d153a1cff7dafbbc3460f7aac1baae55042263fd
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2 only,
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define __USE_LINUX_IOCTL_DEFS
20 #include <sys/ioctl.h>
21 #include <string.h>
22
23 #include "kernel-ctl.h"
24 #include "kernel-ioctl.h"
25
26 /*
27 * This flag indicates which version of the kernel ABI to use. The old
28 * ABI (namespace _old) does not support a 32-bit user-space when the
29 * kernel is 64-bit. The old ABI is kept here for compatibility but is
30 * deprecated and will be removed eventually.
31 */
32 static int lttng_kernel_use_old_abi = -1;
33
34 /*
35 * Execute the new or old ioctl depending on the ABI version.
36 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
37 * this function tests if the new ABI is available and otherwise fallbacks
38 * on the old one.
39 * This function takes the fd on which the ioctl must be executed and the old
40 * and new request codes.
41 * It returns the return value of the ioctl executed.
42 */
43 static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
44 unsigned long newname)
45 {
46 int ret;
47
48 if (lttng_kernel_use_old_abi == -1) {
49 ret = ioctl(fd, newname);
50 if (!ret) {
51 lttng_kernel_use_old_abi = 0;
52 goto end;
53 }
54 lttng_kernel_use_old_abi = 1;
55 }
56 if (lttng_kernel_use_old_abi) {
57 ret = ioctl(fd, oldname);
58 } else {
59 ret = ioctl(fd, newname);
60 }
61
62 end:
63 return ret;
64 }
65
66 int kernctl_create_session(int fd)
67 {
68 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
69 LTTNG_KERNEL_SESSION);
70 }
71
72 /* open the metadata global channel */
73 int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
74 {
75 struct lttng_kernel_old_channel old_channel;
76 struct lttng_kernel_channel channel;
77
78 if (lttng_kernel_use_old_abi) {
79 old_channel.overwrite = chops->overwrite;
80 old_channel.subbuf_size = chops->subbuf_size;
81 old_channel.num_subbuf = chops->num_subbuf;
82 old_channel.switch_timer_interval = chops->switch_timer_interval;
83 old_channel.read_timer_interval = chops->read_timer_interval;
84 old_channel.output = chops->output;
85
86 memset(old_channel.padding, 0, sizeof(old_channel.padding));
87 /*
88 * The new channel padding is smaller than the old ABI so we use the
89 * new ABI padding size for the memcpy.
90 */
91 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
92
93 return ioctl(fd, LTTNG_KERNEL_OLD_METADATA, &old_channel);
94 }
95
96 channel.overwrite = chops->overwrite;
97 channel.subbuf_size = chops->subbuf_size;
98 channel.num_subbuf = chops->num_subbuf;
99 channel.switch_timer_interval = chops->switch_timer_interval;
100 channel.read_timer_interval = chops->read_timer_interval;
101 channel.output = chops->output;
102 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
103
104 return ioctl(fd, LTTNG_KERNEL_METADATA, &channel);
105 }
106
107 int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
108 {
109 struct lttng_kernel_channel channel;
110
111 if (lttng_kernel_use_old_abi) {
112 struct lttng_kernel_old_channel old_channel;
113
114 old_channel.overwrite = chops->overwrite;
115 old_channel.subbuf_size = chops->subbuf_size;
116 old_channel.num_subbuf = chops->num_subbuf;
117 old_channel.switch_timer_interval = chops->switch_timer_interval;
118 old_channel.read_timer_interval = chops->read_timer_interval;
119 old_channel.output = chops->output;
120
121 memset(old_channel.padding, 0, sizeof(old_channel.padding));
122 /*
123 * The new channel padding is smaller than the old ABI so we use the
124 * new ABI padding size for the memcpy.
