6cc962703e03b11d8475212c4007c12408a32645
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2 only,
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define __USE_LINUX_IOCTL_DEFS
20 #include <sys/ioctl.h>
21 #include <string.h>
22 #include <common/align.h>
23
24 #include "kernel-ctl.h"
25 #include "kernel-ioctl.h"
26
27 /*
28 * This flag indicates which version of the kernel ABI to use. The old
29 * ABI (namespace _old) does not support a 32-bit user-space when the
30 * kernel is 64-bit. The old ABI is kept here for compatibility but is
31 * deprecated and will be removed eventually.
32 */
33 static int lttng_kernel_use_old_abi = -1;
34
35 /*
36 * Execute the new or old ioctl depending on the ABI version.
37 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
38 * this function tests if the new ABI is available and otherwise fallbacks
39 * on the old one.
40 * This function takes the fd on which the ioctl must be executed and the old
41 * and new request codes.
42 * It returns the return value of the ioctl executed.
43 */
44 static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
45 unsigned long newname)
46 {
47 int ret;
48
49 if (lttng_kernel_use_old_abi == -1) {
50 ret = ioctl(fd, newname);
51 if (!ret) {
52 lttng_kernel_use_old_abi = 0;
53 goto end;
54 }
55 lttng_kernel_use_old_abi = 1;
56 }
57 if (lttng_kernel_use_old_abi) {
58 ret = ioctl(fd, oldname);
59 } else {
60 ret = ioctl(fd, newname);
61 }
62
63 end:
64 return ret;
65 }
66
67 int kernctl_create_session(int fd)
68 {
69 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
70 LTTNG_KERNEL_SESSION);
71 }
72
73 /* open the metadata global channel */
74 int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
75 {
76 struct lttng_kernel_old_channel old_channel;
77 struct lttng_kernel_channel channel;
78
79 if (lttng_kernel_use_old_abi) {
80 old_channel.overwrite = chops->overwrite;
81 old_channel.subbuf_size = chops->subbuf_size;
82 old_channel.num_subbuf = chops->num_subbuf;
83 old_channel.switch_timer_interval = chops->switch_timer_interval;
84 old_channel.read_timer_interval = chops->read_timer_interval;
85 old_channel.output = chops->output;
86
87 memset(old_channel.padding, 0, sizeof(old_channel.padding));
88 /*
89 * The new channel padding is smaller than the old ABI so we use the
90 * new ABI padding size for the memcpy.
91 */
92 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
93
94 return ioctl(fd, LTTNG_KERNEL_OLD_METADATA, &old_channel);
95 }
96
97 channel.overwrite = chops->overwrite;
98 channel.subbuf_size = chops->subbuf_size;
99 channel.num_subbuf = chops->num_subbuf;
100 channel.switch_timer_interval = chops->switch_timer_interval;
101 channel.read_timer_interval = chops->read_timer_interval;
102 channel.output = chops->output;
103 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
104
105 return ioctl(fd, LTTNG_KERNEL_METADATA, &channel);
106 }
107
108 int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
109 {
110 struct lttng_kernel_channel channel;
111
112 if (lttng_kernel_use_old_abi) {
113 struct lttng_kernel_old_channel old_channel;
114
115 old_channel.overwrite = chops->overwrite;
116 old_channel.subbuf_size = chops->subbuf_size;
117 old_channel.num_subbuf = chops->num_subbuf;
118 old_channel.switch_timer_interval = chops->switch_timer_interval;
119 old_channel.read_timer_interval = chops->read_timer_interval;
120 old_channel.output = chops->output;
121
122 memset(old_channel.padding, 0, sizeof(old_channel.padding));
123 /*
124 * The new channel padding is smaller than the old ABI so we use the
125 * new ABI padding size for the memcpy.
