lguest: Use GSO/IFF_VNET_HDR extensions on tun/tap
[deliverable/linux.git] / Documentation / lguest / lguest.c
CommitLineData
f938d2c8 1/*P:100 This is the Launcher code, a simple program which lays out the
a6bd8e13
RR
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
8ca47e00
RR
5#define _LARGEFILE64_SOURCE
6#define _GNU_SOURCE
7#include <stdio.h>
8#include <string.h>
9#include <unistd.h>
10#include <err.h>
11#include <stdint.h>
12#include <stdlib.h>
13#include <elf.h>
14#include <sys/mman.h>
6649bb7a 15#include <sys/param.h>
8ca47e00
RR
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <sys/wait.h>
19#include <fcntl.h>
20#include <stdbool.h>
21#include <errno.h>
22#include <ctype.h>
23#include <sys/socket.h>
24#include <sys/ioctl.h>
25#include <sys/time.h>
26#include <time.h>
27#include <netinet/in.h>
28#include <net/if.h>
29#include <linux/sockios.h>
30#include <linux/if_tun.h>
31#include <sys/uio.h>
32#include <termios.h>
33#include <getopt.h>
34#include <zlib.h>
17cbca2b
RR
35#include <assert.h>
36#include <sched.h>
a586d4f6
RR
37#include <limits.h>
38#include <stddef.h>
a161883a 39#include <signal.h>
b45d8cb0 40#include "linux/lguest_launcher.h"
17cbca2b
RR
41#include "linux/virtio_config.h"
42#include "linux/virtio_net.h"
43#include "linux/virtio_blk.h"
44#include "linux/virtio_console.h"
28fd6d7f 45#include "linux/virtio_rng.h"
17cbca2b 46#include "linux/virtio_ring.h"
43d33b21 47#include "asm-x86/bootparam.h"
a6bd8e13 48/*L:110 We can ignore the 39 include files we need for this program, but I do
db24e8c2
RR
49 * want to draw attention to the use of kernel-style types.
50 *
51 * As Linus said, "C is a Spartan language, and so should your naming be." I
52 * like these abbreviations, so we define them here. Note that u64 is always
53 * unsigned long long, which works on all Linux systems: this means that we can
54 * use %llu in printf for any u64. */
55typedef unsigned long long u64;
56typedef uint32_t u32;
57typedef uint16_t u16;
58typedef uint8_t u8;
dde79789 59/*:*/
8ca47e00
RR
60
61#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
62#define NET_PEERNUM 1
63#define BRIDGE_PFX "bridge:"
64#ifndef SIOCBRADDIF
65#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66#endif
3c6b5bfa
RR
67/* We can have up to 256 pages for devices. */
68#define DEVICE_PAGES 256
42b36cc0
RR
69/* This will occupy 2 pages: it must be a power of 2. */
70#define VIRTQUEUE_NUM 128
8ca47e00 71
dde79789
RR
72/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
8ca47e00
RR
74static bool verbose;
75#define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
dde79789
RR
77/*:*/
78
79/* The pipe to send commands to the waker process */
8ca47e00 80static int waker_fd;
3c6b5bfa
RR
81/* The pointer to the start of guest memory. */
82static void *guest_base;
83/* The maximum guest physical address allowed, and maximum possible. */
84static unsigned long guest_limit, guest_max;
a161883a
RR
85/* The pipe for signal hander to write to. */
86static int timeoutpipe[2];
aa124984 87static unsigned int timeout_usec = 500;
8ca47e00 88
e3283fa0
GOC
89/* a per-cpu variable indicating whose vcpu is currently running */
90static unsigned int __thread cpu_id;
91
dde79789 92/* This is our list of devices. */
8ca47e00
RR
93struct device_list
94{
dde79789
RR
95 /* Summary information about the devices in our list: ready to pass to
96 * select() to ask which need servicing.*/
8ca47e00
RR
97 fd_set infds;
98 int max_infd;
99
17cbca2b
RR
100 /* Counter to assign interrupt numbers. */
101 unsigned int next_irq;
102
103 /* Counter to print out convenient device numbers. */
104 unsigned int device_num;
105
dde79789 106 /* The descriptor page for the devices. */
17cbca2b
RR
107 u8 *descpage;
108
dde79789 109 /* A single linked list of devices. */
8ca47e00 110 struct device *dev;
a586d4f6
RR
111 /* And a pointer to the last device for easy append and also for
112 * configuration appending. */
113 struct device *lastdev;
8ca47e00
RR
114};
115
17cbca2b
RR
116/* The list of Guest devices, based on command line arguments. */
117static struct device_list devices;
118
dde79789 119/* The device structure describes a single device. */
8ca47e00
RR
120struct device
121{
dde79789 122 /* The linked-list pointer. */
8ca47e00 123 struct device *next;
17cbca2b
RR
124
125 /* The this device's descriptor, as mapped into the Guest. */
8ca47e00 126 struct lguest_device_desc *desc;
17cbca2b
RR
127
128 /* The name of this device, for --verbose. */
129 const char *name;
8ca47e00 130
dde79789
RR
131 /* If handle_input is set, it wants to be called when this file
132 * descriptor is ready. */
8ca47e00
RR
133 int fd;
134 bool (*handle_input)(int fd, struct device *me);
135
17cbca2b
RR
136 /* Any queues attached to this device */
137 struct virtqueue *vq;
8ca47e00 138
a007a751
RR
139 /* Handle status being finalized (ie. feature bits stable). */
140 void (*ready)(struct device *me);
141
8ca47e00
RR
142 /* Device-specific data. */
143 void *priv;
144};
145
17cbca2b
RR
146/* The virtqueue structure describes a queue attached to a device. */
147struct virtqueue
148{
149 struct virtqueue *next;
150
151 /* Which device owns me. */
152 struct device *dev;
153
154 /* The configuration for this queue. */
155 struct lguest_vqconfig config;
156
157 /* The actual ring of buffers. */
158 struct vring vring;
159
160 /* Last available index we saw. */
161 u16 last_avail_idx;
162
a161883a
RR
163 /* The routine to call when the Guest pings us, or timeout. */
164 void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
20887611
RR
165
166 /* Outstanding buffers */
167 unsigned int inflight;
a161883a
RR
168
169 /* Is this blocked awaiting a timer? */
170 bool blocked;
17cbca2b
RR
171};
172
ec04b13f
BR
173/* Remember the arguments to the program so we can "reboot" */
174static char **main_args;
175
17cbca2b
RR
176/* Since guest is UP and we don't run at the same time, we don't need barriers.
177 * But I include them in the code in case others copy it. */
178#define wmb()
179
180/* Convert an iovec element to the given type.
181 *
182 * This is a fairly ugly trick: we need to know the size of the type and
183 * alignment requirement to check the pointer is kosher. It's also nice to
184 * have the name of the type in case we report failure.
185 *
186 * Typing those three things all the time is cumbersome and error prone, so we
187 * have a macro which sets them all up and passes to the real function. */
188#define convert(iov, type) \
189 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
190
191static void *_convert(struct iovec *iov, size_t size, size_t align,
192 const char *name)
193{
194 if (iov->iov_len != size)
195 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
196 if ((unsigned long)iov->iov_base % align != 0)
197 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
198 return iov->iov_base;
199}
200
b5111790
RR
201/* Wrapper for the last available index. Makes it easier to change. */
202#define lg_last_avail(vq) ((vq)->last_avail_idx)
203
17cbca2b
RR
204/* The virtio configuration space is defined to be little-endian. x86 is
205 * little-endian too, but it's nice to be explicit so we have these helpers. */
206#define cpu_to_le16(v16) (v16)
207#define cpu_to_le32(v32) (v32)
208#define cpu_to_le64(v64) (v64)
209#define le16_to_cpu(v16) (v16)
210#define le32_to_cpu(v32) (v32)
a586d4f6 211#define le64_to_cpu(v64) (v64)
17cbca2b 212
28fd6d7f
RR
213/* Is this iovec empty? */
214static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
215{
216 unsigned int i;
217
218 for (i = 0; i < num_iov; i++)
219 if (iov[i].iov_len)
220 return false;
221 return true;
222}
223
224/* Take len bytes from the front of this iovec. */
225static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
226{
227 unsigned int i;
228
229 for (i = 0; i < num_iov; i++) {
230 unsigned int used;
231
232 used = iov[i].iov_len < len ? iov[i].iov_len : len;
233 iov[i].iov_base += used;
234 iov[i].iov_len -= used;
235 len -= used;
236 }
237 assert(len == 0);
238}
239
6e5aa7ef
RR
240/* The device virtqueue descriptors are followed by feature bitmasks. */
241static u8 *get_feature_bits(struct device *dev)
242{
243 return (u8 *)(dev->desc + 1)
244 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
245}
246
3c6b5bfa
RR
247/*L:100 The Launcher code itself takes us out into userspace, that scary place
248 * where pointers run wild and free! Unfortunately, like most userspace
249 * programs, it's quite boring (which is why everyone likes to hack on the
250 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
251 * will get you through this section. Or, maybe not.
252 *
253 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
254 * memory and stores it in "guest_base". In other words, Guest physical ==
255 * Launcher virtual with an offset.
256 *
257 * This can be tough to get your head around, but usually it just means that we
258 * use these trivial conversion functions when the Guest gives us it's
259 * "physical" addresses: */
260static void *from_guest_phys(unsigned long addr)
261{
262 return guest_base + addr;
263}
264
265static unsigned long to_guest_phys(const void *addr)
266{
267 return (addr - guest_base);
268}
269
dde79789
RR
270/*L:130
271 * Loading the Kernel.
