ARM: KVM: introduce kvm_p*d_addr_end
[deliverable/linux.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
ad361f09 22#include <linux/hugetlb.h>
45e96ea6 23#include <trace/events/kvm.h>
342cd0ab 24#include <asm/pgalloc.h>
94f8e641 25#include <asm/cacheflush.h>
342cd0ab
CD
26#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
45e96ea6 28#include <asm/kvm_mmio.h>
d5d8184d 29#include <asm/kvm_asm.h>
94f8e641 30#include <asm/kvm_emulate.h>
d5d8184d
CD
31
32#include "trace.h"
342cd0ab
CD
33
34extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
5a677ce0 36static pgd_t *boot_hyp_pgd;
2fb41059 37static pgd_t *hyp_pgd;
342cd0ab
CD
38static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
5a677ce0
MZ
40static void *init_bounce_page;
41static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
9b5fdb97 45#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
ad361f09 46
48762767 47static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 48{
d4cb9df5
MZ
49 /*
50 * This function also gets called when dealing with HYP page
51 * tables. As HYP doesn't have an associated struct kvm (and
52 * the HYP page tables are fairly static), we don't do
53 * anything there.
54 */
55 if (kvm)
56 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
57}
58
d5d8184d
CD
59static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
60 int min, int max)
61{
62 void *page;
63
64 BUG_ON(max > KVM_NR_MEM_OBJS);
65 if (cache->nobjs >= min)
66 return 0;
67 while (cache->nobjs < max) {
68 page = (void *)__get_free_page(PGALLOC_GFP);
69 if (!page)
70 return -ENOMEM;
71 cache->objects[cache->nobjs++] = page;
72 }
73 return 0;
74}
75
76static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
77{
78 while (mc->nobjs)
79 free_page((unsigned long)mc->objects[--mc->nobjs]);
80}
81
82static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
83{
84 void *p;
85
86 BUG_ON(!mc || !mc->nobjs);
87 p = mc->objects[--mc->nobjs];
88 return p;
89}
90
979acd5e
MZ
91static bool page_empty(void *ptr)
92{
93 struct page *ptr_page = virt_to_page(ptr);
94 return page_count(ptr_page) == 1;
95}
96
d4cb9df5 97static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
342cd0ab 98{
ad361f09
CD
99 if (pud_huge(*pud)) {
100 pud_clear(pud);
101 kvm_tlb_flush_vmid_ipa(kvm, addr);
102 } else {
103 pmd_t *pmd_table = pmd_offset(pud, 0);
104 pud_clear(pud);
105 kvm_tlb_flush_vmid_ipa(kvm, addr);
106 pmd_free(NULL, pmd_table);
107 }
4f728276
MZ
108 put_page(virt_to_page(pud));
109}
342cd0ab 110
d4cb9df5 111static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
4f728276 112{
ad361f09
CD
113 if (kvm_pmd_huge(*pmd)) {
114 pmd_clear(pmd);
115 kvm_tlb_flush_vmid_ipa(kvm, addr);
116 } else {
117 pte_t *pte_table = pte_offset_kernel(pmd, 0);
118 pmd_clear(pmd);
119 kvm_tlb_flush_vmid_ipa(kvm, addr);
120 pte_free_kernel(NULL, pte_table);
121 }
4f728276
MZ
122 put_page(virt_to_page(pmd));
123}
124
d4cb9df5 125static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
4f728276
MZ
126{
127 if (pte_present(*pte)) {
128 kvm_set_pte(pte, __pte(0));
129 put_page(virt_to_page(pte));
d4cb9df5 130 kvm_tlb_flush_vmid_ipa(kvm, addr);
342cd0ab
CD
131 }
132}
133
d4cb9df5
MZ
134static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
135 unsigned long long start, u64 size)
000d3996
MZ
136{
137 pgd_t *pgd;
138 pud_t *pud;
139 pmd_t *pmd;
4f728276
MZ
140 pte_t *pte;
141 unsigned long long addr = start, end = start + size;
d3840b26 142 u64 next;
000d3996 143
4f728276
MZ
144 while (addr < end) {
145 pgd = pgdp + pgd_index(addr);
146 pud = pud_offset(pgd, addr);
147 if (pud_none(*pud)) {
a3c8bd31 148 addr = kvm_pud_addr_end(addr, end);
4f728276
MZ
149 continue;
150 }
000d3996 151
ad361f09
CD
152 if (pud_huge(*pud)) {
153 /*
154 * If we are dealing with a huge pud, just clear it and
155 * move on.
