lguest: Support assigning a MAC address
[deliverable/linux.git] / Documentation / lguest / lguest.c
CommitLineData
f938d2c8 1/*P:100 This is the Launcher code, a simple program which lays out the
a6bd8e13
RR
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
8ca47e00
RR
5#define _LARGEFILE64_SOURCE
6#define _GNU_SOURCE
7#include <stdio.h>
8#include <string.h>
9#include <unistd.h>
10#include <err.h>
11#include <stdint.h>
12#include <stdlib.h>
13#include <elf.h>
14#include <sys/mman.h>
6649bb7a 15#include <sys/param.h>
8ca47e00
RR
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <sys/wait.h>
19#include <fcntl.h>
20#include <stdbool.h>
21#include <errno.h>
22#include <ctype.h>
23#include <sys/socket.h>
24#include <sys/ioctl.h>
25#include <sys/time.h>
26#include <time.h>
27#include <netinet/in.h>
28#include <net/if.h>
29#include <linux/sockios.h>
30#include <linux/if_tun.h>
31#include <sys/uio.h>
32#include <termios.h>
33#include <getopt.h>
34#include <zlib.h>
17cbca2b
RR
35#include <assert.h>
36#include <sched.h>
a586d4f6
RR
37#include <limits.h>
38#include <stddef.h>
b45d8cb0 39#include "linux/lguest_launcher.h"
17cbca2b
RR
40#include "linux/virtio_config.h"
41#include "linux/virtio_net.h"
42#include "linux/virtio_blk.h"
43#include "linux/virtio_console.h"
44#include "linux/virtio_ring.h"
43d33b21 45#include "asm-x86/bootparam.h"
a6bd8e13 46/*L:110 We can ignore the 39 include files we need for this program, but I do
db24e8c2
RR
47 * want to draw attention to the use of kernel-style types.
48 *
49 * As Linus said, "C is a Spartan language, and so should your naming be." I
50 * like these abbreviations, so we define them here. Note that u64 is always
51 * unsigned long long, which works on all Linux systems: this means that we can
52 * use %llu in printf for any u64. */
53typedef unsigned long long u64;
54typedef uint32_t u32;
55typedef uint16_t u16;
56typedef uint8_t u8;
dde79789 57/*:*/
8ca47e00
RR
58
59#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
60#define NET_PEERNUM 1
61#define BRIDGE_PFX "bridge:"
62#ifndef SIOCBRADDIF
63#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
64#endif
3c6b5bfa
RR
65/* We can have up to 256 pages for devices. */
66#define DEVICE_PAGES 256
42b36cc0
RR
67/* This will occupy 2 pages: it must be a power of 2. */
68#define VIRTQUEUE_NUM 128
8ca47e00 69
dde79789
RR
70/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
71 * this, and although I wouldn't recommend it, it works quite nicely here. */
8ca47e00
RR
72static bool verbose;
73#define verbose(args...) \
74 do { if (verbose) printf(args); } while(0)
dde79789
RR
75/*:*/
76
77/* The pipe to send commands to the waker process */
8ca47e00 78static int waker_fd;
3c6b5bfa
RR
79/* The pointer to the start of guest memory. */
80static void *guest_base;
81/* The maximum guest physical address allowed, and maximum possible. */
82static unsigned long guest_limit, guest_max;
8ca47e00 83
e3283fa0
GOC
84/* a per-cpu variable indicating whose vcpu is currently running */
85static unsigned int __thread cpu_id;
86
dde79789 87/* This is our list of devices. */
8ca47e00
RR
88struct device_list
89{
dde79789
RR
90 /* Summary information about the devices in our list: ready to pass to
91 * select() to ask which need servicing.*/
8ca47e00
RR
92 fd_set infds;
93 int max_infd;
94
17cbca2b
RR
95 /* Counter to assign interrupt numbers. */
96 unsigned int next_irq;
97
98 /* Counter to print out convenient device numbers. */
99 unsigned int device_num;
100
dde79789 101 /* The descriptor page for the devices. */
17cbca2b
RR
102 u8 *descpage;
103
dde79789 104 /* A single linked list of devices. */
8ca47e00 105 struct device *dev;
a586d4f6
RR
106 /* And a pointer to the last device for easy append and also for
107 * configuration appending. */
108 struct device *lastdev;
8ca47e00
RR
109};
110
17cbca2b
RR
111/* The list of Guest devices, based on command line arguments. */
112static struct device_list devices;
113
dde79789 114/* The device structure describes a single device. */
8ca47e00
RR
115struct device
116{
dde79789 117 /* The linked-list pointer. */
8ca47e00 118 struct device *next;
17cbca2b
RR
119
120 /* The this device's descriptor, as mapped into the Guest. */
8ca47e00 121 struct lguest_device_desc *desc;
17cbca2b
RR
122
123 /* The name of this device, for --verbose. */
124 const char *name;
8ca47e00 125
dde79789
RR
126 /* If handle_input is set, it wants to be called when this file
127 * descriptor is ready. */
8ca47e00
RR
128 int fd;
129 bool (*handle_input)(int fd, struct device *me);
130
17cbca2b
RR
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
8ca47e00 133
a007a751
RR
134 /* Handle status being finalized (ie. feature bits stable). */
135 void (*ready)(struct device *me);
136
8ca47e00
RR
137 /* Device-specific data. */
138 void *priv;
139};
140
17cbca2b
RR
141/* The virtqueue structure describes a queue attached to a device. */
142struct virtqueue
143{
144 struct virtqueue *next;
145
146 /* Which device owns me. */
147 struct device *dev;
148
149 /* The configuration for this queue. */
150 struct lguest_vqconfig config;
151
152 /* The actual ring of buffers. */
153 struct vring vring;
154
155 /* Last available index we saw. */
156 u16 last_avail_idx;
157
158 /* The routine to call when the Guest pings us. */
159 void (*handle_output)(int fd, struct virtqueue *me);
20887611
RR
160
161 /* Outstanding buffers */
162 unsigned int inflight;
17cbca2b
RR
163};
164
ec04b13f
BR
165/* Remember the arguments to the program so we can "reboot" */
166static char **main_args;
167
17cbca2b
RR
168/* Since guest is UP and we don't run at the same time, we don't need barriers.
169 * But I include them in the code in case others copy it. */
170#define wmb()
171
172/* Convert an iovec element to the given type.
173 *
174 * This is a fairly ugly trick: we need to know the size of the type and
175 * alignment requirement to check the pointer is kosher. It's also nice to
176 * have the name of the type in case we report failure.
177 *
178 * Typing those three things all the time is cumbersome and error prone, so we
179 * have a macro which sets them all up and passes to the real function. */
180#define convert(iov, type) \
181 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
182
183static void *_convert(struct iovec *iov, size_t size, size_t align,
184 const char *name)
185{
186 if (iov->iov_len != size)
187 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
188 if ((unsigned long)iov->iov_base % align != 0)
189 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
190 return iov->iov_base;
191}
192
193/* The virtio configuration space is defined to be little-endian. x86 is
194 * little-endian too, but it's nice to be explicit so we have these helpers. */
195#define cpu_to_le16(v16) (v16)
196#define cpu_to_le32(v32) (v32)
197#define cpu_to_le64(v64) (v64)
198#define le16_to_cpu(v16) (v16)
199#define le32_to_cpu(v32) (v32)
a586d4f6 200#define le64_to_cpu(v64) (v64)
17cbca2b 201
6e5aa7ef
RR
202/* The device virtqueue descriptors are followed by feature bitmasks. */
203static u8 *get_feature_bits(struct device *dev)
204{
205 return (u8 *)(dev->desc + 1)
206 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
207}
208
3c6b5bfa
RR
209/*L:100 The Launcher code itself takes us out into userspace, that scary place
210 * where pointers run wild and free! Unfortunately, like most userspace
211 * programs, it's quite boring (which is why everyone likes to hack on the
212 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
213 * will get you through this section. Or, maybe not.
214 *
215 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
216 * memory and stores it in "guest_base". In other words, Guest physical ==
217 * Launcher virtual with an offset.
218 *
219 * This can be tough to get your head around, but usually it just means that we
220 * use these trivial conversion functions when the Guest gives us it's
221 * "physical" addresses: */
222static void *from_guest_phys(unsigned long addr)
223{
224 return guest_base + addr;
225}
226
227static unsigned long to_guest_phys(const void *addr)
228{
229 return (addr - guest_base);
230}
231
dde79789
RR
232/*L:130
233 * Loading the Kernel.
234 *
235 * We start with couple of simple helper routines. open_or_die() avoids
236 * error-checking code cluttering the callers: */
8ca47e00
RR
237static int open_or_die(const char *name, int flags)
238{
239 int fd = open(name, flags);
240 if (fd < 0)
241 err(1, "Failed to open %s", name);
242 return fd;
243}
244
3c6b5bfa
RR
245/* map_zeroed_pages() takes a number of pages. */
246static void *map_zeroed_pages(unsigned int num)
8ca47e00 247{
3c6b5bfa
RR
248 int fd = open_or_die("/dev/zero", O_RDONLY);
249 void *addr;
8ca47e00 250
dde79789 251 /* We use a private mapping (ie. if we write to the page, it will be
3c6b5bfa
RR
252 * copied). */
253 addr = mmap(NULL, getpagesize() * num,
254 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
255 if (addr == MAP_FAILED)
256 err(1, "Mmaping %u pages of /dev/zero", num);
34bdaab4 257 close(fd);
3c6b5bfa
RR
258
259 return addr;
260}
261
262/* Get some more pages for a device. */
263static void *get_pages(unsigned int num)
264{
265 void *addr = from_guest_phys(guest_limit);
266
267 guest_limit += num * getpagesize();
268 if (guest_limit > guest_max)
269 errx(1, "Not enough memory for devices");
270 return addr;
8ca47e00
RR
271}
272
6649bb7a
RM
273/* This routine is used to load the kernel or initrd. It tries mmap, but if
274 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
275 * it falls back to reading the memory in. */
276static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
277{
278 ssize_t r;
279
280 /* We map writable even though for some segments are marked read-only.
