Linux 3.12
[deliverable/linux.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
45e96ea6 22#include <trace/events/kvm.h>
342cd0ab 23#include <asm/pgalloc.h>
94f8e641 24#include <asm/cacheflush.h>
342cd0ab
CD
25#include <asm/kvm_arm.h>
26#include <asm/kvm_mmu.h>
45e96ea6 27#include <asm/kvm_mmio.h>
d5d8184d 28#include <asm/kvm_asm.h>
94f8e641 29#include <asm/kvm_emulate.h>
d5d8184d
CD
30
31#include "trace.h"
342cd0ab
CD
32
33extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
34
5a677ce0 35static pgd_t *boot_hyp_pgd;
2fb41059 36static pgd_t *hyp_pgd;
342cd0ab
CD
37static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
38
5a677ce0
MZ
39static void *init_bounce_page;
40static unsigned long hyp_idmap_start;
41static unsigned long hyp_idmap_end;
42static phys_addr_t hyp_idmap_vector;
43
48762767 44static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 45{
d4cb9df5
MZ
46 /*
47 * This function also gets called when dealing with HYP page
48 * tables. As HYP doesn't have an associated struct kvm (and
49 * the HYP page tables are fairly static), we don't do
50 * anything there.
51 */
52 if (kvm)
53 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
54}
55
d5d8184d
CD
56static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
57 int min, int max)
58{
59 void *page;
60
61 BUG_ON(max > KVM_NR_MEM_OBJS);
62 if (cache->nobjs >= min)
63 return 0;
64 while (cache->nobjs < max) {
65 page = (void *)__get_free_page(PGALLOC_GFP);
66 if (!page)
67 return -ENOMEM;
68 cache->objects[cache->nobjs++] = page;
69 }
70 return 0;
71}
72
73static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
74{
75 while (mc->nobjs)
76 free_page((unsigned long)mc->objects[--mc->nobjs]);
77}
78
79static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
80{
81 void *p;
82
83 BUG_ON(!mc || !mc->nobjs);
84 p = mc->objects[--mc->nobjs];
85 return p;
86}
87
979acd5e
MZ
88static bool page_empty(void *ptr)
89{
90 struct page *ptr_page = virt_to_page(ptr);
91 return page_count(ptr_page) == 1;
92}
93
d4cb9df5 94static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
342cd0ab 95{
4f728276
MZ
96 pmd_t *pmd_table = pmd_offset(pud, 0);
97 pud_clear(pud);
d4cb9df5 98 kvm_tlb_flush_vmid_ipa(kvm, addr);
4f728276
MZ
99 pmd_free(NULL, pmd_table);
100 put_page(virt_to_page(pud));
101}
342cd0ab 102
d4cb9df5 103static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
4f728276
MZ
104{
105 pte_t *pte_table = pte_offset_kernel(pmd, 0);
106 pmd_clear(pmd);
d4cb9df5 107 kvm_tlb_flush_vmid_ipa(kvm, addr);
4f728276
MZ
108 pte_free_kernel(NULL, pte_table);
109 put_page(virt_to_page(pmd));
110}
111
d4cb9df5 112static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
4f728276
MZ
113{
114 if (pte_present(*pte)) {
115 kvm_set_pte(pte, __pte(0));
116 put_page(virt_to_page(pte));
d4cb9df5 117 kvm_tlb_flush_vmid_ipa(kvm, addr);
342cd0ab
CD
118 }
119}
120
d4cb9df5
MZ
121static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
122 unsigned long long start, u64 size)
000d3996
MZ
123{
124 pgd_t *pgd;
125 pud_t *pud;
126 pmd_t *pmd;
4f728276
MZ
127 pte_t *pte;
128 unsigned long long addr = start, end = start + size;
d3840b26 129 u64 next;
000d3996 130
4f728276
MZ
131 while (addr < end) {
132 pgd = pgdp + pgd_index(addr);
133 pud = pud_offset(pgd, addr);
134 if (pud_none(*pud)) {
d3840b26 135 addr = pud_addr_end(addr, end);
4f728276
MZ
136 continue;
137 }
000d3996 138
4f728276
MZ
139 pmd = pmd_offset(pud, addr);
140 if (pmd_none(*pmd)) {
d3840b26 141 addr = pmd_addr_end(addr, end);
4f728276
MZ
142 continue;
143 }
000d3996 144
4f728276 145 pte = pte_offset_kernel(pmd, addr);
d4cb9df5 146 clear_pte_entry(kvm, pte, addr);
d3840b26 147 next = addr + PAGE_SIZE;
4f728276
MZ
148
149 /* If we emptied the pte, walk back up the ladder */
979acd5e 150 if (page_empty(pte)) {
d4cb9df5 151 clear_pmd_entry(kvm, pmd, addr);
d3840b26 152 next = pmd_addr_end(addr, end);
979acd5e 153 if (page_empty(pmd) && !page_empty(pud)) {
d4cb9df5 154 clear_pud_entry(kvm, pud, addr);
d3840b26 155 next = pud_addr_end(addr, end);
4f728276
MZ
156 }
157 }
158
d3840b26 159 addr = next;
4f728276 160 }
000d3996
MZ
161}
162
d157f4a5
MZ
163/**
164 * free_boot_hyp_pgd - free HYP boot page tables
165 *
166 * Free the HYP boot page tables. The bounce page is also freed.
