lguest: Tell Guest net not to notify us on every packet xmit
[deliverable/linux.git] / Documentation / lguest / lguest.c
CommitLineData
f938d2c8 1/*P:100 This is the Launcher code, a simple program which lays out the
a6bd8e13
RR
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
8ca47e00
RR
5#define _LARGEFILE64_SOURCE
6#define _GNU_SOURCE
7#include <stdio.h>
8#include <string.h>
9#include <unistd.h>
10#include <err.h>
11#include <stdint.h>
12#include <stdlib.h>
13#include <elf.h>
14#include <sys/mman.h>
6649bb7a 15#include <sys/param.h>
8ca47e00
RR
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <sys/wait.h>
19#include <fcntl.h>
20#include <stdbool.h>
21#include <errno.h>
22#include <ctype.h>
23#include <sys/socket.h>
24#include <sys/ioctl.h>
25#include <sys/time.h>
26#include <time.h>
27#include <netinet/in.h>
28#include <net/if.h>
29#include <linux/sockios.h>
30#include <linux/if_tun.h>
31#include <sys/uio.h>
32#include <termios.h>
33#include <getopt.h>
34#include <zlib.h>
17cbca2b
RR
35#include <assert.h>
36#include <sched.h>
a586d4f6
RR
37#include <limits.h>
38#include <stddef.h>
a161883a 39#include <signal.h>
b45d8cb0 40#include "linux/lguest_launcher.h"
17cbca2b
RR
41#include "linux/virtio_config.h"
42#include "linux/virtio_net.h"
43#include "linux/virtio_blk.h"
44#include "linux/virtio_console.h"
28fd6d7f 45#include "linux/virtio_rng.h"
17cbca2b 46#include "linux/virtio_ring.h"
43d33b21 47#include "asm-x86/bootparam.h"
a6bd8e13 48/*L:110 We can ignore the 39 include files we need for this program, but I do
db24e8c2
RR
49 * want to draw attention to the use of kernel-style types.
50 *
51 * As Linus said, "C is a Spartan language, and so should your naming be." I
52 * like these abbreviations, so we define them here. Note that u64 is always
53 * unsigned long long, which works on all Linux systems: this means that we can
54 * use %llu in printf for any u64. */
55typedef unsigned long long u64;
56typedef uint32_t u32;
57typedef uint16_t u16;
58typedef uint8_t u8;
dde79789 59/*:*/
8ca47e00
RR
60
61#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
62#define NET_PEERNUM 1
63#define BRIDGE_PFX "bridge:"
64#ifndef SIOCBRADDIF
65#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66#endif
3c6b5bfa
RR
67/* We can have up to 256 pages for devices. */
68#define DEVICE_PAGES 256
42b36cc0
RR
69/* This will occupy 2 pages: it must be a power of 2. */
70#define VIRTQUEUE_NUM 128
8ca47e00 71
dde79789
RR
72/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
8ca47e00
RR
74static bool verbose;
75#define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
dde79789
RR
77/*:*/
78
79/* The pipe to send commands to the waker process */
8ca47e00 80static int waker_fd;
3c6b5bfa
RR
81/* The pointer to the start of guest memory. */
82static void *guest_base;
83/* The maximum guest physical address allowed, and maximum possible. */
84static unsigned long guest_limit, guest_max;
a161883a
RR
85/* The pipe for signal hander to write to. */
86static int timeoutpipe[2];
8ca47e00 87
e3283fa0
GOC
88/* a per-cpu variable indicating whose vcpu is currently running */
89static unsigned int __thread cpu_id;
90
dde79789 91/* This is our list of devices. */
8ca47e00
RR
92struct device_list
93{
dde79789
RR
94 /* Summary information about the devices in our list: ready to pass to
95 * select() to ask which need servicing.*/
8ca47e00
RR
96 fd_set infds;
97 int max_infd;
98
17cbca2b
RR
99 /* Counter to assign interrupt numbers. */
100 unsigned int next_irq;
101
102 /* Counter to print out convenient device numbers. */
103 unsigned int device_num;
104
dde79789 105 /* The descriptor page for the devices. */
17cbca2b
RR
106 u8 *descpage;
107
dde79789 108 /* A single linked list of devices. */
8ca47e00 109 struct device *dev;
a586d4f6
RR
110 /* And a pointer to the last device for easy append and also for
111 * configuration appending. */
112 struct device *lastdev;
8ca47e00
RR
113};
114
17cbca2b
RR
115/* The list of Guest devices, based on command line arguments. */
116static struct device_list devices;
117
dde79789 118/* The device structure describes a single device. */
8ca47e00
RR
119struct device
120{
dde79789 121 /* The linked-list pointer. */
8ca47e00 122 struct device *next;
17cbca2b
RR
123
124 /* The this device's descriptor, as mapped into the Guest. */
8ca47e00 125 struct lguest_device_desc *desc;
17cbca2b
RR
126
127 /* The name of this device, for --verbose. */
128 const char *name;
8ca47e00 129
dde79789
RR
130 /* If handle_input is set, it wants to be called when this file
131 * descriptor is ready. */
8ca47e00
RR
132 int fd;
133 bool (*handle_input)(int fd, struct device *me);
134
17cbca2b
RR
135 /* Any queues attached to this device */
136 struct virtqueue *vq;
8ca47e00 137
a007a751
RR
138 /* Handle status being finalized (ie. feature bits stable). */
139 void (*ready)(struct device *me);
140
8ca47e00
RR
141 /* Device-specific data. */
142 void *priv;
143};
144
17cbca2b
RR
145/* The virtqueue structure describes a queue attached to a device. */
146struct virtqueue
147{
148 struct virtqueue *next;
149
150 /* Which device owns me. */
151 struct device *dev;
152
153 /* The configuration for this queue. */
154 struct lguest_vqconfig config;
155
156 /* The actual ring of buffers. */
157 struct vring vring;
158
159 /* Last available index we saw. */
160 u16 last_avail_idx;
161
a161883a
RR
162 /* The routine to call when the Guest pings us, or timeout. */
163 void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
20887611
RR
164
165 /* Outstanding buffers */
166 unsigned int inflight;
a161883a
RR
167
168 /* Is this blocked awaiting a timer? */
169 bool blocked;
17cbca2b
RR
170};
171
ec04b13f
BR
172/* Remember the arguments to the program so we can "reboot" */
173static char **main_args;
174
17cbca2b
RR
175/* Since guest is UP and we don't run at the same time, we don't need barriers.
176 * But I include them in the code in case others copy it. */
177#define wmb()
178
179/* Convert an iovec element to the given type.
180 *
181 * This is a fairly ugly trick: we need to know the size of the type and
182 * alignment requirement to check the pointer is kosher. It's also nice to
183 * have the name of the type in case we report failure.
184 *
185 * Typing those three things all the time is cumbersome and error prone, so we
186 * have a macro which sets them all up and passes to the real function. */
187#define convert(iov, type) \
188 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
189
190static void *_convert(struct iovec *iov, size_t size, size_t align,
191 const char *name)
192{
193 if (iov->iov_len != size)
194 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
195 if ((unsigned long)iov->iov_base % align != 0)
196 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
197 return iov->iov_base;
198}
199
b5111790
RR
200/* Wrapper for the last available index. Makes it easier to change. */
201#define lg_last_avail(vq) ((vq)->last_avail_idx)
202
17cbca2b
RR
203/* The virtio configuration space is defined to be little-endian. x86 is
204 * little-endian too, but it's nice to be explicit so we have these helpers. */
205#define cpu_to_le16(v16) (v16)
206#define cpu_to_le32(v32) (v32)
207#define cpu_to_le64(v64) (v64)
208#define le16_to_cpu(v16) (v16)
209#define le32_to_cpu(v32) (v32)
a586d4f6 210#define le64_to_cpu(v64) (v64)
17cbca2b 211
28fd6d7f
RR
212/* Is this iovec empty? */
213static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
214{
215 unsigned int i;
216
217 for (i = 0; i < num_iov; i++)
218 if (iov[i].iov_len)
219 return false;
220 return true;
221}
222
223/* Take len bytes from the front of this iovec. */
224static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
225{
226 unsigned int i;
227
228 for (i = 0; i < num_iov; i++) {
229 unsigned int used;
230
231 used = iov[i].iov_len < len ? iov[i].iov_len : len;
232 iov[i].iov_base += used;
233 iov[i].iov_len -= used;
234 len -= used;
235 }
236 assert(len == 0);
237}
238
6e5aa7ef
RR
239/* The device virtqueue descriptors are followed by feature bitmasks. */
240static u8 *get_feature_bits(struct device *dev)
241{
242 return (u8 *)(dev->desc + 1)
243 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
244}
245
3c6b5bfa
RR
246/*L:100 The Launcher code itself takes us out into userspace, that scary place
247 * where pointers run wild and free! Unfortunately, like most userspace
248 * programs, it's quite boring (which is why everyone likes to hack on the
249 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
250 * will get you through this section. Or, maybe not.
251 *
252 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
253 * memory and stores it in "guest_base". In other words, Guest physical ==
254 * Launcher virtual with an offset.
255 *
256 * This can be tough to get your head around, but usually it just means that we
257 * use these trivial conversion functions when the Guest gives us it's
258 * "physical" addresses: */
259static void *from_guest_phys(unsigned long addr)
260{
261 return guest_base + addr;
262}
263
264static unsigned long to_guest_phys(const void *addr)
265{
266 return (addr - guest_base);
267}
268
dde79789
RR
269/*L:130
270 * Loading the Kernel.