281 * The kernel really wants to be writable: it patches its own
282 * instructions.
283 *
284 * MAP_PRIVATE means that the page won't be copied until a write is
285 * done to it. This allows us to share untouched memory between
286 * Guests. */
287 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
288 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
289 return;
290
291 /* pread does a seek and a read in one shot: saves a few lines. */
292 r = pread(fd, addr, len, offset);
293 if (r != len)
294 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
295}
296
dde79789
RR
297/* This routine takes an open vmlinux image, which is in ELF, and maps it into
298 * the Guest memory. ELF = Embedded Linking Format, which is the format used
299 * by all modern binaries on Linux including the kernel.
300 *
301 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
302 * address. We use the physical address; the Guest will map itself to the
303 * virtual address.
dde79789
RR
304 *
305 * We return the starting address. */
47436aa4 306static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 307{
8ca47e00
RR
308 Elf32_Phdr phdr[ehdr->e_phnum];
309 unsigned int i;
8ca47e00 310
dde79789
RR
311 /* Sanity checks on the main ELF header: an x86 executable with a
312 * reasonable number of correctly-sized program headers. */
8ca47e00
RR
313 if (ehdr->e_type != ET_EXEC
314 || ehdr->e_machine != EM_386
315 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
316 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
317 errx(1, "Malformed elf header");
318
dde79789
RR
319 /* An ELF executable contains an ELF header and a number of "program"
320 * headers which indicate which parts ("segments") of the program to
321 * load where. */
322
323 /* We read in all the program headers at once: */
8ca47e00
RR
324 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
325 err(1, "Seeking to program headers");
326 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
327 err(1, "Reading program headers");
328
dde79789 329 /* Try all the headers: there are usually only three. A read-only one,
a6bd8e13 330 * a read-write one, and a "note" section which we don't load. */
8ca47e00 331 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 332 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
333 if (phdr[i].p_type != PT_LOAD)
334 continue;
335
336 verbose("Section %i: size %i addr %p\n",
337 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
338
6649bb7a 339 /* We map this section of the file at its physical address. */
3c6b5bfa 340 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 341 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
342 }
343
814a0e5c
RR
344 /* The entry point is given in the ELF header. */
345 return ehdr->e_entry;
8ca47e00
RR
346}
347
dde79789 348/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
5bbf89fc
RR
349 * supposed to jump into it and it will unpack itself. We used to have to
350 * perform some hairy magic because the unpacking code scared me.
dde79789 351 *
5bbf89fc
RR
352 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
353 * a small patch to jump over the tricky bits in the Guest, so now we just read
354 * the funky header so we know where in the file to load, and away we go! */
47436aa4 355static unsigned long load_bzimage(int fd)
8ca47e00 356{
43d33b21 357 struct boot_params boot;
5bbf89fc
RR
358 int r;
359 /* Modern bzImages get loaded at 1M. */
360 void *p = from_guest_phys(0x100000);
361
362 /* Go back to the start of the file and read the header. It should be
363 * a Linux boot header (see Documentation/i386/boot.txt) */
364 lseek(fd, 0, SEEK_SET);
43d33b21 365 read(fd, &boot, sizeof(boot));
5bbf89fc 366
43d33b21
RR
367 /* Inside the setup_hdr, we expect the magic "HdrS" */
368 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
369 errx(1, "This doesn't look like a bzImage to me");
370
43d33b21
RR
371 /* Skip over the extra sectors of the header. */
372 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
373
374 /* Now read everything into memory. in nice big chunks. */
375 while ((r = read(fd, p, 65536)) > 0)
376 p += r;
377
43d33b21
RR
378 /* Finally, code32_start tells us where to enter the kernel. */
379 return boot.hdr.code32_start;
8ca47e00
RR
380}
381
dde79789 382/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965
RR
383 * come wrapped up in the self-decompressing "bzImage" format. With a little
384 * work, we can load those, too. */
47436aa4 385static unsigned long load_kernel(int fd)
8ca47e00
RR
386{
387 Elf32_Ehdr hdr;
388
dde79789 389 /* Read in the first few bytes. */
8ca47e00
RR
390 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
391 err(1, "Reading kernel");
392
dde79789 393 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 394 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 395 return map_elf(fd, &hdr);
8ca47e00 396
a6bd8e13 397 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 398 return load_bzimage(fd);
8ca47e00
RR
399}
400
dde79789
RR
401/* This is a trivial little helper to align pages. Andi Kleen hated it because
402 * it calls getpagesize() twice: "it's dumb code."
403 *
404 * Kernel guys get really het up about optimization, even when it's not
405 * necessary. I leave this code as a reaction against that. */
8ca47e00
RR
406static inline unsigned long page_align(unsigned long addr)
407{
dde79789 408 /* Add upwards and truncate downwards. */
8ca47e00
RR
409 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
410}
411
dde79789
RR
412/*L:180 An "initial ram disk" is a disk image loaded into memory along with
413 * the kernel which the kernel can use to boot from without needing any
414 * drivers. Most distributions now use this as standard: the initrd contains
415 * the code to load the appropriate driver modules for the current machine.
416 *
417 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
418 * kernels. He sent me this (and tells me when I break it). */
8ca47e00
RR
419static unsigned long load_initrd(const char *name, unsigned long mem)
420{
421 int ifd;
422 struct stat st;
423 unsigned long len;
8ca47e00
RR
424
425 ifd = open_or_die(name, O_RDONLY);
dde79789 426 /* fstat() is needed to get the file size. */
8ca47e00
RR
427 if (fstat(ifd, &st) < 0)
428 err(1, "fstat() on initrd '%s'", name);
429
6649bb7a
RM
430 /* We map the initrd at the top of memory, but mmap wants it to be
431 * page-aligned, so we round the size up for that. */
8ca47e00 432 len = page_align(st.st_size);
3c6b5bfa 433 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
dde79789
RR
434 /* Once a file is mapped, you can close the file descriptor. It's a
435 * little odd, but quite useful. */
8ca47e00 436 close(ifd);
6649bb7a 437 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
438
439 /* We return the initrd size. */
8ca47e00
RR
440 return len;
441}
442
a6bd8e13 443/* Once we know how much memory we have we can construct simple linear page
47436aa4 444 * tables which set virtual == physical which will get the Guest far enough
3c6b5bfa 445 * into the boot to create its own.
dde79789
RR
446 *
447 * We lay them out of the way, just below the initrd (which is why we need to
a6bd8e13 448 * know its size here). */
8ca47e00 449static unsigned long setup_pagetables(unsigned long mem,
47436aa4 450 unsigned long initrd_size)
8ca47e00 451{
511801dc 452 unsigned long *pgdir, *linear;
8ca47e00 453 unsigned int mapped_pages, i, linear_pages;
511801dc 454 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
8ca47e00 455
47436aa4 456 mapped_pages = mem/getpagesize();
8ca47e00 457
dde79789 458 /* Each PTE page can map ptes_per_page pages: how many do we need? */
8ca47e00
RR
459 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
460
dde79789 461 /* We put the toplevel page directory page at the top of memory. */
3c6b5bfa 462 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
dde79789
RR
463
464 /* Now we use the next linear_pages pages as pte pages */
8ca47e00
RR
465 linear = (void *)pgdir - linear_pages*getpagesize();
466
dde79789
RR
467 /* Linear mapping is easy: put every page's address into the mapping in
468 * order. PAGE_PRESENT contains the flags Present, Writable and
469 * Executable. */
8ca47e00
RR
470 for (i = 0; i < mapped_pages; i++)
471 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
472
47436aa4 473 /* The top level points to the linear page table pages above. */
8ca47e00 474 for (i = 0; i < mapped_pages; i += ptes_per_page) {
47436aa4 475 pgdir[i/ptes_per_page]
511801dc 476 = ((to_guest_phys(linear) + i*sizeof(void *))
3c6b5bfa 477 | PAGE_PRESENT);
8ca47e00
RR
478 }
479
3c6b5bfa
RR
480 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
481 mapped_pages, linear_pages, to_guest_phys(linear));
8ca47e00 482
dde79789
RR
483 /* We return the top level (guest-physical) address: the kernel needs
484 * to know where it is. */
3c6b5bfa 485 return to_guest_phys(pgdir);
8ca47e00 486}
e1e72965 487/*:*/
8ca47e00 488
dde79789
RR
489/* Simple routine to roll all the commandline arguments together with spaces
490 * between them. */
8ca47e00
RR
491static void concat(char *dst, char *args[])
492{
493 unsigned int i, len = 0;
494
495 for (i = 0; args[i]; i++) {
1ef36fa6
PB
496 if (i) {
497 strcat(dst+len, " ");
498 len++;
499 }
8ca47e00 500 strcpy(dst+len, args[i]);
1ef36fa6 501 len += strlen(args[i]);
8ca47e00
RR
502 }
503 /* In case it's empty. */
504 dst[len] = '\0';
505}
506
e1e72965
RR
507/*L:185 This is where we actually tell the kernel to initialize the Guest. We
508 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
509 * the base of Guest "physical" memory, the top physical page to allow, the
47436aa4
RR
510 * top level pagetable and the entry point for the Guest. */
511static int tell_kernel(unsigned long pgdir, unsigned long start)
8ca47e00 512{
511801dc
JS
513 unsigned long args[] = { LHREQ_INITIALIZE,
514 (unsigned long)guest_base,
47436aa4 515 guest_limit / getpagesize(), pgdir, start };
8ca47e00
RR
516 int fd;
517
3c6b5bfa
RR
518 verbose("Guest: %p - %p (%#lx)\n",
519 guest_base, guest_base + guest_limit, guest_limit);
8ca47e00
RR
520 fd = open_or_die("/dev/lguest", O_RDWR);
521 if (write(fd, args, sizeof(args)) < 0)
522 err(1, "Writing to /dev/lguest");
dde79789
RR
523
524 /* We return the /dev/lguest file descriptor to control this Guest */
8ca47e00
RR
525 return fd;
526}
dde79789 527/*:*/
8ca47e00 528
17cbca2b 529static void add_device_fd(int fd)
8ca47e00 530{
17cbca2b
RR
531 FD_SET(fd, &devices.infds);
532 if (fd > devices.max_infd)
533 devices.max_infd = fd;
8ca47e00
RR
534}
535
dde79789
RR
536/*L:200
537 * The Waker.
