lguest: cleanup for map_switcher()
[deliverable/linux.git] / Documentation / lguest / lguest.c
CommitLineData
2e04ef76
RR
1/*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6:*/
8ca47e00
RR
7#define _LARGEFILE64_SOURCE
8#define _GNU_SOURCE
9#include <stdio.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <elf.h>
16#include <sys/mman.h>
6649bb7a 17#include <sys/param.h>
8ca47e00
RR
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <sys/wait.h>
659a0e66 21#include <sys/eventfd.h>
8ca47e00
RR
22#include <fcntl.h>
23#include <stdbool.h>
24#include <errno.h>
25#include <ctype.h>
26#include <sys/socket.h>
27#include <sys/ioctl.h>
28#include <sys/time.h>
29#include <time.h>
30#include <netinet/in.h>
31#include <net/if.h>
32#include <linux/sockios.h>
33#include <linux/if_tun.h>
34#include <sys/uio.h>
35#include <termios.h>
36#include <getopt.h>
37#include <zlib.h>
17cbca2b
RR
38#include <assert.h>
39#include <sched.h>
a586d4f6
RR
40#include <limits.h>
41#include <stddef.h>
a161883a 42#include <signal.h>
b45d8cb0 43#include "linux/lguest_launcher.h"
17cbca2b 44#include "linux/virtio_config.h"
3ca4f5ca 45#include <linux/virtio_ids.h>
17cbca2b
RR
46#include "linux/virtio_net.h"
47#include "linux/virtio_blk.h"
48#include "linux/virtio_console.h"
28fd6d7f 49#include "linux/virtio_rng.h"
17cbca2b 50#include "linux/virtio_ring.h"
d5d02d6d 51#include "asm/bootparam.h"
2e04ef76 52/*L:110
a91d74a3 53 * We can ignore the 42 include files we need for this program, but I do want
2e04ef76 54 * to draw attention to the use of kernel-style types.
db24e8c2
RR
55 *
56 * As Linus said, "C is a Spartan language, and so should your naming be." I
57 * like these abbreviations, so we define them here. Note that u64 is always
58 * unsigned long long, which works on all Linux systems: this means that we can
2e04ef76
RR
59 * use %llu in printf for any u64.
60 */
db24e8c2
RR
61typedef unsigned long long u64;
62typedef uint32_t u32;
63typedef uint16_t u16;
64typedef uint8_t u8;
dde79789 65/*:*/
8ca47e00
RR
66
67#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
8ca47e00
RR
68#define BRIDGE_PFX "bridge:"
69#ifndef SIOCBRADDIF
70#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
71#endif
3c6b5bfa
RR
72/* We can have up to 256 pages for devices. */
73#define DEVICE_PAGES 256
0f0c4fab
RR
74/* This will occupy 3 pages: it must be a power of 2. */
75#define VIRTQUEUE_NUM 256
8ca47e00 76
2e04ef76
RR
77/*L:120
78 * verbose is both a global flag and a macro. The C preprocessor allows
79 * this, and although I wouldn't recommend it, it works quite nicely here.
80 */
8ca47e00
RR
81static bool verbose;
82#define verbose(args...) \
83 do { if (verbose) printf(args); } while(0)
dde79789
RR
84/*:*/
85
3c6b5bfa
RR
86/* The pointer to the start of guest memory. */
87static void *guest_base;
88/* The maximum guest physical address allowed, and maximum possible. */
89static unsigned long guest_limit, guest_max;
56739c80
RR
90/* The /dev/lguest file descriptor. */
91static int lguest_fd;
8ca47e00 92
e3283fa0
GOC
93/* a per-cpu variable indicating whose vcpu is currently running */
94static unsigned int __thread cpu_id;
95
dde79789 96/* This is our list of devices. */
1842f23c 97struct device_list {
17cbca2b
RR
98 /* Counter to assign interrupt numbers. */
99 unsigned int next_irq;
100
101 /* Counter to print out convenient device numbers. */
102 unsigned int device_num;
103
dde79789 104 /* The descriptor page for the devices. */
17cbca2b
RR
105 u8 *descpage;
106
dde79789 107 /* A single linked list of devices. */
8ca47e00 108 struct device *dev;
2e04ef76 109 /* And a pointer to the last device for easy append. */
a586d4f6 110 struct device *lastdev;
8ca47e00
RR
111};
112
17cbca2b
RR
113/* The list of Guest devices, based on command line arguments. */
114static struct device_list devices;
115
dde79789 116/* The device structure describes a single device. */
1842f23c 117struct device {
dde79789 118 /* The linked-list pointer. */
8ca47e00 119 struct device *next;
17cbca2b 120
713b15b3 121 /* The device's descriptor, as mapped into the Guest. */
8ca47e00 122 struct lguest_device_desc *desc;
17cbca2b 123
713b15b3
RR
124 /* We can't trust desc values once Guest has booted: we use these. */
125 unsigned int feature_len;
126 unsigned int num_vq;
127
17cbca2b
RR
128 /* The name of this device, for --verbose. */
129 const char *name;
8ca47e00 130
17cbca2b
RR
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
8ca47e00 133
659a0e66
RR
134 /* Is it operational */
135 bool running;
a007a751 136
8ca47e00
RR
137 /* Device-specific data. */
138 void *priv;
139};
140
17cbca2b 141/* The virtqueue structure describes a queue attached to a device. */
1842f23c 142struct virtqueue {
17cbca2b
RR
143 struct virtqueue *next;
144
145 /* Which device owns me. */
146 struct device *dev;
147
148 /* The configuration for this queue. */
149 struct lguest_vqconfig config;
150
151 /* The actual ring of buffers. */
152 struct vring vring;
153
154 /* Last available index we saw. */
155 u16 last_avail_idx;
156
95c517c0
RR
157 /* How many are used since we sent last irq? */
158 unsigned int pending_used;
159
659a0e66
RR
160 /* Eventfd where Guest notifications arrive. */
161 int eventfd;
20887611 162
659a0e66
RR
163 /* Function for the thread which is servicing this virtqueue. */
164 void (*service)(struct virtqueue *vq);
165 pid_t thread;
17cbca2b
RR
166};
167
ec04b13f
BR
168/* Remember the arguments to the program so we can "reboot" */
169static char **main_args;
170
659a0e66
RR
171/* The original tty settings to restore on exit. */
172static struct termios orig_term;
173
2e04ef76
RR
174/*
175 * We have to be careful with barriers: our devices are all run in separate
f7027c63 176 * threads and so we need to make sure that changes visible to the Guest happen
2e04ef76
RR
177 * in precise order.
178 */
f7027c63 179#define wmb() __asm__ __volatile__("" : : : "memory")
b60da13f 180#define mb() __asm__ __volatile__("" : : : "memory")
17cbca2b 181
2e04ef76
RR
182/*
183 * Convert an iovec element to the given type.
17cbca2b
RR
184 *
185 * This is a fairly ugly trick: we need to know the size of the type and
186 * alignment requirement to check the pointer is kosher. It's also nice to
187 * have the name of the type in case we report failure.
188 *
189 * Typing those three things all the time is cumbersome and error prone, so we
2e04ef76
RR
190 * have a macro which sets them all up and passes to the real function.
191 */
17cbca2b
RR
192#define convert(iov, type) \
193 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
194
195static void *_convert(struct iovec *iov, size_t size, size_t align,
196 const char *name)
197{
198 if (iov->iov_len != size)
199 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
200 if ((unsigned long)iov->iov_base % align != 0)
201 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
202 return iov->iov_base;
203}
204
b5111790
RR
205/* Wrapper for the last available index. Makes it easier to change. */
206#define lg_last_avail(vq) ((vq)->last_avail_idx)
207
2e04ef76
RR
208/*
209 * The virtio configuration space is defined to be little-endian. x86 is
210 * little-endian too, but it's nice to be explicit so we have these helpers.
211 */
17cbca2b
RR
212#define cpu_to_le16(v16) (v16)
213#define cpu_to_le32(v32) (v32)
214#define cpu_to_le64(v64) (v64)
215#define le16_to_cpu(v16) (v16)
216#define le32_to_cpu(v32) (v32)
a586d4f6 217#define le64_to_cpu(v64) (v64)
17cbca2b 218
28fd6d7f
RR
219/* Is this iovec empty? */
220static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
221{
222 unsigned int i;
223
224 for (i = 0; i < num_iov; i++)
225 if (iov[i].iov_len)
226 return false;
227 return true;
228}
229
230/* Take len bytes from the front of this iovec. */
231static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
232{
233 unsigned int i;
234
235 for (i = 0; i < num_iov; i++) {
236 unsigned int used;
237
238 used = iov[i].iov_len < len ? iov[i].iov_len : len;
239 iov[i].iov_base += used;
240 iov[i].iov_len -= used;
241 len -= used;
242 }
243 assert(len == 0);
244}
245
6e5aa7ef
RR
246/* The device virtqueue descriptors are followed by feature bitmasks. */
247static u8 *get_feature_bits(struct device *dev)
248{
249 return (u8 *)(dev->desc + 1)
713b15b3 250 + dev->num_vq * sizeof(struct lguest_vqconfig);
6e5aa7ef
RR
251}
252
2e04ef76
RR
253/*L:100
254 * The Launcher code itself takes us out into userspace, that scary place where
255 * pointers run wild and free! Unfortunately, like most userspace programs,
256 * it's quite boring (which is why everyone likes to hack on the kernel!).
257 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
258 * you through this section. Or, maybe not.