272 *
273 * We start with couple of simple helper routines. open_or_die() avoids
274 * error-checking code cluttering the callers: */
8ca47e00
RR
275static int open_or_die(const char *name, int flags)
276{
277 int fd = open(name, flags);
278 if (fd < 0)
279 err(1, "Failed to open %s", name);
280 return fd;
281}
282
3c6b5bfa
RR
283/* map_zeroed_pages() takes a number of pages. */
284static void *map_zeroed_pages(unsigned int num)
8ca47e00 285{
3c6b5bfa
RR
286 int fd = open_or_die("/dev/zero", O_RDONLY);
287 void *addr;
8ca47e00 288
dde79789 289 /* We use a private mapping (ie. if we write to the page, it will be
3c6b5bfa
RR
290 * copied). */
291 addr = mmap(NULL, getpagesize() * num,
292 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
293 if (addr == MAP_FAILED)
294 err(1, "Mmaping %u pages of /dev/zero", num);
34bdaab4 295 close(fd);
3c6b5bfa
RR
296
297 return addr;
298}
299
300/* Get some more pages for a device. */
301static void *get_pages(unsigned int num)
302{
303 void *addr = from_guest_phys(guest_limit);
304
305 guest_limit += num * getpagesize();
306 if (guest_limit > guest_max)
307 errx(1, "Not enough memory for devices");
308 return addr;
8ca47e00
RR
309}
310
6649bb7a
RM
311/* This routine is used to load the kernel or initrd. It tries mmap, but if
312 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
313 * it falls back to reading the memory in. */
314static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
315{
316 ssize_t r;
317
318 /* We map writable even though for some segments are marked read-only.
319 * The kernel really wants to be writable: it patches its own
320 * instructions.
321 *
322 * MAP_PRIVATE means that the page won't be copied until a write is
323 * done to it. This allows us to share untouched memory between
324 * Guests. */
325 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
326 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
327 return;
328
329 /* pread does a seek and a read in one shot: saves a few lines. */
330 r = pread(fd, addr, len, offset);
331 if (r != len)
332 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
333}
334
dde79789
RR
335/* This routine takes an open vmlinux image, which is in ELF, and maps it into
336 * the Guest memory. ELF = Embedded Linking Format, which is the format used
337 * by all modern binaries on Linux including the kernel.
338 *
339 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
340 * address. We use the physical address; the Guest will map itself to the
341 * virtual address.
dde79789
RR
342 *
343 * We return the starting address. */
47436aa4 344static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 345{
8ca47e00
RR
346 Elf32_Phdr phdr[ehdr->e_phnum];
347 unsigned int i;
8ca47e00 348
dde79789
RR
349 /* Sanity checks on the main ELF header: an x86 executable with a
350 * reasonable number of correctly-sized program headers. */
8ca47e00
RR
351 if (ehdr->e_type != ET_EXEC
352 || ehdr->e_machine != EM_386
353 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
354 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
355 errx(1, "Malformed elf header");
356
dde79789
RR
357 /* An ELF executable contains an ELF header and a number of "program"
358 * headers which indicate which parts ("segments") of the program to
359 * load where. */
360
361 /* We read in all the program headers at once: */
8ca47e00
RR
362 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
363 err(1, "Seeking to program headers");
364 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
365 err(1, "Reading program headers");
366
dde79789 367 /* Try all the headers: there are usually only three. A read-only one,
a6bd8e13 368 * a read-write one, and a "note" section which we don't load. */
8ca47e00 369 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 370 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
371 if (phdr[i].p_type != PT_LOAD)
372 continue;
373
374 verbose("Section %i: size %i addr %p\n",
375 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
376
6649bb7a 377 /* We map this section of the file at its physical address. */
3c6b5bfa 378 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 379 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
380 }
381
814a0e5c
RR
382 /* The entry point is given in the ELF header. */
383 return ehdr->e_entry;
8ca47e00
RR
384}
385
dde79789 386/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
5bbf89fc
RR
387 * supposed to jump into it and it will unpack itself. We used to have to
388 * perform some hairy magic because the unpacking code scared me.
dde79789 389 *
5bbf89fc
RR
390 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
391 * a small patch to jump over the tricky bits in the Guest, so now we just read
392 * the funky header so we know where in the file to load, and away we go! */
47436aa4 393static unsigned long load_bzimage(int fd)
8ca47e00 394{
43d33b21 395 struct boot_params boot;
5bbf89fc
RR
396 int r;
397 /* Modern bzImages get loaded at 1M. */
398 void *p = from_guest_phys(0x100000);
399
400 /* Go back to the start of the file and read the header. It should be
401 * a Linux boot header (see Documentation/i386/boot.txt) */
402 lseek(fd, 0, SEEK_SET);
43d33b21 403 read(fd, &boot, sizeof(boot));
5bbf89fc 404
43d33b21
RR
405 /* Inside the setup_hdr, we expect the magic "HdrS" */
406 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
407 errx(1, "This doesn't look like a bzImage to me");
408
43d33b21
RR
409 /* Skip over the extra sectors of the header. */
410 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
411
412 /* Now read everything into memory. in nice big chunks. */
413 while ((r = read(fd, p, 65536)) > 0)
414 p += r;
415
43d33b21
RR
416 /* Finally, code32_start tells us where to enter the kernel. */
417 return boot.hdr.code32_start;
8ca47e00
RR
418}
419
dde79789 420/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965
RR
421 * come wrapped up in the self-decompressing "bzImage" format. With a little
422 * work, we can load those, too. */
47436aa4 423static unsigned long load_kernel(int fd)
8ca47e00
RR
424{
425 Elf32_Ehdr hdr;
426
dde79789 427 /* Read in the first few bytes. */
8ca47e00
RR
428 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
429 err(1, "Reading kernel");
430
dde79789 431 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 432 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 433 return map_elf(fd, &hdr);
8ca47e00 434
a6bd8e13 435 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 436 return load_bzimage(fd);
8ca47e00
RR
437}
438
dde79789
RR
439/* This is a trivial little helper to align pages. Andi Kleen hated it because
440 * it calls getpagesize() twice: "it's dumb code."
441 *
442 * Kernel guys get really het up about optimization, even when it's not
443 * necessary. I leave this code as a reaction against that. */
8ca47e00
RR
444static inline unsigned long page_align(unsigned long addr)
445{
dde79789 446 /* Add upwards and truncate downwards. */
8ca47e00
RR
447 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
448}
449
dde79789
RR
450/*L:180 An "initial ram disk" is a disk image loaded into memory along with
451 * the kernel which the kernel can use to boot from without needing any
452 * drivers. Most distributions now use this as standard: the initrd contains
453 * the code to load the appropriate driver modules for the current machine.
454 *
455 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
456 * kernels. He sent me this (and tells me when I break it). */
8ca47e00
RR
457static unsigned long load_initrd(const char *name, unsigned long mem)
458{
459 int ifd;
460 struct stat st;
461 unsigned long len;
8ca47e00
RR
462
463 ifd = open_or_die(name, O_RDONLY);
dde79789 464 /* fstat() is needed to get the file size. */
8ca47e00
RR
465 if (fstat(ifd, &st) < 0)
466 err(1, "fstat() on initrd '%s'", name);
467
6649bb7a
RM
468 /* We map the initrd at the top of memory, but mmap wants it to be
469 * page-aligned, so we round the size up for that. */
8ca47e00 470 len = page_align(st.st_size);
3c6b5bfa 471 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
dde79789
RR
472 /* Once a file is mapped, you can close the file descriptor. It's a
473 * little odd, but quite useful. */
8ca47e00 474 close(ifd);
6649bb7a 475 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
476
477 /* We return the initrd size. */
8ca47e00
RR
478 return len;
479}
480
a6bd8e13 481/* Once we know how much memory we have we can construct simple linear page
47436aa4 482 * tables which set virtual == physical which will get the Guest far enough
3c6b5bfa 483 * into the boot to create its own.
dde79789
RR
484 *
485 * We lay them out of the way, just below the initrd (which is why we need to
a6bd8e13 486 * know its size here). */
8ca47e00 487static unsigned long setup_pagetables(unsigned long mem,
47436aa4 488 unsigned long initrd_size)
8ca47e00 489{
511801dc 490 unsigned long *pgdir, *linear;
8ca47e00 491 unsigned int mapped_pages, i, linear_pages;
511801dc 492 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
8ca47e00 493
47436aa4 494 mapped_pages = mem/getpagesize();
8ca47e00 495
dde79789 496 /* Each PTE page can map ptes_per_page pages: how many do we need? */
8ca47e00
RR
497 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
498
dde79789 499 /* We put the toplevel page directory page at the top of memory. */
3c6b5bfa 500 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
dde79789
RR
501
502 /* Now we use the next linear_pages pages as pte pages */
8ca47e00
RR
503 linear = (void *)pgdir - linear_pages*getpagesize();
504
dde79789
RR
505 /* Linear mapping is easy: put every page's address into the mapping in
506 * order. PAGE_PRESENT contains the flags Present, Writable and
507 * Executable. */
8ca47e00
RR
508 for (i = 0; i < mapped_pages; i++)
509 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
510
47436aa4 511 /* The top level points to the linear page table pages above. */
8ca47e00 512 for (i = 0; i < mapped_pages; i += ptes_per_page) {
47436aa4 513 pgdir[i/ptes_per_page]
511801dc 514 = ((to_guest_phys(linear) + i*sizeof(void *))
3c6b5bfa 515 | PAGE_PRESENT);
8ca47e00
RR
516 }
517
3c6b5bfa
RR
518 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
519 mapped_pages, linear_pages, to_guest_phys(linear));
8ca47e00 520
dde79789
RR
521 /* We return the top level (guest-physical) address: the kernel needs
522 * to know where it is. */
3c6b5bfa 523 return to_guest_phys(pgdir);
8ca47e00 524}
e1e72965 525/*:*/
8ca47e00 526
dde79789
RR
527/* Simple routine to roll all the commandline arguments together with spaces
528 * between them. */
8ca47e00
RR
529static void concat(char *dst, char *args[])
530{
531 unsigned int i, len = 0;
532
533 for (i = 0; args[i]; i++) {
1ef36fa6
PB
534 if (i) {
535 strcat(dst+len, " ");
536 len++;
537 }
8ca47e00 538 strcpy(dst+len, args[i]);
1ef36fa6 539 len += strlen(args[i]);
8ca47e00
RR
540 }
541 /* In case it's empty. */
542 dst[len] = '\0';
543}
544
e1e72965
RR
545/*L:185 This is where we actually tell the kernel to initialize the Guest. We
546 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
547 * the base of Guest "physical" memory, the top physical page to allow, the
47436aa4
RR
548 * top level pagetable and the entry point for the Guest. */
549static int tell_kernel(unsigned long pgdir, unsigned long start)
8ca47e00 550{
511801dc
JS
551 unsigned long args[] = { LHREQ_INITIALIZE,
552 (unsigned long)guest_base,
47436aa4 553 guest_limit / getpagesize(), pgdir, start };
8ca47e00
RR
554 int fd;
555
3c6b5bfa
RR
556 verbose("Guest: %p - %p (%#lx)\n",
557 guest_base, guest_base + guest_limit, guest_limit);
8ca47e00
RR
558 fd = open_or_die("/dev/lguest", O_RDWR);
559 if (write(fd, args, sizeof(args)) < 0)
560 err(1, "Writing to /dev/lguest");
dde79789
RR
561
562 /* We return the /dev/lguest file descriptor to control this Guest */
8ca47e00
RR
563 return fd;
564}
dde79789 565/*:*/
8ca47e00 566
17cbca2b 567static void add_device_fd(int fd)
8ca47e00 568{
17cbca2b
RR
569 FD_SET(fd, &devices.infds);
570 if (fd > devices.max_infd)
571 devices.max_infd = fd;
8ca47e00
RR
572}
573
dde79789
RR
574/*L:200
575 * The Waker.