271 *
272 * We start with couple of simple helper routines. open_or_die() avoids
273 * error-checking code cluttering the callers: */
8ca47e00
RR
274static int open_or_die(const char *name, int flags)
275{
276 int fd = open(name, flags);
277 if (fd < 0)
278 err(1, "Failed to open %s", name);
279 return fd;
280}
281
3c6b5bfa
RR
282/* map_zeroed_pages() takes a number of pages. */
283static void *map_zeroed_pages(unsigned int num)
8ca47e00 284{
3c6b5bfa
RR
285 int fd = open_or_die("/dev/zero", O_RDONLY);
286 void *addr;
8ca47e00 287
dde79789 288 /* We use a private mapping (ie. if we write to the page, it will be
3c6b5bfa
RR
289 * copied). */
290 addr = mmap(NULL, getpagesize() * num,
291 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
292 if (addr == MAP_FAILED)
293 err(1, "Mmaping %u pages of /dev/zero", num);
34bdaab4 294 close(fd);
3c6b5bfa
RR
295
296 return addr;
297}
298
299/* Get some more pages for a device. */
300static void *get_pages(unsigned int num)
301{
302 void *addr = from_guest_phys(guest_limit);
303
304 guest_limit += num * getpagesize();
305 if (guest_limit > guest_max)
306 errx(1, "Not enough memory for devices");
307 return addr;
8ca47e00
RR
308}
309
6649bb7a
RM
310/* This routine is used to load the kernel or initrd. It tries mmap, but if
311 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
312 * it falls back to reading the memory in. */
313static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
314{
315 ssize_t r;
316
317 /* We map writable even though for some segments are marked read-only.
318 * The kernel really wants to be writable: it patches its own
319 * instructions.
320 *
321 * MAP_PRIVATE means that the page won't be copied until a write is
322 * done to it. This allows us to share untouched memory between
323 * Guests. */
324 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
325 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
326 return;
327
328 /* pread does a seek and a read in one shot: saves a few lines. */
329 r = pread(fd, addr, len, offset);
330 if (r != len)
331 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
332}
333
dde79789
RR
334/* This routine takes an open vmlinux image, which is in ELF, and maps it into
335 * the Guest memory. ELF = Embedded Linking Format, which is the format used
336 * by all modern binaries on Linux including the kernel.
337 *
338 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
339 * address. We use the physical address; the Guest will map itself to the
340 * virtual address.
dde79789
RR
341 *
342 * We return the starting address. */
47436aa4 343static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 344{
8ca47e00
RR
345 Elf32_Phdr phdr[ehdr->e_phnum];
346 unsigned int i;
8ca47e00 347
dde79789
RR
348 /* Sanity checks on the main ELF header: an x86 executable with a
349 * reasonable number of correctly-sized program headers. */
8ca47e00
RR
350 if (ehdr->e_type != ET_EXEC
351 || ehdr->e_machine != EM_386
352 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
353 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
354 errx(1, "Malformed elf header");
355
dde79789
RR
356 /* An ELF executable contains an ELF header and a number of "program"
357 * headers which indicate which parts ("segments") of the program to
358 * load where. */
359
360 /* We read in all the program headers at once: */
8ca47e00
RR
361 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
362 err(1, "Seeking to program headers");
363 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
364 err(1, "Reading program headers");
365
dde79789 366 /* Try all the headers: there are usually only three. A read-only one,
a6bd8e13 367 * a read-write one, and a "note" section which we don't load. */
8ca47e00 368 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 369 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
370 if (phdr[i].p_type != PT_LOAD)
371 continue;
372
373 verbose("Section %i: size %i addr %p\n",
374 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
375
6649bb7a 376 /* We map this section of the file at its physical address. */
3c6b5bfa 377 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 378 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
379 }
380
814a0e5c
RR
381 /* The entry point is given in the ELF header. */
382 return ehdr->e_entry;
8ca47e00
RR
383}
384
dde79789 385/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
5bbf89fc
RR
386 * supposed to jump into it and it will unpack itself. We used to have to
387 * perform some hairy magic because the unpacking code scared me.
dde79789 388 *
5bbf89fc
RR
389 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
390 * a small patch to jump over the tricky bits in the Guest, so now we just read
391 * the funky header so we know where in the file to load, and away we go! */
47436aa4 392static unsigned long load_bzimage(int fd)
8ca47e00 393{
43d33b21 394 struct boot_params boot;
5bbf89fc
RR
395 int r;
396 /* Modern bzImages get loaded at 1M. */
397 void *p = from_guest_phys(0x100000);
398
399 /* Go back to the start of the file and read the header. It should be
400 * a Linux boot header (see Documentation/i386/boot.txt) */
401 lseek(fd, 0, SEEK_SET);
43d33b21 402 read(fd, &boot, sizeof(boot));
5bbf89fc 403
43d33b21
RR
404 /* Inside the setup_hdr, we expect the magic "HdrS" */
405 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
406 errx(1, "This doesn't look like a bzImage to me");
407
43d33b21
RR
408 /* Skip over the extra sectors of the header. */
409 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
410
411 /* Now read everything into memory. in nice big chunks. */
412 while ((r = read(fd, p, 65536)) > 0)
413 p += r;
414
43d33b21
RR
415 /* Finally, code32_start tells us where to enter the kernel. */
416 return boot.hdr.code32_start;
8ca47e00
RR
417}
418
dde79789 419/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965
RR
420 * come wrapped up in the self-decompressing "bzImage" format. With a little
421 * work, we can load those, too. */
47436aa4 422static unsigned long load_kernel(int fd)
8ca47e00
RR
423{
424 Elf32_Ehdr hdr;
425
dde79789 426 /* Read in the first few bytes. */
8ca47e00
RR
427 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
428 err(1, "Reading kernel");
429
dde79789 430 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 431 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 432 return map_elf(fd, &hdr);
8ca47e00 433
a6bd8e13 434 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 435 return load_bzimage(fd);
8ca47e00
RR
436}
437
dde79789
RR
438/* This is a trivial little helper to align pages. Andi Kleen hated it because
439 * it calls getpagesize() twice: "it's dumb code."
440 *
441 * Kernel guys get really het up about optimization, even when it's not
442 * necessary. I leave this code as a reaction against that. */
8ca47e00
RR
443static inline unsigned long page_align(unsigned long addr)
444{
dde79789 445 /* Add upwards and truncate downwards. */
8ca47e00
RR
446 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
447}
448
dde79789
RR
449/*L:180 An "initial ram disk" is a disk image loaded into memory along with
450 * the kernel which the kernel can use to boot from without needing any
451 * drivers. Most distributions now use this as standard: the initrd contains
452 * the code to load the appropriate driver modules for the current machine.
453 *
454 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
455 * kernels. He sent me this (and tells me when I break it). */
8ca47e00
RR
456static unsigned long load_initrd(const char *name, unsigned long mem)
457{
458 int ifd;
459 struct stat st;
460 unsigned long len;
8ca47e00
RR
461
462 ifd = open_or_die(name, O_RDONLY);
dde79789 463 /* fstat() is needed to get the file size. */
8ca47e00
RR
464 if (fstat(ifd, &st) < 0)
465 err(1, "fstat() on initrd '%s'", name);
466
6649bb7a
RM
467 /* We map the initrd at the top of memory, but mmap wants it to be
468 * page-aligned, so we round the size up for that. */
8ca47e00 469 len = page_align(st.st_size);
3c6b5bfa 470 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
dde79789
RR
471 /* Once a file is mapped, you can close the file descriptor. It's a
472 * little odd, but quite useful. */
8ca47e00 473 close(ifd);
6649bb7a 474 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
475
476 /* We return the initrd size. */
8ca47e00
RR
477 return len;
478}
479
a6bd8e13 480/* Once we know how much memory we have we can construct simple linear page
47436aa4 481 * tables which set virtual == physical which will get the Guest far enough
3c6b5bfa 482 * into the boot to create its own.
dde79789
RR
483 *
484 * We lay them out of the way, just below the initrd (which is why we need to
a6bd8e13 485 * know its size here). */
8ca47e00 486static unsigned long setup_pagetables(unsigned long mem,
47436aa4 487 unsigned long initrd_size)
8ca47e00 488{
511801dc 489 unsigned long *pgdir, *linear;
8ca47e00 490 unsigned int mapped_pages, i, linear_pages;
511801dc 491 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
8ca47e00 492
47436aa4 493 mapped_pages = mem/getpagesize();
8ca47e00 494
dde79789 495 /* Each PTE page can map ptes_per_page pages: how many do we need? */
8ca47e00
RR
496 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
497
dde79789 498 /* We put the toplevel page directory page at the top of memory. */
3c6b5bfa 499 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
dde79789
RR
500
501 /* Now we use the next linear_pages pages as pte pages */
8ca47e00
RR
502 linear = (void *)pgdir - linear_pages*getpagesize();
503
dde79789
RR
504 /* Linear mapping is easy: put every page's address into the mapping in
505 * order. PAGE_PRESENT contains the flags Present, Writable and
506 * Executable. */
8ca47e00
RR
507 for (i = 0; i < mapped_pages; i++)
508 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
509
47436aa4 510 /* The top level points to the linear page table pages above. */
8ca47e00 511 for (i = 0; i < mapped_pages; i += ptes_per_page) {
47436aa4 512 pgdir[i/ptes_per_page]
511801dc 513 = ((to_guest_phys(linear) + i*sizeof(void *))
3c6b5bfa 514 | PAGE_PRESENT);
8ca47e00
RR
515 }
516
3c6b5bfa
RR
517 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
518 mapped_pages, linear_pages, to_guest_phys(linear));
8ca47e00 519
dde79789
RR
520 /* We return the top level (guest-physical) address: the kernel needs
521 * to know where it is. */
3c6b5bfa 522 return to_guest_phys(pgdir);
8ca47e00 523}
e1e72965 524/*:*/
8ca47e00 525
dde79789
RR
526/* Simple routine to roll all the commandline arguments together with spaces
527 * between them. */
8ca47e00
RR
528static void concat(char *dst, char *args[])
529{
530 unsigned int i, len = 0;
531
532 for (i = 0; args[i]; i++) {
1ef36fa6
PB
533 if (i) {
534 strcat(dst+len, " ");
535 len++;
536 }
8ca47e00 537 strcpy(dst+len, args[i]);
1ef36fa6 538 len += strlen(args[i]);
8ca47e00
RR
539 }
540 /* In case it's empty. */
541 dst[len] = '\0';
542}
543
e1e72965
RR
544/*L:185 This is where we actually tell the kernel to initialize the Guest. We
545 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
546 * the base of Guest "physical" memory, the top physical page to allow, the
47436aa4
RR
547 * top level pagetable and the entry point for the Guest. */
548static int tell_kernel(unsigned long pgdir, unsigned long start)
8ca47e00 549{
511801dc
JS
550 unsigned long args[] = { LHREQ_INITIALIZE,
551 (unsigned long)guest_base,
47436aa4 552 guest_limit / getpagesize(), pgdir, start };
8ca47e00
RR
553 int fd;
554
3c6b5bfa
RR
555 verbose("Guest: %p - %p (%#lx)\n",
556 guest_base, guest_base + guest_limit, guest_limit);
8ca47e00
RR
557 fd = open_or_die("/dev/lguest", O_RDWR);
558 if (write(fd, args, sizeof(args)) < 0)
559 err(1, "Writing to /dev/lguest");
dde79789
RR
560
561 /* We return the /dev/lguest file descriptor to control this Guest */
8ca47e00
RR
562 return fd;
563}
dde79789 564/*:*/
8ca47e00 565
17cbca2b 566static void add_device_fd(int fd)
8ca47e00 567{
17cbca2b
RR
568 FD_SET(fd, &devices.infds);
569 if (fd > devices.max_infd)
570 devices.max_infd = fd;
8ca47e00
RR
571}
572
dde79789
RR
573/*L:200
574 * The Waker.