538 *
e1e72965
RR
539 * With console, block and network devices, we can have lots of input which we
540 * need to process. We could try to tell the kernel what file descriptors to
541 * watch, but handing a file descriptor mask through to the kernel is fairly
542 * icky.
dde79789
RR
543 *
544 * Instead, we fork off a process which watches the file descriptors and writes
e1e72965
RR
545 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
546 * stop running the Guest. This causes the Launcher to return from the
dde79789
RR
547 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
548 * the LHREQ_BREAK and wake us up again.
549 *
550 * This, of course, is merely a different *kind* of icky.
551 */
17cbca2b 552static void wake_parent(int pipefd, int lguest_fd)
8ca47e00 553{
dde79789
RR
554 /* Add the pipe from the Launcher to the fdset in the device_list, so
555 * we watch it, too. */
17cbca2b 556 add_device_fd(pipefd);
8ca47e00
RR
557
558 for (;;) {
17cbca2b 559 fd_set rfds = devices.infds;
511801dc 560 unsigned long args[] = { LHREQ_BREAK, 1 };
8ca47e00 561
dde79789 562 /* Wait until input is ready from one of the devices. */
17cbca2b 563 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
dde79789 564 /* Is it a message from the Launcher? */
8ca47e00 565 if (FD_ISSET(pipefd, &rfds)) {
56ae43df 566 int fd;
dde79789
RR
567 /* If read() returns 0, it means the Launcher has
568 * exited. We silently follow. */
56ae43df 569 if (read(pipefd, &fd, sizeof(fd)) == 0)
8ca47e00 570 exit(0);
56ae43df 571 /* Otherwise it's telling us to change what file
e1e72965
RR
572 * descriptors we're to listen to. Positive means
573 * listen to a new one, negative means stop
574 * listening. */
56ae43df
RR
575 if (fd >= 0)
576 FD_SET(fd, &devices.infds);
577 else
578 FD_CLR(-fd - 1, &devices.infds);
dde79789 579 } else /* Send LHREQ_BREAK command. */
e3283fa0 580 pwrite(lguest_fd, args, sizeof(args), cpu_id);
8ca47e00
RR
581 }
582}
583
dde79789 584/* This routine just sets up a pipe to the Waker process. */
17cbca2b 585static int setup_waker(int lguest_fd)
8ca47e00
RR
586{
587 int pipefd[2], child;
588
e1e72965 589 /* We create a pipe to talk to the Waker, and also so it knows when the
dde79789 590 * Launcher dies (and closes pipe). */
8ca47e00
RR
591 pipe(pipefd);
592 child = fork();
593 if (child == -1)
594 err(1, "forking");
595
596 if (child == 0) {
e1e72965
RR
597 /* We are the Waker: close the "writing" end of our copy of the
598 * pipe and start waiting for input. */
8ca47e00 599 close(pipefd[1]);
17cbca2b 600 wake_parent(pipefd[0], lguest_fd);
8ca47e00 601 }
dde79789 602 /* Close the reading end of our copy of the pipe. */
8ca47e00
RR
603 close(pipefd[0]);
604
dde79789 605 /* Here is the fd used to talk to the waker. */
8ca47e00
RR
606 return pipefd[1];
607}
608
e1e72965 609/*
dde79789
RR
610 * Device Handling.
611 *
e1e72965 612 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 613 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 614 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
615 * if something funny is going on:
616 */
8ca47e00
RR
617static void *_check_pointer(unsigned long addr, unsigned int size,
618 unsigned int line)
619{
dde79789
RR
620 /* We have to separately check addr and addr+size, because size could
621 * be huge and addr + size might wrap around. */
3c6b5bfa 622 if (addr >= guest_limit || addr + size >= guest_limit)
17cbca2b 623 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
dde79789
RR
624 /* We return a pointer for the caller's convenience, now we know it's
625 * safe to use. */
3c6b5bfa 626 return from_guest_phys(addr);
8ca47e00 627}
dde79789 628/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
629#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
630
e1e72965
RR
631/* Each buffer in the virtqueues is actually a chain of descriptors. This
632 * function returns the next descriptor in the chain, or vq->vring.num if we're
633 * at the end. */
17cbca2b
RR
634static unsigned next_desc(struct virtqueue *vq, unsigned int i)
635{
636 unsigned int next;
637
638 /* If this descriptor says it doesn't chain, we're done. */
639 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
640 return vq->vring.num;
641
642 /* Check they're not leading us off end of descriptors. */
643 next = vq->vring.desc[i].next;
644 /* Make sure compiler knows to grab that: we don't want it changing! */
645 wmb();
646
647 if (next >= vq->vring.num)
648 errx(1, "Desc next is %u", next);
649
650 return next;
651}
652
653/* This looks in the virtqueue and for the first available buffer, and converts
654 * it to an iovec for convenient access. Since descriptors consist of some
655 * number of output then some number of input descriptors, it's actually two
656 * iovecs, but we pack them into one and note how many of each there were.
