ARM: KVM: convert GP registers from u32 to unsigned long
[deliverable/linux.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
45e96ea6 22#include <trace/events/kvm.h>
342cd0ab
CD
23#include <asm/idmap.h>
24#include <asm/pgalloc.h>
94f8e641 25#include <asm/cacheflush.h>
342cd0ab
CD
26#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
45e96ea6 28#include <asm/kvm_mmio.h>
d5d8184d 29#include <asm/kvm_asm.h>
94f8e641 30#include <asm/kvm_emulate.h>
342cd0ab 31#include <asm/mach/map.h>
d5d8184d
CD
32#include <trace/events/kvm.h>
33
34#include "trace.h"
342cd0ab
CD
35
36extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
37
38static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
d5d8184d
CD
40static void kvm_tlb_flush_vmid(struct kvm *kvm)
41{
42 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
43}
44
342cd0ab
CD
45static void kvm_set_pte(pte_t *pte, pte_t new_pte)
46{
47 pte_val(*pte) = new_pte;
48 /*
49 * flush_pmd_entry just takes a void pointer and cleans the necessary
50 * cache entries, so we can reuse the function for ptes.
51 */
52 flush_pmd_entry(pte);
53}
54
d5d8184d
CD
55static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
56 int min, int max)
57{
58 void *page;
59
60 BUG_ON(max > KVM_NR_MEM_OBJS);
61 if (cache->nobjs >= min)
62 return 0;
63 while (cache->nobjs < max) {
64 page = (void *)__get_free_page(PGALLOC_GFP);
65 if (!page)
66 return -ENOMEM;
67 cache->objects[cache->nobjs++] = page;
68 }
69 return 0;
70}
71
72static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
73{
74 while (mc->nobjs)
75 free_page((unsigned long)mc->objects[--mc->nobjs]);
76}
77
78static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
79{
80 void *p;
81
82 BUG_ON(!mc || !mc->nobjs);
83 p = mc->objects[--mc->nobjs];
84 return p;
85}
86
342cd0ab
CD
87static void free_ptes(pmd_t *pmd, unsigned long addr)
88{
89 pte_t *pte;
90 unsigned int i;
91
92 for (i = 0; i < PTRS_PER_PMD; i++, addr += PMD_SIZE) {
93 if (!pmd_none(*pmd) && pmd_table(*pmd)) {
94 pte = pte_offset_kernel(pmd, addr);
95 pte_free_kernel(NULL, pte);
96 }
97 pmd++;
98 }
99}
100
101/**
102 * free_hyp_pmds - free a Hyp-mode level-2 tables and child level-3 tables
103 *
104 * Assumes this is a page table used strictly in Hyp-mode and therefore contains
105 * only mappings in the kernel memory area, which is above PAGE_OFFSET.
106 */
107void free_hyp_pmds(void)
108{
109 pgd_t *pgd;
110 pud_t *pud;
111 pmd_t *pmd;
112 unsigned long addr;
113
114 mutex_lock(&kvm_hyp_pgd_mutex);
115 for (addr = PAGE_OFFSET; addr != 0; addr += PGDIR_SIZE) {
116 pgd = hyp_pgd + pgd_index(addr);
117 pud = pud_offset(pgd, addr);
118
119 if (pud_none(*pud))
120 continue;
121 BUG_ON(pud_bad(*pud));
122
123 pmd = pmd_offset(pud, addr);
124 free_ptes(pmd, addr);
125 pmd_free(NULL, pmd);
126 pud_clear(pud);
127 }
128 mutex_unlock(&kvm_hyp_pgd_mutex);
129}
130
131static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
132 unsigned long end)
133{
134 pte_t *pte;
135 unsigned long addr;
136 struct page *page;
137
138 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
139 pte = pte_offset_kernel(pmd, addr);
140 BUG_ON(!virt_addr_valid(addr));
141 page = virt_to_page(addr);
142 kvm_set_pte(pte, mk_pte(page, PAGE_HYP));
143 }
144}
145
146static void create_hyp_io_pte_mappings(pmd_t *pmd, unsigned long start,
147 unsigned long end,
148 unsigned long *pfn_base)
149{
150 pte_t *pte;
151 unsigned long addr;
152
153 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
154 pte = pte_offset_kernel(pmd, addr);
155 BUG_ON(pfn_valid(*pfn_base));
156 kvm_set_pte(pte, pfn_pte(*pfn_base, PAGE_HYP_DEVICE));
157 (*pfn_base)++;
158 }
159}
160
161static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
162 unsigned long end, unsigned long *pfn_base)
163{
164 pmd_t *pmd;
165 pte_t *pte;
166 unsigned long addr, next;
167
168 for (addr = start; addr < end; addr = next) {
169 pmd = pmd_offset(pud, addr);
170
171 BUG_ON(pmd_sect(*pmd));
172
173 if (pmd_none(*pmd)) {
174 pte = pte_alloc_one_kernel(NULL, addr);
175 if (!pte) {
176 kvm_err("Cannot allocate Hyp pte\n");
177 return -ENOMEM;
178 }
179 pmd_populate_kernel(NULL, pmd, pte);
180 }
181
182 next = pmd_addr_end(addr, end);
183
184 /*
185 * If pfn_base is NULL, we map kernel pages into HYP with the
186 * virtual address. Otherwise, this is considered an I/O
187 * mapping and we map the physical region starting at
188 * *pfn_base to [start, end[.