575 *
e1e72965
RR
576 * With console, block and network devices, we can have lots of input which we
577 * need to process. We could try to tell the kernel what file descriptors to
578 * watch, but handing a file descriptor mask through to the kernel is fairly
579 * icky.
dde79789
RR
580 *
581 * Instead, we fork off a process which watches the file descriptors and writes
e1e72965
RR
582 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
583 * stop running the Guest. This causes the Launcher to return from the
dde79789
RR
584 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
585 * the LHREQ_BREAK and wake us up again.
586 *
587 * This, of course, is merely a different *kind* of icky.
588 */
17cbca2b 589static void wake_parent(int pipefd, int lguest_fd)
8ca47e00 590{
dde79789
RR
591 /* Add the pipe from the Launcher to the fdset in the device_list, so
592 * we watch it, too. */
17cbca2b 593 add_device_fd(pipefd);
8ca47e00
RR
594
595 for (;;) {
17cbca2b 596 fd_set rfds = devices.infds;
511801dc 597 unsigned long args[] = { LHREQ_BREAK, 1 };
8ca47e00 598
dde79789 599 /* Wait until input is ready from one of the devices. */
17cbca2b 600 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
dde79789 601 /* Is it a message from the Launcher? */
8ca47e00 602 if (FD_ISSET(pipefd, &rfds)) {
56ae43df 603 int fd;
dde79789
RR
604 /* If read() returns 0, it means the Launcher has
605 * exited. We silently follow. */
56ae43df 606 if (read(pipefd, &fd, sizeof(fd)) == 0)
8ca47e00 607 exit(0);
56ae43df 608 /* Otherwise it's telling us to change what file
e1e72965
RR
609 * descriptors we're to listen to. Positive means
610 * listen to a new one, negative means stop
611 * listening. */
56ae43df
RR
612 if (fd >= 0)
613 FD_SET(fd, &devices.infds);
614 else
615 FD_CLR(-fd - 1, &devices.infds);
dde79789 616 } else /* Send LHREQ_BREAK command. */
e3283fa0 617 pwrite(lguest_fd, args, sizeof(args), cpu_id);
8ca47e00
RR
618 }
619}
620
dde79789 621/* This routine just sets up a pipe to the Waker process. */
17cbca2b 622static int setup_waker(int lguest_fd)
8ca47e00
RR
623{
624 int pipefd[2], child;
625
e1e72965 626 /* We create a pipe to talk to the Waker, and also so it knows when the
dde79789 627 * Launcher dies (and closes pipe). */
8ca47e00
RR
628 pipe(pipefd);
629 child = fork();
630 if (child == -1)
631 err(1, "forking");
632
633 if (child == 0) {
e1e72965
RR
634 /* We are the Waker: close the "writing" end of our copy of the
635 * pipe and start waiting for input. */
8ca47e00 636 close(pipefd[1]);
17cbca2b 637 wake_parent(pipefd[0], lguest_fd);
8ca47e00 638 }
dde79789 639 /* Close the reading end of our copy of the pipe. */
8ca47e00
RR
640 close(pipefd[0]);
641
dde79789 642 /* Here is the fd used to talk to the waker. */
8ca47e00
RR
643 return pipefd[1];
644}
645
e1e72965 646/*
dde79789
RR
647 * Device Handling.
648 *
e1e72965 649 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 650 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 651 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
652 * if something funny is going on:
653 */
8ca47e00
RR
654static void *_check_pointer(unsigned long addr, unsigned int size,
655 unsigned int line)
656{
dde79789
RR
657 /* We have to separately check addr and addr+size, because size could
658 * be huge and addr + size might wrap around. */
3c6b5bfa 659 if (addr >= guest_limit || addr + size >= guest_limit)
17cbca2b 660 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
dde79789
RR
661 /* We return a pointer for the caller's convenience, now we know it's
662 * safe to use. */
3c6b5bfa 663 return from_guest_phys(addr);
8ca47e00 664}
dde79789 665/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
666#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
667
e1e72965
RR
668/* Each buffer in the virtqueues is actually a chain of descriptors. This
669 * function returns the next descriptor in the chain, or vq->vring.num if we're
670 * at the end. */
17cbca2b
RR
671static unsigned next_desc(struct virtqueue *vq, unsigned int i)
672{
673 unsigned int next;
674
675 /* If this descriptor says it doesn't chain, we're done. */
676 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
677 return vq->vring.num;
678
679 /* Check they're not leading us off end of descriptors. */
680 next = vq->vring.desc[i].next;
681 /* Make sure compiler knows to grab that: we don't want it changing! */
682 wmb();
683
684 if (next >= vq->vring.num)
685 errx(1, "Desc next is %u", next);
686
687 return next;
688}
689
690/* This looks in the virtqueue and for the first available buffer, and converts
691 * it to an iovec for convenient access. Since descriptors consist of some
692 * number of output then some number of input descriptors, it's actually two
693 * iovecs, but we pack them into one and note how many of each there were.
694 *
695 * This function returns the descriptor number found, or vq->vring.num (which
696 * is never a valid descriptor number) if none was found. */
697static unsigned get_vq_desc(struct virtqueue *vq,
698 struct iovec iov[],
699 unsigned int *out_num, unsigned int *in_num)
700{
701 unsigned int i, head;
b5111790 702 u16 last_avail;
17cbca2b
RR
703
704 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790
RR
705 last_avail = lg_last_avail(vq);
706 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 707 errx(1, "Guest moved used index from %u to %u",
b5111790 708 last_avail, vq->vring.avail->idx);
17cbca2b
RR
709
710 /* If there's nothing new since last we looked, return invalid. */
b5111790 711 if (vq->vring.avail->idx == last_avail)
17cbca2b
RR
712 return vq->vring.num;
713
714 /* Grab the next descriptor number they're advertising, and increment
715 * the index we've seen. */
b5111790
RR
716 head = vq->vring.avail->ring[last_avail % vq->vring.num];
717 lg_last_avail(vq)++;
17cbca2b
RR
718
719 /* If their number is silly, that's a fatal mistake. */
720 if (head >= vq->vring.num)
721 errx(1, "Guest says index %u is available", head);
722
723 /* When we start there are none of either input nor output. */
724 *out_num = *in_num = 0;
725
726 i = head;
727 do {
728 /* Grab the first descriptor, and check it's OK. */
729 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
730 iov[*out_num + *in_num].iov_base
731 = check_pointer(vq->vring.desc[i].addr,
732 vq->vring.desc[i].len);
733 /* If this is an input descriptor, increment that count. */
734 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
735 (*in_num)++;
736 else {
737 /* If it's an output descriptor, they're all supposed
738 * to come before any input descriptors. */
739 if (*in_num)
740 errx(1, "Descriptor has out after in");
741 (*out_num)++;
742 }
743
744 /* If we've got too many, that implies a descriptor loop. */
745 if (*out_num + *in_num > vq->vring.num)
746 errx(1, "Looped descriptor");
747 } while ((i = next_desc(vq, i)) != vq->vring.num);
dde79789 748
20887611 749 vq->inflight++;
17cbca2b 750 return head;
8ca47e00
RR
751}
752
e1e72965 753/* After we've used one of their buffers, we tell them about it. We'll then
17cbca2b
RR
754 * want to send them an interrupt, using trigger_irq(). */
755static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 756{
17cbca2b
RR
757 struct vring_used_elem *used;
758
e1e72965
RR
759 /* The virtqueue contains a ring of used buffers. Get a pointer to the
760 * next entry in that used ring. */
17cbca2b
RR
761 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
762 used->id = head;
763 used->len = len;
764 /* Make sure buffer is written before we update index. */
765 wmb();
766 vq->vring.used->idx++;
20887611 767 vq->inflight--;
8ca47e00
RR
768}
769
17cbca2b
RR
770/* This actually sends the interrupt for this virtqueue */
771static void trigger_irq(int fd, struct virtqueue *vq)
8ca47e00 772{
17cbca2b
RR
773 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
774
20887611
RR
775 /* If they don't want an interrupt, don't send one, unless empty. */
776 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
777 && vq->inflight)
17cbca2b
RR
778 return;
779
780 /* Send the Guest an interrupt tell them we used something up. */
8ca47e00 781 if (write(fd, buf, sizeof(buf)) != 0)
17cbca2b 782 err(1, "Triggering irq %i", vq->config.irq);
8ca47e00
RR
783}
784
17cbca2b
RR
785/* And here's the combo meal deal. Supersize me! */
786static void add_used_and_trigger(int fd, struct virtqueue *vq,
787 unsigned int head, int len)
8ca47e00 788{
17cbca2b
RR
789 add_used(vq, head, len);
790 trigger_irq(fd, vq);
8ca47e00
RR
791}
792
e1e72965
RR
793/*
794 * The Console
795 *
796 * Here is the input terminal setting we save, and the routine to restore them
797 * on exit so the user gets their terminal back. */
8ca47e00
RR
798static struct termios orig_term;
799static void restore_term(void)
800{
801 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
802}
803
dde79789 804/* We associate some data with the console for our exit hack. */
8ca47e00
RR
805struct console_abort
806{
dde79789 807 /* How many times have they hit ^C? */
8ca47e00 808 int count;
dde79789 809 /* When did they start? */
8ca47e00
RR
810 struct timeval start;
811};
812
dde79789 813/* This is the routine which handles console input (ie. stdin). */
8ca47e00
RR
814static bool handle_console_input(int fd, struct device *dev)
815{
8ca47e00 816 int len;
17cbca2b
RR
817 unsigned int head, in_num, out_num;
818 struct iovec iov[dev->vq->vring.num];
8ca47e00
RR
819 struct console_abort *abort = dev->priv;
820
17cbca2b
RR
821 /* First we need a console buffer from the Guests's input virtqueue. */
822 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
56ae43df
RR
823
824 /* If they're not ready for input, stop listening to this file
825 * descriptor. We'll start again once they add an input buffer. */
826 if (head == dev->vq->vring.num)
827 return false;
828
829 if (out_num)
17cbca2b 830 errx(1, "Output buffers in console in queue?");
8ca47e00 831
dde79789
RR
832 /* This is why we convert to iovecs: the readv() call uses them, and so
833 * it reads straight into the Guest's buffer. */
17cbca2b 834 len = readv(dev->fd, iov, in_num);
8ca47e00 835 if (len <= 0) {
dde79789 836 /* This implies that the console is closed, is /dev/null, or
17cbca2b 837 * something went terribly wrong. */
8ca47e00 838 warnx("Failed to get console input, ignoring console.");
56ae43df 839 /* Put the input terminal back. */
17cbca2b 840 restore_term();
56ae43df
RR
841 /* Remove callback from input vq, so it doesn't restart us. */
842 dev->vq->handle_output = NULL;
843 /* Stop listening to this fd: don't call us again. */
17cbca2b 844 return false;
8ca47e00
RR
845 }
846
56ae43df
RR
847 /* Tell the Guest about the new input. */
848 add_used_and_trigger(fd, dev->vq, head, len);
8ca47e00 849
dde79789
RR
850 /* Three ^C within one second? Exit.