3c6b5bfa
RR
259 *
260 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
261 * memory and stores it in "guest_base". In other words, Guest physical ==
262 * Launcher virtual with an offset.
263 *
264 * This can be tough to get your head around, but usually it just means that we
265 * use these trivial conversion functions when the Guest gives us it's
2e04ef76
RR
266 * "physical" addresses:
267 */
3c6b5bfa
RR
268static void *from_guest_phys(unsigned long addr)
269{
270 return guest_base + addr;
271}
272
273static unsigned long to_guest_phys(const void *addr)
274{
275 return (addr - guest_base);
276}
277
dde79789
RR
278/*L:130
279 * Loading the Kernel.
280 *
281 * We start with couple of simple helper routines. open_or_die() avoids
2e04ef76
RR
282 * error-checking code cluttering the callers:
283 */
8ca47e00
RR
284static int open_or_die(const char *name, int flags)
285{
286 int fd = open(name, flags);
287 if (fd < 0)
288 err(1, "Failed to open %s", name);
289 return fd;
290}
291
3c6b5bfa
RR
292/* map_zeroed_pages() takes a number of pages. */
293static void *map_zeroed_pages(unsigned int num)
8ca47e00 294{
3c6b5bfa
RR
295 int fd = open_or_die("/dev/zero", O_RDONLY);
296 void *addr;
8ca47e00 297
2e04ef76
RR
298 /*
299 * We use a private mapping (ie. if we write to the page, it will be
300 * copied).
301 */
3c6b5bfa
RR
302 addr = mmap(NULL, getpagesize() * num,
303 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
304 if (addr == MAP_FAILED)
305 err(1, "Mmaping %u pages of /dev/zero", num);
a91d74a3
RR
306
307 /*
308 * One neat mmap feature is that you can close the fd, and it
309 * stays mapped.
310 */
34bdaab4 311 close(fd);
3c6b5bfa
RR
312
313 return addr;
314}
315
316/* Get some more pages for a device. */
317static void *get_pages(unsigned int num)
318{
319 void *addr = from_guest_phys(guest_limit);
320
321 guest_limit += num * getpagesize();
322 if (guest_limit > guest_max)
323 errx(1, "Not enough memory for devices");
324 return addr;
8ca47e00
RR
325}
326
2e04ef76
RR
327/*
328 * This routine is used to load the kernel or initrd. It tries mmap, but if
6649bb7a 329 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
2e04ef76
RR
330 * it falls back to reading the memory in.
331 */
6649bb7a
RM
332static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
333{
334 ssize_t r;
335
2e04ef76
RR
336 /*
337 * We map writable even though for some segments are marked read-only.
6649bb7a
RM
338 * The kernel really wants to be writable: it patches its own
339 * instructions.
340 *
341 * MAP_PRIVATE means that the page won't be copied until a write is
342 * done to it. This allows us to share untouched memory between
2e04ef76
RR
343 * Guests.
344 */
6649bb7a
RM
345 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
346 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
347 return;
348
349 /* pread does a seek and a read in one shot: saves a few lines. */
350 r = pread(fd, addr, len, offset);
351 if (r != len)
352 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
353}
354
2e04ef76
RR
355/*
356 * This routine takes an open vmlinux image, which is in ELF, and maps it into
dde79789
RR
357 * the Guest memory. ELF = Embedded Linking Format, which is the format used
358 * by all modern binaries on Linux including the kernel.
359 *
360 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
361 * address. We use the physical address; the Guest will map itself to the
362 * virtual address.
dde79789 363 *
2e04ef76
RR
364 * We return the starting address.
365 */
47436aa4 366static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 367{
8ca47e00
RR
368 Elf32_Phdr phdr[ehdr->e_phnum];
369 unsigned int i;
8ca47e00 370
2e04ef76
RR
371 /*
372 * Sanity checks on the main ELF header: an x86 executable with a
373 * reasonable number of correctly-sized program headers.
374 */
8ca47e00
RR
375 if (ehdr->e_type != ET_EXEC
376 || ehdr->e_machine != EM_386
377 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
378 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
379 errx(1, "Malformed elf header");
380
2e04ef76
RR
381 /*
382 * An ELF executable contains an ELF header and a number of "program"
dde79789 383 * headers which indicate which parts ("segments") of the program to
2e04ef76
RR
384 * load where.
385 */
dde79789
RR
386
387 /* We read in all the program headers at once: */
8ca47e00
RR
388 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
389 err(1, "Seeking to program headers");
390 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
391 err(1, "Reading program headers");
392
2e04ef76
RR
393 /*
394 * Try all the headers: there are usually only three. A read-only one,
395 * a read-write one, and a "note" section which we don't load.
396 */
8ca47e00 397 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 398 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
399 if (phdr[i].p_type != PT_LOAD)
400 continue;
401
402 verbose("Section %i: size %i addr %p\n",
403 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
404
6649bb7a 405 /* We map this section of the file at its physical address. */
3c6b5bfa 406 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 407 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
408 }
409
814a0e5c
RR
410 /* The entry point is given in the ELF header. */
411 return ehdr->e_entry;
8ca47e00
RR
412}
413
2e04ef76
RR
414/*L:150
415 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
416 * to jump into it and it will unpack itself. We used to have to perform some
417 * hairy magic because the unpacking code scared me.
dde79789 418 *
5bbf89fc
RR
419 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
420 * a small patch to jump over the tricky bits in the Guest, so now we just read
2e04ef76
RR
421 * the funky header so we know where in the file to load, and away we go!
422 */
47436aa4 423static unsigned long load_bzimage(int fd)
8ca47e00 424{
43d33b21 425 struct boot_params boot;
5bbf89fc
RR
426 int r;
427 /* Modern bzImages get loaded at 1M. */
428 void *p = from_guest_phys(0x100000);
429
2e04ef76
RR
430 /*
431 * Go back to the start of the file and read the header. It should be
432 * a Linux boot header (see Documentation/x86/i386/boot.txt)
433 */
5bbf89fc 434 lseek(fd, 0, SEEK_SET);
43d33b21 435 read(fd, &boot, sizeof(boot));
5bbf89fc 436
43d33b21
RR
437 /* Inside the setup_hdr, we expect the magic "HdrS" */
438 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
439 errx(1, "This doesn't look like a bzImage to me");
440
43d33b21
RR
441 /* Skip over the extra sectors of the header. */
442 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
443
444 /* Now read everything into memory. in nice big chunks. */
445 while ((r = read(fd, p, 65536)) > 0)
446 p += r;
447
43d33b21
RR
448 /* Finally, code32_start tells us where to enter the kernel. */
449 return boot.hdr.code32_start;
8ca47e00
RR
450}
451
2e04ef76
RR
452/*L:140
453 * Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965 454 * come wrapped up in the self-decompressing "bzImage" format. With a little
2e04ef76
RR
455 * work, we can load those, too.
456 */
47436aa4 457static unsigned long load_kernel(int fd)
8ca47e00
RR
458{
459 Elf32_Ehdr hdr;
460
dde79789 461 /* Read in the first few bytes. */
8ca47e00
RR
462 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
463 err(1, "Reading kernel");
464
dde79789 465 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 466 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 467 return map_elf(fd, &hdr);
8ca47e00 468
a6bd8e13 469 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 470 return load_bzimage(fd);
8ca47e00
RR
471}
472
2e04ef76
RR
473/*
474 * This is a trivial little helper to align pages. Andi Kleen hated it because
dde79789
RR
475 * it calls getpagesize() twice: "it's dumb code."
476 *
477 * Kernel guys get really het up about optimization, even when it's not
2e04ef76
RR
478 * necessary. I leave this code as a reaction against that.
479 */
8ca47e00
RR
480static inline unsigned long page_align(unsigned long addr)
481{
dde79789 482 /* Add upwards and truncate downwards. */
8ca47e00
RR
483 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
484}
485
2e04ef76
RR
486/*L:180
487 * An "initial ram disk" is a disk image loaded into memory along with the
488 * kernel which the kernel can use to boot from without needing any drivers.
489 * Most distributions now use this as standard: the initrd contains the code to
490 * load the appropriate driver modules for the current machine.
dde79789
RR
491 *
492 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
2e04ef76
RR
493 * kernels. He sent me this (and tells me when I break it).
494 */
8ca47e00
RR
495static unsigned long load_initrd(const char *name, unsigned long mem)
496{
497 int ifd;
498 struct stat st;
499 unsigned long len;
8ca47e00
RR
500
501 ifd = open_or_die(name, O_RDONLY);
dde79789 502 /* fstat() is needed to get the file size. */
8ca47e00
RR
503 if (fstat(ifd, &st) < 0)
504 err(1, "fstat() on initrd '%s'", name);
505
2e04ef76
RR
506 /*
507 * We map the initrd at the top of memory, but mmap wants it to be
508 * page-aligned, so we round the size up for that.
509 */
8ca47e00 510 len = page_align(st.st_size);
3c6b5bfa 511 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
2e04ef76
RR
512 /*
513 * Once a file is mapped, you can close the file descriptor. It's a
514 * little odd, but quite useful.
515 */
8ca47e00 516 close(ifd);
6649bb7a 517 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
518
519 /* We return the initrd size. */
8ca47e00
RR
520 return len;
521}
e1e72965 522/*:*/
8ca47e00 523
2e04ef76
RR
524/*
525 * Simple routine to roll all the commandline arguments together with spaces
526 * between them.