189 */
190 if (!pfn_base)
191 create_hyp_pte_mappings(pmd, addr, next);
192 else
193 create_hyp_io_pte_mappings(pmd, addr, next, pfn_base);
194 }
195
196 return 0;
197}
198
199static int __create_hyp_mappings(void *from, void *to, unsigned long *pfn_base)
200{
201 unsigned long start = (unsigned long)from;
202 unsigned long end = (unsigned long)to;
203 pgd_t *pgd;
204 pud_t *pud;
205 pmd_t *pmd;
206 unsigned long addr, next;
207 int err = 0;
208
209 BUG_ON(start > end);
210 if (start < PAGE_OFFSET)
211 return -EINVAL;
212
213 mutex_lock(&kvm_hyp_pgd_mutex);
214 for (addr = start; addr < end; addr = next) {
215 pgd = hyp_pgd + pgd_index(addr);
216 pud = pud_offset(pgd, addr);
217
218 if (pud_none_or_clear_bad(pud)) {
219 pmd = pmd_alloc_one(NULL, addr);
220 if (!pmd) {
221 kvm_err("Cannot allocate Hyp pmd\n");
222 err = -ENOMEM;
223 goto out;
224 }
225 pud_populate(NULL, pud, pmd);
226 }
227
228 next = pgd_addr_end(addr, end);
229 err = create_hyp_pmd_mappings(pud, addr, next, pfn_base);
230 if (err)
231 goto out;
232 }
233out:
234 mutex_unlock(&kvm_hyp_pgd_mutex);
235 return err;
236}
237
238/**
239 * create_hyp_mappings - map a kernel virtual address range in Hyp mode
240 * @from: The virtual kernel start address of the range
241 * @to: The virtual kernel end address of the range (exclusive)
242 *
243 * The same virtual address as the kernel virtual address is also used in
244 * Hyp-mode mapping to the same underlying physical pages.
245 *
246 * Note: Wrapping around zero in the "to" address is not supported.
247 */
248int create_hyp_mappings(void *from, void *to)
249{
250 return __create_hyp_mappings(from, to, NULL);
251}
252
253/**
254 * create_hyp_io_mappings - map a physical IO range in Hyp mode
255 * @from: The virtual HYP start address of the range
256 * @to: The virtual HYP end address of the range (exclusive)
257 * @addr: The physical start address which gets mapped
258 */
259int create_hyp_io_mappings(void *from, void *to, phys_addr_t addr)
260{
261 unsigned long pfn = __phys_to_pfn(addr);
262 return __create_hyp_mappings(from, to, &pfn);
263}
264
d5d8184d
CD
265/**
266 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
267 * @kvm: The KVM struct pointer for the VM.
268 *
269 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
270 * support either full 40-bit input addresses or limited to 32-bit input
271 * addresses). Clears the allocated pages.
272 *
273 * Note we don't need locking here as this is only called when the VM is
274 * created, which can only be done once.