125 */
126 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
127
128 return ioctl(fd, LTTNG_KERNEL_OLD_CHANNEL, &old_channel);
129 }
130
131 channel.overwrite = chops->overwrite;
132 channel.subbuf_size = chops->subbuf_size;
133 channel.num_subbuf = chops->num_subbuf;
134 channel.switch_timer_interval = chops->switch_timer_interval;
135 channel.read_timer_interval = chops->read_timer_interval;
136 channel.output = chops->output;
137 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
138
139 return ioctl(fd, LTTNG_KERNEL_CHANNEL, &channel);
140 }
141
142 int kernctl_create_stream(int fd)
143 {
144 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
145 LTTNG_KERNEL_STREAM);
146 }
147
148 int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
149 {
150 if (lttng_kernel_use_old_abi) {
151 struct lttng_kernel_old_event old_event;
152
153 memcpy(old_event.name, ev->name, sizeof(old_event.name));
154 old_event.instrumentation = ev->instrumentation;
155 switch (ev->instrumentation) {
156 case LTTNG_KERNEL_KPROBE:
157 old_event.u.kprobe.addr = ev->u.kprobe.addr;
158 old_event.u.kprobe.offset = ev->u.kprobe.offset;
159 memcpy(old_event.u.kprobe.symbol_name,
160 ev->u.kprobe.symbol_name,
161 sizeof(old_event.u.kprobe.symbol_name));
162 break;
163 case LTTNG_KERNEL_KRETPROBE:
164 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
165 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
166 memcpy(old_event.u.kretprobe.symbol_name,
167 ev->u.kretprobe.symbol_name,
168 sizeof(old_event.u.kretprobe.symbol_name));
169 break;
170 case LTTNG_KERNEL_FUNCTION:
171 memcpy(old_event.u.ftrace.symbol_name,
172 ev->u.ftrace.symbol_name,
173 sizeof(old_event.u.ftrace.symbol_name));
174 break;
175 default:
176 break;
177 }
178
179 return ioctl(fd, LTTNG_KERNEL_OLD_EVENT, &old_event);
180 }
181 return ioctl(fd, LTTNG_KERNEL_EVENT, ev);
182 }
183
184 int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
185 {
186 if (lttng_kernel_use_old_abi) {
187 struct lttng_kernel_old_context old_ctx;
188
189 old_ctx.ctx = ctx->ctx;
190 /* only type that uses the union */
191 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
192 old_ctx.u.perf_counter.type =
193 ctx->u.perf_counter.type;
194 old_ctx.u.perf_counter.config =
195 ctx->u.perf_counter.config;
196 memcpy(old_ctx.u.perf_counter.name,
197 ctx->u.perf_counter.name,
198 sizeof(old_ctx.u.perf_counter.name));
199 }
200 return ioctl(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
201 }
202 return ioctl(fd, LTTNG_KERNEL_CONTEXT, ctx);
203 }
204
205
206 /* Enable event, channel and session ioctl */
207 int kernctl_enable(int fd)
208 {
209 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
210 LTTNG_KERNEL_ENABLE);
211 }
212
213 /* Disable event, channel and session ioctl */
214 int kernctl_disable(int fd)
215 {
216 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
217 LTTNG_KERNEL_DISABLE);
218 }
219
220 int kernctl_start_session(int fd)
221 {
222 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
223 LTTNG_KERNEL_SESSION_START);
224 }
225
226 int kernctl_stop_session(int fd)
227 {
228 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
229 LTTNG_KERNEL_SESSION_STOP);
230 }
231
232 int kernctl_tracepoint_list(int fd)
233 {
234 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
235 LTTNG_KERNEL_TRACEPOINT_LIST);
236 }
237
238 int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
239 {
240 int ret;
241
242 if (lttng_kernel_use_old_abi == -1) {
243 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
244 if (!ret) {
245 lttng_kernel_use_old_abi = 0;
246 goto end;
247 }
248 lttng_kernel_use_old_abi = 1;
249 }
250 if (lttng_kernel_use_old_abi) {
251 struct lttng_kernel_old_tracer_version old_v;
252
253 ret = ioctl(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
254 if (ret) {
255 goto end;
256 }
257 v->major = old_v.major;
258 v->minor = old_v.minor;
259 v->patchlevel = old_v.patchlevel;
260 } else {
261 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
262 }
263
264 end:
265 return ret;
266 }
267
268 int kernctl_wait_quiescent(int fd)
269 {
270 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
271 LTTNG_KERNEL_WAIT_QUIESCENT);
272 }
273
274 int kernctl_calibrate(int fd, struct lttng_kernel_calibrate *calibrate)
275 {
276 int ret;
277
278 if (lttng_kernel_use_old_abi == -1) {
279 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
280 if (!ret) {
281 lttng_kernel_use_old_abi = 0;
282 goto end;
283 }
284 lttng_kernel_use_old_abi = 1;
285 }
286 if (lttng_kernel_use_old_abi) {
287 struct lttng_kernel_old_calibrate old_calibrate;
288
289 old_calibrate.type = calibrate->type;
290 ret = ioctl(fd, LTTNG_KERNEL_OLD_CALIBRATE, &old_calibrate);
291 if (ret) {
292 goto end;
293 }
294 calibrate->type = old_calibrate.type;
295 } else {
296 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
297 }
298
299 end:
300 return ret;
301 }
302
303
304 int kernctl_buffer_flush(int fd)
305 {
306 return ioctl(fd, RING_BUFFER_FLUSH);
307 }
308
309
310 /* Buffer operations */
311
312 /* For mmap mode, readable without "get" operation */
313
314 /* returns the length to mmap. */
315 int kernctl_get_mmap_len(int fd, unsigned long *len)
316 {
317 return ioctl(fd, RING_BUFFER_GET_MMAP_LEN, len);
318 }
319
320 /* returns the maximum size for sub-buffers. */
321 int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
322 {
323 return ioctl(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
324 }
325
326 /*
327 * For mmap mode, operate on the current packet (between get/put or
328 * get_next/put_next).