527 */
8ca47e00
RR
528static void concat(char *dst, char *args[])
529{
530 unsigned int i, len = 0;
531
532 for (i = 0; args[i]; i++) {
1ef36fa6
PB
533 if (i) {
534 strcat(dst+len, " ");
535 len++;
536 }
8ca47e00 537 strcpy(dst+len, args[i]);
1ef36fa6 538 len += strlen(args[i]);
8ca47e00
RR
539 }
540 /* In case it's empty. */
541 dst[len] = '\0';
542}
543
2e04ef76
RR
544/*L:185
545 * This is where we actually tell the kernel to initialize the Guest. We
e1e72965 546 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566 547 * the base of Guest "physical" memory, the top physical page to allow and the
2e04ef76
RR
548 * entry point for the Guest.
549 */
56739c80 550static void tell_kernel(unsigned long start)
8ca47e00 551{
511801dc
JS
552 unsigned long args[] = { LHREQ_INITIALIZE,
553 (unsigned long)guest_base,
58a24566 554 guest_limit / getpagesize(), start };
3c6b5bfa
RR
555 verbose("Guest: %p - %p (%#lx)\n",
556 guest_base, guest_base + guest_limit, guest_limit);
56739c80
RR
557 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
558 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 559 err(1, "Writing to /dev/lguest");
8ca47e00 560}
dde79789 561/*:*/
8ca47e00 562
a91d74a3 563/*L:200
dde79789
RR
564 * Device Handling.
565 *
e1e72965 566 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 567 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 568 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
569 * if something funny is going on:
570 */
8ca47e00
RR
571static void *_check_pointer(unsigned long addr, unsigned int size,
572 unsigned int line)
573{
2e04ef76
RR
574 /*
575 * We have to separately check addr and addr+size, because size could
576 * be huge and addr + size might wrap around.
577 */
3c6b5bfa 578 if (addr >= guest_limit || addr + size >= guest_limit)
17cbca2b 579 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
2e04ef76
RR
580 /*
581 * We return a pointer for the caller's convenience, now we know it's
582 * safe to use.
583 */
3c6b5bfa 584 return from_guest_phys(addr);
8ca47e00 585}
dde79789 586/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
587#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
588
2e04ef76
RR
589/*
590 * Each buffer in the virtqueues is actually a chain of descriptors. This
e1e72965 591 * function returns the next descriptor in the chain, or vq->vring.num if we're
2e04ef76
RR
592 * at the end.
593 */
d1f0132e
MM
594static unsigned next_desc(struct vring_desc *desc,
595 unsigned int i, unsigned int max)
17cbca2b
RR
596{
597 unsigned int next;
598
599 /* If this descriptor says it doesn't chain, we're done. */
d1f0132e
MM
600 if (!(desc[i].flags & VRING_DESC_F_NEXT))
601 return max;
17cbca2b
RR
602
603 /* Check they're not leading us off end of descriptors. */
d1f0132e 604 next = desc[i].next;
17cbca2b
RR
605 /* Make sure compiler knows to grab that: we don't want it changing! */
606 wmb();
607
d1f0132e 608 if (next >= max)
17cbca2b
RR
609 errx(1, "Desc next is %u", next);
610
611 return next;
612}
613
a91d74a3
RR
614/*
615 * This actually sends the interrupt for this virtqueue, if we've used a
616 * buffer.
617 */
38bc2b8c
RR
618static void trigger_irq(struct virtqueue *vq)
619{
620 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
621
95c517c0
RR
622 /* Don't inform them if nothing used. */
623 if (!vq->pending_used)
624 return;
625 vq->pending_used = 0;
626
38bc2b8c
RR
627 /* If they don't want an interrupt, don't send one, unless empty. */
628 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
629 && lg_last_avail(vq) != vq->vring.avail->idx)
630 return;
631
632 /* Send the Guest an interrupt tell them we used something up. */
633 if (write(lguest_fd, buf, sizeof(buf)) != 0)
634 err(1, "Triggering irq %i", vq->config.irq);
635}
636
2e04ef76 637/*
a91d74a3 638 * This looks in the virtqueue for the first available buffer, and converts
17cbca2b
RR
639 * it to an iovec for convenient access. Since descriptors consist of some
640 * number of output then some number of input descriptors, it's actually two
641 * iovecs, but we pack them into one and note how many of each there were.
642 *
a91d74a3 643 * This function waits if necessary, and returns the descriptor number found.
2e04ef76 644 */
659a0e66
RR
645static unsigned wait_for_vq_desc(struct virtqueue *vq,
646 struct iovec iov[],
647 unsigned int *out_num, unsigned int *in_num)
17cbca2b 648{
d1f0132e
MM
649 unsigned int i, head, max;
650 struct vring_desc *desc;
659a0e66
RR
651 u16 last_avail = lg_last_avail(vq);
652
a91d74a3 653 /* There's nothing available? */
659a0e66
RR
654 while (last_avail == vq->vring.avail->idx) {
655 u64 event;
656
a91d74a3
RR
657 /*
658 * Since we're about to sleep, now is a good time to tell the
659 * Guest about what we've used up to now.
660 */
38bc2b8c
RR
661 trigger_irq(vq);
662
b60da13f
RR
663 /* OK, now we need to know about added descriptors. */
664 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
665
2e04ef76
RR
666 /*
667 * They could have slipped one in as we were doing that: make
668 * sure it's written, then check again.
669 */
b60da13f
RR
670 mb();
671 if (last_avail != vq->vring.avail->idx) {
672 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
673 break;
674 }
675
659a0e66
RR
676 /* Nothing new? Wait for eventfd to tell us they refilled. */
677 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
678 errx(1, "Event read failed?");
b60da13f
RR
679
680 /* We don't need to be notified again. */
681 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
659a0e66 682 }
17cbca2b
RR
683
684 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 685 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 686 errx(1, "Guest moved used index from %u to %u",
b5111790 687 last_avail, vq->vring.avail->idx);
17cbca2b 688
2e04ef76
RR
689 /*
690 * Grab the next descriptor number they're advertising, and increment
691 * the index we've seen.
692 */
b5111790
RR
693 head = vq->vring.avail->ring[last_avail % vq->vring.num];
694 lg_last_avail(vq)++;
17cbca2b
RR
695
696 /* If their number is silly, that's a fatal mistake. */
697 if (head >= vq->vring.num)
698 errx(1, "Guest says index %u is available", head);
699
700 /* When we start there are none of either input nor output. */
701 *out_num = *in_num = 0;
702
d1f0132e
MM
703 max = vq->vring.num;
704 desc = vq->vring.desc;
17cbca2b 705 i = head;
d1f0132e 706
2e04ef76
RR
707 /*
708 * If this is an indirect entry, then this buffer contains a descriptor
709 * table which we handle as if it's any normal descriptor chain.
710 */
d1f0132e
MM
711 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
712 if (desc[i].len % sizeof(struct vring_desc))
713 errx(1, "Invalid size for indirect buffer table");
714
715 max = desc[i].len / sizeof(struct vring_desc);
716 desc = check_pointer(desc[i].addr, desc[i].len);
717 i = 0;
718 }
719
17cbca2b
RR
720 do {
721 /* Grab the first descriptor, and check it's OK. */
d1f0132e 722 iov[*out_num + *in_num].iov_len = desc[i].len;
17cbca2b 723 iov[*out_num + *in_num].iov_base
d1f0132e 724 = check_pointer(desc[i].addr, desc[i].len);
17cbca2b 725 /* If this is an input descriptor, increment that count. */
d1f0132e 726 if (desc[i].flags & VRING_DESC_F_WRITE)
17cbca2b
RR
727 (*in_num)++;
728 else {
2e04ef76
RR
729 /*
730 * If it's an output descriptor, they're all supposed
731 * to come before any input descriptors.
732 */
17cbca2b
RR
733 if (*in_num)
734 errx(1, "Descriptor has out after in");
735 (*out_num)++;
736 }
737
738 /* If we've got too many, that implies a descriptor loop. */
d1f0132e 739 if (*out_num + *in_num > max)
17cbca2b 740 errx(1, "Looped descriptor");
d1f0132e 741 } while ((i = next_desc(desc, i, max)) != max);
dde79789 742
17cbca2b 743 return head;
8ca47e00
RR
744}
745
2e04ef76 746/*
a91d74a3
RR
747 * After we've used one of their buffers, we tell the Guest about it. Sometime
748 * later we'll want to send them an interrupt using trigger_irq(); note that
749 * wait_for_vq_desc() does that for us if it has to wait.
2e04ef76 750 */
17cbca2b 751static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 752{
17cbca2b
RR
753 struct vring_used_elem *used;
754
2e04ef76
RR
755 /*
756 * The virtqueue contains a ring of used buffers. Get a pointer to the
757 * next entry in that used ring.
758 */
17cbca2b
RR
759 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
760 used->id = head;
761 used->len = len;
762 /* Make sure buffer is written before we update index. */
763 wmb();
764 vq->vring.used->idx++;
95c517c0 765 vq->pending_used++;
8ca47e00
RR
766}
767
17cbca2b 768/* And here's the combo meal deal. Supersize me! */
56739c80 769static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 770{
17cbca2b 771 add_used(vq, head, len);
56739c80 772 trigger_irq(vq);
8ca47e00
RR
773}
774
e1e72965
RR
775/*
776 * The Console
777 *
2e04ef76
RR
778 * We associate some data with the console for our exit hack.