851 *
852 * This is such a hack, but works surprisingly well. Each ^C has to be
853 * in a buffer by itself, so they can't be too fast. But we check that
854 * we get three within about a second, so they can't be too slow. */
8ca47e00
RR
855 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
856 if (!abort->count++)
857 gettimeofday(&abort->start, NULL);
858 else if (abort->count == 3) {
859 struct timeval now;
860 gettimeofday(&now, NULL);
861 if (now.tv_sec <= abort->start.tv_sec+1) {
511801dc 862 unsigned long args[] = { LHREQ_BREAK, 0 };
dde79789
RR
863 /* Close the fd so Waker will know it has to
864 * exit. */
8ca47e00 865 close(waker_fd);
dde79789
RR
866 /* Just in case waker is blocked in BREAK, send
867 * unbreak now. */
8ca47e00
RR
868 write(fd, args, sizeof(args));
869 exit(2);
870 }
871 abort->count = 0;
872 }
873 } else
dde79789 874 /* Any other key resets the abort counter. */
8ca47e00
RR
875 abort->count = 0;
876
dde79789 877 /* Everything went OK! */
8ca47e00
RR
878 return true;
879}
880
17cbca2b
RR
881/* Handling output for console is simple: we just get all the output buffers
882 * and write them to stdout. */
a161883a 883static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
8ca47e00 884{
17cbca2b
RR
885 unsigned int head, out, in;
886 int len;
887 struct iovec iov[vq->vring.num];
888
889 /* Keep getting output buffers from the Guest until we run out. */
890 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
891 if (in)
892 errx(1, "Input buffers in output queue?");
893 len = writev(STDOUT_FILENO, iov, out);
894 add_used_and_trigger(fd, vq, head, len);
895 }
8ca47e00
RR
896}
897
a161883a
RR
898static void block_vq(struct virtqueue *vq)
899{
900 struct itimerval itm;
901
902 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
903 vq->blocked = true;
904
905 itm.it_interval.tv_sec = 0;
906 itm.it_interval.tv_usec = 0;
907 itm.it_value.tv_sec = 0;
908 itm.it_value.tv_usec = 500;
909
910 setitimer(ITIMER_REAL, &itm, NULL);
911}
912
e1e72965
RR
913/*
914 * The Network
915 *
916 * Handling output for network is also simple: we get all the output buffers
17cbca2b 917 * and write them (ignoring the first element) to this device's file descriptor
a6bd8e13
RR
918 * (/dev/net/tun).
919 */
a161883a 920static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
8ca47e00 921{
a161883a 922 unsigned int head, out, in, num = 0;
17cbca2b
RR
923 int len;
924 struct iovec iov[vq->vring.num];
925
926 /* Keep getting output buffers from the Guest until we run out. */
927 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
928 if (in)
929 errx(1, "Input buffers in output queue?");
e1e72965
RR
930 /* Check header, but otherwise ignore it (we told the Guest we
931 * supported no features, so it shouldn't have anything
932 * interesting). */
17cbca2b
RR
933 (void)convert(&iov[0], struct virtio_net_hdr);
934 len = writev(vq->dev->fd, iov+1, out-1);
935 add_used_and_trigger(fd, vq, head, len);
a161883a 936 num++;
17cbca2b 937 }
a161883a
RR
938
939 /* Block further kicks and set up a timer if we saw anything. */
940 if (!timeout && num)
941 block_vq(vq);
8ca47e00
RR
942}
943
17cbca2b
RR
944/* This is where we handle a packet coming in from the tun device to our
945 * Guest. */
8ca47e00
RR
946static bool handle_tun_input(int fd, struct device *dev)
947{
17cbca2b 948 unsigned int head, in_num, out_num;
8ca47e00 949 int len;
17cbca2b
RR
950 struct iovec iov[dev->vq->vring.num];
951 struct virtio_net_hdr *hdr;
8ca47e00 952
17cbca2b
RR
953 /* First we need a network buffer from the Guests's recv virtqueue. */
954 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
955 if (head == dev->vq->vring.num) {
dde79789 956 /* Now, it's expected that if we try to send a packet too
17cbca2b
RR
957 * early, the Guest won't be ready yet. Wait until the device
958 * status says it's ready. */
959 /* FIXME: Actually want DRIVER_ACTIVE here. */
960 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
8ca47e00 961 warn("network: no dma buffer!");
5dae785a
RR
962
963 /* Now tell it we want to know if new things appear. */
964 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
965 wmb();
966
56ae43df
RR
967 /* We'll turn this back on if input buffers are registered. */
968 return false;
17cbca2b
RR
969 } else if (out_num)
970 errx(1, "Output buffers in network recv queue?");
971
972 /* First element is the header: we set it to 0 (no features). */
973 hdr = convert(&iov[0], struct virtio_net_hdr);
974 hdr->flags = 0;
975 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
8ca47e00 976
dde79789 977 /* Read the packet from the device directly into the Guest's buffer. */
17cbca2b 978 len = readv(dev->fd, iov+1, in_num-1);
8ca47e00
RR
979 if (len <= 0)
980 err(1, "reading network");
dde79789 981
56ae43df
RR
982 /* Tell the Guest about the new packet. */
983 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
17cbca2b 984
8ca47e00 985 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
17cbca2b
RR
986 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
987 head != dev->vq->vring.num ? "sent" : "discarded");
988
dde79789 989 /* All good. */
8ca47e00
RR
990 return true;
991}
992
e1e72965
RR
993/*L:215 This is the callback attached to the network and console input
994 * virtqueues: it ensures we try again, in case we stopped console or net
56ae43df 995 * delivery because Guest didn't have any buffers. */
a161883a 996static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
56ae43df
RR
997{
998 add_device_fd(vq->dev->fd);
999 /* Tell waker to listen to it again */
1000 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
1001}
1002
a161883a 1003static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
5dae785a
RR
1004{
1005 /* We don't need to know again when Guest refills receive buffer. */
1006 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
a161883a 1007 enable_fd(fd, vq, timeout);
5dae785a
RR
1008}
1009
a007a751
RR
1010/* When the Guest tells us they updated the status field, we handle it. */
1011static void update_device_status(struct device *dev)
6e5aa7ef
RR
1012{
1013 struct virtqueue *vq;
1014
a007a751
RR
1015 /* This is a reset. */
1016 if (dev->desc->status == 0) {
1017 verbose("Resetting device %s\n", dev->name);
6e5aa7ef 1018
a007a751
RR
1019 /* Clear any features they've acked. */
1020 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
1021 dev->desc->feature_len);
6e5aa7ef 1022
a007a751
RR
1023 /* Zero out the virtqueues. */
1024 for (vq = dev->vq; vq; vq = vq->next) {
1025 memset(vq->vring.desc, 0,
1026 vring_size(vq->config.num, getpagesize()));
b5111790 1027 lg_last_avail(vq) = 0;
a007a751
RR
1028 }
1029 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1030 warnx("Device %s configuration FAILED", dev->name);
1031 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1032 unsigned int i;
1033
1034 verbose("Device %s OK: offered", dev->name);
1035 for (i = 0; i < dev->desc->feature_len; i++)
32c68e5c 1036 verbose(" %02x", get_feature_bits(dev)[i]);
a007a751
RR
1037 verbose(", accepted");
1038 for (i = 0; i < dev->desc->feature_len; i++)
32c68e5c 1039 verbose(" %02x", get_feature_bits(dev)
a007a751
RR
1040 [dev->desc->feature_len+i]);
1041
1042 if (dev->ready)
1043 dev->ready(dev);
6e5aa7ef
RR
1044 }
1045}
1046
17cbca2b
RR
1047/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
1048static void handle_output(int fd, unsigned long addr)
8ca47e00
RR
1049{
1050 struct device *i;
17cbca2b
RR
1051 struct virtqueue *vq;
1052
6e5aa7ef 1053 /* Check each device and virtqueue. */
17cbca2b 1054 for (i = devices.dev; i; i = i->next) {
a007a751 1055 /* Notifications to device descriptors update device status. */
6e5aa7ef 1056 if (from_guest_phys(addr) == i->desc) {
a007a751 1057 update_device_status(i);
6e5aa7ef
RR
1058 return;
1059 }
1060
1061 /* Notifications to virtqueues mean output has occurred. */
17cbca2b 1062 for (vq = i->vq; vq; vq = vq->next) {
6e5aa7ef
RR
1063 if (vq->config.pfn != addr/getpagesize())
1064 continue;
1065
1066 /* Guest should acknowledge (and set features!) before
1067 * using the device. */
1068 if (i->desc->status == 0) {