275 */
276int kvm_alloc_stage2_pgd(struct kvm *kvm)
277{
278 pgd_t *pgd;
279
280 if (kvm->arch.pgd != NULL) {
281 kvm_err("kvm_arch already initialized?\n");
282 return -EINVAL;
283 }
284
285 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
286 if (!pgd)
287 return -ENOMEM;
288
289 /* stage-2 pgd must be aligned to its size */
290 VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1));
291
292 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
293 clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t));
294 kvm->arch.pgd = pgd;
295
296 return 0;
297}
298
299static void clear_pud_entry(pud_t *pud)
300{
301 pmd_t *pmd_table = pmd_offset(pud, 0);
302 pud_clear(pud);
303 pmd_free(NULL, pmd_table);
304 put_page(virt_to_page(pud));
305}
306
307static void clear_pmd_entry(pmd_t *pmd)
308{
309 pte_t *pte_table = pte_offset_kernel(pmd, 0);
310 pmd_clear(pmd);
311 pte_free_kernel(NULL, pte_table);
312 put_page(virt_to_page(pmd));
313}
314
315static bool pmd_empty(pmd_t *pmd)
316{
317 struct page *pmd_page = virt_to_page(pmd);
318 return page_count(pmd_page) == 1;
319}
320
321static void clear_pte_entry(pte_t *pte)
322{
323 if (pte_present(*pte)) {
324 kvm_set_pte(pte, __pte(0));
325 put_page(virt_to_page(pte));
326 }
327}
328
329static bool pte_empty(pte_t *pte)
330{
331 struct page *pte_page = virt_to_page(pte);
332 return page_count(pte_page) == 1;
333}
334
335/**
336 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
337 * @kvm: The VM pointer
338 * @start: The intermediate physical base address of the range to unmap
339 * @size: The size of the area to unmap
340 *
341 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
342 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
343 * destroying the VM), otherwise another faulting VCPU may come in and mess
344 * with things behind our backs.
345 */
346static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
347{
348 pgd_t *pgd;
349 pud_t *pud;
350 pmd_t *pmd;
351 pte_t *pte;
352 phys_addr_t addr = start, end = start + size;
353 u64 range;
354
355 while (addr < end) {
356 pgd = kvm->arch.pgd + pgd_index(addr);
357 pud = pud_offset(pgd, addr);
358 if (pud_none(*pud)) {
359 addr += PUD_SIZE;
360 continue;
361 }
362
363 pmd = pmd_offset(pud, addr);
364 if (pmd_none(*pmd)) {
365 addr += PMD_SIZE;
366 continue;
367 }
368
369 pte = pte_offset_kernel(pmd, addr);
370 clear_pte_entry(pte);
371 range = PAGE_SIZE;
372
373 /* If we emptied the pte, walk back up the ladder */
374 if (pte_empty(pte)) {
375 clear_pmd_entry(pmd);
376 range = PMD_SIZE;
377 if (pmd_empty(pmd)) {
378 clear_pud_entry(pud);
379 range = PUD_SIZE;
380 }
381 }
382
383 addr += range;
384 }
385}
386
387/**
388 * kvm_free_stage2_pgd - free all stage-2 tables
389 * @kvm: The KVM struct pointer for the VM.
390 *
391 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
392 * underlying level-2 and level-3 tables before freeing the actual level-1 table
393 * and setting the struct pointer to NULL.
394 *
395 * Note we don't need locking here as this is only called when the VM is
396 * destroyed, which can only be done once.