779 */
1842f23c 780struct console_abort {
dde79789 781 /* How many times have they hit ^C? */
8ca47e00 782 int count;
dde79789 783 /* When did they start? */
8ca47e00
RR
784 struct timeval start;
785};
786
dde79789 787/* This is the routine which handles console input (ie. stdin). */
659a0e66 788static void console_input(struct virtqueue *vq)
8ca47e00 789{
8ca47e00 790 int len;
17cbca2b 791 unsigned int head, in_num, out_num;
659a0e66
RR
792 struct console_abort *abort = vq->dev->priv;
793 struct iovec iov[vq->vring.num];
56ae43df 794
a91d74a3 795 /* Make sure there's a descriptor available. */
659a0e66 796 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 797 if (out_num)
17cbca2b 798 errx(1, "Output buffers in console in queue?");
8ca47e00 799
a91d74a3 800 /* Read into it. This is where we usually wait. */
659a0e66 801 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 802 if (len <= 0) {
659a0e66 803 /* Ran out of input? */
8ca47e00 804 warnx("Failed to get console input, ignoring console.");
2e04ef76
RR
805 /*
806 * For simplicity, dying threads kill the whole Launcher. So
807 * just nap here.
808 */
659a0e66
RR
809 for (;;)
810 pause();
8ca47e00
RR
811 }
812
a91d74a3 813 /* Tell the Guest we used a buffer. */
659a0e66 814 add_used_and_trigger(vq, head, len);
8ca47e00 815
2e04ef76
RR
816 /*
817 * Three ^C within one second? Exit.
dde79789 818 *
659a0e66
RR
819 * This is such a hack, but works surprisingly well. Each ^C has to
820 * be in a buffer by itself, so they can't be too fast. But we check
821 * that we get three within about a second, so they can't be too
2e04ef76
RR
822 * slow.
823 */
659a0e66 824 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 825 abort->count = 0;
659a0e66
RR
826 return;
827 }
8ca47e00 828
659a0e66
RR
829 abort->count++;
830 if (abort->count == 1)
831 gettimeofday(&abort->start, NULL);
832 else if (abort->count == 3) {
833 struct timeval now;
834 gettimeofday(&now, NULL);
835 /* Kill all Launcher processes with SIGINT, like normal ^C */
836 if (now.tv_sec <= abort->start.tv_sec+1)
837 kill(0, SIGINT);
838 abort->count = 0;
839 }
8ca47e00
RR
840}
841
659a0e66
RR
842/* This is the routine which handles console output (ie. stdout). */
843static void console_output(struct virtqueue *vq)
8ca47e00 844{
17cbca2b 845 unsigned int head, out, in;
17cbca2b
RR
846 struct iovec iov[vq->vring.num];
847
a91d74a3 848 /* We usually wait in here, for the Guest to give us something. */
659a0e66
RR
849 head = wait_for_vq_desc(vq, iov, &out, &in);
850 if (in)
851 errx(1, "Input buffers in console output queue?");
a91d74a3
RR
852
853 /* writev can return a partial write, so we loop here. */
659a0e66
RR
854 while (!iov_empty(iov, out)) {
855 int len = writev(STDOUT_FILENO, iov, out);
856 if (len <= 0)
857 err(1, "Write to stdout gave %i", len);
858 iov_consume(iov, out, len);
17cbca2b 859 }
a91d74a3
RR
860
861 /*
862 * We're finished with that buffer: if we're going to sleep,
863 * wait_for_vq_desc() will prod the Guest with an interrupt.
864 */
38bc2b8c 865 add_used(vq, head, 0);
a161883a
RR
866}
867
e1e72965
RR
868/*
869 * The Network
870 *
871 * Handling output for network is also simple: we get all the output buffers
659a0e66 872 * and write them to /dev/net/tun.
a6bd8e13 873 */
659a0e66
RR
874struct net_info {
875 int tunfd;
876};
877
878static void net_output(struct virtqueue *vq)
8ca47e00 879{
659a0e66
RR
880 struct net_info *net_info = vq->dev->priv;
881 unsigned int head, out, in;
17cbca2b 882 struct iovec iov[vq->vring.num];
a161883a 883
a91d74a3 884 /* We usually wait in here for the Guest to give us a packet. */
659a0e66
RR
885 head = wait_for_vq_desc(vq, iov, &out, &in);
886 if (in)
887 errx(1, "Input buffers in net output queue?");
a91d74a3
RR
888 /*
889 * Send the whole thing through to /dev/net/tun. It expects the exact
890 * same format: what a coincidence!
891 */
659a0e66
RR
892 if (writev(net_info->tunfd, iov, out) < 0)
893 errx(1, "Write to tun failed?");
a91d74a3
RR
894
895 /*
896 * Done with that one; wait_for_vq_desc() will send the interrupt if
897 * all packets are processed.
898 */
38bc2b8c 899 add_used(vq, head, 0);
8ca47e00
RR
900}
901
a91d74a3
RR
902/*
903 * Handling network input is a bit trickier, because I've tried to optimize it.
904 *
905 * First we have a helper routine which tells is if from this file descriptor
906 * (ie. the /dev/net/tun device) will block:
907 */
4a8962e2
RR
908static bool will_block(int fd)
909{
910 fd_set fdset;
911 struct timeval zero = { 0, 0 };
912 FD_ZERO(&fdset);
913 FD_SET(fd, &fdset);
914 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
915}
916
a91d74a3
RR
917/*
918 * This handles packets coming in from the tun device to our Guest. Like all
919 * service routines, it gets called again as soon as it returns, so you don't
920 * see a while(1) loop here.
921 */
659a0e66 922static void net_input(struct virtqueue *vq)
8ca47e00 923{
8ca47e00 924 int len;
659a0e66
RR
925 unsigned int head, out, in;
926 struct iovec iov[vq->vring.num];
927 struct net_info *net_info = vq->dev->priv;
928
a91d74a3
RR
929 /*
930 * Get a descriptor to write an incoming packet into. This will also
931 * send an interrupt if they're out of descriptors.
932 */
659a0e66
RR
933 head = wait_for_vq_desc(vq, iov, &out, &in);
934 if (out)
935 errx(1, "Output buffers in net input queue?");
4a8962e2 936
a91d74a3
RR
937 /*
938 * If it looks like we'll block reading from the tun device, send them
939 * an interrupt.
940 */
4a8962e2
RR
941 if (vq->pending_used && will_block(net_info->tunfd))
942 trigger_irq(vq);
943
a91d74a3
RR
944 /*
945 * Read in the packet. This is where we normally wait (when there's no
946 * incoming network traffic).
947 */
659a0e66 948 len = readv(net_info->tunfd, iov, in);
8ca47e00 949 if (len <= 0)
659a0e66 950 err(1, "Failed to read from tun.");
a91d74a3
RR
951
952 /*
953 * Mark that packet buffer as used, but don't interrupt here. We want
954 * to wait until we've done as much work as we can.
955 */
4a8962e2 956 add_used(vq, head, len);
659a0e66 957}
a91d74a3 958/*:*/
dde79789 959
a91d74a3 960/* This is the helper to create threads: run the service routine in a loop. */
659a0e66
RR
961static int do_thread(void *_vq)
962{
963 struct virtqueue *vq = _vq;
17cbca2b 964
659a0e66
RR
965 for (;;)
966 vq->service(vq);
967 return 0;
968}
17cbca2b 969
2e04ef76
RR
970/*
971 * When a child dies, we kill our entire process group with SIGTERM. This
972 * also has the side effect that the shell restores the console for us!
973 */
659a0e66
RR
974static void kill_launcher(int signal)
975{
976 kill(0, SIGTERM);
8ca47e00
RR
977}
978
659a0e66 979static void reset_device(struct device *dev)
56ae43df 980{
659a0e66
RR
981 struct virtqueue *vq;
982
983 verbose("Resetting device %s\n", dev->name);
984
985 /* Clear any features they've acked. */
986 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
987
988 /* We're going to be explicitly killing threads, so ignore them. */
989 signal(SIGCHLD, SIG_IGN);
990
991 /* Zero out the virtqueues, get rid of their threads */
992 for (vq = dev->vq; vq; vq = vq->next) {
993 if (vq->thread != (pid_t)-1) {
994 kill(vq->thread, SIGTERM);
995 waitpid(vq->thread, NULL, 0);
996 vq->thread = (pid_t)-1;
997 }
998 memset(vq->vring.desc, 0,
999 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1000 lg_last_avail(vq) = 0;
1001 }
1002 dev->running = false;
1003
1004 /* Now we care if threads die. */
1005 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
1006}
1007
a91d74a3
RR
1008/*L:216
1009 * This actually creates the thread which services the virtqueue for a device.
1010 */
659a0e66 1011static void create_thread(struct virtqueue *vq)
5dae785a 1012{
2e04ef76 1013 /*
a91d74a3
RR
1014 * Create stack for thread. Since the stack grows upwards, we point
1015 * the stack pointer to the end of this region.
2e04ef76 1016 */
659a0e66
RR
1017 char *stack = malloc(32768);
1018 unsigned long args[] = { LHREQ_EVENTFD,
1019 vq->config.pfn*getpagesize(), 0 };
1020
1021 /* Create a zero-initialized eventfd. */
1022 vq->eventfd = eventfd(0, 0);
1023 if (vq->eventfd < 0)
1024 err(1, "Creating eventfd");
1025 args[2] = vq->eventfd;
1026
a91d74a3
RR
1027 /*
1028 * Attach an eventfd to this virtqueue: it will go off when the Guest
1029 * does an LHCALL_NOTIFY for this vq.
1030 */
659a0e66
RR
1031 if (write(lguest_fd, &args, sizeof(args)) != 0)
1032 err(1, "Attaching eventfd");
1033
a91d74a3
RR
1034 /*
1035 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1036 * we get a signal if it dies.
