Merge remote-tracking branch 'spi/topic/build' into spi-next
[deliverable/linux.git] / arch / arm / kvm / coproc.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
5b3e5e5b 19#include <linux/mm.h>
749cf76c 20#include <linux/kvm_host.h>
1138245c 21#include <linux/uaccess.h>
5b3e5e5b
CD
22#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
26#include <asm/cacheflush.h>
27#include <asm/cputype.h>
28#include <trace/events/kvm.h>
4fe21e4c
RR
29#include <asm/vfp.h>
30#include "../vfp/vfpinstr.h"
749cf76c 31
5b3e5e5b
CD
32#include "trace.h"
33#include "coproc.h"
34
35
36/******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
39
c27581ed
CD
40/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41static u32 cache_levels;
42
43/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
44#define CSSELR_MAX 12
45
5b3e5e5b
CD
46int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
47{
48 kvm_inject_undefined(vcpu);
49 return 1;
50}
51
52int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
53{
54 /*
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
57 */
58 kvm_inject_undefined(vcpu);
59 return 1;
60}
61
62int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
63{
64 kvm_inject_undefined(vcpu);
65 return 1;
66}
67
68int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
69{
70 kvm_inject_undefined(vcpu);
71 return 1;
72}
73
74/* See note at ARM ARM B1.14.4 */
75static bool access_dcsw(struct kvm_vcpu *vcpu,
76 const struct coproc_params *p,
77 const struct coproc_reg *r)
78{
db730d8d 79 unsigned long val;
5b3e5e5b
CD
80 int cpu;
81
5b3e5e5b
CD
82 if (!p->is_write)
83 return read_from_write_only(vcpu, p);
84
15bbc1b2
MZ
85 cpu = get_cpu();
86
5b3e5e5b
CD
87 cpumask_setall(&vcpu->arch.require_dcache_flush);
88 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
89
90 /* If we were already preempted, take the long way around */
91 if (cpu != vcpu->arch.last_pcpu) {
92 flush_cache_all();
93 goto done;
94 }
95
96 val = *vcpu_reg(vcpu, p->Rt1);
97
98 switch (p->CRm) {
99 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
100 case 14: /* DCCISW */
101 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
102 break;
103
104 case 10: /* DCCSW */
105 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
106 break;
107 }
108
109done:
110 put_cpu();
111
112 return true;
113}
114
115/*
116 * We could trap ID_DFR0 and tell the guest we don't support performance
117 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
118 * NAKed, so it will read the PMCR anyway.
119 *
120 * Therefore we tell the guest we have 0 counters. Unfortunately, we
121 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
122 * all PM registers, which doesn't crash the guest kernel at least.
123 */
124static bool pm_fake(struct kvm_vcpu *vcpu,
125 const struct coproc_params *p,
126 const struct coproc_reg *r)
127{
128 if (p->is_write)
129 return ignore_write(vcpu, p);
130 else
131 return read_zero(vcpu, p);
132}
133
134#define access_pmcr pm_fake
135#define access_pmcntenset pm_fake
136#define access_pmcntenclr pm_fake
137#define access_pmovsr pm_fake
138#define access_pmselr pm_fake
139#define access_pmceid0 pm_fake
140#define access_pmceid1 pm_fake
141#define access_pmccntr pm_fake
142#define access_pmxevtyper pm_fake
143#define access_pmxevcntr pm_fake
144#define access_pmuserenr pm_fake
145#define access_pmintenset pm_fake
146#define access_pmintenclr pm_fake
147
148/* Architected CP15 registers.
240e99cb
CD
149 * CRn denotes the primary register number, but is copied to the CRm in the
150 * user space API for 64-bit register access in line with the terminology used
151 * in the ARM ARM.
152 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
153 * registers preceding 32-bit ones.
