Command metadata regenerate
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2 only,
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define _LGPL_SOURCE
20 #define __USE_LINUX_IOCTL_DEFS
21 #include <sys/ioctl.h>
22 #include <string.h>
23 #include <common/align.h>
24 #include <errno.h>
25
26 #include "kernel-ctl.h"
27 #include "kernel-ioctl.h"
28
29 /*
30 * This flag indicates which version of the kernel ABI to use. The old
31 * ABI (namespace _old) does not support a 32-bit user-space when the
32 * kernel is 64-bit. The old ABI is kept here for compatibility but is
33 * deprecated and will be removed eventually.
34 */
35 static int lttng_kernel_use_old_abi = -1;
36
37 /*
38 * Execute the new or old ioctl depending on the ABI version.
39 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
40 * this function tests if the new ABI is available and otherwise fallbacks
41 * on the old one.
42 * This function takes the fd on which the ioctl must be executed and the old
43 * and new request codes.
44 * It returns the return value of the ioctl executed.
45 */
46 static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
47 unsigned long newname)
48 {
49 int ret;
50
51 if (lttng_kernel_use_old_abi == -1) {
52 ret = ioctl(fd, newname);
53 if (!ret) {
54 lttng_kernel_use_old_abi = 0;
55 goto end;
56 }
57 lttng_kernel_use_old_abi = 1;
58 }
59 if (lttng_kernel_use_old_abi) {
60 ret = ioctl(fd, oldname);
61 } else {
62 ret = ioctl(fd, newname);
63 }
64
65 end:
66 return ret;
67 }
68
69 int kernctl_create_session(int fd)
70 {
71 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
72 LTTNG_KERNEL_SESSION);
73 }
74
75 /* open the metadata global channel */
76 int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
77 {
78 struct lttng_kernel_old_channel old_channel;
79 struct lttng_kernel_channel channel;
80
81 if (lttng_kernel_use_old_abi) {
82 old_channel.overwrite = chops->overwrite;
83 old_channel.subbuf_size = chops->subbuf_size;
84 old_channel.num_subbuf = chops->num_subbuf;
85 old_channel.switch_timer_interval = chops->switch_timer_interval;
86 old_channel.read_timer_interval = chops->read_timer_interval;
87 old_channel.output = chops->output;
88
89 memset(old_channel.padding, 0, sizeof(old_channel.padding));
90 /*
91 * The new channel padding is smaller than the old ABI so we use the
92 * new ABI padding size for the memcpy.
93 */
94 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
95
96 return ioctl(fd, LTTNG_KERNEL_OLD_METADATA, &old_channel);
97 }
98
99 channel.overwrite = chops->overwrite;
100 channel.subbuf_size = chops->subbuf_size;
101 channel.num_subbuf = chops->num_subbuf;
102 channel.switch_timer_interval = chops->switch_timer_interval;
103 channel.read_timer_interval = chops->read_timer_interval;
104 channel.output = chops->output;
105 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
106
107 return ioctl(fd, LTTNG_KERNEL_METADATA, &channel);
108 }
109
110 int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
111 {
112 struct lttng_kernel_channel channel;
113
114 memset(&channel, 0, sizeof(channel));
115 if (lttng_kernel_use_old_abi) {
116 struct lttng_kernel_old_channel old_channel;
117
118 old_channel.overwrite = chops->overwrite;
119 old_channel.subbuf_size = chops->subbuf_size;
120 old_channel.num_subbuf = chops->num_subbuf;
121 old_channel.switch_timer_interval = chops->switch_timer_interval;
122 old_channel.read_timer_interval = chops->read_timer_interval;
123 old_channel.output = chops->output;
124
125 memset(old_channel.padding, 0, sizeof(old_channel.padding));
126 /*
127 * The new channel padding is smaller than the old ABI so we use the
128 * new ABI padding size for the memcpy.