167 */
168void free_boot_hyp_pgd(void)
169{
170 mutex_lock(&kvm_hyp_pgd_mutex);
171
172 if (boot_hyp_pgd) {
d4cb9df5
MZ
173 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
174 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
175 kfree(boot_hyp_pgd);
176 boot_hyp_pgd = NULL;
177 }
178
179 if (hyp_pgd)
d4cb9df5 180 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
181
182 kfree(init_bounce_page);
183 init_bounce_page = NULL;
184
185 mutex_unlock(&kvm_hyp_pgd_mutex);
186}
187
342cd0ab 188/**
4f728276 189 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 190 *
5a677ce0
MZ
191 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
192 * therefore contains either mappings in the kernel memory area (above
193 * PAGE_OFFSET), or device mappings in the vmalloc range (from
194 * VMALLOC_START to VMALLOC_END).
195 *
196 * boot_hyp_pgd should only map two pages for the init code.
342cd0ab 197 */
4f728276 198void free_hyp_pgds(void)
342cd0ab 199{
342cd0ab
CD
200 unsigned long addr;
201
d157f4a5 202 free_boot_hyp_pgd();
4f728276 203
d157f4a5 204 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 205
4f728276
MZ
206 if (hyp_pgd) {
207 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
d4cb9df5 208 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
4f728276 209 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
d4cb9df5
MZ
210 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
211
4f728276 212 kfree(hyp_pgd);
d157f4a5 213 hyp_pgd = NULL;
4f728276
MZ
214 }
215
342cd0ab
CD
216 mutex_unlock(&kvm_hyp_pgd_mutex);
217}
218
219static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
220 unsigned long end, unsigned long pfn,
221 pgprot_t prot)
342cd0ab
CD
222{
223 pte_t *pte;
224 unsigned long addr;
342cd0ab 225
3562c76d
MZ
226 addr = start;
227 do {
6060df84
MZ
228 pte = pte_offset_kernel(pmd, addr);
229 kvm_set_pte(pte, pfn_pte(pfn, prot));
4f728276 230 get_page(virt_to_page(pte));
5a677ce0 231 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
6060df84 232 pfn++;
3562c76d 233 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
234}
235
236static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
237 unsigned long end, unsigned long pfn,
238 pgprot_t prot)
342cd0ab
CD
239{
240 pmd_t *pmd;
241 pte_t *pte;
242 unsigned long addr, next;
243
3562c76d
MZ
244 addr = start;
245 do {
6060df84 246 pmd = pmd_offset(pud, addr);
342cd0ab
CD
247
248 BUG_ON(pmd_sect(*pmd));
249
250 if (pmd_none(*pmd)) {
6060df84 251 pte = pte_alloc_one_kernel(NULL, addr);
342cd0ab
CD
252 if (!pte) {
253 kvm_err("Cannot allocate Hyp pte\n");
254 return -ENOMEM;
255 }
256 pmd_populate_kernel(NULL, pmd, pte);
4f728276 257 get_page(virt_to_page(pmd));
5a677ce0 258 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
342cd0ab
CD
259 }
260
261 next = pmd_addr_end(addr, end);
262
6060df84
MZ
263 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
264 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 265 } while (addr = next, addr != end);
342cd0ab
CD
266
267 return 0;
268}
269
6060df84
MZ
270static int __create_hyp_mappings(pgd_t *pgdp,
271 unsigned long start, unsigned long end,
272 unsigned long pfn, pgprot_t prot)
342cd0ab 273{
342cd0ab
CD
274 pgd_t *pgd;
275 pud_t *pud;
276 pmd_t *pmd;
277 unsigned long addr, next;
278 int err = 0;
279
342cd0ab 280 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
281 addr = start & PAGE_MASK;
282 end = PAGE_ALIGN(end);
283 do {
6060df84
MZ
284 pgd = pgdp + pgd_index(addr);
285 pud = pud_offset(pgd, addr);
342cd0ab
CD
286
287 if (pud_none_or_clear_bad(pud)) {
6060df84 288 pmd = pmd_alloc_one(NULL, addr);
342cd0ab
CD
289 if (!pmd) {
290 kvm_err("Cannot allocate Hyp pmd\n");
291 err = -ENOMEM;
292 goto out;
293 }
294 pud_populate(NULL, pud, pmd);
4f728276 295 get_page(virt_to_page(pud));