156 */
157 clear_pud_entry(kvm, pud, addr);
a3c8bd31 158 addr = kvm_pud_addr_end(addr, end);
ad361f09
CD
159 continue;
160 }
161
4f728276
MZ
162 pmd = pmd_offset(pud, addr);
163 if (pmd_none(*pmd)) {
a3c8bd31 164 addr = kvm_pmd_addr_end(addr, end);
4f728276
MZ
165 continue;
166 }
000d3996 167
ad361f09
CD
168 if (!kvm_pmd_huge(*pmd)) {
169 pte = pte_offset_kernel(pmd, addr);
170 clear_pte_entry(kvm, pte, addr);
171 next = addr + PAGE_SIZE;
172 }
4f728276 173
ad361f09
CD
174 /*
175 * If the pmd entry is to be cleared, walk back up the ladder
176 */
177 if (kvm_pmd_huge(*pmd) || page_empty(pte)) {
d4cb9df5 178 clear_pmd_entry(kvm, pmd, addr);
a3c8bd31 179 next = kvm_pmd_addr_end(addr, end);
979acd5e 180 if (page_empty(pmd) && !page_empty(pud)) {
d4cb9df5 181 clear_pud_entry(kvm, pud, addr);
a3c8bd31 182 next = kvm_pud_addr_end(addr, end);
4f728276
MZ
183 }
184 }
185
d3840b26 186 addr = next;
4f728276 187 }
000d3996
MZ
188}
189
d157f4a5
MZ
190/**
191 * free_boot_hyp_pgd - free HYP boot page tables
192 *
193 * Free the HYP boot page tables. The bounce page is also freed.
194 */
195void free_boot_hyp_pgd(void)
196{
197 mutex_lock(&kvm_hyp_pgd_mutex);
198
199 if (boot_hyp_pgd) {
d4cb9df5
MZ
200 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
201 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
202 kfree(boot_hyp_pgd);
203 boot_hyp_pgd = NULL;
204 }
205
206 if (hyp_pgd)
d4cb9df5 207 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5
MZ
208
209 kfree(init_bounce_page);
210 init_bounce_page = NULL;
211
212 mutex_unlock(&kvm_hyp_pgd_mutex);
213}
214
342cd0ab 215/**
4f728276 216 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 217 *
5a677ce0
MZ
218 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
219 * therefore contains either mappings in the kernel memory area (above
220 * PAGE_OFFSET), or device mappings in the vmalloc range (from
221 * VMALLOC_START to VMALLOC_END).
222 *
223 * boot_hyp_pgd should only map two pages for the init code.