1037 */
659a0e66
RR
1038 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1039 if (vq->thread == (pid_t)-1)
1040 err(1, "Creating clone");
a91d74a3
RR
1041
1042 /* We close our local copy now the child has it. */
659a0e66 1043 close(vq->eventfd);
5dae785a
RR
1044}
1045
659a0e66 1046static void start_device(struct device *dev)
6e5aa7ef 1047{
659a0e66 1048 unsigned int i;
6e5aa7ef
RR
1049 struct virtqueue *vq;
1050
659a0e66
RR
1051 verbose("Device %s OK: offered", dev->name);
1052 for (i = 0; i < dev->feature_len; i++)
1053 verbose(" %02x", get_feature_bits(dev)[i]);
1054 verbose(", accepted");
1055 for (i = 0; i < dev->feature_len; i++)
1056 verbose(" %02x", get_feature_bits(dev)
1057 [dev->feature_len+i]);
1058
1059 for (vq = dev->vq; vq; vq = vq->next) {
1060 if (vq->service)
1061 create_thread(vq);
1062 }
1063 dev->running = true;
1064}
1065
1066static void cleanup_devices(void)
1067{
1068 struct device *dev;
1069
1070 for (dev = devices.dev; dev; dev = dev->next)
1071 reset_device(dev);
6e5aa7ef 1072
659a0e66
RR
1073 /* If we saved off the original terminal settings, restore them now. */
1074 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1075 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1076}
6e5aa7ef 1077
659a0e66
RR
1078/* When the Guest tells us they updated the status field, we handle it. */
1079static void update_device_status(struct device *dev)
1080{
1081 /* A zero status is a reset, otherwise it's a set of flags. */
1082 if (dev->desc->status == 0)
1083 reset_device(dev);
1084 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
a007a751 1085 warnx("Device %s configuration FAILED", dev->name);
659a0e66
RR
1086 if (dev->running)
1087 reset_device(dev);
a007a751 1088 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
659a0e66
RR
1089 if (!dev->running)
1090 start_device(dev);
6e5aa7ef
RR
1091 }
1092}
1093
a91d74a3
RR
1094/*L:215
1095 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1096 * particular, it's used to notify us of device status changes during boot.
1097 */
56739c80 1098static void handle_output(unsigned long addr)
8ca47e00
RR
1099{
1100 struct device *i;
17cbca2b 1101
659a0e66 1102 /* Check each device. */
17cbca2b 1103 for (i = devices.dev; i; i = i->next) {
659a0e66
RR
1104 struct virtqueue *vq;
1105
a91d74a3
RR
1106 /*
1107 * Notifications to device descriptors mean they updated the
1108 * device status.
1109 */
6e5aa7ef 1110 if (from_guest_phys(addr) == i->desc) {
a007a751 1111 update_device_status(i);
6e5aa7ef
RR
1112 return;
1113 }
1114
a91d74a3
RR
1115 /*
1116 * Devices *can* be used before status is set to DRIVER_OK.
1117 * The original plan was that they would never do this: they
1118 * would always finish setting up their status bits before
1119 * actually touching the virtqueues. In practice, we allowed
1120 * them to, and they do (eg. the disk probes for partition
1121 * tables as part of initialization).
1122 *
1123 * If we see this, we start the device: once it's running, we
1124 * expect the device to catch all the notifications.
1125 */
17cbca2b 1126 for (vq = i->vq; vq; vq = vq->next) {
659a0e66 1127 if (addr != vq->config.pfn*getpagesize())
6e5aa7ef 1128 continue;
659a0e66
RR
1129 if (i->running)
1130 errx(1, "Notification on running %s", i->name);
a91d74a3 1131 /* This just calls create_thread() for each virtqueue */
659a0e66 1132 start_device(i);
6e5aa7ef 1133 return;
8ca47e00
RR
1134 }
1135 }
dde79789 1136
2e04ef76
RR
1137 /*
1138 * Early console write is done using notify on a nul-terminated string
1139 * in Guest memory. It's also great for hacking debugging messages
1140 * into a Guest.
1141 */
17cbca2b
RR
1142 if (addr >= guest_limit)
1143 errx(1, "Bad NOTIFY %#lx", addr);
1144
1145 write(STDOUT_FILENO, from_guest_phys(addr),
1146 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1147}
1148
dde79789
RR
1149/*L:190
1150 * Device Setup
1151 *
1152 * All devices need a descriptor so the Guest knows it exists, and a "struct
1153 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1154 * routines to allocate and manage them.
1155 */
8ca47e00 1156
2e04ef76
RR
1157/*
1158 * The layout of the device page is a "struct lguest_device_desc" followed by a
a586d4f6
RR
1159 * number of virtqueue descriptors, then two sets of feature bits, then an
1160 * array of configuration bytes. This routine returns the configuration
2e04ef76
RR
1161 * pointer.
1162 */
a586d4f6
RR
1163static u8 *device_config(const struct device *dev)
1164{
1165 return (void *)(dev->desc + 1)
713b15b3
RR
1166 + dev->num_vq * sizeof(struct lguest_vqconfig)
1167 + dev->feature_len * 2;
17cbca2b
RR
1168}
1169
2e04ef76
RR
1170/*
1171 * This routine allocates a new "struct lguest_device_desc" from descriptor
a586d4f6 1172 * table page just above the Guest's normal memory. It returns a pointer to
2e04ef76
RR
1173 * that descriptor.
1174 */
a586d4f6 1175static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1176{
a586d4f6
RR
1177 struct lguest_device_desc d = { .type = type };
1178 void *p;
17cbca2b 1179
a586d4f6
RR
1180 /* Figure out where the next device config is, based on the last one. */
1181 if (devices.lastdev)
1182 p = device_config(devices.lastdev)
1183 + devices.lastdev->desc->config_len;
1184 else
1185 p = devices.descpage;
17cbca2b 1186
a586d4f6
RR
1187 /* We only have one page for all the descriptors. */
1188 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1189 errx(1, "Too many devices");
17cbca2b 1190
a586d4f6
RR
1191 /* p might not be aligned, so we memcpy in. */
1192 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1193}
1194
2e04ef76
RR
1195/*
1196 * Each device descriptor is followed by the description of its virtqueues. We
1197 * specify how many descriptors the virtqueue is to have.
1198 */
17cbca2b 1199static void add_virtqueue(struct device *dev, unsigned int num_descs,
659a0e66 1200 void (*service)(struct virtqueue *))
17cbca2b
RR
1201{
1202 unsigned int pages;
1203 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1204 void *p;
1205
a6bd8e13 1206 /* First we need some memory for this virtqueue. */
2966af73 1207 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
42b36cc0 1208 / getpagesize();
17cbca2b
RR
1209 p = get_pages(pages);
1210
d1c856e0
RR
1211 /* Initialize the virtqueue */
1212 vq->next = NULL;
1213 vq->last_avail_idx = 0;
1214 vq->dev = dev;
a91d74a3
RR
1215
1216 /*
1217 * This is the routine the service thread will run, and its Process ID
1218 * once it's running.
1219 */
659a0e66
RR
1220 vq->service = service;
1221 vq->thread = (pid_t)-1;
d1c856e0 1222
17cbca2b
RR
1223 /* Initialize the configuration. */
1224 vq->config.num = num_descs;
1225 vq->config.irq = devices.next_irq++;
1226 vq->config.pfn = to_guest_phys(p) / getpagesize();
1227
1228 /* Initialize the vring. */
2966af73 1229 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
17cbca2b 1230
2e04ef76
RR
1231 /*
1232 * Append virtqueue to this device's descriptor. We use
a586d4f6
RR
1233 * device_config() to get the end of the device's current virtqueues;
1234 * we check that we haven't added any config or feature information
2e04ef76
RR
1235 * yet, otherwise we'd be overwriting them.
1236 */
a586d4f6
RR
1237 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1238 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
713b15b3 1239 dev->num_vq++;
a586d4f6
RR
1240 dev->desc->num_vq++;
1241
1242 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b 1243
2e04ef76
RR
1244 /*
1245 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1246 * second.
1247 */
17cbca2b
RR
1248 for (i = &dev->vq; *i; i = &(*i)->next);
1249 *i = vq;
8ca47e00
RR
1250}
1251
2e04ef76
RR
1252/*
1253 * The first half of the feature bitmask is for us to advertise features. The
1254 * second half is for the Guest to accept features.
1255 */
a586d4f6
RR
1256static void add_feature(struct device *dev, unsigned bit)
1257{
6e5aa7ef 1258 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1259
1260 /* We can't extend the feature bits once we've added config bytes */
1261 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1262 assert(dev->desc->config_len == 0);
713b15b3 1263 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
a586d4f6
RR
1264 }
1265
a586d4f6
RR
1266 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1267}
1268
2e04ef76
RR
1269/*
1270 * This routine sets the configuration fields for an existing device's
a586d4f6 1271 * descriptor. It only works for the last device, but that's OK because that's
2e04ef76
RR
1272 * how we use it.
1273 */
a586d4f6
RR
1274static void set_config(struct device *dev, unsigned len, const void *conf)
1275{
1276 /* Check we haven't overflowed our single page. */
1277 if (device_config(dev) + len > devices.descpage + getpagesize())
1278 errx(1, "Too many devices");
1279
1280 /* Copy in the config information, and store the length. */
1281 memcpy(device_config(dev), conf, len);
1282 dev->desc->config_len = len;
8ef562d1
RR
1283
1284 /* Size must fit in config_len field (8 bits)! */
1285 assert(dev->desc->config_len == len);
a586d4f6
RR
1286}
1287
2e04ef76
RR
1288/*
1289 * This routine does all the creation and setup of a new device, including
a91d74a3
RR
1290 * calling new_dev_desc() to allocate the descriptor and device memory. We
1291 * don't actually start the service threads until later.
a6bd8e13 1292 *
2e04ef76
RR
1293 * See what I mean about userspace being boring?