657 *
658 * This function returns the descriptor number found, or vq->vring.num (which
659 * is never a valid descriptor number) if none was found. */
660static unsigned get_vq_desc(struct virtqueue *vq,
661 struct iovec iov[],
662 unsigned int *out_num, unsigned int *in_num)
663{
664 unsigned int i, head;
665
666 /* Check it isn't doing very strange things with descriptor numbers. */
667 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
668 errx(1, "Guest moved used index from %u to %u",
669 vq->last_avail_idx, vq->vring.avail->idx);
670
671 /* If there's nothing new since last we looked, return invalid. */
672 if (vq->vring.avail->idx == vq->last_avail_idx)
673 return vq->vring.num;
674
675 /* Grab the next descriptor number they're advertising, and increment
676 * the index we've seen. */
677 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
678
679 /* If their number is silly, that's a fatal mistake. */
680 if (head >= vq->vring.num)
681 errx(1, "Guest says index %u is available", head);
682
683 /* When we start there are none of either input nor output. */
684 *out_num = *in_num = 0;
685
686 i = head;
687 do {
688 /* Grab the first descriptor, and check it's OK. */
689 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
690 iov[*out_num + *in_num].iov_base
691 = check_pointer(vq->vring.desc[i].addr,
692 vq->vring.desc[i].len);
693 /* If this is an input descriptor, increment that count. */
694 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
695 (*in_num)++;
696 else {
697 /* If it's an output descriptor, they're all supposed
698 * to come before any input descriptors. */
699 if (*in_num)
700 errx(1, "Descriptor has out after in");
701 (*out_num)++;
702 }
703
704 /* If we've got too many, that implies a descriptor loop. */
705 if (*out_num + *in_num > vq->vring.num)
706 errx(1, "Looped descriptor");
707 } while ((i = next_desc(vq, i)) != vq->vring.num);
dde79789 708
20887611 709 vq->inflight++;
17cbca2b 710 return head;
8ca47e00
RR
711}
712
e1e72965 713/* After we've used one of their buffers, we tell them about it. We'll then
17cbca2b
RR
714 * want to send them an interrupt, using trigger_irq(). */
715static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 716{
17cbca2b
RR
717 struct vring_used_elem *used;
718
e1e72965
RR
719 /* The virtqueue contains a ring of used buffers. Get a pointer to the
720 * next entry in that used ring. */
17cbca2b
RR
721 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
722 used->id = head;
723 used->len = len;
724 /* Make sure buffer is written before we update index. */
725 wmb();
726 vq->vring.used->idx++;
20887611 727 vq->inflight--;
8ca47e00
RR
728}
729
17cbca2b
RR
730/* This actually sends the interrupt for this virtqueue */
731static void trigger_irq(int fd, struct virtqueue *vq)
8ca47e00 732{
17cbca2b
RR
733 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
734
20887611
RR
735 /* If they don't want an interrupt, don't send one, unless empty. */
736 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
737 && vq->inflight)
17cbca2b
RR
738 return;
739
740 /* Send the Guest an interrupt tell them we used something up. */
8ca47e00 741 if (write(fd, buf, sizeof(buf)) != 0)
17cbca2b 742 err(1, "Triggering irq %i", vq->config.irq);
8ca47e00
RR
743}
744
17cbca2b
RR
745/* And here's the combo meal deal. Supersize me! */
746static void add_used_and_trigger(int fd, struct virtqueue *vq,
747 unsigned int head, int len)
8ca47e00 748{
17cbca2b
RR
749 add_used(vq, head, len);
750 trigger_irq(fd, vq);
8ca47e00
RR
751}
752
e1e72965
RR
753/*
754 * The Console
755 *
756 * Here is the input terminal setting we save, and the routine to restore them
757 * on exit so the user gets their terminal back. */
8ca47e00
RR
758static struct termios orig_term;
759static void restore_term(void)
760{
761 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
762}
763
dde79789 764/* We associate some data with the console for our exit hack. */
8ca47e00
RR
765struct console_abort
766{
dde79789 767 /* How many times have they hit ^C? */
8ca47e00 768 int count;
dde79789 769 /* When did they start? */
8ca47e00
RR
770 struct timeval start;
771};
772
dde79789 773/* This is the routine which handles console input (ie. stdin). */
8ca47e00
RR
774static bool handle_console_input(int fd, struct device *dev)
775{
8ca47e00 776 int len;
17cbca2b
RR
777 unsigned int head, in_num, out_num;
778 struct iovec iov[dev->vq->vring.num];
8ca47e00
RR
779 struct console_abort *abort = dev->priv;
780
17cbca2b
RR
781 /* First we need a console buffer from the Guests's input virtqueue. */
782 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
56ae43df
RR
783
784 /* If they're not ready for input, stop listening to this file
785 * descriptor. We'll start again once they add an input buffer. */
786 if (head == dev->vq->vring.num)
787 return false;
788
789 if (out_num)
17cbca2b 790 errx(1, "Output buffers in console in queue?");
8ca47e00 791
dde79789
RR
792 /* This is why we convert to iovecs: the readv() call uses them, and so
793 * it reads straight into the Guest's buffer. */
17cbca2b 794 len = readv(dev->fd, iov, in_num);
8ca47e00 795 if (len <= 0) {
dde79789 796 /* This implies that the console is closed, is /dev/null, or
17cbca2b 797 * something went terribly wrong. */
8ca47e00 798 warnx("Failed to get console input, ignoring console.");
56ae43df 799 /* Put the input terminal back. */
17cbca2b 800 restore_term();
56ae43df
RR
801 /* Remove callback from input vq, so it doesn't restart us. */
802 dev->vq->handle_output = NULL;
803 /* Stop listening to this fd: don't call us again. */
17cbca2b 804 return false;
8ca47e00
RR
805 }
806
56ae43df
RR
807 /* Tell the Guest about the new input. */
808 add_used_and_trigger(fd, dev->vq, head, len);
8ca47e00 809
dde79789
RR
810 /* Three ^C within one second? Exit.
811 *
812 * This is such a hack, but works surprisingly well. Each ^C has to be
813 * in a buffer by itself, so they can't be too fast. But we check that
814 * we get three within about a second, so they can't be too slow. */
8ca47e00
RR
815 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
816 if (!abort->count++)
817 gettimeofday(&abort->start, NULL);
818 else if (abort->count == 3) {
819 struct timeval now;
820 gettimeofday(&now, NULL);
821 if (now.tv_sec <= abort->start.tv_sec+1) {
511801dc 822 unsigned long args[] = { LHREQ_BREAK, 0 };
dde79789
RR
823 /* Close the fd so Waker will know it has to
824 * exit. */
8ca47e00 825 close(waker_fd);
dde79789
RR
826 /* Just in case waker is blocked in BREAK, send
827 * unbreak now. */
8ca47e00
RR
828 write(fd, args, sizeof(args));
829 exit(2);
830 }
831 abort->count = 0;
832 }
833 } else
dde79789 834 /* Any other key resets the abort counter. */
8ca47e00
RR
835 abort->count = 0;
836
dde79789 837 /* Everything went OK! */
8ca47e00
RR
838 return true;
839}
840
17cbca2b
RR
841/* Handling output for console is simple: we just get all the output buffers
842 * and write them to stdout. */
843static void handle_console_output(int fd, struct virtqueue *vq)
8ca47e00 844{
17cbca2b
RR
845 unsigned int head, out, in;
846 int len;
847 struct iovec iov[vq->vring.num];
848
849 /* Keep getting output buffers from the Guest until we run out. */
850 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
851 if (in)
852 errx(1, "Input buffers in output queue?");
853 len = writev(STDOUT_FILENO, iov, out);
854 add_used_and_trigger(fd, vq, head, len);
855 }
8ca47e00
RR
856}
857
e1e72965
RR
858/*
859 * The Network
860 *
861 * Handling output for network is also simple: we get all the output buffers
17cbca2b 862 * and write them (ignoring the first element) to this device's file descriptor
a6bd8e13
RR
863 * (/dev/net/tun).
864 */
17cbca2b 865static void handle_net_output(int fd, struct virtqueue *vq)
8ca47e00 866{
17cbca2b
RR
867 unsigned int head, out, in;
868 int len;
869 struct iovec iov[vq->vring.num];
870
871 /* Keep getting output buffers from the Guest until we run out. */
872 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
873 if (in)
874 errx(1, "Input buffers in output queue?");
e1e72965
RR
875 /* Check header, but otherwise ignore it (we told the Guest we
876 * supported no features, so it shouldn't have anything
877 * interesting). */
17cbca2b
RR
878 (void)convert(&iov[0], struct virtio_net_hdr);
879 len = writev(vq->dev->fd, iov+1, out-1);
880 add_used_and_trigger(fd, vq, head, len);
881 }
8ca47e00
RR
882}
883
17cbca2b
RR
884/* This is where we handle a packet coming in from the tun device to our
885 * Guest. */
8ca47e00
RR
886static bool handle_tun_input(int fd, struct device *dev)
887{
17cbca2b 888 unsigned int head, in_num, out_num;
8ca47e00 889 int len;
17cbca2b
RR
890 struct iovec iov[dev->vq->vring.num];
891 struct virtio_net_hdr *hdr;
8ca47e00 892
17cbca2b
RR
893 /* First we need a network buffer from the Guests's recv virtqueue. */
894 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
895 if (head == dev->vq->vring.num) {
dde79789 896 /* Now, it's expected that if we try to send a packet too
17cbca2b
RR
897 * early, the Guest won't be ready yet. Wait until the device
898 * status says it's ready. */
899 /* FIXME: Actually want DRIVER_ACTIVE here. */
900 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
8ca47e00 901 warn("network: no dma buffer!");
56ae43df
RR
902 /* We'll turn this back on if input buffers are registered. */
903 return false;
17cbca2b
RR
904 } else if (out_num)
905 errx(1, "Output buffers in network recv queue?");
906
907 /* First element is the header: we set it to 0 (no features). */
908 hdr = convert(&iov[0], struct virtio_net_hdr);
909 hdr->flags = 0;
910 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
8ca47e00 911
dde79789 912 /* Read the packet from the device directly into the Guest's buffer. */
17cbca2b 913 len = readv(dev->fd, iov+1, in_num-1);
8ca47e00
RR
914 if (len <= 0)
915 err(1, "reading network");
dde79789 916
56ae43df
RR
917 /* Tell the Guest about the new packet. */
918 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
17cbca2b 919