342cd0ab 224 */
4f728276 225void free_hyp_pgds(void)
342cd0ab 226{
342cd0ab
CD
227 unsigned long addr;
228
d157f4a5 229 free_boot_hyp_pgd();
4f728276 230
d157f4a5 231 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 232
4f728276
MZ
233 if (hyp_pgd) {
234 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
d4cb9df5 235 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
4f728276 236 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
d4cb9df5
MZ
237 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
238
4f728276 239 kfree(hyp_pgd);
d157f4a5 240 hyp_pgd = NULL;
4f728276
MZ
241 }
242
342cd0ab
CD
243 mutex_unlock(&kvm_hyp_pgd_mutex);
244}
245
246static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
247 unsigned long end, unsigned long pfn,
248 pgprot_t prot)
342cd0ab
CD
249{
250 pte_t *pte;
251 unsigned long addr;
342cd0ab 252
3562c76d
MZ
253 addr = start;
254 do {
6060df84
MZ
255 pte = pte_offset_kernel(pmd, addr);
256 kvm_set_pte(pte, pfn_pte(pfn, prot));
4f728276 257 get_page(virt_to_page(pte));
5a677ce0 258 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
6060df84 259 pfn++;
3562c76d 260 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
261}
262
263static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
264 unsigned long end, unsigned long pfn,
265 pgprot_t prot)
342cd0ab
CD
266{
267 pmd_t *pmd;
268 pte_t *pte;
269 unsigned long addr, next;
270
3562c76d
MZ
271 addr = start;
272 do {
6060df84 273 pmd = pmd_offset(pud, addr);
342cd0ab
CD
274
275 BUG_ON(pmd_sect(*pmd));
276
277 if (pmd_none(*pmd)) {
6060df84 278 pte = pte_alloc_one_kernel(NULL, addr);
342cd0ab
CD
279 if (!pte) {
280 kvm_err("Cannot allocate Hyp pte\n");
281 return -ENOMEM;
282 }
283 pmd_populate_kernel(NULL, pmd, pte);
4f728276 284 get_page(virt_to_page(pmd));
5a677ce0 285 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
342cd0ab
CD
286 }
287
288 next = pmd_addr_end(addr, end);
289
6060df84
MZ
290 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
291 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 292 } while (addr = next, addr != end);
342cd0ab
CD
293
294 return 0;
295}
296
6060df84
MZ
297static int __create_hyp_mappings(pgd_t *pgdp,
298 unsigned long start, unsigned long end,
299 unsigned long pfn, pgprot_t prot)
342cd0ab 300{
342cd0ab
CD
301 pgd_t *pgd;
302 pud_t *pud;
303 pmd_t *pmd;
304 unsigned long addr, next;
305 int err = 0;
306
342cd0ab 307 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
308 addr = start & PAGE_MASK;
309 end = PAGE_ALIGN(end);
310 do {
6060df84
MZ
311 pgd = pgdp + pgd_index(addr);
312 pud = pud_offset(pgd, addr);
342cd0ab
CD
313
314 if (pud_none_or_clear_bad(pud)) {
6060df84 315 pmd = pmd_alloc_one(NULL, addr);
342cd0ab
CD
316 if (!pmd) {
317 kvm_err("Cannot allocate Hyp pmd\n");
318 err = -ENOMEM;
319 goto out;
320 }
321 pud_populate(NULL, pud, pmd);
4f728276 322 get_page(virt_to_page(pud));
5a677ce0 323 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
342cd0ab
CD
324 }
325
326 next = pgd_addr_end(addr, end);
6060df84 327 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
342cd0ab
CD
328 if (err)
329 goto out;
6060df84 330 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 331 } while (addr = next, addr != end);
342cd0ab
CD
332out:
333 mutex_unlock(&kvm_hyp_pgd_mutex);
334 return err;
335}
336
40c2729b
CD
337static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
338{
339 if (!is_vmalloc_addr(kaddr)) {
340 BUG_ON(!virt_addr_valid(kaddr));
341 return __pa(kaddr);
342 } else {
343 return page_to_phys(vmalloc_to_page(kaddr)) +
344 offset_in_page(kaddr);
345 }
346}
347
342cd0ab 348/**
06e8c3b0 349 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
350 * @from: The virtual kernel start address of the range
351 * @to: The virtual kernel end address of the range (exclusive)
352 *
06e8c3b0
MZ
353 * The same virtual address as the kernel virtual address is also used
354 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
355 * physical pages.
342cd0ab
CD
356 */
357int create_hyp_mappings(void *from, void *to)
358{
40c2729b
CD
359 phys_addr_t phys_addr;
360 unsigned long virt_addr;
6060df84
MZ
361 unsigned long start = KERN_TO_HYP((unsigned long)from);
362 unsigned long end = KERN_TO_HYP((unsigned long)to);
363
40c2729b
CD
364 start = start & PAGE_MASK;
365 end = PAGE_ALIGN(end);
6060df84 366
40c2729b
CD
367 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
368 int err;
6060df84 369
40c2729b
CD
370 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
371 err = __create_hyp_mappings(hyp_pgd, virt_addr,
372 virt_addr + PAGE_SIZE,
373 __phys_to_pfn(phys_addr),
374 PAGE_HYP);
375 if (err)
376 return err;
377 }
378
379 return 0;
342cd0ab
CD
380}
381
382/**
06e8c3b0
MZ
383 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
384 * @from: The kernel start VA of the range
385 * @to: The kernel end VA of the range (exclusive)
6060df84 386 * @phys_addr: The physical start address which gets mapped
06e8c3b0
MZ
387 *
388 * The resulting HYP VA is the same as the kernel VA, modulo
389 * HYP_PAGE_OFFSET.