1069 warnx("%s gave early output", i->name);
17cbca2b
RR
1070 return;
1071 }
6e5aa7ef
RR
1072
1073 if (strcmp(vq->dev->name, "console") != 0)
1074 verbose("Output to %s\n", vq->dev->name);
1075 if (vq->handle_output)
a161883a 1076 vq->handle_output(fd, vq, false);
6e5aa7ef 1077 return;
8ca47e00
RR
1078 }
1079 }
dde79789 1080
17cbca2b
RR
1081 /* Early console write is done using notify on a nul-terminated string
1082 * in Guest memory. */
1083 if (addr >= guest_limit)
1084 errx(1, "Bad NOTIFY %#lx", addr);
1085
1086 write(STDOUT_FILENO, from_guest_phys(addr),
1087 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1088}
1089
a161883a
RR
1090static void handle_timeout(int fd)
1091{
1092 char buf[32];
1093 struct device *i;
1094 struct virtqueue *vq;
1095
1096 /* Clear the pipe */
1097 read(timeoutpipe[0], buf, sizeof(buf));
1098
1099 /* Check each device and virtqueue: flush blocked ones. */
1100 for (i = devices.dev; i; i = i->next) {
1101 for (vq = i->vq; vq; vq = vq->next) {
1102 if (!vq->blocked)
1103 continue;
1104
1105 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1106 vq->blocked = false;
1107 if (vq->handle_output)
1108 vq->handle_output(fd, vq, true);
1109 }
1110 }
1111}
1112
e1e72965 1113/* This is called when the Waker wakes us up: check for incoming file
dde79789 1114 * descriptors. */
17cbca2b 1115static void handle_input(int fd)
8ca47e00 1116{
dde79789 1117 /* select() wants a zeroed timeval to mean "don't wait". */
8ca47e00
RR
1118 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1119
1120 for (;;) {
1121 struct device *i;
17cbca2b 1122 fd_set fds = devices.infds;
a161883a 1123 int num;
8ca47e00 1124
a161883a
RR
1125 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1126 /* Could get interrupted */
1127 if (num < 0)
1128 continue;
dde79789 1129 /* If nothing is ready, we're done. */
a161883a 1130 if (num == 0)
8ca47e00
RR
1131 break;
1132
a6bd8e13
RR
1133 /* Otherwise, call the device(s) which have readable file
1134 * descriptors and a method of handling them. */
17cbca2b 1135 for (i = devices.dev; i; i = i->next) {
8ca47e00 1136 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
56ae43df
RR
1137 int dev_fd;
1138 if (i->handle_input(fd, i))
1139 continue;
1140
dde79789 1141 /* If handle_input() returns false, it means we
56ae43df
RR
1142 * should no longer service it. Networking and
1143 * console do this when there's no input
1144 * buffers to deliver into. Console also uses
a6bd8e13 1145 * it when it discovers that stdin is closed. */
56ae43df
RR
1146 FD_CLR(i->fd, &devices.infds);
1147 /* Tell waker to ignore it too, by sending a
1148 * negative fd number (-1, since 0 is a valid
1149 * FD number). */
1150 dev_fd = -i->fd - 1;
1151 write(waker_fd, &dev_fd, sizeof(dev_fd));
8ca47e00
RR
1152 }
1153 }
a161883a
RR
1154
1155 /* Is this the timeout fd? */
1156 if (FD_ISSET(timeoutpipe[0], &fds))
1157 handle_timeout(fd);
8ca47e00
RR
1158 }
1159}
1160
dde79789
RR
1161/*L:190
1162 * Device Setup
1163 *
1164 * All devices need a descriptor so the Guest knows it exists, and a "struct
1165 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1166 * routines to allocate and manage them.
1167 */
8ca47e00 1168
a586d4f6
RR
1169/* The layout of the device page is a "struct lguest_device_desc" followed by a
1170 * number of virtqueue descriptors, then two sets of feature bits, then an
1171 * array of configuration bytes. This routine returns the configuration
1172 * pointer. */
1173static u8 *device_config(const struct device *dev)
1174{
1175 return (void *)(dev->desc + 1)
1176 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1177 + dev->desc->feature_len * 2;
17cbca2b
RR
1178}
1179
a586d4f6
RR
1180/* This routine allocates a new "struct lguest_device_desc" from descriptor
1181 * table page just above the Guest's normal memory. It returns a pointer to
1182 * that descriptor. */
1183static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1184{
a586d4f6
RR
1185 struct lguest_device_desc d = { .type = type };
1186 void *p;
17cbca2b 1187
a586d4f6
RR
1188 /* Figure out where the next device config is, based on the last one. */
1189 if (devices.lastdev)
1190 p = device_config(devices.lastdev)
1191 + devices.lastdev->desc->config_len;
1192 else
1193 p = devices.descpage;
17cbca2b 1194
a586d4f6
RR
1195 /* We only have one page for all the descriptors. */
1196 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1197 errx(1, "Too many devices");
17cbca2b 1198
a586d4f6
RR
1199 /* p might not be aligned, so we memcpy in. */
1200 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1201}
1202
a586d4f6
RR
1203/* Each device descriptor is followed by the description of its virtqueues. We
1204 * specify how many descriptors the virtqueue is to have. */
17cbca2b 1205static void add_virtqueue(struct device *dev, unsigned int num_descs,
a161883a 1206 void (*handle_output)(int, struct virtqueue *, bool))
17cbca2b
RR
1207{
1208 unsigned int pages;
1209 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1210 void *p;
1211
a6bd8e13 1212 /* First we need some memory for this virtqueue. */
42b36cc0
RR
1213 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1214 / getpagesize();
17cbca2b
RR
1215 p = get_pages(pages);
1216
d1c856e0
RR
1217 /* Initialize the virtqueue */
1218 vq->next = NULL;
1219 vq->last_avail_idx = 0;
1220 vq->dev = dev;
20887611 1221 vq->inflight = 0;
a161883a 1222 vq->blocked = false;
d1c856e0 1223
17cbca2b
RR
1224 /* Initialize the configuration. */
1225 vq->config.num = num_descs;
1226 vq->config.irq = devices.next_irq++;
1227 vq->config.pfn = to_guest_phys(p) / getpagesize();
1228
1229 /* Initialize the vring. */
42b36cc0 1230 vring_init(&vq->vring, num_descs, p, getpagesize());
17cbca2b 1231
a586d4f6
RR
1232 /* Append virtqueue to this device's descriptor. We use
1233 * device_config() to get the end of the device's current virtqueues;
1234 * we check that we haven't added any config or feature information
1235 * yet, otherwise we'd be overwriting them. */
1236 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1237 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1238 dev->desc->num_vq++;
1239
1240 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b
RR
1241
1242 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1243 * second. */
1244 for (i = &dev->vq; *i; i = &(*i)->next);
1245 *i = vq;
1246
e1e72965
RR
1247 /* Set the routine to call when the Guest does something to this
1248 * virtqueue. */
17cbca2b 1249 vq->handle_output = handle_output;
e1e72965 1250
426e3e0a
RR
1251 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1252 * don't have a handler */
17cbca2b
RR
1253 if (!handle_output)
1254 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
8ca47e00
RR
1255}
1256
6e5aa7ef 1257/* The first half of the feature bitmask is for us to advertise features. The
a6bd8e13 1258 * second half is for the Guest to accept features. */
a586d4f6
RR
1259static void add_feature(struct device *dev, unsigned bit)
1260{
6e5aa7ef 1261 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1262
1263 /* We can't extend the feature bits once we've added config bytes */
1264 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1265 assert(dev->desc->config_len == 0);
1266 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1267 }
1268
a586d4f6
RR
1269 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1270}
1271
1272/* This routine sets the configuration fields for an existing device's
1273 * descriptor. It only works for the last device, but that's OK because that's
1274 * how we use it. */
1275static void set_config(struct device *dev, unsigned len, const void *conf)
1276{
1277 /* Check we haven't overflowed our single page. */
1278 if (device_config(dev) + len > devices.descpage + getpagesize())
1279 errx(1, "Too many devices");
1280
1281 /* Copy in the config information, and store the length. */
1282 memcpy(device_config(dev), conf, len);
1283 dev->desc->config_len = len;
1284}
1285
17cbca2b 1286/* This routine does all the creation and setup of a new device, including
a6bd8e13
RR
1287 * calling new_dev_desc() to allocate the descriptor and device memory.