8ca47e00 920 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
17cbca2b
RR
921 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
922 head != dev->vq->vring.num ? "sent" : "discarded");
923
dde79789 924 /* All good. */
8ca47e00
RR
925 return true;
926}
927
e1e72965
RR
928/*L:215 This is the callback attached to the network and console input
929 * virtqueues: it ensures we try again, in case we stopped console or net
56ae43df
RR
930 * delivery because Guest didn't have any buffers. */
931static void enable_fd(int fd, struct virtqueue *vq)
932{
933 add_device_fd(vq->dev->fd);
934 /* Tell waker to listen to it again */
935 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
936}
937
a007a751
RR
938/* When the Guest tells us they updated the status field, we handle it. */
939static void update_device_status(struct device *dev)
6e5aa7ef
RR
940{
941 struct virtqueue *vq;
942
a007a751
RR
943 /* This is a reset. */
944 if (dev->desc->status == 0) {
945 verbose("Resetting device %s\n", dev->name);
6e5aa7ef 946
a007a751
RR
947 /* Clear any features they've acked. */
948 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
949 dev->desc->feature_len);
6e5aa7ef 950
a007a751
RR
951 /* Zero out the virtqueues. */
952 for (vq = dev->vq; vq; vq = vq->next) {
953 memset(vq->vring.desc, 0,
954 vring_size(vq->config.num, getpagesize()));
955 vq->last_avail_idx = 0;
956 }
957 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
958 warnx("Device %s configuration FAILED", dev->name);
959 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
960 unsigned int i;
961
962 verbose("Device %s OK: offered", dev->name);
963 for (i = 0; i < dev->desc->feature_len; i++)
32c68e5c 964 verbose(" %02x", get_feature_bits(dev)[i]);
a007a751
RR
965 verbose(", accepted");
966 for (i = 0; i < dev->desc->feature_len; i++)
32c68e5c 967 verbose(" %02x", get_feature_bits(dev)
a007a751
RR
968 [dev->desc->feature_len+i]);
969
970 if (dev->ready)
971 dev->ready(dev);
6e5aa7ef
RR
972 }
973}
974
17cbca2b
RR
975/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
976static void handle_output(int fd, unsigned long addr)
8ca47e00
RR
977{
978 struct device *i;
17cbca2b
RR
979 struct virtqueue *vq;
980
6e5aa7ef 981 /* Check each device and virtqueue. */
17cbca2b 982 for (i = devices.dev; i; i = i->next) {
a007a751 983 /* Notifications to device descriptors update device status. */
6e5aa7ef 984 if (from_guest_phys(addr) == i->desc) {
a007a751 985 update_device_status(i);
6e5aa7ef
RR
986 return;
987 }
988
989 /* Notifications to virtqueues mean output has occurred. */
17cbca2b 990 for (vq = i->vq; vq; vq = vq->next) {
6e5aa7ef
RR
991 if (vq->config.pfn != addr/getpagesize())
992 continue;
993
994 /* Guest should acknowledge (and set features!) before
995 * using the device. */
996 if (i->desc->status == 0) {
997 warnx("%s gave early output", i->name);
17cbca2b
RR
998 return;
999 }
6e5aa7ef
RR
1000
1001 if (strcmp(vq->dev->name, "console") != 0)
1002 verbose("Output to %s\n", vq->dev->name);
1003 if (vq->handle_output)
1004 vq->handle_output(fd, vq);
1005 return;
8ca47e00
RR
1006 }
1007 }
dde79789 1008
17cbca2b
RR
1009 /* Early console write is done using notify on a nul-terminated string
1010 * in Guest memory. */
1011 if (addr >= guest_limit)
1012 errx(1, "Bad NOTIFY %#lx", addr);
1013
1014 write(STDOUT_FILENO, from_guest_phys(addr),
1015 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1016}
1017
e1e72965 1018/* This is called when the Waker wakes us up: check for incoming file
dde79789 1019 * descriptors. */
17cbca2b 1020static void handle_input(int fd)
8ca47e00 1021{
dde79789 1022 /* select() wants a zeroed timeval to mean "don't wait". */
8ca47e00
RR
1023 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1024
1025 for (;;) {
1026 struct device *i;
17cbca2b 1027 fd_set fds = devices.infds;
8ca47e00 1028
dde79789 1029 /* If nothing is ready, we're done. */
17cbca2b 1030 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
8ca47e00
RR
1031 break;
1032
a6bd8e13
RR
1033 /* Otherwise, call the device(s) which have readable file
1034 * descriptors and a method of handling them. */
17cbca2b 1035 for (i = devices.dev; i; i = i->next) {
8ca47e00 1036 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
56ae43df
RR
1037 int dev_fd;
1038 if (i->handle_input(fd, i))
1039 continue;
1040
dde79789 1041 /* If handle_input() returns false, it means we
56ae43df
RR
1042 * should no longer service it. Networking and
1043 * console do this when there's no input
1044 * buffers to deliver into. Console also uses
a6bd8e13 1045 * it when it discovers that stdin is closed. */
56ae43df
RR
1046 FD_CLR(i->fd, &devices.infds);
1047 /* Tell waker to ignore it too, by sending a
1048 * negative fd number (-1, since 0 is a valid
1049 * FD number). */
1050 dev_fd = -i->fd - 1;
1051 write(waker_fd, &dev_fd, sizeof(dev_fd));
8ca47e00
RR
1052 }
1053 }
1054 }
1055}
1056
dde79789
RR
1057/*L:190
1058 * Device Setup
1059 *
1060 * All devices need a descriptor so the Guest knows it exists, and a "struct
1061 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1062 * routines to allocate and manage them.
1063 */
8ca47e00 1064
a586d4f6
RR
1065/* The layout of the device page is a "struct lguest_device_desc" followed by a
1066 * number of virtqueue descriptors, then two sets of feature bits, then an
1067 * array of configuration bytes. This routine returns the configuration
1068 * pointer. */
1069static u8 *device_config(const struct device *dev)
1070{
1071 return (void *)(dev->desc + 1)
1072 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1073 + dev->desc->feature_len * 2;
17cbca2b
RR
1074}
1075
a586d4f6
RR
1076/* This routine allocates a new "struct lguest_device_desc" from descriptor
1077 * table page just above the Guest's normal memory. It returns a pointer to
1078 * that descriptor. */
1079static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1080{
a586d4f6
RR
1081 struct lguest_device_desc d = { .type = type };
1082 void *p;
17cbca2b 1083
a586d4f6
RR
1084 /* Figure out where the next device config is, based on the last one. */
1085 if (devices.lastdev)
1086 p = device_config(devices.lastdev)
1087 + devices.lastdev->desc->config_len;
1088 else
1089 p = devices.descpage;
17cbca2b 1090
a586d4f6
RR
1091 /* We only have one page for all the descriptors. */
1092 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1093 errx(1, "Too many devices");
17cbca2b 1094
a586d4f6
RR
1095 /* p might not be aligned, so we memcpy in. */
1096 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1097}
1098
a586d4f6
RR
1099/* Each device descriptor is followed by the description of its virtqueues. We
1100 * specify how many descriptors the virtqueue is to have. */
17cbca2b
RR
1101static void add_virtqueue(struct device *dev, unsigned int num_descs,
1102 void (*handle_output)(int fd, struct virtqueue *me))
1103{
1104 unsigned int pages;
1105 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1106 void *p;
1107
a6bd8e13 1108 /* First we need some memory for this virtqueue. */
42b36cc0
RR
1109 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1110 / getpagesize();
17cbca2b
RR
1111 p = get_pages(pages);
1112
d1c856e0
RR
1113 /* Initialize the virtqueue */
1114 vq->next = NULL;
1115 vq->last_avail_idx = 0;
1116 vq->dev = dev;
20887611 1117 vq->inflight = 0;
d1c856e0 1118
17cbca2b
RR
1119 /* Initialize the configuration. */
1120 vq->config.num = num_descs;
1121 vq->config.irq = devices.next_irq++;
1122 vq->config.pfn = to_guest_phys(p) / getpagesize();
1123
1124 /* Initialize the vring. */
42b36cc0 1125 vring_init(&vq->vring, num_descs, p, getpagesize());
17cbca2b 1126
a586d4f6
RR
1127 /* Append virtqueue to this device's descriptor. We use
1128 * device_config() to get the end of the device's current virtqueues;
1129 * we check that we haven't added any config or feature information
1130 * yet, otherwise we'd be overwriting them. */
1131 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1132 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1133 dev->desc->num_vq++;
1134
1135 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b
RR
1136
1137 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1138 * second. */
1139 for (i = &dev->vq; *i; i = &(*i)->next);
1140 *i = vq;
1141
e1e72965
RR
1142 /* Set the routine to call when the Guest does something to this
1143 * virtqueue. */
17cbca2b 1144 vq->handle_output = handle_output;
e1e72965 1145
426e3e0a
RR
1146 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1147 * don't have a handler */
17cbca2b
RR
1148 if (!handle_output)
1149 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
8ca47e00
RR
1150}
1151
6e5aa7ef 1152/* The first half of the feature bitmask is for us to advertise features. The
a6bd8e13 1153 * second half is for the Guest to accept features. */
a586d4f6
RR
1154static void add_feature(struct device *dev, unsigned bit)
1155{
6e5aa7ef 1156 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1157
1158 /* We can't extend the feature bits once we've added config bytes */
1159 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1160 assert(dev->desc->config_len == 0);
1161 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1162 }
1163
a586d4f6
RR
1164 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1165}
1166
1167/* This routine sets the configuration fields for an existing device's
1168 * descriptor. It only works for the last device, but that's OK because that's
1169 * how we use it. */
1170static void set_config(struct device *dev, unsigned len, const void *conf)
1171{
1172 /* Check we haven't overflowed our single page. */
1173 if (device_config(dev) + len > devices.descpage + getpagesize())
1174 errx(1, "Too many devices");
1175
1176 /* Copy in the config information, and store the length. */
1177 memcpy(device_config(dev), conf, len);
1178 dev->desc->config_len = len;
1179}
1180
17cbca2b 1181/* This routine does all the creation and setup of a new device, including
a6bd8e13
RR
1182 * calling new_dev_desc() to allocate the descriptor and device memory.