576 *
e1e72965
RR
577 * With console, block and network devices, we can have lots of input which we
578 * need to process. We could try to tell the kernel what file descriptors to
579 * watch, but handing a file descriptor mask through to the kernel is fairly
580 * icky.
dde79789
RR
581 *
582 * Instead, we fork off a process which watches the file descriptors and writes
e1e72965
RR
583 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
584 * stop running the Guest. This causes the Launcher to return from the
dde79789
RR
585 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
586 * the LHREQ_BREAK and wake us up again.
587 *
588 * This, of course, is merely a different *kind* of icky.
589 */
17cbca2b 590static void wake_parent(int pipefd, int lguest_fd)
8ca47e00 591{
dde79789
RR
592 /* Add the pipe from the Launcher to the fdset in the device_list, so
593 * we watch it, too. */
17cbca2b 594 add_device_fd(pipefd);
8ca47e00
RR
595
596 for (;;) {
17cbca2b 597 fd_set rfds = devices.infds;
511801dc 598 unsigned long args[] = { LHREQ_BREAK, 1 };
8ca47e00 599
dde79789 600 /* Wait until input is ready from one of the devices. */
17cbca2b 601 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
dde79789 602 /* Is it a message from the Launcher? */
8ca47e00 603 if (FD_ISSET(pipefd, &rfds)) {
56ae43df 604 int fd;
dde79789
RR
605 /* If read() returns 0, it means the Launcher has
606 * exited. We silently follow. */
56ae43df 607 if (read(pipefd, &fd, sizeof(fd)) == 0)
8ca47e00 608 exit(0);
56ae43df 609 /* Otherwise it's telling us to change what file
e1e72965
RR
610 * descriptors we're to listen to. Positive means
611 * listen to a new one, negative means stop
612 * listening. */
56ae43df
RR
613 if (fd >= 0)
614 FD_SET(fd, &devices.infds);
615 else
616 FD_CLR(-fd - 1, &devices.infds);
dde79789 617 } else /* Send LHREQ_BREAK command. */
e3283fa0 618 pwrite(lguest_fd, args, sizeof(args), cpu_id);
8ca47e00
RR
619 }
620}
621
dde79789 622/* This routine just sets up a pipe to the Waker process. */
17cbca2b 623static int setup_waker(int lguest_fd)
8ca47e00
RR
624{
625 int pipefd[2], child;
626
e1e72965 627 /* We create a pipe to talk to the Waker, and also so it knows when the
dde79789 628 * Launcher dies (and closes pipe). */
8ca47e00
RR
629 pipe(pipefd);
630 child = fork();
631 if (child == -1)
632 err(1, "forking");
633
634 if (child == 0) {
e1e72965
RR
635 /* We are the Waker: close the "writing" end of our copy of the
636 * pipe and start waiting for input. */
8ca47e00 637 close(pipefd[1]);
17cbca2b 638 wake_parent(pipefd[0], lguest_fd);
8ca47e00 639 }
dde79789 640 /* Close the reading end of our copy of the pipe. */
8ca47e00
RR
641 close(pipefd[0]);
642
dde79789 643 /* Here is the fd used to talk to the waker. */
8ca47e00
RR
644 return pipefd[1];
645}
646
e1e72965 647/*
dde79789
RR
648 * Device Handling.
649 *
e1e72965 650 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 651 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 652 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
653 * if something funny is going on:
654 */
8ca47e00
RR
655static void *_check_pointer(unsigned long addr, unsigned int size,
656 unsigned int line)
657{
dde79789
RR
658 /* We have to separately check addr and addr+size, because size could
659 * be huge and addr + size might wrap around. */
3c6b5bfa 660 if (addr >= guest_limit || addr + size >= guest_limit)
17cbca2b 661 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
dde79789
RR
662 /* We return a pointer for the caller's convenience, now we know it's
663 * safe to use. */
3c6b5bfa 664 return from_guest_phys(addr);
8ca47e00 665}
dde79789 666/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
667#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
668
e1e72965
RR
669/* Each buffer in the virtqueues is actually a chain of descriptors. This
670 * function returns the next descriptor in the chain, or vq->vring.num if we're
671 * at the end. */
17cbca2b
RR
672static unsigned next_desc(struct virtqueue *vq, unsigned int i)
673{
674 unsigned int next;
675
676 /* If this descriptor says it doesn't chain, we're done. */
677 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
678 return vq->vring.num;
679
680 /* Check they're not leading us off end of descriptors. */
681 next = vq->vring.desc[i].next;
682 /* Make sure compiler knows to grab that: we don't want it changing! */
683 wmb();
684
685 if (next >= vq->vring.num)
686 errx(1, "Desc next is %u", next);
687
688 return next;
689}
690
691/* This looks in the virtqueue and for the first available buffer, and converts
692 * it to an iovec for convenient access. Since descriptors consist of some
693 * number of output then some number of input descriptors, it's actually two
694 * iovecs, but we pack them into one and note how many of each there were.
695 *
696 * This function returns the descriptor number found, or vq->vring.num (which
697 * is never a valid descriptor number) if none was found. */
698static unsigned get_vq_desc(struct virtqueue *vq,
699 struct iovec iov[],
700 unsigned int *out_num, unsigned int *in_num)
701{
702 unsigned int i, head;
b5111790 703 u16 last_avail;
17cbca2b
RR
704
705 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790
RR
706 last_avail = lg_last_avail(vq);
707 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 708 errx(1, "Guest moved used index from %u to %u",
b5111790 709 last_avail, vq->vring.avail->idx);
17cbca2b
RR
710
711 /* If there's nothing new since last we looked, return invalid. */
b5111790 712 if (vq->vring.avail->idx == last_avail)
17cbca2b
RR
713 return vq->vring.num;
714
715 /* Grab the next descriptor number they're advertising, and increment
716 * the index we've seen. */
b5111790
RR
717 head = vq->vring.avail->ring[last_avail % vq->vring.num];
718 lg_last_avail(vq)++;
17cbca2b
RR
719
720 /* If their number is silly, that's a fatal mistake. */
721 if (head >= vq->vring.num)
722 errx(1, "Guest says index %u is available", head);
723
724 /* When we start there are none of either input nor output. */
725 *out_num = *in_num = 0;
726
727 i = head;
728 do {
729 /* Grab the first descriptor, and check it's OK. */
730 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
731 iov[*out_num + *in_num].iov_base
732 = check_pointer(vq->vring.desc[i].addr,
733 vq->vring.desc[i].len);
734 /* If this is an input descriptor, increment that count. */
735 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
736 (*in_num)++;
737 else {
738 /* If it's an output descriptor, they're all supposed
739 * to come before any input descriptors. */
740 if (*in_num)
741 errx(1, "Descriptor has out after in");
742 (*out_num)++;
743 }
744
745 /* If we've got too many, that implies a descriptor loop. */
746 if (*out_num + *in_num > vq->vring.num)
747 errx(1, "Looped descriptor");
748 } while ((i = next_desc(vq, i)) != vq->vring.num);
dde79789 749
20887611 750 vq->inflight++;
17cbca2b 751 return head;
8ca47e00
RR
752}
753
e1e72965 754/* After we've used one of their buffers, we tell them about it. We'll then
17cbca2b
RR
755 * want to send them an interrupt, using trigger_irq(). */
756static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 757{
17cbca2b
RR
758 struct vring_used_elem *used;
759
e1e72965
RR
760 /* The virtqueue contains a ring of used buffers. Get a pointer to the
761 * next entry in that used ring. */
17cbca2b
RR
762 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
763 used->id = head;
764 used->len = len;
765 /* Make sure buffer is written before we update index. */
766 wmb();
767 vq->vring.used->idx++;
20887611 768 vq->inflight--;
8ca47e00
RR
769}
770
17cbca2b
RR
771/* This actually sends the interrupt for this virtqueue */
772static void trigger_irq(int fd, struct virtqueue *vq)
8ca47e00 773{
17cbca2b
RR
774 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
775
20887611
RR
776 /* If they don't want an interrupt, don't send one, unless empty. */
777 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
778 && vq->inflight)
17cbca2b
RR
779 return;
780
781 /* Send the Guest an interrupt tell them we used something up. */
8ca47e00 782 if (write(fd, buf, sizeof(buf)) != 0)
17cbca2b 783 err(1, "Triggering irq %i", vq->config.irq);
8ca47e00
RR
784}
785
17cbca2b
RR
786/* And here's the combo meal deal. Supersize me! */
787static void add_used_and_trigger(int fd, struct virtqueue *vq,
788 unsigned int head, int len)
8ca47e00 789{
17cbca2b
RR
790 add_used(vq, head, len);
791 trigger_irq(fd, vq);
8ca47e00
RR
792}
793
e1e72965
RR
794/*
795 * The Console
796 *
797 * Here is the input terminal setting we save, and the routine to restore them
798 * on exit so the user gets their terminal back. */
8ca47e00
RR
799static struct termios orig_term;
800static void restore_term(void)
801{
802 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
803}
804
dde79789 805/* We associate some data with the console for our exit hack. */
8ca47e00
RR
806struct console_abort
807{
dde79789 808 /* How many times have they hit ^C? */
8ca47e00 809 int count;
dde79789 810 /* When did they start? */
8ca47e00
RR
811 struct timeval start;
812};
813
dde79789 814/* This is the routine which handles console input (ie. stdin). */
8ca47e00
RR
815static bool handle_console_input(int fd, struct device *dev)
816{
8ca47e00 817 int len;
17cbca2b
RR
818 unsigned int head, in_num, out_num;
819 struct iovec iov[dev->vq->vring.num];
8ca47e00
RR
820 struct console_abort *abort = dev->priv;
821
17cbca2b
RR
822 /* First we need a console buffer from the Guests's input virtqueue. */
823 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
56ae43df
RR
824
825 /* If they're not ready for input, stop listening to this file
826 * descriptor. We'll start again once they add an input buffer. */
827 if (head == dev->vq->vring.num)
828 return false;
829
830 if (out_num)
17cbca2b 831 errx(1, "Output buffers in console in queue?");
8ca47e00 832
dde79789
RR
833 /* This is why we convert to iovecs: the readv() call uses them, and so
834 * it reads straight into the Guest's buffer. */
17cbca2b 835 len = readv(dev->fd, iov, in_num);
8ca47e00 836 if (len <= 0) {
dde79789 837 /* This implies that the console is closed, is /dev/null, or
17cbca2b 838 * something went terribly wrong. */
8ca47e00 839 warnx("Failed to get console input, ignoring console.");
56ae43df 840 /* Put the input terminal back. */
17cbca2b 841 restore_term();
56ae43df
RR
842 /* Remove callback from input vq, so it doesn't restart us. */
843 dev->vq->handle_output = NULL;
844 /* Stop listening to this fd: don't call us again. */
17cbca2b 845 return false;
8ca47e00
RR
846 }
847
56ae43df
RR
848 /* Tell the Guest about the new input. */
849 add_used_and_trigger(fd, dev->vq, head, len);
8ca47e00 850
dde79789
RR
851 /* Three ^C within one second? Exit.