5b3e5e5b
CD
154 */
155static const struct coproc_reg cp15_regs[] = {
156 /* CSSELR: swapped by interrupt.S. */
157 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
158 NULL, reset_unknown, c0_CSSELR },
159
160 /* TTBR0/TTBR1: swapped by interrupt.S. */
240e99cb
CD
161 { CRm64( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
162 { CRm64( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
5b3e5e5b
CD
163
164 /* TTBCR: swapped by interrupt.S. */
165 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
166 NULL, reset_val, c2_TTBCR, 0x00000000 },
167
168 /* DACR: swapped by interrupt.S. */
169 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
170 NULL, reset_unknown, c3_DACR },
171
172 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
173 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
174 NULL, reset_unknown, c5_DFSR },
175 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
176 NULL, reset_unknown, c5_IFSR },
177 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
178 NULL, reset_unknown, c5_ADFSR },
179 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
180 NULL, reset_unknown, c5_AIFSR },
181
182 /* DFAR/IFAR: swapped by interrupt.S. */
183 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
184 NULL, reset_unknown, c6_DFAR },
185 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
186 NULL, reset_unknown, c6_IFAR },
6a077e4a
MZ
187
188 /* PAR swapped by interrupt.S */
240e99cb 189 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
6a077e4a 190
5b3e5e5b
CD
191 /*
192 * DC{C,I,CI}SW operations:
193 */
194 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
195 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
196 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
197 /*
198 * Dummy performance monitor implementation.
199 */
200 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
201 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
202 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
203 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
204 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
205 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
206 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
207 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
208 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
209 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
210 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
211 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
212 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
213
214 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
215 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
216 NULL, reset_unknown, c10_PRRR},
217 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
218 NULL, reset_unknown, c10_NMRR},
219
220 /* VBAR: swapped by interrupt.S. */
221 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
222 NULL, reset_val, c12_VBAR, 0x00000000 },
223
224 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
225 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
226 NULL, reset_val, c13_CID, 0x00000000 },
227 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
228 NULL, reset_unknown, c13_TID_URW },
229 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
230 NULL, reset_unknown, c13_TID_URO },
231 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
232 NULL, reset_unknown, c13_TID_PRIV },
c7e3ba64
MZ
233
234 /* CNTKCTL: swapped by interrupt.S. */
235 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
236 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
5b3e5e5b
CD
237};
238
239/* Target specific emulation tables */
240static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
241
242void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
243{
244 target_tables[table->target] = table;
245}
246
247/* Get specific register table for this target. */
248static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
249{
250 struct kvm_coproc_target_table *table;
251
252 table = target_tables[target];
253 *num = table->num;
254 return table->table;
255}
256
257static const struct coproc_reg *find_reg(const struct coproc_params *params,
258 const struct coproc_reg table[],
259 unsigned int num)
260{
261 unsigned int i;
262
263 for (i = 0; i < num; i++) {
264 const struct coproc_reg *r = &table[i];
265
266 if (params->is_64bit != r->is_64)
267 continue;
268 if (params->CRn != r->CRn)
269 continue;
270 if (params->CRm != r->CRm)
271 continue;
272 if (params->Op1 != r->Op1)
273 continue;
274 if (params->Op2 != r->Op2)
275 continue;
276
277 return r;
278 }
279 return NULL;
280}
281
282static int emulate_cp15(struct kvm_vcpu *vcpu,
283 const struct coproc_params *params)
284{
285 size_t num;
286 const struct coproc_reg *table, *r;
287
288 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
289 params->CRm, params->Op2, params->is_write);
290
291 table = get_target_table(vcpu->arch.target, &num);
292
293 /* Search target-specific then generic table. */