1183 *
1184 * See what I mean about userspace being boring? */
17cbca2b
RR
1185static struct device *new_device(const char *name, u16 type, int fd,
1186 bool (*handle_input)(int, struct device *))
8ca47e00
RR
1187{
1188 struct device *dev = malloc(sizeof(*dev));
1189
dde79789 1190 /* Now we populate the fields one at a time. */
8ca47e00 1191 dev->fd = fd;
dde79789
RR
1192 /* If we have an input handler for this file descriptor, then we add it
1193 * to the device_list's fdset and maxfd. */
8ca47e00 1194 if (handle_input)
17cbca2b
RR
1195 add_device_fd(dev->fd);
1196 dev->desc = new_dev_desc(type);
8ca47e00 1197 dev->handle_input = handle_input;
17cbca2b 1198 dev->name = name;
d1c856e0 1199 dev->vq = NULL;
a007a751 1200 dev->ready = NULL;
a586d4f6
RR
1201
1202 /* Append to device list. Prepending to a single-linked list is
1203 * easier, but the user expects the devices to be arranged on the bus
1204 * in command-line order. The first network device on the command line
1205 * is eth0, the first block device /dev/vda, etc. */
1206 if (devices.lastdev)
1207 devices.lastdev->next = dev;
1208 else
1209 devices.dev = dev;
1210 devices.lastdev = dev;
1211
8ca47e00
RR
1212 return dev;
1213}
1214
dde79789
RR
1215/* Our first setup routine is the console. It's a fairly simple device, but
1216 * UNIX tty handling makes it uglier than it could be. */
17cbca2b 1217static void setup_console(void)
8ca47e00
RR
1218{
1219 struct device *dev;
1220
dde79789 1221 /* If we can save the initial standard input settings... */
8ca47e00
RR
1222 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1223 struct termios term = orig_term;
dde79789
RR
1224 /* Then we turn off echo, line buffering and ^C etc. We want a
1225 * raw input stream to the Guest. */
8ca47e00
RR
1226 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1227 tcsetattr(STDIN_FILENO, TCSANOW, &term);
dde79789
RR
1228 /* If we exit gracefully, the original settings will be
1229 * restored so the user can see what they're typing. */
8ca47e00
RR
1230 atexit(restore_term);
1231 }
1232
17cbca2b
RR
1233 dev = new_device("console", VIRTIO_ID_CONSOLE,
1234 STDIN_FILENO, handle_console_input);
dde79789 1235 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1236 dev->priv = malloc(sizeof(struct console_abort));
1237 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1238
56ae43df
RR
1239 /* The console needs two virtqueues: the input then the output. When
1240 * they put something the input queue, we make sure we're listening to
1241 * stdin. When they put something in the output queue, we write it to
e1e72965 1242 * stdout. */
56ae43df 1243 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
17cbca2b
RR
1244 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1245
1246 verbose("device %u: console\n", devices.device_num++);
8ca47e00 1247}
17cbca2b 1248/*:*/
8ca47e00 1249
17cbca2b
RR
1250/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1251 * --sharenet=<name> option which opens or creates a named pipe. This can be
1252 * used to send packets to another guest in a 1:1 manner.
dde79789 1253 *
17cbca2b
RR
1254 * More sopisticated is to use one of the tools developed for project like UML
1255 * to do networking.
dde79789 1256 *
17cbca2b
RR
1257 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1258 * completely generic ("here's my vring, attach to your vring") and would work
1259 * for any traffic. Of course, namespace and permissions issues need to be
1260 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1261 * multiple inter-guest channels behind one interface, although it would
1262 * require some manner of hotplugging new virtio channels.
1263 *
1264 * Finally, we could implement a virtio network switch in the kernel. :*/
8ca47e00
RR
1265
1266static u32 str2ip(const char *ipaddr)
1267{
dec6a2be 1268 unsigned int b[4];
8ca47e00 1269
dec6a2be
MM
1270 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1271 errx(1, "Failed to parse IP address '%s'", ipaddr);
1272 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1273}
1274
1275static void str2mac(const char *macaddr, unsigned char mac[6])
1276{
1277 unsigned int m[6];
1278 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1279 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1280 errx(1, "Failed to parse mac address '%s'", macaddr);
1281 mac[0] = m[0];
1282 mac[1] = m[1];
1283 mac[2] = m[2];
1284 mac[3] = m[3];
1285 mac[4] = m[4];
1286 mac[5] = m[5];
8ca47e00
RR
1287}
1288
dde79789
RR
1289/* This code is "adapted" from libbridge: it attaches the Host end of the
1290 * network device to the bridge device specified by the command line.
1291 *
1292 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1293 * dislike bridging), and I just try not to break it. */
8ca47e00
RR
1294static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1295{
1296 int ifidx;
1297 struct ifreq ifr;
1298
1299 if (!*br_name)
1300 errx(1, "must specify bridge name");
1301
1302 ifidx = if_nametoindex(if_name);
1303 if (!ifidx)
1304 errx(1, "interface %s does not exist!", if_name);
1305
1306 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1307 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1308 ifr.ifr_ifindex = ifidx;
1309 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1310 err(1, "can't add %s to bridge %s", if_name, br_name);
1311}
1312
dde79789
RR
1313/* This sets up the Host end of the network device with an IP address, brings
1314 * it up so packets will flow, the copies the MAC address into the hwaddr
17cbca2b 1315 * pointer. */
dec6a2be 1316static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1317{
1318 struct ifreq ifr;
1319 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1320
1321 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1322 strcpy(ifr.ifr_name, tapif);
1323
1324 /* Don't read these incantations. Just cut & paste them like I did! */
8ca47e00
RR
1325 sin->sin_family = AF_INET;
1326 sin->sin_addr.s_addr = htonl(ipaddr);
1327 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1328 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1329 ifr.ifr_flags = IFF_UP;
1330 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1331 err(1, "Bringing interface %s up", tapif);
1332}
1333
1334static void get_mac(int fd, const char *tapif, unsigned char hwaddr[6])
1335{
1336 struct ifreq ifr;
1337
1338 memset(&ifr, 0, sizeof(ifr));
1339 strcpy(ifr.ifr_name, tapif);
8ca47e00 1340
dde79789
RR
1341 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1342 * above). IF means Interface, and HWADDR is hardware address.
1343 * Simple! */
8ca47e00 1344 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
dec6a2be 1345 err(1, "getting hw address for %s", tapif);
8ca47e00
RR
1346 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1347}
1348
dec6a2be 1349static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1350{
8ca47e00 1351 struct ifreq ifr;
dec6a2be
MM
1352 int netfd;
1353
1354 /* Start with this zeroed. Messy but sure. */
1355 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1356
dde79789
RR
1357 /* We open the /dev/net/tun device and tell it we want a tap device. A
1358 * tap device is like a tun device, only somehow different. To tell
1359 * the truth, I completely blundered my way through this code, but it
1360 * works now! */
8ca47e00 1361 netfd = open_or_die("/dev/net/tun", O_RDWR);
8ca47e00
RR
1362 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1363 strcpy(ifr.ifr_name, "tap%d");
1364 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1365 err(1, "configuring /dev/net/tun");
dec6a2be 1366
dde79789
RR
1367 /* We don't need checksums calculated for packets coming in this
1368 * device: trust us! */
8ca47e00
RR
1369 ioctl(netfd, TUNSETNOCSUM, 1);
1370
dec6a2be
MM
1371 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1372 return netfd;
1373}
1374
1375/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1376 * routing, but the principle is the same: it uses the "tun" device to inject
1377 * packets into the Host as if they came in from a normal network card. We
1378 * just shunt packets between the Guest and the tun device. */
1379static void setup_tun_net(char *arg)
1380{
1381 struct device *dev;
1382 int netfd, ipfd;
1383 u32 ip = INADDR_ANY;
1384 bool bridging = false;
1385 char tapif[IFNAMSIZ], *p;
1386 struct virtio_net_config conf;
1387
1388 netfd = get_tun_device(tapif);
1389
17cbca2b
RR
1390 /* First we create a new network device. */
1391 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
dde79789 1392
56ae43df
RR
1393 /* Network devices need a receive and a send queue, just like
1394 * console. */
1395 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
17cbca2b 1396 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
8ca47e00 1397
dde79789
RR
1398 /* We need a socket to perform the magic network ioctls to bring up the
1399 * tap interface, connect to the bridge etc. Any socket will do! */
8ca47e00
RR
1400 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1401 if (ipfd < 0)
1402 err(1, "opening IP socket");
1403
dde79789 1404 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1405 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1406 arg += strlen(BRIDGE_PFX);
1407 bridging = true;
1408 }
1409
1410 /* A mac address may follow the bridge name or IP address */
1411 p = strchr(arg, ':');
1412 if (p) {
1413 str2mac(p+1, conf.mac);
1414 *p = '\0';
1415 } else {
1416 p = arg + strlen(arg);
1417 /* None supplied; query the randomly assigned mac. */
1418 get_mac(ipfd, tapif, conf.mac);
1419 }
1420
1421 /* arg is now either an IP address or a bridge name */
1422 if (bridging)
1423 add_to_bridge(ipfd, tapif, arg);
1424 else
8ca47e00
RR
1425 ip = str2ip(arg);
1426
dec6a2be
MM
1427 /* Set up the tun device. */
1428 configure_device(ipfd, tapif, ip);
8ca47e00 1429
17cbca2b 1430 /* Tell Guest what MAC address to use. */
a586d4f6 1431 add_feature(dev, VIRTIO_NET_F_MAC);
20887611 1432 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
a586d4f6 1433 set_config(dev, sizeof(conf), &conf);
8ca47e00 1434
a586d4f6 1435 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1436 close(ipfd);
1437
dec6a2be
MM
1438 devices.device_num++;
1439
1440 if (bridging)
1441 verbose("device %u: tun %s attached to bridge: %s\n",
1442 devices.device_num, tapif, arg);
1443 else
1444 verbose("device %u: tun %s: %s\n",
1445 devices.device_num, tapif, arg);
8ca47e00 1446}
17cbca2b 1447
e1e72965
RR
1448/* Our block (disk) device should be really simple: the Guest asks for a block
1449 * number and we read or write that position in the file. Unfortunately, that
1450 * was amazingly slow: the Guest waits until the read is finished before
1451 * running anything else, even if it could have been doing useful work.