852 *
853 * This is such a hack, but works surprisingly well. Each ^C has to be
854 * in a buffer by itself, so they can't be too fast. But we check that
855 * we get three within about a second, so they can't be too slow. */
8ca47e00
RR
856 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
857 if (!abort->count++)
858 gettimeofday(&abort->start, NULL);
859 else if (abort->count == 3) {
860 struct timeval now;
861 gettimeofday(&now, NULL);
862 if (now.tv_sec <= abort->start.tv_sec+1) {
511801dc 863 unsigned long args[] = { LHREQ_BREAK, 0 };
dde79789
RR
864 /* Close the fd so Waker will know it has to
865 * exit. */
8ca47e00 866 close(waker_fd);
dde79789
RR
867 /* Just in case waker is blocked in BREAK, send
868 * unbreak now. */
8ca47e00
RR
869 write(fd, args, sizeof(args));
870 exit(2);
871 }
872 abort->count = 0;
873 }
874 } else
dde79789 875 /* Any other key resets the abort counter. */
8ca47e00
RR
876 abort->count = 0;
877
dde79789 878 /* Everything went OK! */
8ca47e00
RR
879 return true;
880}
881
17cbca2b
RR
882/* Handling output for console is simple: we just get all the output buffers
883 * and write them to stdout. */
a161883a 884static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
8ca47e00 885{
17cbca2b
RR
886 unsigned int head, out, in;
887 int len;
888 struct iovec iov[vq->vring.num];
889
890 /* Keep getting output buffers from the Guest until we run out. */
891 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
892 if (in)
893 errx(1, "Input buffers in output queue?");
894 len = writev(STDOUT_FILENO, iov, out);
895 add_used_and_trigger(fd, vq, head, len);
896 }
8ca47e00
RR
897}
898
a161883a
RR
899static void block_vq(struct virtqueue *vq)
900{
901 struct itimerval itm;
902
903 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
904 vq->blocked = true;
905
906 itm.it_interval.tv_sec = 0;
907 itm.it_interval.tv_usec = 0;
908 itm.it_value.tv_sec = 0;
aa124984 909 itm.it_value.tv_usec = timeout_usec;
a161883a
RR
910
911 setitimer(ITIMER_REAL, &itm, NULL);
912}
913
e1e72965
RR
914/*
915 * The Network
916 *
917 * Handling output for network is also simple: we get all the output buffers
17cbca2b 918 * and write them (ignoring the first element) to this device's file descriptor
a6bd8e13
RR
919 * (/dev/net/tun).
920 */
a161883a 921static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
8ca47e00 922{
a161883a 923 unsigned int head, out, in, num = 0;
17cbca2b
RR
924 int len;
925 struct iovec iov[vq->vring.num];
aa124984 926 static int last_timeout_num;
17cbca2b
RR
927
928 /* Keep getting output buffers from the Guest until we run out. */
929 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
930 if (in)
931 errx(1, "Input buffers in output queue?");
398f187d
RR
932 len = writev(vq->dev->fd, iov, out);
933 if (len < 0)
934 err(1, "Writing network packet to tun");
17cbca2b 935 add_used_and_trigger(fd, vq, head, len);
a161883a 936 num++;
17cbca2b 937 }
a161883a
RR
938
939 /* Block further kicks and set up a timer if we saw anything. */
940 if (!timeout && num)
941 block_vq(vq);
aa124984
RR
942
943 if (timeout) {
944 if (num < last_timeout_num)
945 timeout_usec += 10;
946 else if (timeout_usec > 1)
947 timeout_usec--;
948 last_timeout_num = num;
949 }
8ca47e00
RR
950}
951
17cbca2b
RR
952/* This is where we handle a packet coming in from the tun device to our
953 * Guest. */
8ca47e00
RR
954static bool handle_tun_input(int fd, struct device *dev)
955{
17cbca2b 956 unsigned int head, in_num, out_num;
8ca47e00 957 int len;
17cbca2b 958 struct iovec iov[dev->vq->vring.num];
8ca47e00 959
17cbca2b
RR
960 /* First we need a network buffer from the Guests's recv virtqueue. */
961 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
962 if (head == dev->vq->vring.num) {
dde79789 963 /* Now, it's expected that if we try to send a packet too
17cbca2b
RR
964 * early, the Guest won't be ready yet. Wait until the device
965 * status says it's ready. */
966 /* FIXME: Actually want DRIVER_ACTIVE here. */
5dae785a
RR
967
968 /* Now tell it we want to know if new things appear. */
969 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
970 wmb();
971
56ae43df
RR
972 /* We'll turn this back on if input buffers are registered. */
973 return false;
17cbca2b
RR
974 } else if (out_num)
975 errx(1, "Output buffers in network recv queue?");
976
dde79789 977 /* Read the packet from the device directly into the Guest's buffer. */
398f187d 978 len = readv(dev->fd, iov, in_num);
8ca47e00
RR
979 if (len <= 0)
980 err(1, "reading network");
dde79789 981
56ae43df 982 /* Tell the Guest about the new packet. */
398f187d 983 add_used_and_trigger(fd, dev->vq, head, len);
17cbca2b 984
8ca47e00 985 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
17cbca2b
RR
986 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
987 head != dev->vq->vring.num ? "sent" : "discarded");
988
dde79789 989 /* All good. */
8ca47e00
RR
990 return true;
991}
992
e1e72965
RR
993/*L:215 This is the callback attached to the network and console input
994 * virtqueues: it ensures we try again, in case we stopped console or net
56ae43df 995 * delivery because Guest didn't have any buffers. */
a161883a 996static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
56ae43df
RR
997{
998 add_device_fd(vq->dev->fd);
999 /* Tell waker to listen to it again */
1000 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
1001}
1002
a161883a 1003static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
5dae785a
RR
1004{
1005 /* We don't need to know again when Guest refills receive buffer. */
1006 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
a161883a 1007 enable_fd(fd, vq, timeout);
5dae785a
RR
1008}
1009
a007a751
RR
1010/* When the Guest tells us they updated the status field, we handle it. */
1011static void update_device_status(struct device *dev)
6e5aa7ef
RR
1012{
1013 struct virtqueue *vq;
1014
a007a751
RR
1015 /* This is a reset. */
1016 if (dev->desc->status == 0) {
1017 verbose("Resetting device %s\n", dev->name);
6e5aa7ef 1018
a007a751
RR
1019 /* Clear any features they've acked. */
1020 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
1021 dev->desc->feature_len);
6e5aa7ef 1022
a007a751
RR
1023 /* Zero out the virtqueues. */
1024 for (vq = dev->vq; vq; vq = vq->next) {
1025 memset(vq->vring.desc, 0,
1026 vring_size(vq->config.num, getpagesize()));
b5111790 1027 lg_last_avail(vq) = 0;
a007a751
RR
1028 }
1029 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1030 warnx("Device %s configuration FAILED", dev->name);
1031 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1032 unsigned int i;
1033
1034 verbose("Device %s OK: offered", dev->name);
1035 for (i = 0; i < dev->desc->feature_len; i++)
32c68e5c 1036 verbose(" %02x", get_feature_bits(dev)[i]);
a007a751
RR
1037 verbose(", accepted");
1038 for (i = 0; i < dev->desc->feature_len; i++)
32c68e5c 1039 verbose(" %02x", get_feature_bits(dev)
a007a751
RR
1040 [dev->desc->feature_len+i]);
1041
1042 if (dev->ready)
1043 dev->ready(dev);
6e5aa7ef
RR
1044 }
1045}
1046
17cbca2b
RR
1047/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
1048static void handle_output(int fd, unsigned long addr)
8ca47e00
RR
1049{
1050 struct device *i;
17cbca2b
RR
1051 struct virtqueue *vq;
1052
6e5aa7ef 1053 /* Check each device and virtqueue. */
17cbca2b 1054 for (i = devices.dev; i; i = i->next) {
a007a751 1055 /* Notifications to device descriptors update device status. */
6e5aa7ef 1056 if (from_guest_phys(addr) == i->desc) {
a007a751 1057 update_device_status(i);
6e5aa7ef
RR
1058 return;
1059 }
1060
1061 /* Notifications to virtqueues mean output has occurred. */
17cbca2b 1062 for (vq = i->vq; vq; vq = vq->next) {
6e5aa7ef
RR
1063 if (vq->config.pfn != addr/getpagesize())
1064 continue;
1065
1066 /* Guest should acknowledge (and set features!) before
1067 * using the device. */
1068 if (i->desc->status == 0) {
1069 warnx("%s gave early output", i->name);
17cbca2b
RR
1070 return;
1071 }
6e5aa7ef
RR
1072
1073 if (strcmp(vq->dev->name, "console") != 0)
