 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3390 goto error;
3391 } else {
3392 relayd->sessiond_session_id = sessiond_id;
3393 relayd_created = 1;
3394 }
3395
3396 /*
3397 * This code path MUST continue to the consumer send status message to
3398 * we can notify the session daemon and continue our work without
3399 * killing everything.
3400 */
3401 } else {
3402 /*
3403 * relayd key should never be found for control socket.
3404 */
3405 assert(sock_type != LTTNG_STREAM_CONTROL);
3406 }
3407
3408 /* First send a status message before receiving the fds. */
3409 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3410 if (ret < 0) {
3411 /* Somehow, the session daemon is not responding anymore. */
3412 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3413 goto error_nosignal;
3414 }
3415
3416 /* Poll on consumer socket. */
3417 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3418 if (ret) {
3419 /* Needing to exit in the middle of a command: error. */
3420 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3421 goto error_nosignal;
3422 }
3423
3424 /* Get relayd socket from session daemon */
3425 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3426 if (ret != sizeof(fd)) {
3427 fd = -1; /* Just in case it gets set with an invalid value. */
3428
3429 /*
3430 * Failing to receive FDs might indicate a major problem such as
3431 * reaching a fd limit during the receive where the kernel returns a
3432 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3433 * don't take any chances and stop everything.
3434 *
3435 * XXX: Feature request #558 will fix that and avoid this possible
3436 * issue when reaching the fd limit.
3437 */
3438 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3439 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3440 goto error;
3441 }
3442
3443 /* Copy socket information and received FD */
3444 switch (sock_type) {
3445 case LTTNG_STREAM_CONTROL:
3446 /* Copy received lttcomm socket */
3447 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3448 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3449 /* Handle create_sock error. */
3450 if (ret < 0) {
3451 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3452 goto error;
3453 }
3454 /*
3455 * Close the socket created internally by
3456 * lttcomm_create_sock, so we can replace it by the one
3457 * received from sessiond.
3458 */
3459 if (close(relayd->control_sock.sock.fd)) {
3460 PERROR("close");
3461 }
3462
3463 /* Assign new file descriptor */
3464 relayd->control_sock.sock.fd = fd;
3465 fd = -1; /* For error path */
3466 /* Assign version values. */
3467 relayd->control_sock.major = relayd_sock->major;
3468 relayd->control_sock.minor = relayd_sock->minor;
3469
3470 relayd->relayd_session_id = relayd_session_id;
3471
3472 break;
3473 case LTTNG_STREAM_DATA:
3474 /* Copy received lttcomm socket */
3475 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3476 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3477 /* Handle create_sock error. */
3478 if (ret < 0) {
3479 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3480 goto error;
3481 }
3482 /*
3483 * Close the socket created internally by
3484 * lttcomm_create_sock, so we can replace it by the one
3485 * received from sessiond.
3486 */
3487 if (close(relayd->data_sock.sock.fd)) {
3488 PERROR("close");
3489 }
3490
3491 /* Assign new file descriptor */
3492 relayd->data_sock.sock.fd = fd;
3493 fd = -1; /* for eventual error paths */
3494 /* Assign version values. */
3495 relayd->data_sock.major = relayd_sock->major;
3496 relayd->data_sock.minor = relayd_sock->minor;
3497 break;
3498 default:
3499 ERR("Unknown relayd socket type (%d)", sock_type);
3500 ret_code = LTTCOMM_CONSUMERD_FATAL;
3501 goto error;
3502 }
3503
3504 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3505 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3506 relayd->net_seq_idx, fd);
3507
3508 /* We successfully added the socket. Send status back. */
3509 ret = consumer_send_status_msg(sock, ret_code);
3510 if (ret < 0) {
3511 /* Somehow, the session daemon is not responding anymore. */
3512 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3513 goto error_nosignal;
3514 }
3515
3516 /*
3517 * Add relayd socket pair to consumer data hashtable. If object already
3518 * exists or on error, the function gracefully returns.