294 r = find_reg(params, table, num);
295 if (!r)
296 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
297
298 if (likely(r)) {
299 /* If we don't have an accessor, we should never get here! */
300 BUG_ON(!r->access);
301
302 if (likely(r->access(vcpu, params, r))) {
303 /* Skip instruction, since it was emulated */
23b415d6 304 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
5b3e5e5b
CD
305 return 1;
306 }
307 /* If access function fails, it should complain. */
308 } else {
db730d8d 309 kvm_err("Unsupported guest CP15 access at: %08lx\n",
5b3e5e5b
CD
310 *vcpu_pc(vcpu));
311 print_cp_instr(params);
312 }
313 kvm_inject_undefined(vcpu);
314 return 1;
315}
316
317/**
318 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
319 * @vcpu: The VCPU pointer
320 * @run: The kvm_run struct
321 */
322int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
323{
324 struct coproc_params params;
325
7393b599
MZ
326 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
327 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
328 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
329 params.is_64bit = true;
330
7393b599 331 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
5b3e5e5b 332 params.Op2 = 0;
7393b599 333 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
5b3e5e5b
CD
334 params.CRn = 0;
335
336 return emulate_cp15(vcpu, &params);
337}
338
339static void reset_coproc_regs(struct kvm_vcpu *vcpu,
340 const struct coproc_reg *table, size_t num)
341{
342 unsigned long i;
343
344 for (i = 0; i < num; i++)
345 if (table[i].reset)
346 table[i].reset(vcpu, &table[i]);
347}
348
349/**
350 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
351 * @vcpu: The VCPU pointer
352 * @run: The kvm_run struct
353 */
354int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
355{
356 struct coproc_params params;
357
7393b599
MZ
358 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
359 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
360 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
361 params.is_64bit = false;
362
7393b599
MZ
363 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
364 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
365 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
5b3e5e5b
CD
366 params.Rt2 = 0;
367
368 return emulate_cp15(vcpu, &params);
369}
370
1138245c
CD
371/******************************************************************************
372 * Userspace API
373 *****************************************************************************/
374
375static bool index_to_params(u64 id, struct coproc_params *params)
376{
377 switch (id & KVM_REG_SIZE_MASK) {
378 case KVM_REG_SIZE_U32:
379 /* Any unused index bits means it's not valid. */
380 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
381 | KVM_REG_ARM_COPROC_MASK
382 | KVM_REG_ARM_32_CRN_MASK
383 | KVM_REG_ARM_CRM_MASK
384 | KVM_REG_ARM_OPC1_MASK
385 | KVM_REG_ARM_32_OPC2_MASK))
386 return false;
387
388 params->is_64bit = false;
389 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
390 >> KVM_REG_ARM_32_CRN_SHIFT);
391 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
392 >> KVM_REG_ARM_CRM_SHIFT);
393 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
394 >> KVM_REG_ARM_OPC1_SHIFT);
395 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
396 >> KVM_REG_ARM_32_OPC2_SHIFT);
397 return true;
398 case KVM_REG_SIZE_U64:
399 /* Any unused index bits means it's not valid. */
400 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
401 | KVM_REG_ARM_COPROC_MASK
402 | KVM_REG_ARM_CRM_MASK
403 | KVM_REG_ARM_OPC1_MASK))
404 return false;
405 params->is_64bit = true;
240e99cb
CD
406 /* CRm to CRn: see cp15_to_index for details */
407 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
1138245c
CD
408 >> KVM_REG_ARM_CRM_SHIFT);
409 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
410 >> KVM_REG_ARM_OPC1_SHIFT);
411 params->Op2 = 0;
240e99cb 412 params->CRm = 0;
1138245c
CD
413 return true;
414 default:
415 return false;
416 }
417}
418
419/* Decode an index value, and find the cp15 coproc_reg entry. */
420static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
421 u64 id)
422{
423 size_t num;
424 const struct coproc_reg *table, *r;
425 struct coproc_params params;
426
427 /* We only do cp15 for now. */
428 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
429 return NULL;
430
431 if (!index_to_params(id, &params))
432 return NULL;
433
434 table = get_target_table(vcpu->arch.target, &num);
435 r = find_reg(&params, table, num);
436 if (!r)
437 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
438
439 /* Not saved in the cp15 array? */
440 if (r && !r->reg)
441 r = NULL;
442
443 return r;
444}
445
446/*
447 * These are the invariant cp15 registers: we let the guest see the host
448 * versions of these, so they're part of the guest state.
449 *
450 * A future CPU may provide a mechanism to present different values to
451 * the guest, or a future kvm may trap them.