1074 verbose("Output to %s\n", vq->dev->name);
1075 if (vq->handle_output)
a161883a 1076 vq->handle_output(fd, vq, false);
6e5aa7ef 1077 return;
8ca47e00
RR
1078 }
1079 }
dde79789 1080
17cbca2b
RR
1081 /* Early console write is done using notify on a nul-terminated string
1082 * in Guest memory. */
1083 if (addr >= guest_limit)
1084 errx(1, "Bad NOTIFY %#lx", addr);
1085
1086 write(STDOUT_FILENO, from_guest_phys(addr),
1087 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1088}
1089
a161883a
RR
1090static void handle_timeout(int fd)
1091{
1092 char buf[32];
1093 struct device *i;
1094 struct virtqueue *vq;
1095
1096 /* Clear the pipe */
1097 read(timeoutpipe[0], buf, sizeof(buf));
1098
1099 /* Check each device and virtqueue: flush blocked ones. */
1100 for (i = devices.dev; i; i = i->next) {
1101 for (vq = i->vq; vq; vq = vq->next) {
1102 if (!vq->blocked)
1103 continue;
1104
1105 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1106 vq->blocked = false;
1107 if (vq->handle_output)
1108 vq->handle_output(fd, vq, true);
1109 }
1110 }
1111}
1112
e1e72965 1113/* This is called when the Waker wakes us up: check for incoming file
dde79789 1114 * descriptors. */
17cbca2b 1115static void handle_input(int fd)
8ca47e00 1116{
dde79789 1117 /* select() wants a zeroed timeval to mean "don't wait". */
8ca47e00
RR
1118 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1119
1120 for (;;) {
1121 struct device *i;
17cbca2b 1122 fd_set fds = devices.infds;
a161883a 1123 int num;
8ca47e00 1124
a161883a
RR
1125 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1126 /* Could get interrupted */
1127 if (num < 0)
1128 continue;
dde79789 1129 /* If nothing is ready, we're done. */
a161883a 1130 if (num == 0)
8ca47e00
RR
1131 break;
1132
a6bd8e13
RR
1133 /* Otherwise, call the device(s) which have readable file
1134 * descriptors and a method of handling them. */
17cbca2b 1135 for (i = devices.dev; i; i = i->next) {
8ca47e00 1136 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
56ae43df
RR
1137 int dev_fd;
1138 if (i->handle_input(fd, i))
1139 continue;
1140
dde79789 1141 /* If handle_input() returns false, it means we
56ae43df
RR
1142 * should no longer service it. Networking and
1143 * console do this when there's no input
1144 * buffers to deliver into. Console also uses
a6bd8e13 1145 * it when it discovers that stdin is closed. */
56ae43df
RR
1146 FD_CLR(i->fd, &devices.infds);
1147 /* Tell waker to ignore it too, by sending a
1148 * negative fd number (-1, since 0 is a valid
1149 * FD number). */
1150 dev_fd = -i->fd - 1;
1151 write(waker_fd, &dev_fd, sizeof(dev_fd));
8ca47e00
RR
1152 }
1153 }
a161883a
RR
1154
1155 /* Is this the timeout fd? */
1156 if (FD_ISSET(timeoutpipe[0], &fds))
1157 handle_timeout(fd);
8ca47e00
RR
1158 }
1159}
1160
dde79789
RR
1161/*L:190
1162 * Device Setup
1163 *
1164 * All devices need a descriptor so the Guest knows it exists, and a "struct
1165 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1166 * routines to allocate and manage them.
1167 */
8ca47e00 1168
a586d4f6
RR
1169/* The layout of the device page is a "struct lguest_device_desc" followed by a
1170 * number of virtqueue descriptors, then two sets of feature bits, then an
1171 * array of configuration bytes. This routine returns the configuration
1172 * pointer. */
1173static u8 *device_config(const struct device *dev)
1174{
1175 return (void *)(dev->desc + 1)
1176 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1177 + dev->desc->feature_len * 2;
17cbca2b
RR
1178}
1179
a586d4f6
RR
1180/* This routine allocates a new "struct lguest_device_desc" from descriptor
1181 * table page just above the Guest's normal memory. It returns a pointer to
1182 * that descriptor. */
1183static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1184{
a586d4f6
RR
1185 struct lguest_device_desc d = { .type = type };
1186 void *p;
17cbca2b 1187
a586d4f6
RR
1188 /* Figure out where the next device config is, based on the last one. */
1189 if (devices.lastdev)
1190 p = device_config(devices.lastdev)
1191 + devices.lastdev->desc->config_len;
1192 else
1193 p = devices.descpage;
17cbca2b 1194
a586d4f6
RR
1195 /* We only have one page for all the descriptors. */
1196 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1197 errx(1, "Too many devices");
17cbca2b 1198
a586d4f6
RR
1199 /* p might not be aligned, so we memcpy in. */
1200 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1201}
1202
a586d4f6
RR
1203/* Each device descriptor is followed by the description of its virtqueues. We
1204 * specify how many descriptors the virtqueue is to have. */
17cbca2b 1205static void add_virtqueue(struct device *dev, unsigned int num_descs,
a161883a 1206 void (*handle_output)(int, struct virtqueue *, bool))
17cbca2b
RR
1207{
1208 unsigned int pages;
1209 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1210 void *p;
1211
a6bd8e13 1212 /* First we need some memory for this virtqueue. */
42b36cc0
RR
1213 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1214 / getpagesize();
17cbca2b
RR
1215 p = get_pages(pages);
1216
d1c856e0
RR
1217 /* Initialize the virtqueue */
1218 vq->next = NULL;
1219 vq->last_avail_idx = 0;
1220 vq->dev = dev;
20887611 1221 vq->inflight = 0;
a161883a 1222 vq->blocked = false;
d1c856e0 1223
17cbca2b
RR
1224 /* Initialize the configuration. */
1225 vq->config.num = num_descs;
1226 vq->config.irq = devices.next_irq++;
1227 vq->config.pfn = to_guest_phys(p) / getpagesize();
1228
1229 /* Initialize the vring. */
42b36cc0 1230 vring_init(&vq->vring, num_descs, p, getpagesize());
17cbca2b 1231
a586d4f6
RR
1232 /* Append virtqueue to this device's descriptor. We use
1233 * device_config() to get the end of the device's current virtqueues;
1234 * we check that we haven't added any config or feature information
1235 * yet, otherwise we'd be overwriting them. */
1236 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1237 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1238 dev->desc->num_vq++;
1239
1240 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b
RR
1241
1242 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1243 * second. */
1244 for (i = &dev->vq; *i; i = &(*i)->next);
1245 *i = vq;
1246
e1e72965
RR
1247 /* Set the routine to call when the Guest does something to this
1248 * virtqueue. */
17cbca2b 1249 vq->handle_output = handle_output;
e1e72965 1250
426e3e0a
RR
1251 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1252 * don't have a handler */
17cbca2b
RR
1253 if (!handle_output)
1254 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
8ca47e00
RR
1255}
1256
6e5aa7ef 1257/* The first half of the feature bitmask is for us to advertise features. The
a6bd8e13 1258 * second half is for the Guest to accept features. */
a586d4f6
RR
1259static void add_feature(struct device *dev, unsigned bit)
1260{
6e5aa7ef 1261 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1262
1263 /* We can't extend the feature bits once we've added config bytes */
1264 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1265 assert(dev->desc->config_len == 0);
1266 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1267 }
1268
a586d4f6
RR
1269 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1270}
1271
1272/* This routine sets the configuration fields for an existing device's
1273 * descriptor. It only works for the last device, but that's OK because that's
1274 * how we use it. */
1275static void set_config(struct device *dev, unsigned len, const void *conf)
1276{
1277 /* Check we haven't overflowed our single page. */
1278 if (device_config(dev) + len > devices.descpage + getpagesize())
1279 errx(1, "Too many devices");
1280
1281 /* Copy in the config information, and store the length. */
1282 memcpy(device_config(dev), conf, len);
1283 dev->desc->config_len = len;
1284}
1285
17cbca2b 1286/* This routine does all the creation and setup of a new device, including
a6bd8e13
RR
1287 * calling new_dev_desc() to allocate the descriptor and device memory.