3519 */
3520 add_relayd(relayd);
3521
3522 /* All good! */
3523 return;
3524
3525 error:
3526 if (consumer_send_status_msg(sock, ret_code) < 0) {
3527 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3528 }
3529
3530 error_nosignal:
3531 /* Close received socket if valid. */
3532 if (fd >= 0) {
3533 if (close(fd)) {
3534 PERROR("close received socket");
3535 }
3536 }
3537
3538 if (relayd_created) {
3539 free(relayd);
3540 }
3541 }
3542
3543 /*
3544 * Try to lock the stream mutex.
3545 *
3546 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3547 */
3548 static int stream_try_lock(struct lttng_consumer_stream *stream)
3549 {
3550 int ret;
3551
3552 assert(stream);
3553
3554 /*
3555 * Try to lock the stream mutex. On failure, we know that the stream is
3556 * being used else where hence there is data still being extracted.
3557 */
3558 ret = pthread_mutex_trylock(&stream->lock);
3559 if (ret) {
3560 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3561 ret = 0;
3562 goto end;
3563 }
3564
3565 ret = 1;
3566
3567 end:
3568 return ret;
3569 }
3570
3571 /*
3572 * Search for a relayd associated to the session id and return the reference.
3573 *
3574 * A rcu read side lock MUST be acquire before calling this function and locked
3575 * until the relayd object is no longer necessary.
3576 */
3577 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3578 {
3579 struct lttng_ht_iter iter;
3580 struct consumer_relayd_sock_pair *relayd = NULL;
3581
3582 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3583 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3584 node.node) {
3585 /*
3586 * Check by sessiond id which is unique here where the relayd session
3587 * id might not be when having multiple relayd.
3588 */
3589 if (relayd->sessiond_session_id == id) {
3590 /* Found the relayd. There can be only one per id. */
3591 goto found;
3592 }
3593 }
3594
3595 return NULL;
3596
3597 found:
3598 return relayd;
3599 }
3600
3601 /*
3602 * Check if for a given session id there is still data needed to be extract
3603 * from the buffers.
3604 *
3605 * Return 1 if data is pending or else 0 meaning ready to be read.
3606 */
3607 int consumer_data_pending(uint64_t id)
3608 {
3609 int ret;
3610 struct lttng_ht_iter iter;
3611 struct lttng_ht *ht;
3612 struct lttng_consumer_stream *stream;
3613 struct consumer_relayd_sock_pair *relayd = NULL;
3614 int (*data_pending)(struct lttng_consumer_stream *);
3615
3616 DBG("Consumer data pending command on session id %" PRIu64, id);
3617
3618 rcu_read_lock();
3619 pthread_mutex_lock(&consumer_data.lock);
3620
3621 switch (consumer_data.type) {
3622 case LTTNG_CONSUMER_KERNEL:
3623 data_pending = lttng_kconsumer_data_pending;
3624 break;
3625 case LTTNG_CONSUMER32_UST:
3626 case LTTNG_CONSUMER64_UST:
3627 data_pending = lttng_ustconsumer_data_pending;
3628 break;
3629 default:
3630 ERR("Unknown consumer data type");
3631 assert(0);
3632 }
3633
3634 /* Ease our life a bit */
3635 ht = consumer_data.stream_list_ht;
3636
3637 relayd = find_relayd_by_session_id(id);
3638 if (relayd) {
3639 /* Send init command for data pending. */
3640 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3641 ret = relayd_begin_data_pending(&relayd->control_sock,
3642 relayd->relayd_session_id);
3643 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3644 if (ret < 0) {
3645 /* Communication error thus the relayd so no data pending. */
3646 goto data_not_pending;
3647 }
3648 }
3649
3650 cds_lfht_for_each_entry_duplicate(ht->ht,
3651 ht->hash_fct(&id, lttng_ht_seed),
3652 ht->match_fct, &id,
3653 &iter.iter, stream, node_session_id.node) {
3654 /* If this call fails, the stream is being used hence data pending. */
3655 ret = stream_try_lock(stream);
3656 if (!ret) {
3657 goto data_pending;
3658 }
3659
3660 /*
3661 * A removed node from the hash table indicates that the stream has
3662 * been deleted thus having a guarantee that the buffers are closed
3663 * on the consumer side. However, data can still be transmitted
3664 * over the network so don't skip the relayd check.