1288 *
1289 * See what I mean about userspace being boring? */
17cbca2b
RR
1290static struct device *new_device(const char *name, u16 type, int fd,
1291 bool (*handle_input)(int, struct device *))
8ca47e00
RR
1292{
1293 struct device *dev = malloc(sizeof(*dev));
1294
dde79789 1295 /* Now we populate the fields one at a time. */
8ca47e00 1296 dev->fd = fd;
dde79789
RR
1297 /* If we have an input handler for this file descriptor, then we add it
1298 * to the device_list's fdset and maxfd. */
8ca47e00 1299 if (handle_input)
17cbca2b
RR
1300 add_device_fd(dev->fd);
1301 dev->desc = new_dev_desc(type);
8ca47e00 1302 dev->handle_input = handle_input;
17cbca2b 1303 dev->name = name;
d1c856e0 1304 dev->vq = NULL;
a007a751 1305 dev->ready = NULL;
a586d4f6
RR
1306
1307 /* Append to device list. Prepending to a single-linked list is
1308 * easier, but the user expects the devices to be arranged on the bus
1309 * in command-line order. The first network device on the command line
1310 * is eth0, the first block device /dev/vda, etc. */
1311 if (devices.lastdev)
1312 devices.lastdev->next = dev;
1313 else
1314 devices.dev = dev;
1315 devices.lastdev = dev;
1316
8ca47e00
RR
1317 return dev;
1318}
1319
dde79789
RR
1320/* Our first setup routine is the console. It's a fairly simple device, but
1321 * UNIX tty handling makes it uglier than it could be. */
17cbca2b 1322static void setup_console(void)
8ca47e00
RR
1323{
1324 struct device *dev;
1325
dde79789 1326 /* If we can save the initial standard input settings... */
8ca47e00
RR
1327 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1328 struct termios term = orig_term;
dde79789
RR
1329 /* Then we turn off echo, line buffering and ^C etc. We want a
1330 * raw input stream to the Guest. */
8ca47e00
RR
1331 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1332 tcsetattr(STDIN_FILENO, TCSANOW, &term);
dde79789
RR
1333 /* If we exit gracefully, the original settings will be
1334 * restored so the user can see what they're typing. */
8ca47e00
RR
1335 atexit(restore_term);
1336 }
1337
17cbca2b
RR
1338 dev = new_device("console", VIRTIO_ID_CONSOLE,
1339 STDIN_FILENO, handle_console_input);
dde79789 1340 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1341 dev->priv = malloc(sizeof(struct console_abort));
1342 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1343
56ae43df
RR
1344 /* The console needs two virtqueues: the input then the output. When
1345 * they put something the input queue, we make sure we're listening to
1346 * stdin. When they put something in the output queue, we write it to
e1e72965 1347 * stdout. */
56ae43df 1348 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
17cbca2b
RR
1349 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1350
1351 verbose("device %u: console\n", devices.device_num++);
8ca47e00 1352}
17cbca2b 1353/*:*/
8ca47e00 1354
a161883a
RR
1355static void timeout_alarm(int sig)
1356{
1357 write(timeoutpipe[1], "", 1);
1358}
1359
1360static void setup_timeout(void)
1361{
1362 if (pipe(timeoutpipe) != 0)
1363 err(1, "Creating timeout pipe");
1364
1365 if (fcntl(timeoutpipe[1], F_SETFL,
1366 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1367 err(1, "Making timeout pipe nonblocking");
1368
1369 add_device_fd(timeoutpipe[0]);
1370 signal(SIGALRM, timeout_alarm);
1371}
1372
17cbca2b
RR
1373/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1374 * --sharenet=<name> option which opens or creates a named pipe. This can be
1375 * used to send packets to another guest in a 1:1 manner.
dde79789 1376 *
17cbca2b
RR
1377 * More sopisticated is to use one of the tools developed for project like UML
1378 * to do networking.
dde79789 1379 *
17cbca2b
RR
1380 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1381 * completely generic ("here's my vring, attach to your vring") and would work
1382 * for any traffic. Of course, namespace and permissions issues need to be
1383 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1384 * multiple inter-guest channels behind one interface, although it would
1385 * require some manner of hotplugging new virtio channels.
1386 *
1387 * Finally, we could implement a virtio network switch in the kernel. :*/
8ca47e00
RR
1388
1389static u32 str2ip(const char *ipaddr)
1390{
dec6a2be 1391 unsigned int b[4];
8ca47e00 1392
dec6a2be
MM
1393 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1394 errx(1, "Failed to parse IP address '%s'", ipaddr);
1395 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1396}
1397
1398static void str2mac(const char *macaddr, unsigned char mac[6])
1399{
1400 unsigned int m[6];
1401 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1402 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1403 errx(1, "Failed to parse mac address '%s'", macaddr);
1404 mac[0] = m[0];
1405 mac[1] = m[1];
1406 mac[2] = m[2];
1407 mac[3] = m[3];
1408 mac[4] = m[4];
1409 mac[5] = m[5];
8ca47e00
RR
1410}
1411
dde79789
RR
1412/* This code is "adapted" from libbridge: it attaches the Host end of the
1413 * network device to the bridge device specified by the command line.
1414 *
1415 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1416 * dislike bridging), and I just try not to break it. */
8ca47e00
RR
1417static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1418{
1419 int ifidx;
1420 struct ifreq ifr;
1421
1422 if (!*br_name)
1423 errx(1, "must specify bridge name");
1424
1425 ifidx = if_nametoindex(if_name);
1426 if (!ifidx)
1427 errx(1, "interface %s does not exist!", if_name);
1428
1429 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1430 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1431 ifr.ifr_ifindex = ifidx;
1432 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1433 err(1, "can't add %s to bridge %s", if_name, br_name);
1434}
1435
dde79789
RR
1436/* This sets up the Host end of the network device with an IP address, brings
1437 * it up so packets will flow, the copies the MAC address into the hwaddr
17cbca2b 1438 * pointer. */
dec6a2be 1439static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1440{
1441 struct ifreq ifr;
1442 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1443
1444 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1445 strcpy(ifr.ifr_name, tapif);
1446
1447 /* Don't read these incantations. Just cut & paste them like I did! */
8ca47e00
RR
1448 sin->sin_family = AF_INET;
1449 sin->sin_addr.s_addr = htonl(ipaddr);
1450 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1451 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1452 ifr.ifr_flags = IFF_UP;
1453 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1454 err(1, "Bringing interface %s up", tapif);
1455}
1456
1457static void get_mac(int fd, const char *tapif, unsigned char hwaddr[6])
1458{
1459 struct ifreq ifr;
1460
1461 memset(&ifr, 0, sizeof(ifr));
1462 strcpy(ifr.ifr_name, tapif);
8ca47e00 1463
dde79789
RR
1464 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1465 * above). IF means Interface, and HWADDR is hardware address.
1466 * Simple! */
8ca47e00 1467 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
dec6a2be 1468 err(1, "getting hw address for %s", tapif);
8ca47e00
RR
1469 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1470}
1471
dec6a2be 1472static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1473{
8ca47e00 1474 struct ifreq ifr;
dec6a2be
MM
1475 int netfd;
1476
1477 /* Start with this zeroed. Messy but sure. */
1478 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1479
dde79789
RR
1480 /* We open the /dev/net/tun device and tell it we want a tap device. A
1481 * tap device is like a tun device, only somehow different. To tell
1482 * the truth, I completely blundered my way through this code, but it
1483 * works now! */
8ca47e00 1484 netfd = open_or_die("/dev/net/tun", O_RDWR);
8ca47e00
RR
1485 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1486 strcpy(ifr.ifr_name, "tap%d");
1487 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1488 err(1, "configuring /dev/net/tun");
dec6a2be 1489
dde79789
RR
1490 /* We don't need checksums calculated for packets coming in this
1491 * device: trust us! */
8ca47e00
RR
1492 ioctl(netfd, TUNSETNOCSUM, 1);
1493
dec6a2be
MM
1494 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1495 return netfd;
1496}
1497
1498/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1499 * routing, but the principle is the same: it uses the "tun" device to inject
1500 * packets into the Host as if they came in from a normal network card. We
1501 * just shunt packets between the Guest and the tun device. */
1502static void setup_tun_net(char *arg)
1503{
1504 struct device *dev;
1505 int netfd, ipfd;
1506 u32 ip = INADDR_ANY;
1507 bool bridging = false;
1508 char tapif[IFNAMSIZ], *p;
1509 struct virtio_net_config conf;
1510
1511 netfd = get_tun_device(tapif);
1512
17cbca2b
RR
1513 /* First we create a new network device. */
1514 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
dde79789 1515
56ae43df
RR
1516 /* Network devices need a receive and a send queue, just like
1517 * console. */
5dae785a 1518 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
17cbca2b 1519 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
8ca47e00 1520
dde79789
RR
1521 /* We need a socket to perform the magic network ioctls to bring up the
1522 * tap interface, connect to the bridge etc. Any socket will do! */
8ca47e00
RR
1523 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1524 if (ipfd < 0)
1525 err(1, "opening IP socket");
1526
dde79789 1527 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1528 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1529 arg += strlen(BRIDGE_PFX);
1530 bridging = true;
1531 }
1532
1533 /* A mac address may follow the bridge name or IP address */
1534 p = strchr(arg, ':');
1535 if (p) {
1536 str2mac(p+1, conf.mac);
1537 *p = '\0';
1538 } else {
1539 p = arg + strlen(arg);
1540 /* None supplied; query the randomly assigned mac. */
1541 get_mac(ipfd, tapif, conf.mac);
1542 }
1543
1544 /* arg is now either an IP address or a bridge name */
1545 if (bridging)
1546 add_to_bridge(ipfd, tapif, arg);
1547 else
8ca47e00
RR
1548 ip = str2ip(arg);
1549
dec6a2be
MM
1550 /* Set up the tun device. */
1551 configure_device(ipfd, tapif, ip);
8ca47e00 1552
17cbca2b 1553 /* Tell Guest what MAC address to use. */
a586d4f6 1554 add_feature(dev, VIRTIO_NET_F_MAC);
20887611 1555 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
a586d4f6 1556 set_config(dev, sizeof(conf), &conf);
8ca47e00 1557
a586d4f6 1558 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1559 close(ipfd);
1560
dec6a2be
MM
1561 devices.device_num++;
1562
1563 if (bridging)
1564 verbose("device %u: tun %s attached to bridge: %s\n",
1565 devices.device_num, tapif, arg);
1566 else
1567 verbose("device %u: tun %s: %s\n",
1568 devices.device_num, tapif, arg);
8ca47e00 1569}
17cbca2b 1570
e1e72965
RR
1571/* Our block (disk) device should be really simple: the Guest asks for a block
1572 * number and we read or write that position in the file. Unfortunately, that
1573 * was amazingly slow: the Guest waits until the read is finished before
1574 * running anything else, even if it could have been doing useful work.
17cbca2b 1575 *
e1e72965
RR
1576 * We could use async I/O, except it's reputed to suck so hard that characters
1577 * actually go missing from your code when you try to use it.