5a677ce0 296 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
342cd0ab
CD
297 }
298
299 next = pgd_addr_end(addr, end);
6060df84 300 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
342cd0ab
CD
301 if (err)
302 goto out;
6060df84 303 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 304 } while (addr = next, addr != end);
342cd0ab
CD
305out:
306 mutex_unlock(&kvm_hyp_pgd_mutex);
307 return err;
308}
309
310/**
06e8c3b0 311 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
312 * @from: The virtual kernel start address of the range
313 * @to: The virtual kernel end address of the range (exclusive)
314 *
06e8c3b0
MZ
315 * The same virtual address as the kernel virtual address is also used
316 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
317 * physical pages.
342cd0ab
CD
318 */
319int create_hyp_mappings(void *from, void *to)
320{
6060df84
MZ
321 unsigned long phys_addr = virt_to_phys(from);
322 unsigned long start = KERN_TO_HYP((unsigned long)from);
323 unsigned long end = KERN_TO_HYP((unsigned long)to);
324
325 /* Check for a valid kernel memory mapping */
326 if (!virt_addr_valid(from) || !virt_addr_valid(to - 1))
327 return -EINVAL;
328
329 return __create_hyp_mappings(hyp_pgd, start, end,
330 __phys_to_pfn(phys_addr), PAGE_HYP);
342cd0ab
CD
331}
332
333/**
06e8c3b0
MZ
334 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
335 * @from: The kernel start VA of the range
336 * @to: The kernel end VA of the range (exclusive)
6060df84 337 * @phys_addr: The physical start address which gets mapped
06e8c3b0
MZ
338 *
339 * The resulting HYP VA is the same as the kernel VA, modulo
340 * HYP_PAGE_OFFSET.
342cd0ab 341 */
6060df84 342int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
342cd0ab 343{
6060df84
MZ
344 unsigned long start = KERN_TO_HYP((unsigned long)from);
345 unsigned long end = KERN_TO_HYP((unsigned long)to);
346
347 /* Check for a valid kernel IO mapping */
348 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
349 return -EINVAL;
350
351 return __create_hyp_mappings(hyp_pgd, start, end,
352 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
342cd0ab
CD
353}
354
d5d8184d
CD
355/**
356 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
357 * @kvm: The KVM struct pointer for the VM.
358 *
359 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
360 * support either full 40-bit input addresses or limited to 32-bit input
361 * addresses). Clears the allocated pages.
362 *
363 * Note we don't need locking here as this is only called when the VM is
364 * created, which can only be done once.
365 */
366int kvm_alloc_stage2_pgd(struct kvm *kvm)
367{
368 pgd_t *pgd;
369
370 if (kvm->arch.pgd != NULL) {
371 kvm_err("kvm_arch already initialized?\n");
372 return -EINVAL;
373 }
374
375 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
376 if (!pgd)
377 return -ENOMEM;
378
d5d8184d 379 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
c62ee2b2 380 kvm_clean_pgd(pgd);
d5d8184d
CD
381 kvm->arch.pgd = pgd;
382
383 return 0;
384}
385
d5d8184d
CD
386/**
387 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
388 * @kvm: The VM pointer
389 * @start: The intermediate physical base address of the range to unmap
390 * @size: The size of the area to unmap
391 *
392 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
393 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
394 * destroying the VM), otherwise another faulting VCPU may come in and mess
395 * with things behind our backs.
396 */
397static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
398{
d4cb9df5 399 unmap_range(kvm, kvm->arch.pgd, start, size);
d5d8184d
CD
400}
401
402/**
403 * kvm_free_stage2_pgd - free all stage-2 tables
404 * @kvm: The KVM struct pointer for the VM.