3665 */
3666 ret = cds_lfht_is_node_deleted(&stream->node.node);
3667 if (!ret) {
3668 /* Check the stream if there is data in the buffers. */
3669 ret = data_pending(stream);
3670 if (ret == 1) {
3671 pthread_mutex_unlock(&stream->lock);
3672 goto data_pending;
3673 }
3674 }
3675
3676 /* Relayd check */
3677 if (relayd) {
3678 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3679 if (stream->metadata_flag) {
3680 ret = relayd_quiescent_control(&relayd->control_sock,
3681 stream->relayd_stream_id);
3682 } else {
3683 ret = relayd_data_pending(&relayd->control_sock,
3684 stream->relayd_stream_id,
3685 stream->next_net_seq_num - 1);
3686 }
3687 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3688 if (ret == 1) {
3689 pthread_mutex_unlock(&stream->lock);
3690 goto data_pending;
3691 }
3692 }
3693 pthread_mutex_unlock(&stream->lock);
3694 }
3695
3696 if (relayd) {
3697 unsigned int is_data_inflight = 0;
3698
3699 /* Send init command for data pending. */
3700 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3701 ret = relayd_end_data_pending(&relayd->control_sock,
3702 relayd->relayd_session_id, &is_data_inflight);
3703 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3704 if (ret < 0) {
3705 goto data_not_pending;
3706 }
3707 if (is_data_inflight) {
3708 goto data_pending;
3709 }
3710 }
3711
3712 /*
3713 * Finding _no_ node in the hash table and no inflight data means that the
3714 * stream(s) have been removed thus data is guaranteed to be available for
3715 * analysis from the trace files.
3716 */
3717
3718 data_not_pending:
3719 /* Data is available to be read by a viewer. */
3720 pthread_mutex_unlock(&consumer_data.lock);
3721 rcu_read_unlock();
3722 return 0;
3723
3724 data_pending:
3725 /* Data is still being extracted from buffers. */
3726 pthread_mutex_unlock(&consumer_data.lock);
3727 rcu_read_unlock();
3728 return 1;
3729 }
3730
3731 /*
3732 * Send a ret code status message to the sessiond daemon.
3733 *
3734 * Return the sendmsg() return value.
3735 */
3736 int consumer_send_status_msg(int sock, int ret_code)
3737 {
3738 struct lttcomm_consumer_status_msg msg;
3739
3740 memset(&msg, 0, sizeof(msg));
3741 msg.ret_code = ret_code;
3742
3743 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3744 }
3745
3746 /*
3747 * Send a channel status message to the sessiond daemon.
3748 *
3749 * Return the sendmsg() return value.
3750 */
3751 int consumer_send_status_channel(int sock,
3752 struct lttng_consumer_channel *channel)
3753 {
3754 struct lttcomm_consumer_status_channel msg;
3755
3756 assert(sock >= 0);
3757
3758 memset(&msg, 0, sizeof(msg));
3759 if (!channel) {
3760 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3761 } else {
3762 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3763 msg.key = channel->key;
3764 msg.stream_count = channel->streams.count;
3765 }
3766
3767 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3768 }
3769
3770 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3771 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3772 uint64_t max_sb_size)
3773 {
3774 unsigned long start_pos;
3775
3776 if (!nb_packets_per_stream) {
3777 return consumed_pos; /* Grab everything */
3778 }
3779 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3780 start_pos -= max_sb_size * nb_packets_per_stream;
3781 if ((long) (start_pos - consumed_pos) < 0) {
3782 return consumed_pos; /* Grab everything */
3783 }
3784 return start_pos;
3785 }
This page took 0.153983 seconds and 6 git commands to generate.