126 */
127 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
128
129 return ioctl(fd, LTTNG_KERNEL_OLD_CHANNEL, &old_channel);
130 }
131
132 channel.overwrite = chops->overwrite;
133 channel.subbuf_size = chops->subbuf_size;
134 channel.num_subbuf = chops->num_subbuf;
135 channel.switch_timer_interval = chops->switch_timer_interval;
136 channel.read_timer_interval = chops->read_timer_interval;
137 channel.output = chops->output;
138 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
139
140 return ioctl(fd, LTTNG_KERNEL_CHANNEL, &channel);
141 }
142
143 int kernctl_enable_syscall(int fd, const char *syscall_name)
144 {
145 struct lttng_kernel_event event;
146
147 memset(&event, 0, sizeof(event));
148 strncpy(event.name, syscall_name, sizeof(event.name));
149 event.name[sizeof(event.name) - 1] = '\0';
150 event.instrumentation = LTTNG_KERNEL_SYSCALL;
151 event.u.syscall.enable = 1;
152 return ioctl(fd, LTTNG_KERNEL_EVENT, &event);
153 }
154
155 int kernctl_disable_syscall(int fd, const char *syscall_name)
156 {
157 struct lttng_kernel_event event;
158
159 memset(&event, 0, sizeof(event));
160 strncpy(event.name, syscall_name, sizeof(event.name));
161 event.name[sizeof(event.name) - 1] = '\0';
162 event.instrumentation = LTTNG_KERNEL_SYSCALL;
163 event.u.syscall.enable = 0;
164 return ioctl(fd, LTTNG_KERNEL_EVENT, &event);
165 }
166
167 int kernctl_syscall_mask(int fd, char **syscall_mask, uint32_t *nr_bits)
168 {
169 struct lttng_kernel_syscall_mask kmask_len, *kmask = NULL;
170 size_t array_alloc_len;
171 char *new_mask;
172 int ret = 0;
173
174 if (!syscall_mask) {
175 ret = -1;
176 goto end;
177 }
178
179 if (!nr_bits) {
180 ret = -1;
181 goto end;
182 }
183
184 kmask_len.len = 0;
185 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, &kmask_len);
186 if (ret) {
187 goto end;
188 }
189
190 array_alloc_len = ALIGN(kmask_len.len, 8) >> 3;
191 kmask = zmalloc(sizeof(*kmask) + array_alloc_len);
192 if (!kmask) {
193 ret = -1;
194 goto end;
195 }
196
197 kmask->len = kmask_len.len;
198 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, kmask);
199 if (ret) {
200 goto end;
201 }
202
203 new_mask = realloc(syscall_mask, array_alloc_len);
204 if (!new_mask) {
205 ret = -1;
206 goto end;
207 }
208 memcpy(new_mask, kmask->mask, array_alloc_len);
209 *syscall_mask = new_mask;
210 *nr_bits = kmask->len;
211
212 end:
213 free(kmask);
214 return ret;
215 }
216
217 int kernctl_create_stream(int fd)
218 {
219 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
220 LTTNG_KERNEL_STREAM);
221 }
222
223 int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
224 {
225 if (lttng_kernel_use_old_abi) {
226 struct lttng_kernel_old_event old_event;
227
228 memcpy(old_event.name, ev->name, sizeof(old_event.name));
229 old_event.instrumentation = ev->instrumentation;
230 switch (ev->instrumentation) {
231 case LTTNG_KERNEL_KPROBE:
232 old_event.u.kprobe.addr = ev->u.kprobe.addr;
233 old_event.u.kprobe.offset = ev->u.kprobe.offset;
234 memcpy(old_event.u.kprobe.symbol_name,
235 ev->u.kprobe.symbol_name,
236 sizeof(old_event.u.kprobe.symbol_name));
237 break;
238 case LTTNG_KERNEL_KRETPROBE:
239 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
240 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
241 memcpy(old_event.u.kretprobe.symbol_name,
242 ev->u.kretprobe.symbol_name,
243 sizeof(old_event.u.kretprobe.symbol_name));
244 break;
245 case LTTNG_KERNEL_FUNCTION:
246 memcpy(old_event.u.ftrace.symbol_name,
247 ev->u.ftrace.symbol_name,
248 sizeof(old_event.u.ftrace.symbol_name));
249 break;
250 default:
251 break;
252 }
253
254 return ioctl(fd, LTTNG_KERNEL_OLD_EVENT, &old_event);
255 }
256 return ioctl(fd, LTTNG_KERNEL_EVENT, ev);
257 }
258
259 int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