405 *
406 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
407 * underlying level-2 and level-3 tables before freeing the actual level-1 table
408 * and setting the struct pointer to NULL.
409 *
410 * Note we don't need locking here as this is only called when the VM is
411 * destroyed, which can only be done once.
412 */
413void kvm_free_stage2_pgd(struct kvm *kvm)
414{
415 if (kvm->arch.pgd == NULL)
416 return;
417
418 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
419 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
420 kvm->arch.pgd = NULL;
421}
422
423
424static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
425 phys_addr_t addr, const pte_t *new_pte, bool iomap)
426{
427 pgd_t *pgd;
428 pud_t *pud;
429 pmd_t *pmd;
430 pte_t *pte, old_pte;
431
432 /* Create 2nd stage page table mapping - Level 1 */
433 pgd = kvm->arch.pgd + pgd_index(addr);
434 pud = pud_offset(pgd, addr);
435 if (pud_none(*pud)) {
436 if (!cache)
437 return 0; /* ignore calls from kvm_set_spte_hva */
438 pmd = mmu_memory_cache_alloc(cache);
439 pud_populate(NULL, pud, pmd);
d5d8184d 440 get_page(virt_to_page(pud));
c62ee2b2
MZ
441 }
442
443 pmd = pmd_offset(pud, addr);
d5d8184d
CD
444
445 /* Create 2nd stage page table mapping - Level 2 */
446 if (pmd_none(*pmd)) {
447 if (!cache)
448 return 0; /* ignore calls from kvm_set_spte_hva */
449 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 450 kvm_clean_pte(pte);
d5d8184d 451 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 452 get_page(virt_to_page(pmd));
c62ee2b2
MZ
453 }
454
455 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
456
457 if (iomap && pte_present(*pte))
458 return -EFAULT;
459
460 /* Create 2nd stage page table mapping - Level 3 */
461 old_pte = *pte;
462 kvm_set_pte(pte, *new_pte);
463 if (pte_present(old_pte))
48762767 464 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
465 else
466 get_page(virt_to_page(pte));
467
468 return 0;
469}
470
471/**
472 * kvm_phys_addr_ioremap - map a device range to guest IPA
473 *
474 * @kvm: The KVM pointer
475 * @guest_ipa: The IPA at which to insert the mapping
476 * @pa: The physical address of the device
477 * @size: The size of the mapping
478 */
479int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
480 phys_addr_t pa, unsigned long size)
481{
482 phys_addr_t addr, end;
483 int ret = 0;
484 unsigned long pfn;
485 struct kvm_mmu_memory_cache cache = { 0, };
486
487 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
488 pfn = __phys_to_pfn(pa);
489
490 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2 491 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
d5d8184d
CD
492
493 ret = mmu_topup_memory_cache(&cache, 2, 2);
494 if (ret)
495 goto out;
496 spin_lock(&kvm->mmu_lock);
497 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
498 spin_unlock(&kvm->mmu_lock);
499 if (ret)
500 goto out;
501
502 pfn++;
503 }
504
505out:
506 mmu_free_memory_cache(&cache);
507 return ret;
508}
509
94f8e641
CD
510static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
511 gfn_t gfn, struct kvm_memory_slot *memslot,
512 unsigned long fault_status)
513{
514 pte_t new_pte;
515 pfn_t pfn;
516 int ret;
517 bool write_fault, writable;
518 unsigned long mmu_seq;
519 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
520
7393b599 521 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
522 if (fault_status == FSC_PERM && !write_fault) {
523 kvm_err("Unexpected L2 read permission error\n");
524 return -EFAULT;
525 }
526
527 /* We need minimum second+third level pages */
528 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
529 if (ret)
530 return ret;
531
532 mmu_seq = vcpu->kvm->mmu_notifier_seq;
533 /*
534 * Ensure the read of mmu_notifier_seq happens before we call
535 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
536 * the page we just got a reference to gets unmapped before we have a
537 * chance to grab the mmu_lock, which ensure that if the page gets
538 * unmapped afterwards, the call to kvm_unmap_hva will take it away
539 * from us again properly. This smp_rmb() interacts with the smp_wmb()
540 * in kvm_mmu_notifier_invalidate_<page|range_end>.