17cbca2b
RR
1578 *
1579 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1580
e1e72965 1581/* This hangs off device->priv. */
17cbca2b
RR
1582struct vblk_info
1583{
1584 /* The size of the file. */
1585 off64_t len;
1586
1587 /* The file descriptor for the file. */
1588 int fd;
1589
1590 /* IO thread listens on this file descriptor [0]. */
1591 int workpipe[2];
1592
1593 /* IO thread writes to this file descriptor to mark it done, then
1594 * Launcher triggers interrupt to Guest. */
1595 int done_fd;
1596};
1597
e1e72965
RR
1598/*L:210
1599 * The Disk
1600 *
1601 * Remember that the block device is handled by a separate I/O thread. We head
1602 * straight into the core of that thread here:
1603 */
17cbca2b
RR
1604static bool service_io(struct device *dev)
1605{
1606 struct vblk_info *vblk = dev->priv;
1607 unsigned int head, out_num, in_num, wlen;
1608 int ret;
cb38fa23 1609 u8 *in;
17cbca2b
RR
1610 struct virtio_blk_outhdr *out;
1611 struct iovec iov[dev->vq->vring.num];
1612 off64_t off;
1613
e1e72965 1614 /* See if there's a request waiting. If not, nothing to do. */
17cbca2b
RR
1615 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1616 if (head == dev->vq->vring.num)
1617 return false;
1618
e1e72965
RR
1619 /* Every block request should contain at least one output buffer
1620 * (detailing the location on disk and the type of request) and one
1621 * input buffer (to hold the result). */
17cbca2b
RR
1622 if (out_num == 0 || in_num == 0)
1623 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1624 head, out_num, in_num);
1625
1626 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1627 in = convert(&iov[out_num+in_num-1], u8);
17cbca2b
RR
1628 off = out->sector * 512;
1629
e1e72965
RR
1630 /* The block device implements "barriers", where the Guest indicates
1631 * that it wants all previous writes to occur before this write. We
1632 * don't have a way of asking our kernel to do a barrier, so we just
1633 * synchronize all the data in the file. Pretty poor, no? */
17cbca2b
RR
1634 if (out->type & VIRTIO_BLK_T_BARRIER)
1635 fdatasync(vblk->fd);
1636
e1e72965
RR
1637 /* In general the virtio block driver is allowed to try SCSI commands.
1638 * It'd be nice if we supported eject, for example, but we don't. */
17cbca2b
RR
1639 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1640 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1641 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1642 wlen = sizeof(*in);
17cbca2b
RR
1643 } else if (out->type & VIRTIO_BLK_T_OUT) {
1644 /* Write */
1645
1646 /* Move to the right location in the block file. This can fail
1647 * if they try to write past end. */
1648 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1649 err(1, "Bad seek to sector %llu", out->sector);
1650
1651 ret = writev(vblk->fd, iov+1, out_num-1);
1652 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1653
1654 /* Grr... Now we know how long the descriptor they sent was, we
1655 * make sure they didn't try to write over the end of the block
1656 * file (possibly extending it). */
1657 if (ret > 0 && off + ret > vblk->len) {
1658 /* Trim it back to the correct length */
1659 ftruncate64(vblk->fd, vblk->len);
1660 /* Die, bad Guest, die. */
1661 errx(1, "Write past end %llu+%u", off, ret);
1662 }
1200e646 1663 wlen = sizeof(*in);
cb38fa23 1664 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b
RR
1665 } else {
1666 /* Read */
1667
1668 /* Move to the right location in the block file. This can fail
1669 * if they try to read past end. */
1670 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1671 err(1, "Bad seek to sector %llu", out->sector);
1672
1673 ret = readv(vblk->fd, iov+1, in_num-1);
1674 verbose("READ from sector %llu: %i\n", out->sector, ret);
1675 if (ret >= 0) {
1200e646 1676 wlen = sizeof(*in) + ret;
cb38fa23 1677 *in = VIRTIO_BLK_S_OK;
17cbca2b 1678 } else {
1200e646 1679 wlen = sizeof(*in);
cb38fa23 1680 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1681 }
1682 }
1683
1684 /* We can't trigger an IRQ, because we're not the Launcher. It does
1685 * that when we tell it we're done. */
1686 add_used(dev->vq, head, wlen);
1687 return true;
1688}
1689
1690/* This is the thread which actually services the I/O. */
1691static int io_thread(void *_dev)
1692{
1693 struct device *dev = _dev;
1694 struct vblk_info *vblk = dev->priv;
1695 char c;
1696
1697 /* Close other side of workpipe so we get 0 read when main dies. */
1698 close(vblk->workpipe[1]);
1699 /* Close the other side of the done_fd pipe. */
1700 close(dev->fd);
1701
1702 /* When this read fails, it means Launcher died, so we follow. */
1703 while (read(vblk->workpipe[0], &c, 1) == 1) {
e1e72965 1704 /* We acknowledge each request immediately to reduce latency,
17cbca2b 1705 * rather than waiting until we've done them all. I haven't
a6bd8e13
RR
1706 * measured to see if it makes any difference.
1707 *
1708 * That would be an interesting test, wouldn't it? You could
1709 * also try having more than one I/O thread. */
17cbca2b
RR
1710 while (service_io(dev))
1711 write(vblk->done_fd, &c, 1);
1712 }
1713 return 0;
1714}
1715
e1e72965 1716/* Now we've seen the I/O thread, we return to the Launcher to see what happens
a6bd8e13 1717 * when that thread tells us it's completed some I/O. */
17cbca2b
RR
1718static bool handle_io_finish(int fd, struct device *dev)
1719{
1720 char c;
1721
e1e72965
RR
1722 /* If the I/O thread died, presumably it printed the error, so we
1723 * simply exit. */
17cbca2b
RR
1724 if (read(dev->fd, &c, 1) != 1)
1725 exit(1);
1726
1727 /* It did some work, so trigger the irq. */
1728 trigger_irq(fd, dev->vq);
1729 return true;
1730}
1731
e1e72965 1732/* When the Guest submits some I/O, we just need to wake the I/O thread. */
a161883a 1733static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
17cbca2b
RR
1734{
1735 struct vblk_info *vblk = vq->dev->priv;
1736 char c = 0;
1737
1738 /* Wake up I/O thread and tell it to go to work! */
1739 if (write(vblk->workpipe[1], &c, 1) != 1)
1740 /* Presumably it indicated why it died. */
1741 exit(1);
1742}
1743
e1e72965 1744/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1745static void setup_block_file(const char *filename)
1746{
1747 int p[2];
1748 struct device *dev;
1749 struct vblk_info *vblk;
1750 void *stack;
a586d4f6 1751 struct virtio_blk_config conf;
17cbca2b
RR
1752
1753 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1754 pipe(p);
1755
1756 /* The device responds to return from I/O thread. */
1757 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1758
e1e72965 1759 /* The device has one virtqueue, where the Guest places requests. */
17cbca2b
RR
1760 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1761
1762 /* Allocate the room for our own bookkeeping */
1763 vblk = dev->priv = malloc(sizeof(*vblk));
1764
1765 /* First we open the file and store the length. */
1766 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1767 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1768
a586d4f6
RR
1769 /* We support barriers. */
1770 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1771
17cbca2b 1772 /* Tell Guest how many sectors this device has. */
a586d4f6 1773 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b
RR
1774
1775 /* Tell Guest not to put in too many descriptors at once: two are used
1776 * for the in and out elements. */
a586d4f6
RR
1777 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1778 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1779
1780 set_config(dev, sizeof(conf), &conf);
17cbca2b
RR
1781
1782 /* The I/O thread writes to this end of the pipe when done. */
1783 vblk->done_fd = p[1];
1784
e1e72965
RR
1785 /* This is the second pipe, which is how we tell the I/O thread about
1786 * more work. */
17cbca2b
RR
1787 pipe(vblk->workpipe);
1788
a6bd8e13
RR
1789 /* Create stack for thread and run it. Since stack grows upwards, we
1790 * point the stack pointer to the end of this region. */
17cbca2b 1791 stack = malloc(32768);
ec04b13f
BR
1792 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1793 * becoming a zombie. */
a6bd8e13 1794 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
17cbca2b
RR
1795 err(1, "Creating clone");
1796
1797 /* We don't need to keep the I/O thread's end of the pipes open. */
1798 close(vblk->done_fd);
1799 close(vblk->workpipe[0]);
1800
1801 verbose("device %u: virtblock %llu sectors\n",
a586d4f6 1802 devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1803}
28fd6d7f
RR
1804
1805/* Our random number generator device reads from /dev/random into the Guest's
1806 * input buffers. The usual case is that the Guest doesn't want random numbers
1807 * and so has no buffers although /dev/random is still readable, whereas
1808 * console is the reverse.