260 {
261 if (lttng_kernel_use_old_abi) {
262 struct lttng_kernel_old_context old_ctx;
263
264 old_ctx.ctx = ctx->ctx;
265 /* only type that uses the union */
266 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
267 old_ctx.u.perf_counter.type =
268 ctx->u.perf_counter.type;
269 old_ctx.u.perf_counter.config =
270 ctx->u.perf_counter.config;
271 memcpy(old_ctx.u.perf_counter.name,
272 ctx->u.perf_counter.name,
273 sizeof(old_ctx.u.perf_counter.name));
274 }
275 return ioctl(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
276 }
277 return ioctl(fd, LTTNG_KERNEL_CONTEXT, ctx);
278 }
279
280
281 /* Enable event, channel and session ioctl */
282 int kernctl_enable(int fd)
283 {
284 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
285 LTTNG_KERNEL_ENABLE);
286 }
287
288 /* Disable event, channel and session ioctl */
289 int kernctl_disable(int fd)
290 {
291 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
292 LTTNG_KERNEL_DISABLE);
293 }
294
295 int kernctl_start_session(int fd)
296 {
297 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
298 LTTNG_KERNEL_SESSION_START);
299 }
300
301 int kernctl_stop_session(int fd)
302 {
303 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
304 LTTNG_KERNEL_SESSION_STOP);
305 }
306
307 int kernctl_tracepoint_list(int fd)
308 {
309 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
310 LTTNG_KERNEL_TRACEPOINT_LIST);
311 }
312
313 int kernctl_syscall_list(int fd)
314 {
315 return ioctl(fd, LTTNG_KERNEL_SYSCALL_LIST);
316 }
317
318 int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
319 {
320 int ret;
321
322 if (lttng_kernel_use_old_abi == -1) {
323 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
324 if (!ret) {
325 lttng_kernel_use_old_abi = 0;
326 goto end;
327 }
328 lttng_kernel_use_old_abi = 1;
329 }
330 if (lttng_kernel_use_old_abi) {
331 struct lttng_kernel_old_tracer_version old_v;
332
333 ret = ioctl(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
334 if (ret) {
335 goto end;
336 }
337 v->major = old_v.major;
338 v->minor = old_v.minor;
339 v->patchlevel = old_v.patchlevel;
340 } else {
341 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
342 }
343
344 end:
345 return ret;
346 }
347
348 int kernctl_wait_quiescent(int fd)
349 {
350 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
351 LTTNG_KERNEL_WAIT_QUIESCENT);
352 }
353
354 int kernctl_calibrate(int fd, struct lttng_kernel_calibrate *calibrate)
355 {
356 int ret;
357
358 if (lttng_kernel_use_old_abi == -1) {
359 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
360 if (!ret) {
361 lttng_kernel_use_old_abi = 0;
362 goto end;
363 }
364 lttng_kernel_use_old_abi = 1;
365 }
366 if (lttng_kernel_use_old_abi) {
367 struct lttng_kernel_old_calibrate old_calibrate;
368
369 old_calibrate.type = calibrate->type;
370 ret = ioctl(fd, LTTNG_KERNEL_OLD_CALIBRATE, &old_calibrate);
371 if (ret) {
372 goto end;
373 }
374 calibrate->type = old_calibrate.type;
375 } else {
376 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
377 }
378
379 end:
380 return ret;
381 }
382
383
384 int kernctl_buffer_flush(int fd)
385 {
386 return ioctl(fd, RING_BUFFER_FLUSH);
387 }
388
389
390 /* Buffer operations */
391
392 /* For mmap mode, readable without "get" operation */
393
394 /* returns the length to mmap. */
395 int kernctl_get_mmap_len(int fd, unsigned long *len)
396 {
397 return ioctl(fd, RING_BUFFER_GET_MMAP_LEN, len);
398 }
399
400 /* returns the maximum size for sub-buffers. */
401 int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
402 {
403 return ioctl(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
404 }
405
406 /*
407 * For mmap mode, operate on the current packet (between get/put or
408 * get_next/put_next).