1294 */
659a0e66 1295static struct device *new_device(const char *name, u16 type)
8ca47e00
RR
1296{
1297 struct device *dev = malloc(sizeof(*dev));
1298
dde79789 1299 /* Now we populate the fields one at a time. */
17cbca2b 1300 dev->desc = new_dev_desc(type);
17cbca2b 1301 dev->name = name;
d1c856e0 1302 dev->vq = NULL;
713b15b3
RR
1303 dev->feature_len = 0;
1304 dev->num_vq = 0;
659a0e66 1305 dev->running = false;
a586d4f6 1306
2e04ef76
RR
1307 /*
1308 * Append to device list. Prepending to a single-linked list is
a586d4f6
RR
1309 * easier, but the user expects the devices to be arranged on the bus
1310 * in command-line order. The first network device on the command line
2e04ef76
RR
1311 * is eth0, the first block device /dev/vda, etc.
1312 */
a586d4f6
RR
1313 if (devices.lastdev)
1314 devices.lastdev->next = dev;
1315 else
1316 devices.dev = dev;
1317 devices.lastdev = dev;
1318
8ca47e00
RR
1319 return dev;
1320}
1321
2e04ef76
RR
1322/*
1323 * Our first setup routine is the console. It's a fairly simple device, but
1324 * UNIX tty handling makes it uglier than it could be.
1325 */
17cbca2b 1326static void setup_console(void)
8ca47e00
RR
1327{
1328 struct device *dev;
1329
dde79789 1330 /* If we can save the initial standard input settings... */
8ca47e00
RR
1331 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1332 struct termios term = orig_term;
2e04ef76
RR
1333 /*
1334 * Then we turn off echo, line buffering and ^C etc: We want a
1335 * raw input stream to the Guest.
1336 */
8ca47e00
RR
1337 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1338 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
1339 }
1340
659a0e66
RR
1341 dev = new_device("console", VIRTIO_ID_CONSOLE);
1342
dde79789 1343 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1344 dev->priv = malloc(sizeof(struct console_abort));
1345 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1346
2e04ef76
RR
1347 /*
1348 * The console needs two virtqueues: the input then the output. When
56ae43df
RR
1349 * they put something the input queue, we make sure we're listening to
1350 * stdin. When they put something in the output queue, we write it to
2e04ef76
RR
1351 * stdout.
1352 */
659a0e66
RR
1353 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1354 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
17cbca2b 1355
659a0e66 1356 verbose("device %u: console\n", ++devices.device_num);
8ca47e00 1357}
17cbca2b 1358/*:*/
8ca47e00 1359
2e04ef76
RR
1360/*M:010
1361 * Inter-guest networking is an interesting area. Simplest is to have a
17cbca2b
RR
1362 * --sharenet=<name> option which opens or creates a named pipe. This can be
1363 * used to send packets to another guest in a 1:1 manner.
dde79789 1364 *
17cbca2b
RR
1365 * More sopisticated is to use one of the tools developed for project like UML
1366 * to do networking.
dde79789 1367 *
17cbca2b
RR
1368 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1369 * completely generic ("here's my vring, attach to your vring") and would work
1370 * for any traffic. Of course, namespace and permissions issues need to be
1371 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1372 * multiple inter-guest channels behind one interface, although it would
1373 * require some manner of hotplugging new virtio channels.
1374 *
2e04ef76
RR
1375 * Finally, we could implement a virtio network switch in the kernel.
1376:*/
8ca47e00
RR
1377
1378static u32 str2ip(const char *ipaddr)
1379{
dec6a2be 1380 unsigned int b[4];
8ca47e00 1381
dec6a2be
MM
1382 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1383 errx(1, "Failed to parse IP address '%s'", ipaddr);
1384 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1385}
1386
1387static void str2mac(const char *macaddr, unsigned char mac[6])
1388{
1389 unsigned int m[6];
1390 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1391 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1392 errx(1, "Failed to parse mac address '%s'", macaddr);
1393 mac[0] = m[0];
1394 mac[1] = m[1];
1395 mac[2] = m[2];
1396 mac[3] = m[3];
1397 mac[4] = m[4];
1398 mac[5] = m[5];
8ca47e00
RR
1399}
1400
2e04ef76
RR
1401/*
1402 * This code is "adapted" from libbridge: it attaches the Host end of the
dde79789
RR
1403 * network device to the bridge device specified by the command line.
1404 *
1405 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2e04ef76
RR
1406 * dislike bridging), and I just try not to break it.
1407 */
8ca47e00
RR
1408static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1409{
1410 int ifidx;
1411 struct ifreq ifr;
1412
1413 if (!*br_name)
1414 errx(1, "must specify bridge name");
1415
1416 ifidx = if_nametoindex(if_name);
1417 if (!ifidx)
1418 errx(1, "interface %s does not exist!", if_name);
1419
1420 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1421 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1422 ifr.ifr_ifindex = ifidx;
1423 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1424 err(1, "can't add %s to bridge %s", if_name, br_name);
1425}
1426
2e04ef76
RR
1427/*
1428 * This sets up the Host end of the network device with an IP address, brings
dde79789 1429 * it up so packets will flow, the copies the MAC address into the hwaddr
2e04ef76
RR
1430 * pointer.
1431 */
dec6a2be 1432static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1433{
1434 struct ifreq ifr;
1435 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1436
1437 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1438 strcpy(ifr.ifr_name, tapif);
1439
1440 /* Don't read these incantations. Just cut & paste them like I did! */
8ca47e00
RR
1441 sin->sin_family = AF_INET;
1442 sin->sin_addr.s_addr = htonl(ipaddr);
1443 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1444 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1445 ifr.ifr_flags = IFF_UP;
1446 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1447 err(1, "Bringing interface %s up", tapif);
1448}
1449
dec6a2be 1450static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1451{
8ca47e00 1452 struct ifreq ifr;
dec6a2be
MM
1453 int netfd;
1454
1455 /* Start with this zeroed. Messy but sure. */
1456 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1457
2e04ef76
RR
1458 /*
1459 * We open the /dev/net/tun device and tell it we want a tap device. A
dde79789
RR
1460 * tap device is like a tun device, only somehow different. To tell
1461 * the truth, I completely blundered my way through this code, but it
2e04ef76
RR
1462 * works now!
1463 */
8ca47e00 1464 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1465 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1466 strcpy(ifr.ifr_name, "tap%d");
1467 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1468 err(1, "configuring /dev/net/tun");
dec6a2be 1469
398f187d
RR
1470 if (ioctl(netfd, TUNSETOFFLOAD,
1471 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1472 err(1, "Could not set features for tun device");
1473
2e04ef76
RR
1474 /*
1475 * We don't need checksums calculated for packets coming in this
1476 * device: trust us!
1477 */
8ca47e00
RR
1478 ioctl(netfd, TUNSETNOCSUM, 1);
1479
dec6a2be
MM
1480 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1481 return netfd;
1482}
1483
2e04ef76
RR
1484/*L:195
1485 * Our network is a Host<->Guest network. This can either use bridging or
dec6a2be
MM
1486 * routing, but the principle is the same: it uses the "tun" device to inject
1487 * packets into the Host as if they came in from a normal network card. We
2e04ef76
RR
1488 * just shunt packets between the Guest and the tun device.
1489 */
dec6a2be
MM
1490static void setup_tun_net(char *arg)
1491{
1492 struct device *dev;
659a0e66
RR
1493 struct net_info *net_info = malloc(sizeof(*net_info));
1494 int ipfd;
dec6a2be
MM
1495 u32 ip = INADDR_ANY;
1496 bool bridging = false;
1497 char tapif[IFNAMSIZ], *p;
1498 struct virtio_net_config conf;
1499
659a0e66 1500 net_info->tunfd = get_tun_device(tapif);
dec6a2be 1501
17cbca2b 1502 /* First we create a new network device. */
659a0e66
RR
1503 dev = new_device("net", VIRTIO_ID_NET);
1504 dev->priv = net_info;
dde79789 1505
2e04ef76 1506 /* Network devices need a recv and a send queue, just like console. */
659a0e66
RR
1507 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1508 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
8ca47e00 1509
2e04ef76
RR
1510 /*
1511 * We need a socket to perform the magic network ioctls to bring up the
1512 * tap interface, connect to the bridge etc. Any socket will do!