397 */
398void kvm_free_stage2_pgd(struct kvm *kvm)
399{
400 if (kvm->arch.pgd == NULL)
401 return;
402
403 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
404 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
405 kvm->arch.pgd = NULL;
406}
407
408
409static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
410 phys_addr_t addr, const pte_t *new_pte, bool iomap)
411{
412 pgd_t *pgd;
413 pud_t *pud;
414 pmd_t *pmd;
415 pte_t *pte, old_pte;
416
417 /* Create 2nd stage page table mapping - Level 1 */
418 pgd = kvm->arch.pgd + pgd_index(addr);
419 pud = pud_offset(pgd, addr);
420 if (pud_none(*pud)) {
421 if (!cache)
422 return 0; /* ignore calls from kvm_set_spte_hva */
423 pmd = mmu_memory_cache_alloc(cache);
424 pud_populate(NULL, pud, pmd);
425 pmd += pmd_index(addr);
426 get_page(virt_to_page(pud));
427 } else
428 pmd = pmd_offset(pud, addr);
429
430 /* Create 2nd stage page table mapping - Level 2 */
431 if (pmd_none(*pmd)) {
432 if (!cache)
433 return 0; /* ignore calls from kvm_set_spte_hva */
434 pte = mmu_memory_cache_alloc(cache);
435 clean_pte_table(pte);
436 pmd_populate_kernel(NULL, pmd, pte);
437 pte += pte_index(addr);
438 get_page(virt_to_page(pmd));
439 } else
440 pte = pte_offset_kernel(pmd, addr);
441
442 if (iomap && pte_present(*pte))
443 return -EFAULT;
444
445 /* Create 2nd stage page table mapping - Level 3 */
446 old_pte = *pte;
447 kvm_set_pte(pte, *new_pte);
448 if (pte_present(old_pte))
449 kvm_tlb_flush_vmid(kvm);
450 else
451 get_page(virt_to_page(pte));
452
453 return 0;
454}
455
456/**
457 * kvm_phys_addr_ioremap - map a device range to guest IPA
458 *
459 * @kvm: The KVM pointer
460 * @guest_ipa: The IPA at which to insert the mapping
461 * @pa: The physical address of the device
462 * @size: The size of the mapping
463 */
464int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
465 phys_addr_t pa, unsigned long size)
466{
467 phys_addr_t addr, end;
468 int ret = 0;
469 unsigned long pfn;
470 struct kvm_mmu_memory_cache cache = { 0, };
471
472 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
473 pfn = __phys_to_pfn(pa);
474
475 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
476 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE | L_PTE_S2_RDWR);
477
478 ret = mmu_topup_memory_cache(&cache, 2, 2);
479 if (ret)
480 goto out;
481 spin_lock(&kvm->mmu_lock);
482 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
483 spin_unlock(&kvm->mmu_lock);
484 if (ret)
485 goto out;
486
487 pfn++;
488 }
489
490out:
491 mmu_free_memory_cache(&cache);
492 return ret;
493}
494
94f8e641
CD
495static void coherent_icache_guest_page(struct kvm *kvm, gfn_t gfn)
496{
497 /*
498 * If we are going to insert an instruction page and the icache is
499 * either VIPT or PIPT, there is a potential problem where the host
500 * (or another VM) may have used the same page as this guest, and we
501 * read incorrect data from the icache. If we're using a PIPT cache,
502 * we can invalidate just that page, but if we are using a VIPT cache
503 * we need to invalidate the entire icache - damn shame - as written
504 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
505 *
506 * VIVT caches are tagged using both the ASID and the VMID and doesn't
507 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
508 */
509 if (icache_is_pipt()) {
510 unsigned long hva = gfn_to_hva(kvm, gfn);
511 __cpuc_coherent_user_range(hva, hva + PAGE_SIZE);
512 } else if (!icache_is_vivt_asid_tagged()) {
513 /* any kind of VIPT cache */
514 __flush_icache_all();
515 }
516}
517
518static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
519 gfn_t gfn, struct kvm_memory_slot *memslot,
520 unsigned long fault_status)
521{
522 pte_t new_pte;
523 pfn_t pfn;
524 int ret;
525 bool write_fault, writable;
526 unsigned long mmu_seq;
527 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
528
529 write_fault = kvm_is_write_fault(vcpu->arch.hsr);
530 if (fault_status == FSC_PERM && !write_fault) {
531 kvm_err("Unexpected L2 read permission error\n");
532 return -EFAULT;
533 }
534
535 /* We need minimum second+third level pages */
536 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
537 if (ret)
538 return ret;
539
540 mmu_seq = vcpu->kvm->mmu_notifier_seq;
541 /*
542 * Ensure the read of mmu_notifier_seq happens before we call
543 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
544 * the page we just got a reference to gets unmapped before we have a
545 * chance to grab the mmu_lock, which ensure that if the page gets
546 * unmapped afterwards, the call to kvm_unmap_hva will take it away
547 * from us again properly. This smp_rmb() interacts with the smp_wmb()
548 * in kvm_mmu_notifier_invalidate_<page|range_end>.