452 */
453/* Unfortunately, there's no register-argument for mrc, so generate. */
454#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
455 static void get_##name(struct kvm_vcpu *v, \
456 const struct coproc_reg *r) \
457 { \
458 u32 val; \
459 \
460 asm volatile("mrc p15, " __stringify(op1) \
461 ", %0, c" __stringify(crn) \
462 ", c" __stringify(crm) \
463 ", " __stringify(op2) "\n" : "=r" (val)); \
464 ((struct coproc_reg *)r)->val = val; \
465 }
466
467FUNCTION_FOR32(0, 0, 0, 0, MIDR)
468FUNCTION_FOR32(0, 0, 0, 1, CTR)
469FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
470FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
471FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
472FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
473FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
474FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
475FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
476FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
477FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
478FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
479FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
480FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
481FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
482FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
483FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
484FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
485FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
486FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
487FUNCTION_FOR32(0, 0, 1, 7, AIDR)
488
489/* ->val is filled in by kvm_invariant_coproc_table_init() */
490static struct coproc_reg invariant_cp15[] = {
491 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
492 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
493 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
494 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
495 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
496
497 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
498 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
499 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
500 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
501 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
502 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
503 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
504 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
505
506 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
507 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
508 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
509 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
510 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
511 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
512
513 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
514 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
515};
516
517static int reg_from_user(void *val, const void __user *uaddr, u64 id)
518{
519 /* This Just Works because we are little endian. */
520 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
521 return -EFAULT;
522 return 0;
523}
524
525static int reg_to_user(void __user *uaddr, const void *val, u64 id)
526{
527 /* This Just Works because we are little endian. */
528 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
529 return -EFAULT;
530 return 0;
531}
532
533static int get_invariant_cp15(u64 id, void __user *uaddr)
534{
535 struct coproc_params params;
536 const struct coproc_reg *r;
537
538 if (!index_to_params(id, &params))
539 return -ENOENT;
540
541 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
542 if (!r)
543 return -ENOENT;
544
545 return reg_to_user(uaddr, &r->val, id);
546}
547
548static int set_invariant_cp15(u64 id, void __user *uaddr)
549{
550 struct coproc_params params;
551 const struct coproc_reg *r;
552 int err;
553 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
554
555 if (!index_to_params(id, &params))
556 return -ENOENT;
557 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
558 if (!r)
559 return -ENOENT;
560
561 err = reg_from_user(&val, uaddr, id);
562 if (err)
563 return err;
564
565 /* This is what we mean by invariant: you can't change it. */
566 if (r->val != val)
567 return -EINVAL;
568
569 return 0;
570}
571
c27581ed
CD
572static bool is_valid_cache(u32 val)
573{
574 u32 level, ctype;
575
576 if (val >= CSSELR_MAX)
577 return -ENOENT;
578
579 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
580 level = (val >> 1);
581 ctype = (cache_levels >> (level * 3)) & 7;
582