1809 *
1810 * The same logic applies, however. */
1811static bool handle_rng_input(int fd, struct device *dev)
1812{
1813 int len;
1814 unsigned int head, in_num, out_num, totlen = 0;
1815 struct iovec iov[dev->vq->vring.num];
1816
1817 /* First we need a buffer from the Guests's virtqueue. */
1818 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1819
1820 /* If they're not ready for input, stop listening to this file
1821 * descriptor. We'll start again once they add an input buffer. */
1822 if (head == dev->vq->vring.num)
1823 return false;
1824
1825 if (out_num)
1826 errx(1, "Output buffers in rng?");
1827
1828 /* This is why we convert to iovecs: the readv() call uses them, and so
1829 * it reads straight into the Guest's buffer. We loop to make sure we
1830 * fill it. */
1831 while (!iov_empty(iov, in_num)) {
1832 len = readv(dev->fd, iov, in_num);
1833 if (len <= 0)
1834 err(1, "Read from /dev/random gave %i", len);
1835 iov_consume(iov, in_num, len);
1836 totlen += len;
1837 }
1838
1839 /* Tell the Guest about the new input. */
1840 add_used_and_trigger(fd, dev->vq, head, totlen);
1841
1842 /* Everything went OK! */
1843 return true;
1844}
1845
1846/* And this creates a "hardware" random number device for the Guest. */
1847static void setup_rng(void)
1848{
1849 struct device *dev;
1850 int fd;
1851
1852 fd = open_or_die("/dev/random", O_RDONLY);
1853
1854 /* The device responds to return from I/O thread. */
1855 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1856
1857 /* The device has one virtqueue, where the Guest places inbufs. */
1858 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1859
1860 verbose("device %u: rng\n", devices.device_num++);
1861}
a6bd8e13 1862/* That's the end of device setup. */
ec04b13f 1863
a6bd8e13 1864/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1865static void __attribute__((noreturn)) restart_guest(void)
1866{
1867 unsigned int i;
1868
a6bd8e13 1869 /* Closing pipes causes the Waker thread and io_threads to die, and
ec04b13f
BR
1870 * closing /dev/lguest cleans up the Guest. Since we don't track all
1871 * open fds, we simply close everything beyond stderr. */
1872 for (i = 3; i < FD_SETSIZE; i++)
1873 close(i);
1874 execv(main_args[0], main_args);
1875 err(1, "Could not exec %s", main_args[0]);
1876}
8ca47e00 1877
a6bd8e13 1878/*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
dde79789 1879 * its input and output, and finally, lays it to rest. */
17cbca2b 1880static void __attribute__((noreturn)) run_guest(int lguest_fd)
8ca47e00
RR
1881{
1882 for (;;) {
511801dc 1883 unsigned long args[] = { LHREQ_BREAK, 0 };
17cbca2b 1884 unsigned long notify_addr;
8ca47e00
RR
1885 int readval;
1886
1887 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1888 readval = pread(lguest_fd, &notify_addr,
1889 sizeof(notify_addr), cpu_id);
8ca47e00 1890
17cbca2b
RR
1891 /* One unsigned long means the Guest did HCALL_NOTIFY */
1892 if (readval == sizeof(notify_addr)) {
1893 verbose("Notify on address %#lx\n", notify_addr);
1894 handle_output(lguest_fd, notify_addr);
8ca47e00 1895 continue;
dde79789 1896 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1897 } else if (errno == ENOENT) {
1898 char reason[1024] = { 0 };
e3283fa0 1899 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1900 errx(1, "%s", reason);
ec04b13f
BR
1901 /* ERESTART means that we need to reboot the guest */
1902 } else if (errno == ERESTART) {
1903 restart_guest();
a161883a 1904 /* EAGAIN means a signal (timeout).
dde79789 1905 * Anything else means a bug or incompatible change. */
8ca47e00
RR
1906 } else if (errno != EAGAIN)
1907 err(1, "Running guest failed");
dde79789 1908
e3283fa0
GOC
1909 /* Only service input on thread for CPU 0. */
1910 if (cpu_id != 0)
1911 continue;
1912
e1e72965 1913 /* Service input, then unset the BREAK to release the Waker. */
17cbca2b 1914 handle_input(lguest_fd);
e3283fa0 1915 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
8ca47e00
RR
1916 err(1, "Resetting break");
1917 }
1918}
a6bd8e13 1919/*L:240
e1e72965
RR
1920 * This is the end of the Launcher. The good news: we are over halfway
1921 * through! The bad news: the most fiendish part of the code still lies ahead
1922 * of us.
dde79789 1923 *
e1e72965
RR
1924 * Are you ready? Take a deep breath and join me in the core of the Host, in
1925 * "make Host".
1926 :*/
8ca47e00
RR
1927
1928static struct option opts[] = {
1929 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1930 { "tunnet", 1, NULL, 't' },
1931 { "block", 1, NULL, 'b' },
28fd6d7f 1932 { "rng", 0, NULL, 'r' },
8ca47e00
RR
1933 { "initrd", 1, NULL, 'i' },
1934 { NULL },
1935};
1936static void usage(void)
1937{
1938 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1939 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1940 "|--block=<filename>|--initrd=<filename>]...\n"
1941 "<mem-in-mb> vmlinux [args...]");
1942}
1943
3c6b5bfa 1944/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1945int main(int argc, char *argv[])
1946{
47436aa4
RR
1947 /* Memory, top-level pagetable, code startpoint and size of the
1948 * (optional) initrd. */
1949 unsigned long mem = 0, pgdir, start, initrd_size = 0;
e1e72965 1950 /* Two temporaries and the /dev/lguest file descriptor. */
6570c459 1951 int i, c, lguest_fd;
3c6b5bfa 1952 /* The boot information for the Guest. */
43d33b21 1953 struct boot_params *boot;
dde79789 1954 /* If they specify an initrd file to load. */
8ca47e00
RR
1955 const char *initrd_name = NULL;
1956
ec04b13f
BR
1957 /* Save the args: we "reboot" by execing ourselves again. */
1958 main_args = argv;
1959 /* We don't "wait" for the children, so prevent them from becoming
1960 * zombies. */
1961 signal(SIGCHLD, SIG_IGN);
1962
dde79789
RR
1963 /* First we initialize the device list. Since console and network
1964 * device receive input from a file descriptor, we keep an fdset
1965 * (infds) and the maximum fd number (max_infd) with the head of the
a586d4f6 1966 * list. We also keep a pointer to the last device. Finally, we keep
a6bd8e13
RR
1967 * the next interrupt number to use for devices (1: remember that 0 is
1968 * used by the timer). */
17cbca2b
RR
1969 FD_ZERO(&devices.infds);
1970 devices.max_infd = -1;
a586d4f6 1971 devices.lastdev = NULL;
17cbca2b 1972 devices.next_irq = 1;
8ca47e00 1973
e3283fa0 1974 cpu_id = 0;
dde79789
RR
1975 /* We need to know how much memory so we can set up the device
1976 * descriptor and memory pages for the devices as we parse the command
1977 * line. So we quickly look through the arguments to find the amount
1978 * of memory now. */
6570c459
RR
1979 for (i = 1; i < argc; i++) {
1980 if (argv[i][0] != '-') {
3c6b5bfa
RR
1981 mem = atoi(argv[i]) * 1024 * 1024;
1982 /* We start by mapping anonymous pages over all of
1983 * guest-physical memory range. This fills it with 0,
1984 * and ensures that the Guest won't be killed when it
1985 * tries to access it. */
1986 guest_base = map_zeroed_pages(mem / getpagesize()
1987 + DEVICE_PAGES);
1988 guest_limit = mem;
1989 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1990 devices.descpage = get_pages(1);
6570c459
RR
1991 break;
1992 }
1993 }
dde79789
RR
1994
1995 /* The options are fairly straight-forward */
8ca47e00
RR
1996 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1997 switch (c) {
1998 case 'v':
1999 verbose = true;
2000 break;
8ca47e00 2001 case 't':
17cbca2b 2002 setup_tun_net(optarg);
8ca47e00
RR
2003 break;
2004 case 'b':
17cbca2b 2005 setup_block_file(optarg);
8ca47e00 2006 break;
28fd6d7f
RR
2007 case 'r':
2008 setup_rng();
2009 break;
8ca47e00
RR
2010 case 'i':
2011 initrd_name = optarg;
2012 break;
2013 default:
2014 warnx("Unknown argument %s", argv[optind]);
2015 usage();
2016 }
2017 }
dde79789
RR
2018 /* After the other arguments we expect memory and kernel image name,
2019 * followed by command line arguments for the kernel. */
8ca47e00
RR
2020 if (optind + 2 > argc)
2021 usage();
2022
3c6b5bfa
RR
2023 verbose("Guest base is at %p\n", guest_base);
2024
dde79789 2025 /* We always have a console device */
17cbca2b 2026 setup_console();
8ca47e00 2027
a161883a
RR
2028 /* We can timeout waiting for Guest network transmit. */
2029 setup_timeout();
2030
8ca47e00 2031 /* Now we load the kernel */
47436aa4 2032 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 2033
3c6b5bfa
RR
2034 /* Boot information is stashed at physical address 0 */
2035 boot = from_guest_phys(0);
2036
dde79789 2037 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
2038 if (initrd_name) {
2039 initrd_size = load_initrd(initrd_name, mem);
dde79789
RR
2040 /* These are the location in the Linux boot header where the
2041 * start and size of the initrd are expected to be found. */
43d33b21
RR
2042 boot->hdr.ramdisk_image = mem - initrd_size;
2043 boot->hdr.ramdisk_size = initrd_size;
dde79789 2044 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 2045 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
2046 }
2047
dde79789 2048 /* Set up the initial linear pagetables, starting below the initrd. */
47436aa4 2049 pgdir = setup_pagetables(mem, initrd_size);
8ca47e00 2050
dde79789
RR
2051 /* The Linux boot header contains an "E820" memory map: ours is a
2052 * simple, single region. */
43d33b21
RR
2053 boot->e820_entries = 1;
2054 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
dde79789 2055 /* The boot header contains a command line pointer: we put the command
43d33b21
RR
2056 * line after the boot header. */
2057 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 2058 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 2059 concat((char *)(boot + 1), argv+optind+2);
dde79789 2060
814a0e5c 2061 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 2062 boot->hdr.version = 0x207;
814a0e5c
RR
2063
2064 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2065 boot->hdr.hardware_subarch = 1;
814a0e5c 2066
43d33b21
RR
2067 /* Tell the entry path not to try to reload segment registers. */
2068 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2069
dde79789
RR
2070 /* We tell the kernel to initialize the Guest: this returns the open
2071 * /dev/lguest file descriptor. */
47436aa4 2072 lguest_fd = tell_kernel(pgdir, start);
dde79789
RR
2073
2074 /* We fork off a child process, which wakes the Launcher whenever one
a6bd8e13
RR
2075 * of the input file descriptors needs attention. We call this the
2076 * Waker, and we'll cover it in a moment. */
17cbca2b 2077 waker_fd = setup_waker(lguest_fd);
8ca47e00 2078
dde79789 2079 /* Finally, run the Guest. This doesn't return. */
17cbca2b 2080 run_guest(lguest_fd);
8ca47e00 2081}
f56a384e
RR
2082/*:*/
2083
2084/*M:999
2085 * Mastery is done: you now know everything I do.
2086 *
2087 * But surely you have seen code, features and bugs in your wanderings which
2088 * you now yearn to attack? That is the real game, and I look forward to you
2089 * patching and forking lguest into the Your-Name-Here-visor.
2090 *
2091 * Farewell, and good coding!
2092 * Rusty Russell.
2093 */
This page took 0.239485 seconds and 5 git commands to generate.