1288 *
1289 * See what I mean about userspace being boring? */
17cbca2b
RR
1290static struct device *new_device(const char *name, u16 type, int fd,
1291 bool (*handle_input)(int, struct device *))
8ca47e00
RR
1292{
1293 struct device *dev = malloc(sizeof(*dev));
1294
dde79789 1295 /* Now we populate the fields one at a time. */
8ca47e00 1296 dev->fd = fd;
dde79789
RR
1297 /* If we have an input handler for this file descriptor, then we add it
1298 * to the device_list's fdset and maxfd. */
8ca47e00 1299 if (handle_input)
17cbca2b
RR
1300 add_device_fd(dev->fd);
1301 dev->desc = new_dev_desc(type);
8ca47e00 1302 dev->handle_input = handle_input;
17cbca2b 1303 dev->name = name;
d1c856e0 1304 dev->vq = NULL;
a007a751 1305 dev->ready = NULL;
a586d4f6
RR
1306
1307 /* Append to device list. Prepending to a single-linked list is
1308 * easier, but the user expects the devices to be arranged on the bus
1309 * in command-line order. The first network device on the command line
1310 * is eth0, the first block device /dev/vda, etc. */
1311 if (devices.lastdev)
1312 devices.lastdev->next = dev;
1313 else
1314 devices.dev = dev;
1315 devices.lastdev = dev;
1316
8ca47e00
RR
1317 return dev;
1318}
1319
dde79789
RR
1320/* Our first setup routine is the console. It's a fairly simple device, but
1321 * UNIX tty handling makes it uglier than it could be. */
17cbca2b 1322static void setup_console(void)
8ca47e00
RR
1323{
1324 struct device *dev;
1325
dde79789 1326 /* If we can save the initial standard input settings... */
8ca47e00
RR
1327 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1328 struct termios term = orig_term;
dde79789
RR
1329 /* Then we turn off echo, line buffering and ^C etc. We want a
1330 * raw input stream to the Guest. */
8ca47e00
RR
1331 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1332 tcsetattr(STDIN_FILENO, TCSANOW, &term);
dde79789
RR
1333 /* If we exit gracefully, the original settings will be
1334 * restored so the user can see what they're typing. */
8ca47e00
RR
1335 atexit(restore_term);
1336 }
1337
17cbca2b
RR
1338 dev = new_device("console", VIRTIO_ID_CONSOLE,
1339 STDIN_FILENO, handle_console_input);
dde79789 1340 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1341 dev->priv = malloc(sizeof(struct console_abort));
1342 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1343
56ae43df
RR
1344 /* The console needs two virtqueues: the input then the output. When
1345 * they put something the input queue, we make sure we're listening to
1346 * stdin. When they put something in the output queue, we write it to
e1e72965 1347 * stdout. */
56ae43df 1348 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
17cbca2b
RR
1349 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1350
1351 verbose("device %u: console\n", devices.device_num++);
8ca47e00 1352}
17cbca2b 1353/*:*/
8ca47e00 1354
a161883a
RR
1355static void timeout_alarm(int sig)
1356{
1357 write(timeoutpipe[1], "", 1);
1358}
1359
1360static void setup_timeout(void)
1361{
1362 if (pipe(timeoutpipe) != 0)
1363 err(1, "Creating timeout pipe");
1364
1365 if (fcntl(timeoutpipe[1], F_SETFL,
1366 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1367 err(1, "Making timeout pipe nonblocking");
1368
1369 add_device_fd(timeoutpipe[0]);
1370 signal(SIGALRM, timeout_alarm);
1371}
1372
17cbca2b
RR
1373/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1374 * --sharenet=<name> option which opens or creates a named pipe. This can be
1375 * used to send packets to another guest in a 1:1 manner.
dde79789 1376 *
17cbca2b
RR
1377 * More sopisticated is to use one of the tools developed for project like UML
1378 * to do networking.
dde79789 1379 *
17cbca2b
RR
1380 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1381 * completely generic ("here's my vring, attach to your vring") and would work
1382 * for any traffic. Of course, namespace and permissions issues need to be
1383 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1384 * multiple inter-guest channels behind one interface, although it would
1385 * require some manner of hotplugging new virtio channels.
1386 *
1387 * Finally, we could implement a virtio network switch in the kernel. :*/
8ca47e00
RR
1388
1389static u32 str2ip(const char *ipaddr)
1390{
dec6a2be 1391 unsigned int b[4];
8ca47e00 1392
dec6a2be
MM
1393 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1394 errx(1, "Failed to parse IP address '%s'", ipaddr);
1395 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1396}
1397
1398static void str2mac(const char *macaddr, unsigned char mac[6])
1399{
1400 unsigned int m[6];
1401 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1402 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1403 errx(1, "Failed to parse mac address '%s'", macaddr);
1404 mac[0] = m[0];
1405 mac[1] = m[1];
1406 mac[2] = m[2];
1407 mac[3] = m[3];
1408 mac[4] = m[4];
1409 mac[5] = m[5];
8ca47e00
RR
1410}
1411
dde79789
RR
1412/* This code is "adapted" from libbridge: it attaches the Host end of the
1413 * network device to the bridge device specified by the command line.
1414 *
1415 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1416 * dislike bridging), and I just try not to break it. */
8ca47e00
RR
1417static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1418{
1419 int ifidx;
1420 struct ifreq ifr;
1421
1422 if (!*br_name)
1423 errx(1, "must specify bridge name");
1424
1425 ifidx = if_nametoindex(if_name);
1426 if (!ifidx)
1427 errx(1, "interface %s does not exist!", if_name);
1428
1429 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1430 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1431 ifr.ifr_ifindex = ifidx;
1432 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1433 err(1, "can't add %s to bridge %s", if_name, br_name);
1434}
1435
dde79789
RR
1436/* This sets up the Host end of the network device with an IP address, brings
1437 * it up so packets will flow, the copies the MAC address into the hwaddr
17cbca2b 1438 * pointer. */
dec6a2be 1439static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1440{
1441 struct ifreq ifr;
1442 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1443
1444 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1445 strcpy(ifr.ifr_name, tapif);
1446
1447 /* Don't read these incantations. Just cut & paste them like I did! */
8ca47e00
RR
1448 sin->sin_family = AF_INET;
1449 sin->sin_addr.s_addr = htonl(ipaddr);
1450 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1451 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1452 ifr.ifr_flags = IFF_UP;
1453 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1454 err(1, "Bringing interface %s up", tapif);
1455}
1456
1457static void get_mac(int fd, const char *tapif, unsigned char hwaddr[6])
1458{
1459 struct ifreq ifr;
1460
1461 memset(&ifr, 0, sizeof(ifr));
1462 strcpy(ifr.ifr_name, tapif);
8ca47e00 1463
dde79789
RR
1464 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1465 * above). IF means Interface, and HWADDR is hardware address.
1466 * Simple! */
8ca47e00 1467 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
dec6a2be 1468 err(1, "getting hw address for %s", tapif);
8ca47e00
RR
1469 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1470}
1471
dec6a2be 1472static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1473{
8ca47e00 1474 struct ifreq ifr;
dec6a2be
MM
1475 int netfd;
1476
1477 /* Start with this zeroed. Messy but sure. */
1478 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1479
dde79789
RR
1480 /* We open the /dev/net/tun device and tell it we want a tap device. A
1481 * tap device is like a tun device, only somehow different. To tell
1482 * the truth, I completely blundered my way through this code, but it
1483 * works now! */
8ca47e00 1484 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1485 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1486 strcpy(ifr.ifr_name, "tap%d");
1487 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1488 err(1, "configuring /dev/net/tun");
dec6a2be 1489
398f187d
RR
1490 if (ioctl(netfd, TUNSETOFFLOAD,
1491 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1492 err(1, "Could not set features for tun device");
1493
dde79789
RR
1494 /* We don't need checksums calculated for packets coming in this
1495 * device: trust us! */
8ca47e00
RR
1496 ioctl(netfd, TUNSETNOCSUM, 1);
1497
dec6a2be
MM
1498 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1499 return netfd;
1500}
1501
1502/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1503 * routing, but the principle is the same: it uses the "tun" device to inject
1504 * packets into the Host as if they came in from a normal network card. We
1505 * just shunt packets between the Guest and the tun device. */
1506static void setup_tun_net(char *arg)
1507{
1508 struct device *dev;
1509 int netfd, ipfd;
1510 u32 ip = INADDR_ANY;
1511 bool bridging = false;
1512 char tapif[IFNAMSIZ], *p;
1513 struct virtio_net_config conf;
1514
1515 netfd = get_tun_device(tapif);
1516
17cbca2b
RR
1517 /* First we create a new network device. */
1518 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
dde79789 1519
56ae43df
RR
1520 /* Network devices need a receive and a send queue, just like
1521 * console. */
5dae785a 1522 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
17cbca2b 1523 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
8ca47e00 1524
dde79789
RR
1525 /* We need a socket to perform the magic network ioctls to bring up the
1526 * tap interface, connect to the bridge etc. Any socket will do! */
8ca47e00
RR
1527 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1528 if (ipfd < 0)
1529 err(1, "opening IP socket");
1530
dde79789 1531 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1532 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1533 arg += strlen(BRIDGE_PFX);
1534 bridging = true;
1535 }
1536
1537 /* A mac address may follow the bridge name or IP address */
1538 p = strchr(arg, ':');
1539 if (p) {
1540 str2mac(p+1, conf.mac);
1541 *p = '\0';
1542 } else {
1543 p = arg + strlen(arg);
1544 /* None supplied; query the randomly assigned mac. */
1545 get_mac(ipfd, tapif, conf.mac);
1546 }
1547
1548 /* arg is now either an IP address or a bridge name */
1549 if (bridging)
1550 add_to_bridge(ipfd, tapif, arg);
1551 else
8ca47e00
RR
1552 ip = str2ip(arg);
1553
dec6a2be
MM
1554 /* Set up the tun device. */
1555 configure_device(ipfd, tapif, ip);
8ca47e00 1556
17cbca2b 1557 /* Tell Guest what MAC address to use. */
a586d4f6 1558 add_feature(dev, VIRTIO_NET_F_MAC);
20887611 1559 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
398f187d
RR
1560 /* Expect Guest to handle everything except UFO */
1561 add_feature(dev, VIRTIO_NET_F_CSUM);
1562 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1563 add_feature(dev, VIRTIO_NET_F_MAC);
1564 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1565 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1566 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1567 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1568 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1569 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
a586d4f6 1570 set_config(dev, sizeof(conf), &conf);
8ca47e00 1571
a586d4f6 1572 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1573 close(ipfd);
1574
dec6a2be
MM
1575 devices.device_num++;
1576
1577 if (bridging)
1578 verbose("device %u: tun %s attached to bridge: %s\n",
1579 devices.device_num, tapif, arg);
1580 else
1581 verbose("device %u: tun %s: %s\n",
1582 devices.device_num, tapif, arg);
8ca47e00 1583}
17cbca2b 1584
e1e72965
RR
1585/* Our block (disk) device should be really simple: the Guest asks for a block
1586 * number and we read or write that position in the file. Unfortunately, that
1587 * was amazingly slow: the Guest waits until the read is finished before
1588 * running anything else, even if it could have been doing useful work.
17cbca2b 1589 *
e1e72965
RR
1590 * We could use async I/O, except it's reputed to suck so hard that characters
1591 * actually go missing from your code when you try to use it.