583 switch (ctype) {
584 case 0: /* No cache */
585 return false;
586 case 1: /* Instruction cache only */
587 return (val & 1);
588 case 2: /* Data cache only */
589 case 4: /* Unified cache */
590 return !(val & 1);
591 case 3: /* Separate instruction and data caches */
592 return true;
593 default: /* Reserved: we can't know instruction or data. */
594 return false;
595 }
596}
597
598/* Which cache CCSIDR represents depends on CSSELR value. */
599static u32 get_ccsidr(u32 csselr)
600{
601 u32 ccsidr;
602
603 /* Make sure noone else changes CSSELR during this! */
604 local_irq_disable();
605 /* Put value into CSSELR */
606 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
607 isb();
608 /* Read result out of CCSIDR */
609 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
610 local_irq_enable();
611
612 return ccsidr;
613}
614
615static int demux_c15_get(u64 id, void __user *uaddr)
616{
617 u32 val;
618 u32 __user *uval = uaddr;
619
620 /* Fail if we have unknown bits set. */
621 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
622 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
623 return -ENOENT;
624
625 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
626 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
627 if (KVM_REG_SIZE(id) != 4)
628 return -ENOENT;
629 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
630 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
631 if (!is_valid_cache(val))
632 return -ENOENT;
633
634 return put_user(get_ccsidr(val), uval);
635 default:
636 return -ENOENT;
637 }
638}
639
640static int demux_c15_set(u64 id, void __user *uaddr)
641{
642 u32 val, newval;
643 u32 __user *uval = uaddr;
644
645 /* Fail if we have unknown bits set. */
646 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
647 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
648 return -ENOENT;
649
650 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
651 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
652 if (KVM_REG_SIZE(id) != 4)
653 return -ENOENT;
654 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
655 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
656 if (!is_valid_cache(val))
657 return -ENOENT;
658
659 if (get_user(newval, uval))
660 return -EFAULT;
661
662 /* This is also invariant: you can't change it. */
663 if (newval != get_ccsidr(val))
664 return -EINVAL;
665 return 0;
666 default:
667 return -ENOENT;
668 }
669}
670
4fe21e4c
RR
671#ifdef CONFIG_VFPv3
672static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
673 KVM_REG_ARM_VFP_FPSCR,
674 KVM_REG_ARM_VFP_FPINST,
675 KVM_REG_ARM_VFP_FPINST2,
676 KVM_REG_ARM_VFP_MVFR0,
677 KVM_REG_ARM_VFP_MVFR1,
678 KVM_REG_ARM_VFP_FPSID };
679
680static unsigned int num_fp_regs(void)
681{
682 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
683 return 32;
684 else
685 return 16;
686}
687
688static unsigned int num_vfp_regs(void)
689{
690 /* Normal FP regs + control regs. */
691 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
692}
693
694static int copy_vfp_regids(u64 __user *uindices)
695{
696 unsigned int i;
697 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
698 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
699
700 for (i = 0; i < num_fp_regs(); i++) {
701 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
702 uindices))
703 return -EFAULT;
704 uindices++;
705 }
706
707 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
708 if (put_user(u32reg | vfp_sysregs[i], uindices))
709 return -EFAULT;
710 uindices++;
711 }
712
713 return num_vfp_regs();
714}
715
716static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
717{
718 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
719 u32 val;
720
721 /* Fail if we have unknown bits set. */
722 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
723 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
724 return -ENOENT;
725
726 if (vfpid < num_fp_regs()) {
727 if (KVM_REG_SIZE(id) != 8)
728 return -ENOENT;
729 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
730 id);
731 }
732
733 /* FP control registers are all 32 bit. */
734 if (KVM_REG_SIZE(id) != 4)
735 return -ENOENT;
736
737 switch (vfpid) {
738 case KVM_REG_ARM_VFP_FPEXC:
739 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
740 case KVM_REG_ARM_VFP_FPSCR:
741 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
742 case KVM_REG_ARM_VFP_FPINST:
743 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
744 case KVM_REG_ARM_VFP_FPINST2:
745 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
746 case KVM_REG_ARM_VFP_MVFR0:
747 val = fmrx(MVFR0);
748 return reg_to_user(uaddr, &val, id);