129 */
130 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
131
132 return ioctl(fd, LTTNG_KERNEL_OLD_CHANNEL, &old_channel);
133 }
134
135 channel.overwrite = chops->overwrite;
136 channel.subbuf_size = chops->subbuf_size;
137 channel.num_subbuf = chops->num_subbuf;
138 channel.switch_timer_interval = chops->switch_timer_interval;
139 channel.read_timer_interval = chops->read_timer_interval;
140 channel.output = chops->output;
141 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
142
143 return ioctl(fd, LTTNG_KERNEL_CHANNEL, &channel);
144 }
145
146 int kernctl_syscall_mask(int fd, char **syscall_mask, uint32_t *nr_bits)
147 {
148 struct lttng_kernel_syscall_mask kmask_len, *kmask = NULL;
149 size_t array_alloc_len;
150 char *new_mask;
151 int ret = 0;
152
153 if (!syscall_mask) {
154 ret = -1;
155 goto end;
156 }
157
158 if (!nr_bits) {
159 ret = -1;
160 goto end;
161 }
162
163 kmask_len.len = 0;
164 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, &kmask_len);
165 if (ret) {
166 goto end;
167 }
168
169 array_alloc_len = ALIGN(kmask_len.len, 8) >> 3;
170
171 kmask = zmalloc(sizeof(*kmask) + array_alloc_len);
172 if (!kmask) {
173 ret = -1;
174 goto end;
175 }
176
177 kmask->len = kmask_len.len;
178 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, kmask);
179 if (ret) {
180 goto end;
181 }
182
183 new_mask = realloc(*syscall_mask, array_alloc_len);
184 if (!new_mask) {
185 ret = -1;
186 goto end;
187 }
188 memcpy(new_mask, kmask->mask, array_alloc_len);
189 *syscall_mask = new_mask;
190 *nr_bits = kmask->len;
191
192 end:
193 free(kmask);
194 return ret;
195 }
196
197 int kernctl_track_pid(int fd, int pid)
198 {
199 return ioctl(fd, LTTNG_KERNEL_SESSION_TRACK_PID, pid);
200 }
201
202 int kernctl_untrack_pid(int fd, int pid)
203 {
204 return ioctl(fd, LTTNG_KERNEL_SESSION_UNTRACK_PID, pid);
205 }
206
207 int kernctl_list_tracker_pids(int fd)
208 {
209 return ioctl(fd, LTTNG_KERNEL_SESSION_LIST_TRACKER_PIDS);
210 }
211
212 int kernctl_session_metadata_regenerate(int fd)
213 {
214 return ioctl(fd, LTTNG_KERNEL_SESSION_METADATA_REGEN);
215 }
216
217 int kernctl_create_stream(int fd)
218 {
219 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
220 LTTNG_KERNEL_STREAM);
221 }
222
223 int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
224 {
225 if (lttng_kernel_use_old_abi) {
226 struct lttng_kernel_old_event old_event;
227
228 memcpy(old_event.name, ev->name, sizeof(old_event.name));
229 old_event.instrumentation = ev->instrumentation;
230 switch (ev->instrumentation) {
231 case LTTNG_KERNEL_KPROBE:
232 old_event.u.kprobe.addr = ev->u.kprobe.addr;
233 old_event.u.kprobe.offset = ev->u.kprobe.offset;
234 memcpy(old_event.u.kprobe.symbol_name,
235 ev->u.kprobe.symbol_name,
236 sizeof(old_event.u.kprobe.symbol_name));
237 break;
238 case LTTNG_KERNEL_KRETPROBE:
239 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
240 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
241 memcpy(old_event.u.kretprobe.symbol_name,
242 ev->u.kretprobe.symbol_name,
243 sizeof(old_event.u.kretprobe.symbol_name));
244 break;
245 case LTTNG_KERNEL_FUNCTION:
246 memcpy(old_event.u.ftrace.symbol_name,
247 ev->u.ftrace.symbol_name,
248 sizeof(old_event.u.ftrace.symbol_name));
249 break;
250 default:
251 break;
252 }
253
254 return ioctl(fd, LTTNG_KERNEL_OLD_EVENT, &old_event);
255 }
256 return ioctl(fd, LTTNG_KERNEL_EVENT, ev);
257 }
258
259 int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
260 {
261 if (lttng_kernel_use_old_abi) {
262 struct lttng_kernel_old_context old_ctx;
263
264 old_ctx.ctx = ctx->ctx;
265 /* only type that uses the union */
266 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
267 old_ctx.u.perf_counter.type =
268 ctx->u.perf_counter.type;
269 old_ctx.u.perf_counter.config =
270 ctx->u.perf_counter.config;
271 memcpy(old_ctx.u.perf_counter.name,
272 ctx->u.perf_counter.name,
273 sizeof(old_ctx.u.perf_counter.name));
274 }
275 return ioctl(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
276 }
277 return ioctl(fd, LTTNG_KERNEL_CONTEXT, ctx);