541 */
542 smp_rmb();
543
544 pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
545 if (is_error_pfn(pfn))
546 return -EFAULT;
547
548 new_pte = pfn_pte(pfn, PAGE_S2);
549 coherent_icache_guest_page(vcpu->kvm, gfn);
550
551 spin_lock(&vcpu->kvm->mmu_lock);
552 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
553 goto out_unlock;
554 if (writable) {
c62ee2b2 555 kvm_set_s2pte_writable(&new_pte);
94f8e641
CD
556 kvm_set_pfn_dirty(pfn);
557 }
558 stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
559
560out_unlock:
561 spin_unlock(&vcpu->kvm->mmu_lock);
562 kvm_release_pfn_clean(pfn);
563 return 0;
564}
565
566/**
567 * kvm_handle_guest_abort - handles all 2nd stage aborts
568 * @vcpu: the VCPU pointer
569 * @run: the kvm_run structure
570 *
571 * Any abort that gets to the host is almost guaranteed to be caused by a
572 * missing second stage translation table entry, which can mean that either the
573 * guest simply needs more memory and we must allocate an appropriate page or it
574 * can mean that the guest tried to access I/O memory, which is emulated by user
575 * space. The distinction is based on the IPA causing the fault and whether this
576 * memory region has been registered as standard RAM by user space.
577 */
342cd0ab
CD
578int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
579{
94f8e641
CD
580 unsigned long fault_status;
581 phys_addr_t fault_ipa;
582 struct kvm_memory_slot *memslot;
583 bool is_iabt;
584 gfn_t gfn;
585 int ret, idx;
586
52d1dba9 587 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 588 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 589
7393b599
MZ
590 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
591 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
592
593 /* Check the stage-2 fault is trans. fault or write fault */
1cc287dd 594 fault_status = kvm_vcpu_trap_get_fault(vcpu);
94f8e641 595 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
52d1dba9
MZ
596 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
597 kvm_vcpu_trap_get_class(vcpu), fault_status);
94f8e641
CD
598 return -EFAULT;
599 }
600
601 idx = srcu_read_lock(&vcpu->kvm->srcu);
602
603 gfn = fault_ipa >> PAGE_SHIFT;
604 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
605 if (is_iabt) {
606 /* Prefetch Abort on I/O address */
7393b599 607 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
608 ret = 1;
609 goto out_unlock;
610 }
611
612 if (fault_status != FSC_FAULT) {
613 kvm_err("Unsupported fault status on io memory: %#lx\n",
614 fault_status);
615 ret = -EFAULT;
616 goto out_unlock;
617 }
618
cfe3950c
MZ
619 /*
620 * The IPA is reported as [MAX:12], so we need to
621 * complement it with the bottom 12 bits from the
622 * faulting VA. This is always 12 bits, irrespective
623 * of the page size.
624 */
625 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 626 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
627 goto out_unlock;
628 }
629
630 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641
CD
631
632 ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
633 if (ret == 0)
634 ret = 1;
635out_unlock:
636 srcu_read_unlock(&vcpu->kvm->srcu, idx);
637 return ret;
342cd0ab
CD
638}
639
d5d8184d
CD
640static void handle_hva_to_gpa(struct kvm *kvm,
641 unsigned long start,
642 unsigned long end,
643 void (*handler)(struct kvm *kvm,
644 gpa_t gpa, void *data),
645 void *data)
646{
647 struct kvm_memslots *slots;
648 struct kvm_memory_slot *memslot;
649
650 slots = kvm_memslots(kvm);
651
652 /* we only care about the pages that the guest sees */
653 kvm_for_each_memslot(memslot, slots) {
654 unsigned long hva_start, hva_end;
655 gfn_t gfn, gfn_end;
656
657 hva_start = max(start, memslot->userspace_addr);
658 hva_end = min(end, memslot->userspace_addr +
659 (memslot->npages << PAGE_SHIFT));
660 if (hva_start >= hva_end)
661 continue;
662
663 /*
664 * {gfn(page) | page intersects with [hva_start, hva_end)} =
665 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
666 */
667 gfn = hva_to_gfn_memslot(hva_start, memslot);
668 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
669
670 for (; gfn < gfn_end; ++gfn) {
671 gpa_t gpa = gfn << PAGE_SHIFT;
672 handler(kvm, gpa, data);
673 }
674 }
675}
676
677static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
678{