342cd0ab 390 */
6060df84 391int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
342cd0ab 392{
6060df84
MZ
393 unsigned long start = KERN_TO_HYP((unsigned long)from);
394 unsigned long end = KERN_TO_HYP((unsigned long)to);
395
396 /* Check for a valid kernel IO mapping */
397 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
398 return -EINVAL;
399
400 return __create_hyp_mappings(hyp_pgd, start, end,
401 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
342cd0ab
CD
402}
403
d5d8184d
CD
404/**
405 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
406 * @kvm: The KVM struct pointer for the VM.
407 *
408 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
409 * support either full 40-bit input addresses or limited to 32-bit input
410 * addresses). Clears the allocated pages.
411 *
412 * Note we don't need locking here as this is only called when the VM is
413 * created, which can only be done once.
414 */
415int kvm_alloc_stage2_pgd(struct kvm *kvm)
416{
417 pgd_t *pgd;
418
419 if (kvm->arch.pgd != NULL) {
420 kvm_err("kvm_arch already initialized?\n");
421 return -EINVAL;
422 }
423
424 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
425 if (!pgd)
426 return -ENOMEM;
427
d5d8184d 428 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
c62ee2b2 429 kvm_clean_pgd(pgd);
d5d8184d
CD
430 kvm->arch.pgd = pgd;
431
432 return 0;
433}
434
d5d8184d
CD
435/**
436 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
437 * @kvm: The VM pointer
438 * @start: The intermediate physical base address of the range to unmap
439 * @size: The size of the area to unmap
440 *
441 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
442 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
443 * destroying the VM), otherwise another faulting VCPU may come in and mess
444 * with things behind our backs.
445 */
446static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
447{
d4cb9df5 448 unmap_range(kvm, kvm->arch.pgd, start, size);
d5d8184d
CD
449}
450
451/**
452 * kvm_free_stage2_pgd - free all stage-2 tables
453 * @kvm: The KVM struct pointer for the VM.
454 *
455 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
456 * underlying level-2 and level-3 tables before freeing the actual level-1 table
457 * and setting the struct pointer to NULL.
458 *
459 * Note we don't need locking here as this is only called when the VM is
460 * destroyed, which can only be done once.
461 */
462void kvm_free_stage2_pgd(struct kvm *kvm)
463{
464 if (kvm->arch.pgd == NULL)
465 return;
466
467 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
468 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
469 kvm->arch.pgd = NULL;
470}
471
ad361f09
CD
472static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
473 phys_addr_t addr)
d5d8184d
CD
474{
475 pgd_t *pgd;
476 pud_t *pud;
477 pmd_t *pmd;
d5d8184d 478
d5d8184d
CD
479 pgd = kvm->arch.pgd + pgd_index(addr);
480 pud = pud_offset(pgd, addr);
481 if (pud_none(*pud)) {
482 if (!cache)
ad361f09 483 return NULL;
d5d8184d
CD
484 pmd = mmu_memory_cache_alloc(cache);
485 pud_populate(NULL, pud, pmd);
d5d8184d 486 get_page(virt_to_page(pud));
c62ee2b2
MZ
487 }
488
ad361f09
CD
489 return pmd_offset(pud, addr);
490}
491
492static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
493 *cache, phys_addr_t addr, const pmd_t *new_pmd)
494{
495 pmd_t *pmd, old_pmd;
496
497 pmd = stage2_get_pmd(kvm, cache, addr);
498 VM_BUG_ON(!pmd);
d5d8184d 499
ad361f09
CD
500 /*
501 * Mapping in huge pages should only happen through a fault. If a
502 * page is merged into a transparent huge page, the individual
503 * subpages of that huge page should be unmapped through MMU
504 * notifiers before we get here.