278 }
279
280
281 /* Enable event, channel and session ioctl */
282 int kernctl_enable(int fd)
283 {
284 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
285 LTTNG_KERNEL_ENABLE);
286 }
287
288 /* Disable event, channel and session ioctl */
289 int kernctl_disable(int fd)
290 {
291 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
292 LTTNG_KERNEL_DISABLE);
293 }
294
295 int kernctl_start_session(int fd)
296 {
297 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
298 LTTNG_KERNEL_SESSION_START);
299 }
300
301 int kernctl_stop_session(int fd)
302 {
303 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
304 LTTNG_KERNEL_SESSION_STOP);
305 }
306
307 int kernctl_filter(int fd, struct lttng_filter_bytecode *filter)
308 {
309 struct lttng_kernel_filter_bytecode *kb;
310 uint32_t len;
311 int ret;
312
313 /* Translate bytecode to kernel bytecode */
314 kb = zmalloc(sizeof(*kb) + filter->len);
315 if (!kb)
316 return -ENOMEM;
317 kb->len = len = filter->len;
318 kb->reloc_offset = filter->reloc_table_offset;
319 kb->seqnum = filter->seqnum;
320 memcpy(kb->data, filter->data, len);
321 ret = ioctl(fd, LTTNG_KERNEL_FILTER, kb);
322 free(kb);
323 return ret;
324 }
325
326 int kernctl_tracepoint_list(int fd)
327 {
328 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
329 LTTNG_KERNEL_TRACEPOINT_LIST);
330 }
331
332 int kernctl_syscall_list(int fd)
333 {
334 return ioctl(fd, LTTNG_KERNEL_SYSCALL_LIST);
335 }
336
337 int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
338 {
339 int ret;
340
341 if (lttng_kernel_use_old_abi == -1) {
342 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
343 if (!ret) {
344 lttng_kernel_use_old_abi = 0;
345 goto end;
346 }
347 lttng_kernel_use_old_abi = 1;
348 }
349 if (lttng_kernel_use_old_abi) {
350 struct lttng_kernel_old_tracer_version old_v;
351
352 ret = ioctl(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
353 if (ret) {
354 goto end;
355 }
356 v->major = old_v.major;
357 v->minor = old_v.minor;
358 v->patchlevel = old_v.patchlevel;
359 } else {
360 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
361 }
362
363 end:
364 return ret;
365 }
366
367 int kernctl_tracer_abi_version(int fd,
368 struct lttng_kernel_tracer_abi_version *v)
369 {
370 return ioctl(fd, LTTNG_KERNEL_TRACER_ABI_VERSION, v);
371 }
372
373 int kernctl_wait_quiescent(int fd)
374 {
375 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
376 LTTNG_KERNEL_WAIT_QUIESCENT);
377 }
378
379 int kernctl_calibrate(int fd, struct lttng_kernel_calibrate *calibrate)
380 {
381 int ret;
382
383 if (lttng_kernel_use_old_abi == -1) {
384 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
385 if (!ret) {
386 lttng_kernel_use_old_abi = 0;
387 goto end;
388 }
389 lttng_kernel_use_old_abi = 1;
390 }
391 if (lttng_kernel_use_old_abi) {
392 struct lttng_kernel_old_calibrate old_calibrate;
393
394 old_calibrate.type = calibrate->type;
395 ret = ioctl(fd, LTTNG_KERNEL_OLD_CALIBRATE, &old_calibrate);
396 if (ret) {
397 goto end;
398 }
399 calibrate->type = old_calibrate.type;
400 } else {
401 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
402 }
403
404 end:
405 return ret;
406 }
407
408
409 int kernctl_buffer_flush(int fd)
410 {
411 return ioctl(fd, RING_BUFFER_FLUSH);
412 }
413
414 /* returns the version of the metadata. */
415 int kernctl_get_metadata_version(int fd, uint64_t *version)
416 {
417 return ioctl(fd, RING_BUFFER_GET_METADATA_VERSION, version);
418 }
419
420
421 /* Buffer operations */
422
423 /* For mmap mode, readable without "get" operation */
424
425 /* returns the length to mmap. */
426 int kernctl_get_mmap_len(int fd, unsigned long *len)
427 {
428 return ioctl(fd, RING_BUFFER_GET_MMAP_LEN, len);
429 }
430
431 /* returns the maximum size for sub-buffers. */
432 int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
433 {
434 return ioctl(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
435 }
436
437 /*
438 * For mmap mode, operate on the current packet (between get/put or
439 * get_next/put_next).