329 */
330
331 /* returns the offset of the subbuffer belonging to the mmap reader. */
332 int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
333 {
334 return ioctl(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
335 }
336
337 /* returns the size of the current sub-buffer, without padding (for mmap). */
338 int kernctl_get_subbuf_size(int fd, unsigned long *len)
339 {
340 return ioctl(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
341 }
342
343 /* returns the size of the current sub-buffer, without padding (for mmap). */
344 int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
345 {
346 return ioctl(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
347 }
348
349 /* Get exclusive read access to the next sub-buffer that can be read. */
350 int kernctl_get_next_subbuf(int fd)
351 {
352 return ioctl(fd, RING_BUFFER_GET_NEXT_SUBBUF);
353 }
354
355
356 /* Release exclusive sub-buffer access, move consumer forward. */
357 int kernctl_put_next_subbuf(int fd)
358 {
359 return ioctl(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
360 }
361
362 /* snapshot */
363
364 /* Get a snapshot of the current ring buffer producer and consumer positions */
365 int kernctl_snapshot(int fd)
366 {
367 return ioctl(fd, RING_BUFFER_SNAPSHOT);
368 }
369
370 /* Get the consumer position (iteration start) */
371 int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
372 {
373 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
374 }
375
376 /* Get the producer position (iteration end) */
377 int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
378 {
379 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
380 }
381
382 /* Get exclusive read access to the specified sub-buffer position */
383 int kernctl_get_subbuf(int fd, unsigned long *len)
384 {
385 return ioctl(fd, RING_BUFFER_GET_SUBBUF, len);
386 }
387
388 /* Release exclusive sub-buffer access */
389 int kernctl_put_subbuf(int fd)
390 {
391 return ioctl(fd, RING_BUFFER_PUT_SUBBUF);
392 }
393
394 /* Returns the timestamp begin of the current sub-buffer. */
395 int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
396 {
397 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN, timestamp_begin);
398 }
399
400 /* Returns the timestamp end of the current sub-buffer. */
401 int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
402 {
403 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END, timestamp_end);
404 }
405
406 /* Returns the number of discarded events in the current sub-buffer. */
407 int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
408 {
409 return ioctl(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED, events_discarded);
410 }
411
412 /* Returns the content size in the current sub-buffer. */
413 int kernctl_get_content_size(int fd, uint64_t *content_size)
414 {
415 return ioctl(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE, content_size);
416 }
417
418 /* Returns the packet size in the current sub-buffer. */
419 int kernctl_get_packet_size(int fd, uint64_t *packet_size)
420 {
421 return ioctl(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE, packet_size);
422 }
423
424 /* Returns the stream id of the current sub-buffer. */
425 int kernctl_get_stream_id(int fd, uint64_t *stream_id)
426 {
427 return ioctl(fd, LTTNG_RING_BUFFER_GET_STREAM_ID, stream_id);
428 }
429
430 /* Returns the current timestamp. */
431 int kernctl_get_current_timestamp(int fd, uint64_t *ts)
432 {
433 return ioctl(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP, ts);
434 }
This page took 0.037947 seconds and 4 git commands to generate.