505 *
506 * Merging of CompoundPages is not supported; they should become
507 * splitting first, unmapped, merged, and mapped back in on-demand.
508 */
509 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
510
511 old_pmd = *pmd;
512 kvm_set_pmd(pmd, *new_pmd);
513 if (pmd_present(old_pmd))
514 kvm_tlb_flush_vmid_ipa(kvm, addr);
515 else
516 get_page(virt_to_page(pmd));
517 return 0;
518}
519
520static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
521 phys_addr_t addr, const pte_t *new_pte, bool iomap)
522{
523 pmd_t *pmd;
524 pte_t *pte, old_pte;
525
526 /* Create stage-2 page table mapping - Level 1 */
527 pmd = stage2_get_pmd(kvm, cache, addr);
528 if (!pmd) {
529 /*
530 * Ignore calls from kvm_set_spte_hva for unallocated
531 * address ranges.
532 */
533 return 0;
534 }
535
536 /* Create stage-2 page mappings - Level 2 */
d5d8184d
CD
537 if (pmd_none(*pmd)) {
538 if (!cache)
539 return 0; /* ignore calls from kvm_set_spte_hva */
540 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 541 kvm_clean_pte(pte);
d5d8184d 542 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 543 get_page(virt_to_page(pmd));
c62ee2b2
MZ
544 }
545
546 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
547
548 if (iomap && pte_present(*pte))
549 return -EFAULT;
550
551 /* Create 2nd stage page table mapping - Level 3 */
552 old_pte = *pte;
553 kvm_set_pte(pte, *new_pte);
554 if (pte_present(old_pte))
48762767 555 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
556 else
557 get_page(virt_to_page(pte));
558
559 return 0;
560}
561
562/**
563 * kvm_phys_addr_ioremap - map a device range to guest IPA
564 *
565 * @kvm: The KVM pointer
566 * @guest_ipa: The IPA at which to insert the mapping
567 * @pa: The physical address of the device
568 * @size: The size of the mapping
569 */
570int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
571 phys_addr_t pa, unsigned long size)
572{
573 phys_addr_t addr, end;
574 int ret = 0;
575 unsigned long pfn;
576 struct kvm_mmu_memory_cache cache = { 0, };
577
578 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
579 pfn = __phys_to_pfn(pa);
580
581 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2 582 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
d5d8184d
CD
583
584 ret = mmu_topup_memory_cache(&cache, 2, 2);
585 if (ret)
586 goto out;
587 spin_lock(&kvm->mmu_lock);
588 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
589 spin_unlock(&kvm->mmu_lock);
590 if (ret)
591 goto out;
592
593 pfn++;
594 }
595
596out:
597 mmu_free_memory_cache(&cache);
598 return ret;
599}
600
9b5fdb97
CD
601static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
602{
603 pfn_t pfn = *pfnp;
604 gfn_t gfn = *ipap >> PAGE_SHIFT;
605
606 if (PageTransCompound(pfn_to_page(pfn))) {
607 unsigned long mask;
608 /*
609 * The address we faulted on is backed by a transparent huge
610 * page. However, because we map the compound huge page and
611 * not the individual tail page, we need to transfer the
612 * refcount to the head page. We have to be careful that the
613 * THP doesn't start to split while we are adjusting the
614 * refcounts.
615 *
616 * We are sure this doesn't happen, because mmu_notifier_retry
617 * was successful and we are holding the mmu_lock, so if this
618 * THP is trying to split, it will be blocked in the mmu
619 * notifier before touching any of the pages, specifically
620 * before being able to call __split_huge_page_refcount().
621 *
622 * We can therefore safely transfer the refcount from PG_tail
623 * to PG_head and switch the pfn from a tail page to the head
624 * page accordingly.