440 */
441
442 /* returns the offset of the subbuffer belonging to the mmap reader. */
443 int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
444 {
445 return ioctl(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
446 }
447
448 /* returns the size of the current sub-buffer, without padding (for mmap). */
449 int kernctl_get_subbuf_size(int fd, unsigned long *len)
450 {
451 return ioctl(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
452 }
453
454 /* returns the size of the current sub-buffer, without padding (for mmap). */
455 int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
456 {
457 return ioctl(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
458 }
459
460 /* Get exclusive read access to the next sub-buffer that can be read. */
461 int kernctl_get_next_subbuf(int fd)
462 {
463 return ioctl(fd, RING_BUFFER_GET_NEXT_SUBBUF);
464 }
465
466
467 /* Release exclusive sub-buffer access, move consumer forward. */
468 int kernctl_put_next_subbuf(int fd)
469 {
470 return ioctl(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
471 }
472
473 /* snapshot */
474
475 /* Get a snapshot of the current ring buffer producer and consumer positions */
476 int kernctl_snapshot(int fd)
477 {
478 return ioctl(fd, RING_BUFFER_SNAPSHOT);
479 }
480
481 /* Get the consumer position (iteration start) */
482 int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
483 {
484 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
485 }
486
487 /* Get the producer position (iteration end) */
488 int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
489 {
490 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
491 }
492
493 /* Get exclusive read access to the specified sub-buffer position */
494 int kernctl_get_subbuf(int fd, unsigned long *len)
495 {
496 return ioctl(fd, RING_BUFFER_GET_SUBBUF, len);
497 }
498
499 /* Release exclusive sub-buffer access */
500 int kernctl_put_subbuf(int fd)
501 {
502 return ioctl(fd, RING_BUFFER_PUT_SUBBUF);
503 }
504
505 /* Returns the timestamp begin of the current sub-buffer. */
506 int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
507 {
508 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN, timestamp_begin);
509 }
510
511 /* Returns the timestamp end of the current sub-buffer. */
512 int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
513 {
514 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END, timestamp_end);
515 }
516
517 /* Returns the number of discarded events in the current sub-buffer. */
518 int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
519 {
520 return ioctl(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED, events_discarded);
521 }
522
523 /* Returns the content size in the current sub-buffer. */
524 int kernctl_get_content_size(int fd, uint64_t *content_size)
525 {
526 return ioctl(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE, content_size);
527 }
528
529 /* Returns the packet size in the current sub-buffer. */
530 int kernctl_get_packet_size(int fd, uint64_t *packet_size)
531 {
532 return ioctl(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE, packet_size);
533 }
534
535 /* Returns the stream id of the current sub-buffer. */
536 int kernctl_get_stream_id(int fd, uint64_t *stream_id)
537 {
538 return ioctl(fd, LTTNG_RING_BUFFER_GET_STREAM_ID, stream_id);
539 }
540
541 /* Returns the current timestamp. */
542 int kernctl_get_current_timestamp(int fd, uint64_t *ts)
543 {
544 return ioctl(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP, ts);
545 }
546
547 /* Returns the packet sequence number of the current sub-buffer. */
548 int kernctl_get_sequence_number(int fd, uint64_t *seq)
549 {
550 return ioctl(fd, LTTNG_RING_BUFFER_GET_SEQ_NUM, seq);
551 }
552
553 /* Returns the stream instance id. */
554 int kernctl_get_instance_id(int fd, uint64_t *id)
555 {
556 return ioctl(fd, LTTNG_RING_BUFFER_INSTANCE_ID, id);
557 }
This page took 0.041771 seconds and 6 git commands to generate.