749 case KVM_REG_ARM_VFP_MVFR1:
750 val = fmrx(MVFR1);
751 return reg_to_user(uaddr, &val, id);
752 case KVM_REG_ARM_VFP_FPSID:
753 val = fmrx(FPSID);
754 return reg_to_user(uaddr, &val, id);
755 default:
756 return -ENOENT;
757 }
758}
759
760static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
761{
762 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
763 u32 val;
764
765 /* Fail if we have unknown bits set. */
766 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
767 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
768 return -ENOENT;
769
770 if (vfpid < num_fp_regs()) {
771 if (KVM_REG_SIZE(id) != 8)
772 return -ENOENT;
773 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
774 uaddr, id);
775 }
776
777 /* FP control registers are all 32 bit. */
778 if (KVM_REG_SIZE(id) != 4)
779 return -ENOENT;
780
781 switch (vfpid) {
782 case KVM_REG_ARM_VFP_FPEXC:
783 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
784 case KVM_REG_ARM_VFP_FPSCR:
785 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
786 case KVM_REG_ARM_VFP_FPINST:
787 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
788 case KVM_REG_ARM_VFP_FPINST2:
789 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
790 /* These are invariant. */
791 case KVM_REG_ARM_VFP_MVFR0:
792 if (reg_from_user(&val, uaddr, id))
793 return -EFAULT;
794 if (val != fmrx(MVFR0))
795 return -EINVAL;
796 return 0;
797 case KVM_REG_ARM_VFP_MVFR1:
798 if (reg_from_user(&val, uaddr, id))
799 return -EFAULT;
800 if (val != fmrx(MVFR1))
801 return -EINVAL;
802 return 0;
803 case KVM_REG_ARM_VFP_FPSID:
804 if (reg_from_user(&val, uaddr, id))
805 return -EFAULT;
806 if (val != fmrx(FPSID))
807 return -EINVAL;
808 return 0;
809 default:
810 return -ENOENT;
811 }
812}
813#else /* !CONFIG_VFPv3 */
814static unsigned int num_vfp_regs(void)
815{
816 return 0;
817}
818
819static int copy_vfp_regids(u64 __user *uindices)
820{
821 return 0;
822}
823
824static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
825{
826 return -ENOENT;
827}
828
829static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
830{
831 return -ENOENT;
832}
833#endif /* !CONFIG_VFPv3 */
834
1138245c
CD
835int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
836{
837 const struct coproc_reg *r;
838 void __user *uaddr = (void __user *)(long)reg->addr;
839
c27581ed
CD
840 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
841 return demux_c15_get(reg->id, uaddr);
842
4fe21e4c
RR
843 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
844 return vfp_get_reg(vcpu, reg->id, uaddr);
845
1138245c
CD
846 r = index_to_coproc_reg(vcpu, reg->id);
847 if (!r)
848 return get_invariant_cp15(reg->id, uaddr);
849
850 /* Note: copies two regs if size is 64 bit. */
851 return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
852}
853
854int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
855{
856 const struct coproc_reg *r;
857 void __user *uaddr = (void __user *)(long)reg->addr;
858
c27581ed
CD
859 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
860 return demux_c15_set(reg->id, uaddr);
861
4fe21e4c
RR
862 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
863 return vfp_set_reg(vcpu, reg->id, uaddr);
864
1138245c
CD
865 r = index_to_coproc_reg(vcpu, reg->id);
866 if (!r)
867 return set_invariant_cp15(reg->id, uaddr);
868
869 /* Note: copies two regs if size is 64 bit */
870 return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
871}
872
c27581ed
CD
873static unsigned int num_demux_regs(void)
874{
875 unsigned int i, count = 0;
876
877 for (i = 0; i < CSSELR_MAX; i++)
878 if (is_valid_cache(i))
879 count++;
880
881 return count;
882}
883
884static int write_demux_regids(u64 __user *uindices)
885{
886 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
887 unsigned int i;
888
889 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
890 for (i = 0; i < CSSELR_MAX; i++) {
891 if (!is_valid_cache(i))
892 continue;
893 if (put_user(val | i, uindices))
894 return -EFAULT;
895 uindices++;
896 }
897 return 0;
898}
899
1138245c
CD
900static u64 cp15_to_index(const struct coproc_reg *reg)
901{
902 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
903 if (reg->is_64) {
904 val |= KVM_REG_SIZE_U64;
905 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
240e99cb
CD
906 /*
907 * CRn always denotes the primary coproc. reg. nr. for the
908 * in-kernel representation, but the user space API uses the
909 * CRm for the encoding, because it is modelled after the
910 * MRRC/MCRR instructions: see the ARM ARM rev. c page
911 * B3-1445
912 */
913 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1138245c
CD
914 } else {