625 */
626 mask = PTRS_PER_PMD - 1;
627 VM_BUG_ON((gfn & mask) != (pfn & mask));
628 if (pfn & mask) {
629 *ipap &= PMD_MASK;
630 kvm_release_pfn_clean(pfn);
631 pfn &= ~mask;
632 kvm_get_pfn(pfn);
633 *pfnp = pfn;
634 }
635
636 return true;
637 }
638
639 return false;
640}
641
94f8e641 642static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
ad361f09 643 struct kvm_memory_slot *memslot,
94f8e641
CD
644 unsigned long fault_status)
645{
94f8e641 646 int ret;
9b5fdb97 647 bool write_fault, writable, hugetlb = false, force_pte = false;
94f8e641 648 unsigned long mmu_seq;
ad361f09
CD
649 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
650 unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
651 struct kvm *kvm = vcpu->kvm;
94f8e641 652 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
ad361f09
CD
653 struct vm_area_struct *vma;
654 pfn_t pfn;
94f8e641 655
7393b599 656 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
657 if (fault_status == FSC_PERM && !write_fault) {
658 kvm_err("Unexpected L2 read permission error\n");
659 return -EFAULT;
660 }
661
ad361f09
CD
662 /* Let's check if we will get back a huge page backed by hugetlbfs */
663 down_read(&current->mm->mmap_sem);
664 vma = find_vma_intersection(current->mm, hva, hva + 1);
665 if (is_vm_hugetlb_page(vma)) {
666 hugetlb = true;
667 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
9b5fdb97
CD
668 } else {
669 /*
136d737f
MZ
670 * Pages belonging to memslots that don't have the same
671 * alignment for userspace and IPA cannot be mapped using
672 * block descriptors even if the pages belong to a THP for
673 * the process, because the stage-2 block descriptor will
674 * cover more than a single THP and we loose atomicity for
675 * unmapping, updates, and splits of the THP or other pages
676 * in the stage-2 block range.
9b5fdb97 677 */
136d737f
MZ
678 if ((memslot->userspace_addr & ~PMD_MASK) !=
679 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
9b5fdb97 680 force_pte = true;
ad361f09
CD
681 }
682 up_read(&current->mm->mmap_sem);
683
94f8e641
CD
684 /* We need minimum second+third level pages */
685 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
686 if (ret)
687 return ret;
688
689 mmu_seq = vcpu->kvm->mmu_notifier_seq;
690 /*
691 * Ensure the read of mmu_notifier_seq happens before we call
692 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
693 * the page we just got a reference to gets unmapped before we have a
694 * chance to grab the mmu_lock, which ensure that if the page gets
695 * unmapped afterwards, the call to kvm_unmap_hva will take it away
696 * from us again properly. This smp_rmb() interacts with the smp_wmb()
697 * in kvm_mmu_notifier_invalidate_<page|range_end>.
698 */
699 smp_rmb();
700
ad361f09 701 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
94f8e641
CD
702 if (is_error_pfn(pfn))
703 return -EFAULT;
704
ad361f09
CD
705 spin_lock(&kvm->mmu_lock);
706 if (mmu_notifier_retry(kvm, mmu_seq))
94f8e641 707 goto out_unlock;
9b5fdb97
CD
708 if (!hugetlb && !force_pte)
709 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
ad361f09
CD
710
711 if (hugetlb) {
712 pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
713 new_pmd = pmd_mkhuge(new_pmd);
714 if (writable) {
715 kvm_set_s2pmd_writable(&new_pmd);
716 kvm_set_pfn_dirty(pfn);
717 }
2d58b733 718 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
ad361f09
CD
719 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
720 } else {
721 pte_t new_pte = pfn_pte(pfn, PAGE_S2);
722 if (writable) {
723 kvm_set_s2pte_writable(&new_pte);
724 kvm_set_pfn_dirty(pfn);
725 }
2d58b733 726 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
ad361f09 727 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
94f8e641 728 }
ad361f09 729
94f8e641
CD
730
731out_unlock:
ad361f09 732 spin_unlock(&kvm->mmu_lock);
94f8e641 733 kvm_release_pfn_clean(pfn);
ad361f09 734 return ret;
94f8e641
CD
735}
736
737/**
738 * kvm_handle_guest_abort - handles all 2nd stage aborts
739 * @vcpu: the VCPU pointer
740 * @run: the kvm_run structure
741 *
742 * Any abort that gets to the host is almost guaranteed to be caused by a
743 * missing second stage translation table entry, which can mean that either the
744 * guest simply needs more memory and we must allocate an appropriate page or it
745 * can mean that the guest tried to access I/O memory, which is emulated by user
746 * space. The distinction is based on the IPA causing the fault and whether this
747 * memory region has been registered as standard RAM by user space.