409 */
410
411 /* returns the offset of the subbuffer belonging to the mmap reader. */
412 int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
413 {
414 return ioctl(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
415 }
416
417 /* returns the size of the current sub-buffer, without padding (for mmap). */
418 int kernctl_get_subbuf_size(int fd, unsigned long *len)
419 {
420 return ioctl(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
421 }
422
423 /* returns the size of the current sub-buffer, without padding (for mmap). */
424 int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
425 {
426 return ioctl(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
427 }
428
429 /* Get exclusive read access to the next sub-buffer that can be read. */
430 int kernctl_get_next_subbuf(int fd)
431 {
432 return ioctl(fd, RING_BUFFER_GET_NEXT_SUBBUF);
433 }
434
435
436 /* Release exclusive sub-buffer access, move consumer forward. */
437 int kernctl_put_next_subbuf(int fd)
438 {
439 return ioctl(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
440 }
441
442 /* snapshot */
443
444 /* Get a snapshot of the current ring buffer producer and consumer positions */
445 int kernctl_snapshot(int fd)
446 {
447 return ioctl(fd, RING_BUFFER_SNAPSHOT);
448 }
449
450 /* Get the consumer position (iteration start) */
451 int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
452 {
453 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
454 }
455
456 /* Get the producer position (iteration end) */
457 int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
458 {
459 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
460 }
461
462 /* Get exclusive read access to the specified sub-buffer position */
463 int kernctl_get_subbuf(int fd, unsigned long *len)
464 {
465 return ioctl(fd, RING_BUFFER_GET_SUBBUF, len);
466 }
467
468 /* Release exclusive sub-buffer access */
469 int kernctl_put_subbuf(int fd)
470 {
471 return ioctl(fd, RING_BUFFER_PUT_SUBBUF);
472 }
473
474 /* Returns the timestamp begin of the current sub-buffer. */
475 int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
476 {
477 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN, timestamp_begin);
478 }
479
480 /* Returns the timestamp end of the current sub-buffer. */
481 int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
482 {
483 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END, timestamp_end);
484 }
485
486 /* Returns the number of discarded events in the current sub-buffer. */
487 int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
488 {
489 return ioctl(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED, events_discarded);
490 }
491
492 /* Returns the content size in the current sub-buffer. */
493 int kernctl_get_content_size(int fd, uint64_t *content_size)
494 {
495 return ioctl(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE, content_size);
496 }
497
498 /* Returns the packet size in the current sub-buffer. */
499 int kernctl_get_packet_size(int fd, uint64_t *packet_size)
500 {
501 return ioctl(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE, packet_size);
502 }
503
504 /* Returns the stream id of the current sub-buffer. */
505 int kernctl_get_stream_id(int fd, uint64_t *stream_id)
506 {
507 return ioctl(fd, LTTNG_RING_BUFFER_GET_STREAM_ID, stream_id);
508 }
509
510 /* Returns the current timestamp. */
511 int kernctl_get_current_timestamp(int fd, uint64_t *ts)
512 {
513 return ioctl(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP, ts);
514 }
This page took 0.039178 seconds and 4 git commands to generate.