915 val |= KVM_REG_SIZE_U32;
916 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
917 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
918 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
919 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
920 }
921 return val;
922}
923
924static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
925{
926 if (!*uind)
927 return true;
928
929 if (put_user(cp15_to_index(reg), *uind))
930 return false;
931
932 (*uind)++;
933 return true;
934}
935
936/* Assumed ordered tables, see kvm_coproc_table_init. */
937static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
938{
939 const struct coproc_reg *i1, *i2, *end1, *end2;
940 unsigned int total = 0;
941 size_t num;
942
943 /* We check for duplicates here, to allow arch-specific overrides. */
944 i1 = get_target_table(vcpu->arch.target, &num);
945 end1 = i1 + num;
946 i2 = cp15_regs;
947 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
948
949 BUG_ON(i1 == end1 || i2 == end2);
950
951 /* Walk carefully, as both tables may refer to the same register. */
952 while (i1 || i2) {
953 int cmp = cmp_reg(i1, i2);
954 /* target-specific overrides generic entry. */
955 if (cmp <= 0) {
956 /* Ignore registers we trap but don't save. */
957 if (i1->reg) {
958 if (!copy_reg_to_user(i1, &uind))
959 return -EFAULT;
960 total++;
961 }
962 } else {
963 /* Ignore registers we trap but don't save. */
964 if (i2->reg) {
965 if (!copy_reg_to_user(i2, &uind))
966 return -EFAULT;
967 total++;
968 }
969 }
970
971 if (cmp <= 0 && ++i1 == end1)
972 i1 = NULL;
973 if (cmp >= 0 && ++i2 == end2)
974 i2 = NULL;
975 }
976 return total;
977}
978
979unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
980{
981 return ARRAY_SIZE(invariant_cp15)
c27581ed 982 + num_demux_regs()
4fe21e4c 983 + num_vfp_regs()
1138245c
CD
984 + walk_cp15(vcpu, (u64 __user *)NULL);
985}
986
987int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
988{
989 unsigned int i;
990 int err;
991
992 /* Then give them all the invariant registers' indices. */
993 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
994 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
995 return -EFAULT;
996 uindices++;
997 }
998
999 err = walk_cp15(vcpu, uindices);
c27581ed
CD
1000 if (err < 0)
1001 return err;
1002 uindices += err;
1003
4fe21e4c
RR
1004 err = copy_vfp_regids(uindices);
1005 if (err < 0)
1006 return err;
1007 uindices += err;
1008
c27581ed 1009 return write_demux_regids(uindices);
1138245c
CD
1010}
1011
5b3e5e5b
CD
1012void kvm_coproc_table_init(void)
1013{
1014 unsigned int i;
1015
1016 /* Make sure tables are unique and in order. */
1017 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1018 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1138245c
CD
1019
1020 /* We abuse the reset function to overwrite the table itself. */
1021 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1022 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
c27581ed
CD
1023
1024 /*
1025 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1026 *
1027 * If software reads the Cache Type fields from Ctype1
1028 * upwards, once it has seen a value of 0b000, no caches
1029 * exist at further-out levels of the hierarchy. So, for
1030 * example, if Ctype3 is the first Cache Type field with a
1031 * value of 0b000, the values of Ctype4 to Ctype7 must be
1032 * ignored.
1033 */
1034 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1035 for (i = 0; i < 7; i++)
1036 if (((cache_levels >> (i*3)) & 7) == 0)
1037 break;
1038 /* Clear all higher bits. */
1039 cache_levels &= (1 << (i*3))-1;
5b3e5e5b
CD
1040}
1041
1042/**
1043 * kvm_reset_coprocs - sets cp15 registers to reset value
1044 * @vcpu: The VCPU pointer
1045 *
1046 * This function finds the right table above and sets the registers on the
1047 * virtual CPU struct to their architecturally defined reset values.
1048 */
749cf76c
CD
1049void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1050{
5b3e5e5b
CD
1051 size_t num;
1052 const struct coproc_reg *table;
1053
1054 /* Catch someone adding a register without putting in reset entry. */
1055 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1056
1057 /* Generic chip reset first (so target could override). */
1058 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1059
1060 table = get_target_table(vcpu->arch.target, &num);
1061 reset_coproc_regs(vcpu, table, num);
1062
1063 for (num = 1; num < NR_CP15_REGS; num++)
1064 if (vcpu->arch.cp15[num] == 0x42424242)
1065 panic("Didn't reset vcpu->arch.cp15[%zi]", num);
749cf76c 1066}
This page took 0.106318 seconds and 5 git commands to generate.