17cbca2b
RR
1592 *
1593 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1594
e1e72965 1595/* This hangs off device->priv. */
17cbca2b
RR
1596struct vblk_info
1597{
1598 /* The size of the file. */
1599 off64_t len;
1600
1601 /* The file descriptor for the file. */
1602 int fd;
1603
1604 /* IO thread listens on this file descriptor [0]. */
1605 int workpipe[2];
1606
1607 /* IO thread writes to this file descriptor to mark it done, then
1608 * Launcher triggers interrupt to Guest. */
1609 int done_fd;
1610};
1611
e1e72965
RR
1612/*L:210
1613 * The Disk
1614 *
1615 * Remember that the block device is handled by a separate I/O thread. We head
1616 * straight into the core of that thread here:
1617 */
17cbca2b
RR
1618static bool service_io(struct device *dev)
1619{
1620 struct vblk_info *vblk = dev->priv;
1621 unsigned int head, out_num, in_num, wlen;
1622 int ret;
cb38fa23 1623 u8 *in;
17cbca2b
RR
1624 struct virtio_blk_outhdr *out;
1625 struct iovec iov[dev->vq->vring.num];
1626 off64_t off;
1627
e1e72965 1628 /* See if there's a request waiting. If not, nothing to do. */
17cbca2b
RR
1629 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1630 if (head == dev->vq->vring.num)
1631 return false;
1632
e1e72965
RR
1633 /* Every block request should contain at least one output buffer
1634 * (detailing the location on disk and the type of request) and one
1635 * input buffer (to hold the result). */
17cbca2b
RR
1636 if (out_num == 0 || in_num == 0)
1637 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1638 head, out_num, in_num);
1639
1640 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1641 in = convert(&iov[out_num+in_num-1], u8);
17cbca2b
RR
1642 off = out->sector * 512;
1643
e1e72965
RR
1644 /* The block device implements "barriers", where the Guest indicates
1645 * that it wants all previous writes to occur before this write. We
1646 * don't have a way of asking our kernel to do a barrier, so we just
1647 * synchronize all the data in the file. Pretty poor, no? */
17cbca2b
RR
1648 if (out->type & VIRTIO_BLK_T_BARRIER)
1649 fdatasync(vblk->fd);
1650
e1e72965
RR
1651 /* In general the virtio block driver is allowed to try SCSI commands.
1652 * It'd be nice if we supported eject, for example, but we don't. */
17cbca2b
RR
1653 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1654 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1655 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1656 wlen = sizeof(*in);
17cbca2b
RR
1657 } else if (out->type & VIRTIO_BLK_T_OUT) {
1658 /* Write */
1659
1660 /* Move to the right location in the block file. This can fail
1661 * if they try to write past end. */
1662 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1663 err(1, "Bad seek to sector %llu", out->sector);
1664
1665 ret = writev(vblk->fd, iov+1, out_num-1);
1666 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1667
1668 /* Grr... Now we know how long the descriptor they sent was, we
1669 * make sure they didn't try to write over the end of the block
1670 * file (possibly extending it). */
1671 if (ret > 0 && off + ret > vblk->len) {
1672 /* Trim it back to the correct length */
1673 ftruncate64(vblk->fd, vblk->len);
1674 /* Die, bad Guest, die. */
1675 errx(1, "Write past end %llu+%u", off, ret);
1676 }
1200e646 1677 wlen = sizeof(*in);
cb38fa23 1678 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b
RR
1679 } else {
1680 /* Read */
1681
1682 /* Move to the right location in the block file. This can fail
1683 * if they try to read past end. */
1684 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1685 err(1, "Bad seek to sector %llu", out->sector);
1686
1687 ret = readv(vblk->fd, iov+1, in_num-1);
1688 verbose("READ from sector %llu: %i\n", out->sector, ret);
1689 if (ret >= 0) {
1200e646 1690 wlen = sizeof(*in) + ret;
cb38fa23 1691 *in = VIRTIO_BLK_S_OK;
17cbca2b 1692 } else {
1200e646 1693 wlen = sizeof(*in);
cb38fa23 1694 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1695 }
1696 }
1697
1698 /* We can't trigger an IRQ, because we're not the Launcher. It does
1699 * that when we tell it we're done. */
1700 add_used(dev->vq, head, wlen);
1701 return true;
1702}
1703
1704/* This is the thread which actually services the I/O. */
1705static int io_thread(void *_dev)
1706{
1707 struct device *dev = _dev;
1708 struct vblk_info *vblk = dev->priv;
1709 char c;
1710
1711 /* Close other side of workpipe so we get 0 read when main dies. */
1712 close(vblk->workpipe[1]);
1713 /* Close the other side of the done_fd pipe. */
1714 close(dev->fd);
1715
1716 /* When this read fails, it means Launcher died, so we follow. */
1717 while (read(vblk->workpipe[0], &c, 1) == 1) {
e1e72965 1718 /* We acknowledge each request immediately to reduce latency,
17cbca2b 1719 * rather than waiting until we've done them all. I haven't
a6bd8e13
RR
1720 * measured to see if it makes any difference.
1721 *
1722 * That would be an interesting test, wouldn't it? You could
1723 * also try having more than one I/O thread. */
17cbca2b
RR
1724 while (service_io(dev))
1725 write(vblk->done_fd, &c, 1);
1726 }
1727 return 0;
1728}
1729
e1e72965 1730/* Now we've seen the I/O thread, we return to the Launcher to see what happens
a6bd8e13 1731 * when that thread tells us it's completed some I/O. */
17cbca2b
RR
1732static bool handle_io_finish(int fd, struct device *dev)
1733{
1734 char c;
1735
e1e72965
RR
1736 /* If the I/O thread died, presumably it printed the error, so we
1737 * simply exit. */
17cbca2b
RR
1738 if (read(dev->fd, &c, 1) != 1)
1739 exit(1);
1740
1741 /* It did some work, so trigger the irq. */
1742 trigger_irq(fd, dev->vq);
1743 return true;
1744}
1745
e1e72965 1746/* When the Guest submits some I/O, we just need to wake the I/O thread. */
a161883a 1747static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
17cbca2b
RR
1748{
1749 struct vblk_info *vblk = vq->dev->priv;
1750 char c = 0;
1751
1752 /* Wake up I/O thread and tell it to go to work! */
1753 if (write(vblk->workpipe[1], &c, 1) != 1)
1754 /* Presumably it indicated why it died. */
1755 exit(1);
1756}
1757
e1e72965 1758/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1759static void setup_block_file(const char *filename)
1760{
1761 int p[2];
1762 struct device *dev;
1763 struct vblk_info *vblk;
1764 void *stack;
a586d4f6 1765 struct virtio_blk_config conf;
17cbca2b
RR
1766
1767 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1768 pipe(p);
1769
1770 /* The device responds to return from I/O thread. */
1771 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1772
e1e72965 1773 /* The device has one virtqueue, where the Guest places requests. */
17cbca2b
RR
1774 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1775
1776 /* Allocate the room for our own bookkeeping */
1777 vblk = dev->priv = malloc(sizeof(*vblk));
1778
1779 /* First we open the file and store the length. */
1780 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1781 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1782
a586d4f6
RR
1783 /* We support barriers. */
1784 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1785
17cbca2b 1786 /* Tell Guest how many sectors this device has. */
a586d4f6 1787 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b
RR
1788
1789 /* Tell Guest not to put in too many descriptors at once: two are used
1790 * for the in and out elements. */
a586d4f6
RR
1791 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1792 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1793
1794 set_config(dev, sizeof(conf), &conf);
17cbca2b
RR
1795
1796 /* The I/O thread writes to this end of the pipe when done. */
1797 vblk->done_fd = p[1];
1798
e1e72965
RR
1799 /* This is the second pipe, which is how we tell the I/O thread about
1800 * more work. */
17cbca2b
RR
1801 pipe(vblk->workpipe);
1802
a6bd8e13
RR
1803 /* Create stack for thread and run it. Since stack grows upwards, we
1804 * point the stack pointer to the end of this region. */
17cbca2b 1805 stack = malloc(32768);
ec04b13f
BR
1806 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1807 * becoming a zombie. */
a6bd8e13 1808 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
17cbca2b
RR
1809 err(1, "Creating clone");
1810
1811 /* We don't need to keep the I/O thread's end of the pipes open. */
1812 close(vblk->done_fd);
1813 close(vblk->workpipe[0]);
1814
1815 verbose("device %u: virtblock %llu sectors\n",
a586d4f6 1816 devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1817}
28fd6d7f
RR
1818
1819/* Our random number generator device reads from /dev/random into the Guest's
1820 * input buffers. The usual case is that the Guest doesn't want random numbers
1821 * and so has no buffers although /dev/random is still readable, whereas
1822 * console is the reverse.