1513 */
8ca47e00
RR
1514 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1515 if (ipfd < 0)
1516 err(1, "opening IP socket");
1517
dde79789 1518 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1519 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1520 arg += strlen(BRIDGE_PFX);
1521 bridging = true;
1522 }
1523
1524 /* A mac address may follow the bridge name or IP address */
1525 p = strchr(arg, ':');
1526 if (p) {
1527 str2mac(p+1, conf.mac);
40c42076 1528 add_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 1529 *p = '\0';
dec6a2be
MM
1530 }
1531
1532 /* arg is now either an IP address or a bridge name */
1533 if (bridging)
1534 add_to_bridge(ipfd, tapif, arg);
1535 else
8ca47e00
RR
1536 ip = str2ip(arg);
1537
dec6a2be
MM
1538 /* Set up the tun device. */
1539 configure_device(ipfd, tapif, ip);
8ca47e00 1540
20887611 1541 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
398f187d
RR
1542 /* Expect Guest to handle everything except UFO */
1543 add_feature(dev, VIRTIO_NET_F_CSUM);
1544 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
398f187d
RR
1545 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1546 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1547 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1548 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1549 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1550 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
d1f0132e
MM
1551 /* We handle indirect ring entries */
1552 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
a586d4f6 1553 set_config(dev, sizeof(conf), &conf);
8ca47e00 1554
a586d4f6 1555 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1556 close(ipfd);
1557
dec6a2be
MM
1558 devices.device_num++;
1559
1560 if (bridging)
1561 verbose("device %u: tun %s attached to bridge: %s\n",
1562 devices.device_num, tapif, arg);
1563 else
1564 verbose("device %u: tun %s: %s\n",
1565 devices.device_num, tapif, arg);
8ca47e00 1566}
a91d74a3 1567/*:*/
17cbca2b 1568
e1e72965 1569/* This hangs off device->priv. */
1842f23c 1570struct vblk_info {
17cbca2b
RR
1571 /* The size of the file. */
1572 off64_t len;
1573
1574 /* The file descriptor for the file. */
1575 int fd;
1576
17cbca2b
RR
1577};
1578
e1e72965
RR
1579/*L:210
1580 * The Disk
1581 *
a91d74a3
RR
1582 * The disk only has one virtqueue, so it only has one thread. It is really
1583 * simple: the Guest asks for a block number and we read or write that position
1584 * in the file.
1585 *
1586 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1587 * slow: the Guest waits until the read is finished before running anything
1588 * else, even if it could have been doing useful work.
1589 *
1590 * We could have used async I/O, except it's reputed to suck so hard that
1591 * characters actually go missing from your code when you try to use it.
e1e72965 1592 */
659a0e66 1593static void blk_request(struct virtqueue *vq)
17cbca2b 1594{
659a0e66 1595 struct vblk_info *vblk = vq->dev->priv;
17cbca2b
RR
1596 unsigned int head, out_num, in_num, wlen;
1597 int ret;
cb38fa23 1598 u8 *in;
17cbca2b 1599 struct virtio_blk_outhdr *out;
659a0e66 1600 struct iovec iov[vq->vring.num];
17cbca2b
RR
1601 off64_t off;
1602
a91d74a3
RR
1603 /*
1604 * Get the next request, where we normally wait. It triggers the
1605 * interrupt to acknowledge previously serviced requests (if any).
1606 */
659a0e66 1607 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 1608
2e04ef76
RR
1609 /*
1610 * Every block request should contain at least one output buffer
e1e72965 1611 * (detailing the location on disk and the type of request) and one
2e04ef76
RR
1612 * input buffer (to hold the result).
1613 */
17cbca2b
RR
1614 if (out_num == 0 || in_num == 0)
1615 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1616 head, out_num, in_num);
1617
1618 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1619 in = convert(&iov[out_num+in_num-1], u8);
a91d74a3
RR
1620 /*
1621 * For historical reasons, block operations are expressed in 512 byte
1622 * "sectors".
1623 */
17cbca2b
RR
1624 off = out->sector * 512;
1625
2e04ef76
RR
1626 /*
1627 * The block device implements "barriers", where the Guest indicates
e1e72965
RR
1628 * that it wants all previous writes to occur before this write. We
1629 * don't have a way of asking our kernel to do a barrier, so we just
2e04ef76
RR
1630 * synchronize all the data in the file. Pretty poor, no?
1631 */
17cbca2b
RR
1632 if (out->type & VIRTIO_BLK_T_BARRIER)
1633 fdatasync(vblk->fd);
1634
2e04ef76
RR
1635 /*
1636 * In general the virtio block driver is allowed to try SCSI commands.
1637 * It'd be nice if we supported eject, for example, but we don't.
1638 */
17cbca2b
RR
1639 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1640 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1641 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1642 wlen = sizeof(*in);
17cbca2b 1643 } else if (out->type & VIRTIO_BLK_T_OUT) {
2e04ef76
RR
1644 /*
1645 * Write
1646 *
1647 * Move to the right location in the block file. This can fail
1648 * if they try to write past end.
1649 */
17cbca2b
RR
1650 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1651 err(1, "Bad seek to sector %llu", out->sector);
1652
1653 ret = writev(vblk->fd, iov+1, out_num-1);
1654 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1655
2e04ef76
RR
1656 /*
1657 * Grr... Now we know how long the descriptor they sent was, we
17cbca2b 1658 * make sure they didn't try to write over the end of the block
2e04ef76
RR
1659 * file (possibly extending it).
1660 */
17cbca2b
RR
1661 if (ret > 0 && off + ret > vblk->len) {
1662 /* Trim it back to the correct length */
1663 ftruncate64(vblk->fd, vblk->len);
1664 /* Die, bad Guest, die. */
1665 errx(1, "Write past end %llu+%u", off, ret);
1666 }
1200e646 1667 wlen = sizeof(*in);
cb38fa23 1668 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b 1669 } else {
2e04ef76
RR
1670 /*
1671 * Read
1672 *
1673 * Move to the right location in the block file. This can fail
1674 * if they try to read past end.
1675 */
17cbca2b
RR
1676 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1677 err(1, "Bad seek to sector %llu", out->sector);
1678
1679 ret = readv(vblk->fd, iov+1, in_num-1);
1680 verbose("READ from sector %llu: %i\n", out->sector, ret);
1681 if (ret >= 0) {
1200e646 1682 wlen = sizeof(*in) + ret;
cb38fa23 1683 *in = VIRTIO_BLK_S_OK;
17cbca2b 1684 } else {
1200e646 1685 wlen = sizeof(*in);
cb38fa23 1686 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1687 }
1688 }
1689
2e04ef76
RR
1690 /*
1691 * OK, so we noted that it was pretty poor to use an fdatasync as a
d1881d31
RR
1692 * barrier. But Christoph Hellwig points out that we need a sync
1693 * *afterwards* as well: "Barriers specify no reordering to the front
2e04ef76
RR
1694 * or the back." And Jens Axboe confirmed it, so here we are:
1695 */
d1881d31
RR
1696 if (out->type & VIRTIO_BLK_T_BARRIER)
1697 fdatasync(vblk->fd);
1698
a91d74a3 1699 /* Finished that request. */
38bc2b8c 1700 add_used(vq, head, wlen);
17cbca2b
RR
1701}
1702
e1e72965 1703/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1704static void setup_block_file(const char *filename)
1705{
17cbca2b
RR
1706 struct device *dev;
1707 struct vblk_info *vblk;
a586d4f6 1708 struct virtio_blk_config conf;
17cbca2b 1709
2e04ef76 1710 /* Creat the device. */
659a0e66 1711 dev = new_device("block", VIRTIO_ID_BLOCK);
17cbca2b 1712
e1e72965 1713 /* The device has one virtqueue, where the Guest places requests. */
659a0e66 1714 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
17cbca2b
RR
1715
1716 /* Allocate the room for our own bookkeeping */
1717 vblk = dev->priv = malloc(sizeof(*vblk));
1718
1719 /* First we open the file and store the length. */
1720 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1721 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1722
a586d4f6
RR
1723 /* We support barriers. */
1724 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1725
17cbca2b 1726 /* Tell Guest how many sectors this device has. */
a586d4f6 1727 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b 1728
2e04ef76
RR
1729 /*
1730 * Tell Guest not to put in too many descriptors at once: two are used
1731 * for the in and out elements.
1732 */
a586d4f6
RR
1733 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1734 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1735
8ef562d1
RR
1736 /* Don't try to put whole struct: we have 8 bit limit. */
1737 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
17cbca2b 1738
17cbca2b 1739 verbose("device %u: virtblock %llu sectors\n",
659a0e66 1740 ++devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1741}
28fd6d7f 1742
2e04ef76
RR
1743/*L:211
1744 * Our random number generator device reads from /dev/random into the Guest's
28fd6d7f
RR
1745 * input buffers. The usual case is that the Guest doesn't want random numbers
1746 * and so has no buffers although /dev/random is still readable, whereas
1747 * console is the reverse.
1748 *
2e04ef76
RR
1749 * The same logic applies, however.
1750 */
1751struct rng_info {
1752 int rfd;
1753};
1754
659a0e66 1755static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
1756{
1757 int len;
1758 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
1759 struct rng_info *rng_info = vq->dev->priv;
1760 struct iovec iov[vq->vring.num];
28fd6d7f
RR
1761
1762 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 1763 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
1764 if (out_num)
1765 errx(1, "Output buffers in rng?");
1766
2e04ef76 1767 /*
a91d74a3
RR
1768 * Just like the console write, we loop to cover the whole iovec.
1769 * In this case, short reads actually happen quite a bit.
2e04ef76 1770 */
28fd6d7f 1771 while (!iov_empty(iov, in_num)) {
659a0e66 1772 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f
RR
1773 if (len <= 0)
1774 err(1, "Read from /dev/random gave %i", len);
1775 iov_consume(iov, in_num, len);
1776 totlen += len;
1777 }
1778
1779 /* Tell the Guest about the new input. */
38bc2b8c 1780 add_used(vq, head, totlen);
28fd6d7f
RR
1781}
1782
2e04ef76
RR
1783/*L:199
1784 * This creates a "hardware" random number device for the Guest.