679 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
d5d8184d
CD
680}
681
682int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
683{
684 unsigned long end = hva + PAGE_SIZE;
685
686 if (!kvm->arch.pgd)
687 return 0;
688
689 trace_kvm_unmap_hva(hva);
690 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
691 return 0;
692}
693
694int kvm_unmap_hva_range(struct kvm *kvm,
695 unsigned long start, unsigned long end)
696{
697 if (!kvm->arch.pgd)
698 return 0;
699
700 trace_kvm_unmap_hva_range(start, end);
701 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
702 return 0;
703}
704
705static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
706{
707 pte_t *pte = (pte_t *)data;
708
709 stage2_set_pte(kvm, NULL, gpa, pte, false);
710}
711
712
713void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
714{
715 unsigned long end = hva + PAGE_SIZE;
716 pte_t stage2_pte;
717
718 if (!kvm->arch.pgd)
719 return;
720
721 trace_kvm_set_spte_hva(hva);
722 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
723 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
724}
725
726void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727{
728 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
729}
730
342cd0ab
CD
731phys_addr_t kvm_mmu_get_httbr(void)
732{
342cd0ab
CD
733 return virt_to_phys(hyp_pgd);
734}
735
5a677ce0
MZ
736phys_addr_t kvm_mmu_get_boot_httbr(void)
737{
738 return virt_to_phys(boot_hyp_pgd);
739}
740
741phys_addr_t kvm_get_idmap_vector(void)
742{
743 return hyp_idmap_vector;
744}
745
342cd0ab
CD
746int kvm_mmu_init(void)
747{
2fb41059
MZ
748 int err;
749
5a677ce0
MZ
750 hyp_idmap_start = virt_to_phys(__hyp_idmap_text_start);
751 hyp_idmap_end = virt_to_phys(__hyp_idmap_text_end);
752 hyp_idmap_vector = virt_to_phys(__kvm_hyp_init);
753
754 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
755 /*
756 * Our init code is crossing a page boundary. Allocate
757 * a bounce page, copy the code over and use that.
758 */
759 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
760 phys_addr_t phys_base;
761
762 init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
763 if (!init_bounce_page) {
764 kvm_err("Couldn't allocate HYP init bounce page\n");
765 err = -ENOMEM;
766 goto out;
767 }
768
769 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
770 /*
771 * Warning: the code we just copied to the bounce page
772 * must be flushed to the point of coherency.
773 * Otherwise, the data may be sitting in L2, and HYP
774 * mode won't be able to observe it as it runs with
775 * caches off at that point.
776 */
777 kvm_flush_dcache_to_poc(init_bounce_page, len);
778
779 phys_base = virt_to_phys(init_bounce_page);
780 hyp_idmap_vector += phys_base - hyp_idmap_start;
781 hyp_idmap_start = phys_base;
782 hyp_idmap_end = phys_base + len;
783
784 kvm_info("Using HYP init bounce page @%lx\n",
785 (unsigned long)phys_base);
786 }
787
2fb41059 788 hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
5a677ce0
MZ
789 boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
790 if (!hyp_pgd || !boot_hyp_pgd) {
d5d8184d 791 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
792 err = -ENOMEM;
793 goto out;
794 }
795
796 /* Create the idmap in the boot page tables */
797 err = __create_hyp_mappings(boot_hyp_pgd,
798 hyp_idmap_start, hyp_idmap_end,
799 __phys_to_pfn(hyp_idmap_start),
800 PAGE_HYP);
801
802 if (err) {
803 kvm_err("Failed to idmap %lx-%lx\n",
804 hyp_idmap_start, hyp_idmap_end);
805 goto out;
d5d8184d
CD
806 }
807
5a677ce0
MZ
808 /* Map the very same page at the trampoline VA */
809 err = __create_hyp_mappings(boot_hyp_pgd,
810 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
811 __phys_to_pfn(hyp_idmap_start),
812 PAGE_HYP);
813 if (err) {
814 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
815 TRAMPOLINE_VA);
816 goto out;
817 }
818
819 /* Map the same page again into the runtime page tables */
820 err = __create_hyp_mappings(hyp_pgd,
821 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
822 __phys_to_pfn(hyp_idmap_start),
823 PAGE_HYP);
824 if (err) {
825 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
826 TRAMPOLINE_VA);
827 goto out;
828 }
829
d5d8184d 830 return 0;
2fb41059 831out:
4f728276 832 free_hyp_pgds();
2fb41059 833 return err;
342cd0ab 834}
This page took 0.114534 seconds and 5 git commands to generate.