17cbca2b 1452 *
e1e72965
RR
1453 * We could use async I/O, except it's reputed to suck so hard that characters
1454 * actually go missing from your code when you try to use it.
17cbca2b
RR
1455 *
1456 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1457
e1e72965 1458/* This hangs off device->priv. */
17cbca2b
RR
1459struct vblk_info
1460{
1461 /* The size of the file. */
1462 off64_t len;
1463
1464 /* The file descriptor for the file. */
1465 int fd;
1466
1467 /* IO thread listens on this file descriptor [0]. */
1468 int workpipe[2];
1469
1470 /* IO thread writes to this file descriptor to mark it done, then
1471 * Launcher triggers interrupt to Guest. */
1472 int done_fd;
1473};
1474
e1e72965
RR
1475/*L:210
1476 * The Disk
1477 *
1478 * Remember that the block device is handled by a separate I/O thread. We head
1479 * straight into the core of that thread here:
1480 */
17cbca2b
RR
1481static bool service_io(struct device *dev)
1482{
1483 struct vblk_info *vblk = dev->priv;
1484 unsigned int head, out_num, in_num, wlen;
1485 int ret;
cb38fa23 1486 u8 *in;
17cbca2b
RR
1487 struct virtio_blk_outhdr *out;
1488 struct iovec iov[dev->vq->vring.num];
1489 off64_t off;
1490
e1e72965 1491 /* See if there's a request waiting. If not, nothing to do. */
17cbca2b
RR
1492 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1493 if (head == dev->vq->vring.num)
1494 return false;
1495
e1e72965
RR
1496 /* Every block request should contain at least one output buffer
1497 * (detailing the location on disk and the type of request) and one
1498 * input buffer (to hold the result). */
17cbca2b
RR
1499 if (out_num == 0 || in_num == 0)
1500 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1501 head, out_num, in_num);
1502
1503 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1504 in = convert(&iov[out_num+in_num-1], u8);
17cbca2b
RR
1505 off = out->sector * 512;
1506
e1e72965
RR
1507 /* The block device implements "barriers", where the Guest indicates
1508 * that it wants all previous writes to occur before this write. We
1509 * don't have a way of asking our kernel to do a barrier, so we just
1510 * synchronize all the data in the file. Pretty poor, no? */
17cbca2b
RR
1511 if (out->type & VIRTIO_BLK_T_BARRIER)
1512 fdatasync(vblk->fd);
1513
e1e72965
RR
1514 /* In general the virtio block driver is allowed to try SCSI commands.
1515 * It'd be nice if we supported eject, for example, but we don't. */
17cbca2b
RR
1516 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1517 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1518 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1519 wlen = sizeof(*in);
17cbca2b
RR
1520 } else if (out->type & VIRTIO_BLK_T_OUT) {
1521 /* Write */
1522
1523 /* Move to the right location in the block file. This can fail
1524 * if they try to write past end. */
1525 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1526 err(1, "Bad seek to sector %llu", out->sector);
1527
1528 ret = writev(vblk->fd, iov+1, out_num-1);
1529 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1530
1531 /* Grr... Now we know how long the descriptor they sent was, we
1532 * make sure they didn't try to write over the end of the block
1533 * file (possibly extending it). */
1534 if (ret > 0 && off + ret > vblk->len) {
1535 /* Trim it back to the correct length */
1536 ftruncate64(vblk->fd, vblk->len);
1537 /* Die, bad Guest, die. */
1538 errx(1, "Write past end %llu+%u", off, ret);
1539 }
1200e646 1540 wlen = sizeof(*in);
cb38fa23 1541 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b
RR
1542 } else {
1543 /* Read */
1544
1545 /* Move to the right location in the block file. This can fail
1546 * if they try to read past end. */
1547 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1548 err(1, "Bad seek to sector %llu", out->sector);
1549
1550 ret = readv(vblk->fd, iov+1, in_num-1);
1551 verbose("READ from sector %llu: %i\n", out->sector, ret);
1552 if (ret >= 0) {
1200e646 1553 wlen = sizeof(*in) + ret;
cb38fa23 1554 *in = VIRTIO_BLK_S_OK;
17cbca2b 1555 } else {
1200e646 1556 wlen = sizeof(*in);
cb38fa23 1557 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1558 }
1559 }
1560
1561 /* We can't trigger an IRQ, because we're not the Launcher. It does
1562 * that when we tell it we're done. */
1563 add_used(dev->vq, head, wlen);
1564 return true;
1565}
1566
1567/* This is the thread which actually services the I/O. */
1568static int io_thread(void *_dev)
1569{
1570 struct device *dev = _dev;
1571 struct vblk_info *vblk = dev->priv;
1572 char c;
1573
1574 /* Close other side of workpipe so we get 0 read when main dies. */
1575 close(vblk->workpipe[1]);
1576 /* Close the other side of the done_fd pipe. */
1577 close(dev->fd);
1578
1579 /* When this read fails, it means Launcher died, so we follow. */
1580 while (read(vblk->workpipe[0], &c, 1) == 1) {
e1e72965 1581 /* We acknowledge each request immediately to reduce latency,
17cbca2b 1582 * rather than waiting until we've done them all. I haven't
a6bd8e13
RR
1583 * measured to see if it makes any difference.
1584 *
1585 * That would be an interesting test, wouldn't it? You could
1586 * also try having more than one I/O thread. */
17cbca2b
RR
1587 while (service_io(dev))
1588 write(vblk->done_fd, &c, 1);
1589 }
1590 return 0;
1591}
1592
e1e72965 1593/* Now we've seen the I/O thread, we return to the Launcher to see what happens
a6bd8e13 1594 * when that thread tells us it's completed some I/O. */
17cbca2b
RR
1595static bool handle_io_finish(int fd, struct device *dev)
1596{
1597 char c;
1598
e1e72965
RR
1599 /* If the I/O thread died, presumably it printed the error, so we
1600 * simply exit. */
17cbca2b
RR
1601 if (read(dev->fd, &c, 1) != 1)
1602 exit(1);
1603
1604 /* It did some work, so trigger the irq. */
1605 trigger_irq(fd, dev->vq);
1606 return true;
1607}
1608
e1e72965 1609/* When the Guest submits some I/O, we just need to wake the I/O thread. */
17cbca2b
RR
1610static void handle_virtblk_output(int fd, struct virtqueue *vq)
1611{
1612 struct vblk_info *vblk = vq->dev->priv;
1613 char c = 0;
1614
1615 /* Wake up I/O thread and tell it to go to work! */
1616 if (write(vblk->workpipe[1], &c, 1) != 1)
1617 /* Presumably it indicated why it died. */
1618 exit(1);
1619}
1620
e1e72965 1621/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1622static void setup_block_file(const char *filename)
1623{
1624 int p[2];
1625 struct device *dev;
1626 struct vblk_info *vblk;
1627 void *stack;
a586d4f6 1628 struct virtio_blk_config conf;
17cbca2b
RR
1629
1630 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1631 pipe(p);
1632
1633 /* The device responds to return from I/O thread. */
1634 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1635
e1e72965 1636 /* The device has one virtqueue, where the Guest places requests. */
17cbca2b
RR
1637 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1638
1639 /* Allocate the room for our own bookkeeping */
1640 vblk = dev->priv = malloc(sizeof(*vblk));
1641
1642 /* First we open the file and store the length. */
1643 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1644 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1645
a586d4f6
RR
1646 /* We support barriers. */
1647 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1648
17cbca2b 1649 /* Tell Guest how many sectors this device has. */
a586d4f6 1650 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b
RR
1651
1652 /* Tell Guest not to put in too many descriptors at once: two are used
1653 * for the in and out elements. */
a586d4f6
RR
1654 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1655 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1656
1657 set_config(dev, sizeof(conf), &conf);
17cbca2b
RR
1658
1659 /* The I/O thread writes to this end of the pipe when done. */
1660 vblk->done_fd = p[1];
1661
e1e72965
RR
1662 /* This is the second pipe, which is how we tell the I/O thread about
1663 * more work. */
17cbca2b
RR
1664 pipe(vblk->workpipe);
1665
a6bd8e13
RR
1666 /* Create stack for thread and run it. Since stack grows upwards, we
1667 * point the stack pointer to the end of this region. */
17cbca2b 1668 stack = malloc(32768);
ec04b13f
BR
1669 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1670 * becoming a zombie. */
a6bd8e13 1671 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
17cbca2b
RR
1672 err(1, "Creating clone");
1673
1674 /* We don't need to keep the I/O thread's end of the pipes open. */
1675 close(vblk->done_fd);
1676 close(vblk->workpipe[0]);
1677
1678 verbose("device %u: virtblock %llu sectors\n",
a586d4f6 1679 devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1680}
a6bd8e13 1681/* That's the end of device setup. */
ec04b13f 1682
a6bd8e13 1683/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1684static void __attribute__((noreturn)) restart_guest(void)
1685{
1686 unsigned int i;
1687
a6bd8e13 1688 /* Closing pipes causes the Waker thread and io_threads to die, and
ec04b13f
BR
1689 * closing /dev/lguest cleans up the Guest. Since we don't track all
1690 * open fds, we simply close everything beyond stderr. */
1691 for (i = 3; i < FD_SETSIZE; i++)
1692 close(i);
1693 execv(main_args[0], main_args);
1694 err(1, "Could not exec %s", main_args[0]);
1695}
8ca47e00 1696
a6bd8e13 1697/*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
dde79789 1698 * its input and output, and finally, lays it to rest. */
17cbca2b 1699static void __attribute__((noreturn)) run_guest(int lguest_fd)
8ca47e00
RR
1700{
1701 for (;;) {
511801dc 1702 unsigned long args[] = { LHREQ_BREAK, 0 };
17cbca2b 1703 unsigned long notify_addr;
8ca47e00
RR
1704 int readval;
1705
1706 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1707 readval = pread(lguest_fd, &notify_addr,
1708 sizeof(notify_addr), cpu_id);
8ca47e00 1709
17cbca2b
RR
1710 /* One unsigned long means the Guest did HCALL_NOTIFY */
1711 if (readval == sizeof(notify_addr)) {
1712 verbose("Notify on address %#lx\n", notify_addr);
1713 handle_output(lguest_fd, notify_addr);
8ca47e00 1714 continue;
dde79789 1715 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1716 } else if (errno == ENOENT) {
1717 char reason[1024] = { 0 };
e3283fa0 1718 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1719 errx(1, "%s", reason);
ec04b13f
BR
1720 /* ERESTART means that we need to reboot the guest */
1721 } else if (errno == ERESTART) {
1722 restart_guest();
e1e72965 1723 /* EAGAIN means the Waker wanted us to look at some input.