748 */
342cd0ab
CD
749int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
750{
94f8e641
CD
751 unsigned long fault_status;
752 phys_addr_t fault_ipa;
753 struct kvm_memory_slot *memslot;
754 bool is_iabt;
755 gfn_t gfn;
756 int ret, idx;
757
52d1dba9 758 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 759 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 760
7393b599
MZ
761 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
762 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
763
764 /* Check the stage-2 fault is trans. fault or write fault */
1cc287dd 765 fault_status = kvm_vcpu_trap_get_fault(vcpu);
94f8e641 766 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
52d1dba9
MZ
767 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
768 kvm_vcpu_trap_get_class(vcpu), fault_status);
94f8e641
CD
769 return -EFAULT;
770 }
771
772 idx = srcu_read_lock(&vcpu->kvm->srcu);
773
774 gfn = fault_ipa >> PAGE_SHIFT;
775 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
776 if (is_iabt) {
777 /* Prefetch Abort on I/O address */
7393b599 778 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
779 ret = 1;
780 goto out_unlock;
781 }
782
783 if (fault_status != FSC_FAULT) {
784 kvm_err("Unsupported fault status on io memory: %#lx\n",
785 fault_status);
786 ret = -EFAULT;
787 goto out_unlock;
788 }
789
cfe3950c
MZ
790 /*
791 * The IPA is reported as [MAX:12], so we need to
792 * complement it with the bottom 12 bits from the
793 * faulting VA. This is always 12 bits, irrespective
794 * of the page size.
795 */
796 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 797 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
798 goto out_unlock;
799 }
800
801 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641 802
ad361f09 803 ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
94f8e641
CD
804 if (ret == 0)
805 ret = 1;
806out_unlock:
807 srcu_read_unlock(&vcpu->kvm->srcu, idx);
808 return ret;
342cd0ab
CD
809}
810
d5d8184d
CD
811static void handle_hva_to_gpa(struct kvm *kvm,
812 unsigned long start,
813 unsigned long end,
814 void (*handler)(struct kvm *kvm,
815 gpa_t gpa, void *data),
816 void *data)
817{
818 struct kvm_memslots *slots;
819 struct kvm_memory_slot *memslot;
820
821 slots = kvm_memslots(kvm);
822
823 /* we only care about the pages that the guest sees */
824 kvm_for_each_memslot(memslot, slots) {
825 unsigned long hva_start, hva_end;
826 gfn_t gfn, gfn_end;
827
828 hva_start = max(start, memslot->userspace_addr);
829 hva_end = min(end, memslot->userspace_addr +
830 (memslot->npages << PAGE_SHIFT));
831 if (hva_start >= hva_end)
832 continue;
833
834 /*
835 * {gfn(page) | page intersects with [hva_start, hva_end)} =
836 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
837 */
838 gfn = hva_to_gfn_memslot(hva_start, memslot);
839 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
840
841 for (; gfn < gfn_end; ++gfn) {
842 gpa_t gpa = gfn << PAGE_SHIFT;
843 handler(kvm, gpa, data);
844 }
845 }
846}
847
848static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
849{
850 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
d5d8184d
CD
851}
852
853int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
854{
855 unsigned long end = hva + PAGE_SIZE;
856
857 if (!kvm->arch.pgd)
858 return 0;
859
860 trace_kvm_unmap_hva(hva);
861 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
862 return 0;
863}
864
865int kvm_unmap_hva_range(struct kvm *kvm,
866 unsigned long start, unsigned long end)
867{
868 if (!kvm->arch.pgd)
869 return 0;
870
871 trace_kvm_unmap_hva_range(start, end);
872 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
873 return 0;
874}
875
876static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