1823 *
1824 * The same logic applies, however. */
1825static bool handle_rng_input(int fd, struct device *dev)
1826{
1827 int len;
1828 unsigned int head, in_num, out_num, totlen = 0;
1829 struct iovec iov[dev->vq->vring.num];
1830
1831 /* First we need a buffer from the Guests's virtqueue. */
1832 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1833
1834 /* If they're not ready for input, stop listening to this file
1835 * descriptor. We'll start again once they add an input buffer. */
1836 if (head == dev->vq->vring.num)
1837 return false;
1838
1839 if (out_num)
1840 errx(1, "Output buffers in rng?");
1841
1842 /* This is why we convert to iovecs: the readv() call uses them, and so
1843 * it reads straight into the Guest's buffer. We loop to make sure we
1844 * fill it. */
1845 while (!iov_empty(iov, in_num)) {
1846 len = readv(dev->fd, iov, in_num);
1847 if (len <= 0)
1848 err(1, "Read from /dev/random gave %i", len);
1849 iov_consume(iov, in_num, len);
1850 totlen += len;
1851 }
1852
1853 /* Tell the Guest about the new input. */
1854 add_used_and_trigger(fd, dev->vq, head, totlen);
1855
1856 /* Everything went OK! */
1857 return true;
1858}
1859
1860/* And this creates a "hardware" random number device for the Guest. */
1861static void setup_rng(void)
1862{
1863 struct device *dev;
1864 int fd;
1865
1866 fd = open_or_die("/dev/random", O_RDONLY);
1867
1868 /* The device responds to return from I/O thread. */
1869 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1870
1871 /* The device has one virtqueue, where the Guest places inbufs. */
1872 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1873
1874 verbose("device %u: rng\n", devices.device_num++);
1875}
a6bd8e13 1876/* That's the end of device setup. */
ec04b13f 1877
a6bd8e13 1878/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1879static void __attribute__((noreturn)) restart_guest(void)
1880{
1881 unsigned int i;
1882
a6bd8e13 1883 /* Closing pipes causes the Waker thread and io_threads to die, and
ec04b13f
BR
1884 * closing /dev/lguest cleans up the Guest. Since we don't track all
1885 * open fds, we simply close everything beyond stderr. */
1886 for (i = 3; i < FD_SETSIZE; i++)
1887 close(i);
1888 execv(main_args[0], main_args);
1889 err(1, "Could not exec %s", main_args[0]);
1890}
8ca47e00 1891
a6bd8e13 1892/*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
dde79789 1893 * its input and output, and finally, lays it to rest. */
17cbca2b 1894static void __attribute__((noreturn)) run_guest(int lguest_fd)
8ca47e00
RR
1895{
1896 for (;;) {
511801dc 1897 unsigned long args[] = { LHREQ_BREAK, 0 };
17cbca2b 1898 unsigned long notify_addr;
8ca47e00
RR
1899 int readval;
1900
1901 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1902 readval = pread(lguest_fd, &notify_addr,
1903 sizeof(notify_addr), cpu_id);
8ca47e00 1904
17cbca2b
RR
1905 /* One unsigned long means the Guest did HCALL_NOTIFY */
1906 if (readval == sizeof(notify_addr)) {
1907 verbose("Notify on address %#lx\n", notify_addr);
1908 handle_output(lguest_fd, notify_addr);
8ca47e00 1909 continue;
dde79789 1910 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1911 } else if (errno == ENOENT) {
1912 char reason[1024] = { 0 };
e3283fa0 1913 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1914 errx(1, "%s", reason);
ec04b13f
BR
1915 /* ERESTART means that we need to reboot the guest */
1916 } else if (errno == ERESTART) {
1917 restart_guest();
a161883a 1918 /* EAGAIN means a signal (timeout).
dde79789 1919 * Anything else means a bug or incompatible change. */
8ca47e00
RR
1920 } else if (errno != EAGAIN)
1921 err(1, "Running guest failed");
dde79789 1922
e3283fa0
GOC
1923 /* Only service input on thread for CPU 0. */
1924 if (cpu_id != 0)
1925 continue;
1926
e1e72965 1927 /* Service input, then unset the BREAK to release the Waker. */
17cbca2b 1928 handle_input(lguest_fd);
e3283fa0 1929 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
8ca47e00
RR
1930 err(1, "Resetting break");
1931 }
1932}
a6bd8e13 1933/*L:240
e1e72965
RR
1934 * This is the end of the Launcher. The good news: we are over halfway
1935 * through! The bad news: the most fiendish part of the code still lies ahead
1936 * of us.
dde79789 1937 *
e1e72965
RR
1938 * Are you ready? Take a deep breath and join me in the core of the Host, in
1939 * "make Host".
1940 :*/
8ca47e00
RR
1941
1942static struct option opts[] = {
1943 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1944 { "tunnet", 1, NULL, 't' },
1945 { "block", 1, NULL, 'b' },
28fd6d7f 1946 { "rng", 0, NULL, 'r' },
8ca47e00
RR
1947 { "initrd", 1, NULL, 'i' },
1948 { NULL },
1949};
1950static void usage(void)
1951{
1952 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1953 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1954 "|--block=<filename>|--initrd=<filename>]...\n"
1955 "<mem-in-mb> vmlinux [args...]");
1956}
1957
3c6b5bfa 1958/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1959int main(int argc, char *argv[])
1960{
47436aa4
RR
1961 /* Memory, top-level pagetable, code startpoint and size of the
1962 * (optional) initrd. */
1963 unsigned long mem = 0, pgdir, start, initrd_size = 0;
e1e72965 1964 /* Two temporaries and the /dev/lguest file descriptor. */
6570c459 1965 int i, c, lguest_fd;
3c6b5bfa 1966 /* The boot information for the Guest. */
43d33b21 1967 struct boot_params *boot;
dde79789 1968 /* If they specify an initrd file to load. */
8ca47e00
RR
1969 const char *initrd_name = NULL;
1970
ec04b13f
BR
1971 /* Save the args: we "reboot" by execing ourselves again. */
1972 main_args = argv;
1973 /* We don't "wait" for the children, so prevent them from becoming
1974 * zombies. */
1975 signal(SIGCHLD, SIG_IGN);
1976
dde79789
RR
1977 /* First we initialize the device list. Since console and network
1978 * device receive input from a file descriptor, we keep an fdset
1979 * (infds) and the maximum fd number (max_infd) with the head of the
a586d4f6 1980 * list. We also keep a pointer to the last device. Finally, we keep
a6bd8e13
RR
1981 * the next interrupt number to use for devices (1: remember that 0 is
1982 * used by the timer). */
17cbca2b
RR
1983 FD_ZERO(&devices.infds);
1984 devices.max_infd = -1;
a586d4f6 1985 devices.lastdev = NULL;
17cbca2b 1986 devices.next_irq = 1;
8ca47e00 1987
e3283fa0 1988 cpu_id = 0;
dde79789
RR
1989 /* We need to know how much memory so we can set up the device
1990 * descriptor and memory pages for the devices as we parse the command
1991 * line. So we quickly look through the arguments to find the amount
1992 * of memory now. */
6570c459
RR
1993 for (i = 1; i < argc; i++) {
1994 if (argv[i][0] != '-') {
3c6b5bfa
RR
1995 mem = atoi(argv[i]) * 1024 * 1024;
1996 /* We start by mapping anonymous pages over all of
1997 * guest-physical memory range. This fills it with 0,
1998 * and ensures that the Guest won't be killed when it
1999 * tries to access it. */
2000 guest_base = map_zeroed_pages(mem / getpagesize()
2001 + DEVICE_PAGES);
2002 guest_limit = mem;
2003 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 2004 devices.descpage = get_pages(1);
6570c459
RR
2005 break;
2006 }
2007 }
dde79789
RR
2008
2009 /* The options are fairly straight-forward */
8ca47e00
RR
2010 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
2011 switch (c) {
2012 case 'v':
2013 verbose = true;
2014 break;
8ca47e00 2015 case 't':
17cbca2b 2016 setup_tun_net(optarg);
8ca47e00
RR
2017 break;
2018 case 'b':
17cbca2b 2019 setup_block_file(optarg);
8ca47e00 2020 break;
28fd6d7f
RR
2021 case 'r':
2022 setup_rng();
2023 break;
8ca47e00
RR
2024 case 'i':
2025 initrd_name = optarg;
2026 break;
2027 default:
2028 warnx("Unknown argument %s", argv[optind]);
2029 usage();
2030 }
2031 }
dde79789
RR
2032 /* After the other arguments we expect memory and kernel image name,
2033 * followed by command line arguments for the kernel. */
8ca47e00
RR
2034 if (optind + 2 > argc)
2035 usage();
2036
3c6b5bfa
RR
2037 verbose("Guest base is at %p\n", guest_base);
2038
dde79789 2039 /* We always have a console device */
17cbca2b 2040 setup_console();
8ca47e00 2041
a161883a
RR
2042 /* We can timeout waiting for Guest network transmit. */
2043 setup_timeout();
2044
8ca47e00 2045 /* Now we load the kernel */
47436aa4 2046 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 2047
3c6b5bfa
RR
2048 /* Boot information is stashed at physical address 0 */
2049 boot = from_guest_phys(0);
2050
dde79789 2051 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
2052 if (initrd_name) {
2053 initrd_size = load_initrd(initrd_name, mem);
dde79789
RR
2054 /* These are the location in the Linux boot header where the
2055 * start and size of the initrd are expected to be found. */
43d33b21
RR
2056 boot->hdr.ramdisk_image = mem - initrd_size;
2057 boot->hdr.ramdisk_size = initrd_size;
dde79789 2058 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 2059 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
2060 }
2061
dde79789 2062 /* Set up the initial linear pagetables, starting below the initrd. */
47436aa4 2063 pgdir = setup_pagetables(mem, initrd_size);
8ca47e00 2064
dde79789
RR
2065 /* The Linux boot header contains an "E820" memory map: ours is a
2066 * simple, single region. */
43d33b21
RR
2067 boot->e820_entries = 1;
2068 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
dde79789 2069 /* The boot header contains a command line pointer: we put the command
43d33b21
RR
2070 * line after the boot header. */
2071 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 2072 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 2073 concat((char *)(boot + 1), argv+optind+2);
dde79789 2074
814a0e5c 2075 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 2076 boot->hdr.version = 0x207;
814a0e5c
RR
2077
2078 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2079 boot->hdr.hardware_subarch = 1;
814a0e5c 2080
43d33b21
RR
2081 /* Tell the entry path not to try to reload segment registers. */
2082 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2083
dde79789
RR
2084 /* We tell the kernel to initialize the Guest: this returns the open
2085 * /dev/lguest file descriptor. */
47436aa4 2086 lguest_fd = tell_kernel(pgdir, start);
dde79789
RR
2087
2088 /* We fork off a child process, which wakes the Launcher whenever one
a6bd8e13
RR
2089 * of the input file descriptors needs attention. We call this the
2090 * Waker, and we'll cover it in a moment. */
17cbca2b 2091 waker_fd = setup_waker(lguest_fd);
8ca47e00 2092
dde79789 2093 /* Finally, run the Guest. This doesn't return. */
17cbca2b 2094 run_guest(lguest_fd);
8ca47e00 2095}
f56a384e
RR
2096/*:*/
2097
2098/*M:999
2099 * Mastery is done: you now know everything I do.
2100 *
2101 * But surely you have seen code, features and bugs in your wanderings which
2102 * you now yearn to attack? That is the real game, and I look forward to you
2103 * patching and forking lguest into the Your-Name-Here-visor.
2104 *
2105 * Farewell, and good coding!
2106 * Rusty Russell.
2107 */
This page took 0.249862 seconds and 5 git commands to generate.