dde79789 1724 * Anything else means a bug or incompatible change. */
8ca47e00
RR
1725 } else if (errno != EAGAIN)
1726 err(1, "Running guest failed");
dde79789 1727
e3283fa0
GOC
1728 /* Only service input on thread for CPU 0. */
1729 if (cpu_id != 0)
1730 continue;
1731
e1e72965 1732 /* Service input, then unset the BREAK to release the Waker. */
17cbca2b 1733 handle_input(lguest_fd);
e3283fa0 1734 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
8ca47e00
RR
1735 err(1, "Resetting break");
1736 }
1737}
a6bd8e13 1738/*L:240
e1e72965
RR
1739 * This is the end of the Launcher. The good news: we are over halfway
1740 * through! The bad news: the most fiendish part of the code still lies ahead
1741 * of us.
dde79789 1742 *
e1e72965
RR
1743 * Are you ready? Take a deep breath and join me in the core of the Host, in
1744 * "make Host".
1745 :*/
8ca47e00
RR
1746
1747static struct option opts[] = {
1748 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1749 { "tunnet", 1, NULL, 't' },
1750 { "block", 1, NULL, 'b' },
1751 { "initrd", 1, NULL, 'i' },
1752 { NULL },
1753};
1754static void usage(void)
1755{
1756 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1757 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1758 "|--block=<filename>|--initrd=<filename>]...\n"
1759 "<mem-in-mb> vmlinux [args...]");
1760}
1761
3c6b5bfa 1762/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1763int main(int argc, char *argv[])
1764{
47436aa4
RR
1765 /* Memory, top-level pagetable, code startpoint and size of the
1766 * (optional) initrd. */
1767 unsigned long mem = 0, pgdir, start, initrd_size = 0;
e1e72965 1768 /* Two temporaries and the /dev/lguest file descriptor. */
6570c459 1769 int i, c, lguest_fd;
3c6b5bfa 1770 /* The boot information for the Guest. */
43d33b21 1771 struct boot_params *boot;
dde79789 1772 /* If they specify an initrd file to load. */
8ca47e00
RR
1773 const char *initrd_name = NULL;
1774
ec04b13f
BR
1775 /* Save the args: we "reboot" by execing ourselves again. */
1776 main_args = argv;
1777 /* We don't "wait" for the children, so prevent them from becoming
1778 * zombies. */
1779 signal(SIGCHLD, SIG_IGN);
1780
dde79789
RR
1781 /* First we initialize the device list. Since console and network
1782 * device receive input from a file descriptor, we keep an fdset
1783 * (infds) and the maximum fd number (max_infd) with the head of the
a586d4f6 1784 * list. We also keep a pointer to the last device. Finally, we keep
a6bd8e13
RR
1785 * the next interrupt number to use for devices (1: remember that 0 is
1786 * used by the timer). */
17cbca2b
RR
1787 FD_ZERO(&devices.infds);
1788 devices.max_infd = -1;
a586d4f6 1789 devices.lastdev = NULL;
17cbca2b 1790 devices.next_irq = 1;
8ca47e00 1791
e3283fa0 1792 cpu_id = 0;
dde79789
RR
1793 /* We need to know how much memory so we can set up the device
1794 * descriptor and memory pages for the devices as we parse the command
1795 * line. So we quickly look through the arguments to find the amount
1796 * of memory now. */
6570c459
RR
1797 for (i = 1; i < argc; i++) {
1798 if (argv[i][0] != '-') {
3c6b5bfa
RR
1799 mem = atoi(argv[i]) * 1024 * 1024;
1800 /* We start by mapping anonymous pages over all of
1801 * guest-physical memory range. This fills it with 0,
1802 * and ensures that the Guest won't be killed when it
1803 * tries to access it. */
1804 guest_base = map_zeroed_pages(mem / getpagesize()
1805 + DEVICE_PAGES);
1806 guest_limit = mem;
1807 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1808 devices.descpage = get_pages(1);
6570c459
RR
1809 break;
1810 }
1811 }
dde79789
RR
1812
1813 /* The options are fairly straight-forward */
8ca47e00
RR
1814 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1815 switch (c) {
1816 case 'v':
1817 verbose = true;
1818 break;
8ca47e00 1819 case 't':
17cbca2b 1820 setup_tun_net(optarg);
8ca47e00
RR
1821 break;
1822 case 'b':
17cbca2b 1823 setup_block_file(optarg);
8ca47e00
RR
1824 break;
1825 case 'i':
1826 initrd_name = optarg;
1827 break;
1828 default:
1829 warnx("Unknown argument %s", argv[optind]);
1830 usage();
1831 }
1832 }
dde79789
RR
1833 /* After the other arguments we expect memory and kernel image name,
1834 * followed by command line arguments for the kernel. */
8ca47e00
RR
1835 if (optind + 2 > argc)
1836 usage();
1837
3c6b5bfa
RR
1838 verbose("Guest base is at %p\n", guest_base);
1839
dde79789 1840 /* We always have a console device */
17cbca2b 1841 setup_console();
8ca47e00 1842
8ca47e00 1843 /* Now we load the kernel */
47436aa4 1844 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1845
3c6b5bfa
RR
1846 /* Boot information is stashed at physical address 0 */
1847 boot = from_guest_phys(0);
1848
dde79789 1849 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1850 if (initrd_name) {
1851 initrd_size = load_initrd(initrd_name, mem);
dde79789
RR
1852 /* These are the location in the Linux boot header where the
1853 * start and size of the initrd are expected to be found. */
43d33b21
RR
1854 boot->hdr.ramdisk_image = mem - initrd_size;
1855 boot->hdr.ramdisk_size = initrd_size;
dde79789 1856 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 1857 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
1858 }
1859
dde79789 1860 /* Set up the initial linear pagetables, starting below the initrd. */
47436aa4 1861 pgdir = setup_pagetables(mem, initrd_size);
8ca47e00 1862
dde79789
RR
1863 /* The Linux boot header contains an "E820" memory map: ours is a
1864 * simple, single region. */
43d33b21
RR
1865 boot->e820_entries = 1;
1866 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
dde79789 1867 /* The boot header contains a command line pointer: we put the command
43d33b21
RR
1868 * line after the boot header. */
1869 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 1870 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 1871 concat((char *)(boot + 1), argv+optind+2);
dde79789 1872
814a0e5c 1873 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 1874 boot->hdr.version = 0x207;
814a0e5c
RR
1875
1876 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 1877 boot->hdr.hardware_subarch = 1;
814a0e5c 1878
43d33b21
RR
1879 /* Tell the entry path not to try to reload segment registers. */
1880 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 1881
dde79789
RR
1882 /* We tell the kernel to initialize the Guest: this returns the open
1883 * /dev/lguest file descriptor. */
47436aa4 1884 lguest_fd = tell_kernel(pgdir, start);
dde79789
RR
1885
1886 /* We fork off a child process, which wakes the Launcher whenever one
a6bd8e13
RR
1887 * of the input file descriptors needs attention. We call this the
1888 * Waker, and we'll cover it in a moment. */
17cbca2b 1889 waker_fd = setup_waker(lguest_fd);
8ca47e00 1890
dde79789 1891 /* Finally, run the Guest. This doesn't return. */
17cbca2b 1892 run_guest(lguest_fd);
8ca47e00 1893}
f56a384e
RR
1894/*:*/
1895
1896/*M:999
1897 * Mastery is done: you now know everything I do.
1898 *
1899 * But surely you have seen code, features and bugs in your wanderings which
1900 * you now yearn to attack? That is the real game, and I look forward to you
1901 * patching and forking lguest into the Your-Name-Here-visor.
1902 *
1903 * Farewell, and good coding!
1904 * Rusty Russell.
1905 */
This page took 0.229748 seconds and 5 git commands to generate.