1785 */
28fd6d7f
RR
1786static void setup_rng(void)
1787{
1788 struct device *dev;
659a0e66 1789 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 1790
2e04ef76 1791 /* Our device's privat info simply contains the /dev/random fd. */
659a0e66 1792 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
28fd6d7f 1793
2e04ef76 1794 /* Create the new device. */
659a0e66
RR
1795 dev = new_device("rng", VIRTIO_ID_RNG);
1796 dev->priv = rng_info;
28fd6d7f
RR
1797
1798 /* The device has one virtqueue, where the Guest places inbufs. */
659a0e66 1799 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
28fd6d7f
RR
1800
1801 verbose("device %u: rng\n", devices.device_num++);
1802}
a6bd8e13 1803/* That's the end of device setup. */
ec04b13f 1804
a6bd8e13 1805/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1806static void __attribute__((noreturn)) restart_guest(void)
1807{
1808 unsigned int i;
1809
2e04ef76
RR
1810 /*
1811 * Since we don't track all open fds, we simply close everything beyond
1812 * stderr.
1813 */
ec04b13f
BR
1814 for (i = 3; i < FD_SETSIZE; i++)
1815 close(i);
8c79873d 1816
659a0e66
RR
1817 /* Reset all the devices (kills all threads). */
1818 cleanup_devices();
1819
ec04b13f
BR
1820 execv(main_args[0], main_args);
1821 err(1, "Could not exec %s", main_args[0]);
1822}
8ca47e00 1823
2e04ef76
RR
1824/*L:220
1825 * Finally we reach the core of the Launcher which runs the Guest, serves
1826 * its input and output, and finally, lays it to rest.
1827 */
56739c80 1828static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
1829{
1830 for (;;) {
17cbca2b 1831 unsigned long notify_addr;
8ca47e00
RR
1832 int readval;
1833
1834 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1835 readval = pread(lguest_fd, &notify_addr,
1836 sizeof(notify_addr), cpu_id);
8ca47e00 1837
17cbca2b
RR
1838 /* One unsigned long means the Guest did HCALL_NOTIFY */
1839 if (readval == sizeof(notify_addr)) {
1840 verbose("Notify on address %#lx\n", notify_addr);
56739c80 1841 handle_output(notify_addr);
dde79789 1842 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1843 } else if (errno == ENOENT) {
1844 char reason[1024] = { 0 };
e3283fa0 1845 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1846 errx(1, "%s", reason);
ec04b13f
BR
1847 /* ERESTART means that we need to reboot the guest */
1848 } else if (errno == ERESTART) {
1849 restart_guest();
659a0e66
RR
1850 /* Anything else means a bug or incompatible change. */
1851 } else
8ca47e00 1852 err(1, "Running guest failed");
8ca47e00
RR
1853 }
1854}
a6bd8e13 1855/*L:240
e1e72965
RR
1856 * This is the end of the Launcher. The good news: we are over halfway
1857 * through! The bad news: the most fiendish part of the code still lies ahead
1858 * of us.
dde79789 1859 *
e1e72965
RR
1860 * Are you ready? Take a deep breath and join me in the core of the Host, in
1861 * "make Host".
2e04ef76 1862:*/
8ca47e00
RR
1863
1864static struct option opts[] = {
1865 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1866 { "tunnet", 1, NULL, 't' },
1867 { "block", 1, NULL, 'b' },
28fd6d7f 1868 { "rng", 0, NULL, 'r' },
8ca47e00
RR
1869 { "initrd", 1, NULL, 'i' },
1870 { NULL },
1871};
1872static void usage(void)
1873{
1874 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1875 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1876 "|--block=<filename>|--initrd=<filename>]...\n"
1877 "<mem-in-mb> vmlinux [args...]");
1878}
1879
3c6b5bfa 1880/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1881int main(int argc, char *argv[])
1882{
2e04ef76 1883 /* Memory, code startpoint and size of the (optional) initrd. */
58a24566 1884 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
1885 /* Two temporaries. */
1886 int i, c;
3c6b5bfa 1887 /* The boot information for the Guest. */
43d33b21 1888 struct boot_params *boot;
dde79789 1889 /* If they specify an initrd file to load. */
8ca47e00
RR
1890 const char *initrd_name = NULL;
1891
ec04b13f
BR
1892 /* Save the args: we "reboot" by execing ourselves again. */
1893 main_args = argv;
ec04b13f 1894
2e04ef76
RR
1895 /*
1896 * First we initialize the device list. We keep a pointer to the last
659a0e66 1897 * device, and the next interrupt number to use for devices (1:
2e04ef76
RR
1898 * remember that 0 is used by the timer).
1899 */
a586d4f6 1900 devices.lastdev = NULL;
17cbca2b 1901 devices.next_irq = 1;
8ca47e00 1902
a91d74a3 1903 /* We're CPU 0. In fact, that's the only CPU possible right now. */
e3283fa0 1904 cpu_id = 0;
a91d74a3 1905
2e04ef76
RR
1906 /*
1907 * We need to know how much memory so we can set up the device
dde79789
RR
1908 * descriptor and memory pages for the devices as we parse the command
1909 * line. So we quickly look through the arguments to find the amount
2e04ef76
RR
1910 * of memory now.
1911 */
6570c459
RR
1912 for (i = 1; i < argc; i++) {
1913 if (argv[i][0] != '-') {
3c6b5bfa 1914 mem = atoi(argv[i]) * 1024 * 1024;
2e04ef76
RR
1915 /*
1916 * We start by mapping anonymous pages over all of
3c6b5bfa
RR
1917 * guest-physical memory range. This fills it with 0,
1918 * and ensures that the Guest won't be killed when it
2e04ef76
RR
1919 * tries to access it.
1920 */
3c6b5bfa
RR
1921 guest_base = map_zeroed_pages(mem / getpagesize()
1922 + DEVICE_PAGES);
1923 guest_limit = mem;
1924 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1925 devices.descpage = get_pages(1);
6570c459
RR
1926 break;
1927 }
1928 }
dde79789
RR
1929
1930 /* The options are fairly straight-forward */
8ca47e00
RR
1931 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1932 switch (c) {
1933 case 'v':
1934 verbose = true;
1935 break;
8ca47e00 1936 case 't':
17cbca2b 1937 setup_tun_net(optarg);
8ca47e00
RR
1938 break;
1939 case 'b':
17cbca2b 1940 setup_block_file(optarg);
8ca47e00 1941 break;
28fd6d7f
RR
1942 case 'r':
1943 setup_rng();
1944 break;
8ca47e00
RR
1945 case 'i':
1946 initrd_name = optarg;
1947 break;
1948 default:
1949 warnx("Unknown argument %s", argv[optind]);
1950 usage();
1951 }
1952 }
2e04ef76
RR
1953 /*
1954 * After the other arguments we expect memory and kernel image name,
1955 * followed by command line arguments for the kernel.
1956 */
8ca47e00
RR
1957 if (optind + 2 > argc)
1958 usage();
1959
3c6b5bfa
RR
1960 verbose("Guest base is at %p\n", guest_base);
1961
dde79789 1962 /* We always have a console device */
17cbca2b 1963 setup_console();
8ca47e00 1964
8ca47e00 1965 /* Now we load the kernel */
47436aa4 1966 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1967
3c6b5bfa
RR
1968 /* Boot information is stashed at physical address 0 */
1969 boot = from_guest_phys(0);
1970
dde79789 1971 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1972 if (initrd_name) {
1973 initrd_size = load_initrd(initrd_name, mem);
2e04ef76
RR
1974 /*
1975 * These are the location in the Linux boot header where the
1976 * start and size of the initrd are expected to be found.
1977 */
43d33b21
RR
1978 boot->hdr.ramdisk_image = mem - initrd_size;
1979 boot->hdr.ramdisk_size = initrd_size;
dde79789 1980 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 1981 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
1982 }
1983
2e04ef76
RR
1984 /*
1985 * The Linux boot header contains an "E820" memory map: ours is a
1986 * simple, single region.
1987 */
43d33b21
RR
1988 boot->e820_entries = 1;
1989 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2e04ef76
RR
1990 /*
1991 * The boot header contains a command line pointer: we put the command
1992 * line after the boot header.
1993 */
43d33b21 1994 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 1995 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 1996 concat((char *)(boot + 1), argv+optind+2);
dde79789 1997
814a0e5c 1998 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 1999 boot->hdr.version = 0x207;
814a0e5c
RR
2000
2001 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2002 boot->hdr.hardware_subarch = 1;
814a0e5c 2003
43d33b21
RR
2004 /* Tell the entry path not to try to reload segment registers. */
2005 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2006
2e04ef76
RR
2007 /*
2008 * We tell the kernel to initialize the Guest: this returns the open
2009 * /dev/lguest file descriptor.
2010 */
56739c80 2011 tell_kernel(start);
dde79789 2012
a91d74a3 2013 /* Ensure that we terminate if a device-servicing child dies. */
659a0e66
RR
2014 signal(SIGCHLD, kill_launcher);
2015
2016 /* If we exit via err(), this kills all the threads, restores tty. */
2017 atexit(cleanup_devices);
8ca47e00 2018
dde79789 2019 /* Finally, run the Guest. This doesn't return. */
56739c80 2020 run_guest();
8ca47e00 2021}
f56a384e
RR
2022/*:*/
2023
2024/*M:999
2025 * Mastery is done: you now know everything I do.
2026 *
2027 * But surely you have seen code, features and bugs in your wanderings which
2028 * you now yearn to attack? That is the real game, and I look forward to you
2029 * patching and forking lguest into the Your-Name-Here-visor.
2030 *
2031 * Farewell, and good coding!
2032 * Rusty Russell.
2033 */
This page took 0.36726 seconds and 5 git commands to generate.