877{
878 pte_t *pte = (pte_t *)data;
879
880 stage2_set_pte(kvm, NULL, gpa, pte, false);
881}
882
883
884void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
885{
886 unsigned long end = hva + PAGE_SIZE;
887 pte_t stage2_pte;
888
889 if (!kvm->arch.pgd)
890 return;
891
892 trace_kvm_set_spte_hva(hva);
893 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
894 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
895}
896
897void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
898{
899 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
900}
901
342cd0ab
CD
902phys_addr_t kvm_mmu_get_httbr(void)
903{
342cd0ab
CD
904 return virt_to_phys(hyp_pgd);
905}
906
5a677ce0
MZ
907phys_addr_t kvm_mmu_get_boot_httbr(void)
908{
909 return virt_to_phys(boot_hyp_pgd);
910}
911
912phys_addr_t kvm_get_idmap_vector(void)
913{
914 return hyp_idmap_vector;
915}
916
342cd0ab
CD
917int kvm_mmu_init(void)
918{
2fb41059
MZ
919 int err;
920
4fda342c
SS
921 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
922 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
923 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
5a677ce0
MZ
924
925 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
926 /*
927 * Our init code is crossing a page boundary. Allocate
928 * a bounce page, copy the code over and use that.
929 */
930 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
931 phys_addr_t phys_base;
932
933 init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
934 if (!init_bounce_page) {
935 kvm_err("Couldn't allocate HYP init bounce page\n");
936 err = -ENOMEM;
937 goto out;
938 }
939
940 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
941 /*
942 * Warning: the code we just copied to the bounce page
943 * must be flushed to the point of coherency.
944 * Otherwise, the data may be sitting in L2, and HYP
945 * mode won't be able to observe it as it runs with
946 * caches off at that point.
947 */
948 kvm_flush_dcache_to_poc(init_bounce_page, len);
949
4fda342c 950 phys_base = kvm_virt_to_phys(init_bounce_page);
5a677ce0
MZ
951 hyp_idmap_vector += phys_base - hyp_idmap_start;
952 hyp_idmap_start = phys_base;
953 hyp_idmap_end = phys_base + len;
954
955 kvm_info("Using HYP init bounce page @%lx\n",
956 (unsigned long)phys_base);
957 }
958
2fb41059 959 hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
5a677ce0
MZ
960 boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
961 if (!hyp_pgd || !boot_hyp_pgd) {
d5d8184d 962 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
963 err = -ENOMEM;
964 goto out;
965 }
966
967 /* Create the idmap in the boot page tables */
968 err = __create_hyp_mappings(boot_hyp_pgd,
969 hyp_idmap_start, hyp_idmap_end,
970 __phys_to_pfn(hyp_idmap_start),
971 PAGE_HYP);
972
973 if (err) {
974 kvm_err("Failed to idmap %lx-%lx\n",
975 hyp_idmap_start, hyp_idmap_end);
976 goto out;
d5d8184d
CD
977 }
978
5a677ce0
MZ
979 /* Map the very same page at the trampoline VA */
980 err = __create_hyp_mappings(boot_hyp_pgd,
981 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
982 __phys_to_pfn(hyp_idmap_start),
983 PAGE_HYP);
984 if (err) {
985 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
986 TRAMPOLINE_VA);
987 goto out;
988 }
989
990 /* Map the same page again into the runtime page tables */
991 err = __create_hyp_mappings(hyp_pgd,
992 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
993 __phys_to_pfn(hyp_idmap_start),
994 PAGE_HYP);
995 if (err) {
996 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
997 TRAMPOLINE_VA);
998 goto out;
999 }
1000
d5d8184d 1001 return 0;
2fb41059 1002out:
4f728276 1003 free_hyp_pgds();
2fb41059 1004 return err;
342cd0ab 1005}
This page took 0.195492 seconds and 5 git commands to generate.