549 */
550 smp_rmb();
551
552 pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
553 if (is_error_pfn(pfn))
554 return -EFAULT;
555
556 new_pte = pfn_pte(pfn, PAGE_S2);
557 coherent_icache_guest_page(vcpu->kvm, gfn);
558
559 spin_lock(&vcpu->kvm->mmu_lock);
560 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
561 goto out_unlock;
562 if (writable) {
563 pte_val(new_pte) |= L_PTE_S2_RDWR;
564 kvm_set_pfn_dirty(pfn);
565 }
566 stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
567
568out_unlock:
569 spin_unlock(&vcpu->kvm->mmu_lock);
570 kvm_release_pfn_clean(pfn);
571 return 0;
572}
573
574/**
575 * kvm_handle_guest_abort - handles all 2nd stage aborts
576 * @vcpu: the VCPU pointer
577 * @run: the kvm_run structure
578 *
579 * Any abort that gets to the host is almost guaranteed to be caused by a
580 * missing second stage translation table entry, which can mean that either the
581 * guest simply needs more memory and we must allocate an appropriate page or it
582 * can mean that the guest tried to access I/O memory, which is emulated by user
583 * space. The distinction is based on the IPA causing the fault and whether this
584 * memory region has been registered as standard RAM by user space.
585 */
342cd0ab
CD
586int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
587{
94f8e641
CD
588 unsigned long hsr_ec;
589 unsigned long fault_status;
590 phys_addr_t fault_ipa;
591 struct kvm_memory_slot *memslot;
592 bool is_iabt;
593 gfn_t gfn;
594 int ret, idx;
595
596 hsr_ec = vcpu->arch.hsr >> HSR_EC_SHIFT;
597 is_iabt = (hsr_ec == HSR_EC_IABT);
598 fault_ipa = ((phys_addr_t)vcpu->arch.hpfar & HPFAR_MASK) << 8;
599
600 trace_kvm_guest_fault(*vcpu_pc(vcpu), vcpu->arch.hsr,
601 vcpu->arch.hxfar, fault_ipa);
602
603 /* Check the stage-2 fault is trans. fault or write fault */
604 fault_status = (vcpu->arch.hsr & HSR_FSC_TYPE);
605 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
606 kvm_err("Unsupported fault status: EC=%#lx DFCS=%#lx\n",
607 hsr_ec, fault_status);
608 return -EFAULT;
609 }
610
611 idx = srcu_read_lock(&vcpu->kvm->srcu);
612
613 gfn = fault_ipa >> PAGE_SHIFT;
614 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
615 if (is_iabt) {
616 /* Prefetch Abort on I/O address */
617 kvm_inject_pabt(vcpu, vcpu->arch.hxfar);
618 ret = 1;
619 goto out_unlock;
620 }
621
622 if (fault_status != FSC_FAULT) {
623 kvm_err("Unsupported fault status on io memory: %#lx\n",
624 fault_status);
625 ret = -EFAULT;
626 goto out_unlock;
627 }
628
45e96ea6
CD
629 /* Adjust page offset */
630 fault_ipa |= vcpu->arch.hxfar & ~PAGE_MASK;
631 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
632 goto out_unlock;
633 }
634
635 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641
CD
636
637 ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
638 if (ret == 0)
639 ret = 1;
640out_unlock:
641 srcu_read_unlock(&vcpu->kvm->srcu, idx);
642 return ret;
342cd0ab
CD
643}
644
d5d8184d
CD
645static void handle_hva_to_gpa(struct kvm *kvm,
646 unsigned long start,
647 unsigned long end,
648 void (*handler)(struct kvm *kvm,
649 gpa_t gpa, void *data),
650 void *data)
651{
652 struct kvm_memslots *slots;
653 struct kvm_memory_slot *memslot;
654
655 slots = kvm_memslots(kvm);
656
657 /* we only care about the pages that the guest sees */
658 kvm_for_each_memslot(memslot, slots) {
659 unsigned long hva_start, hva_end;
660 gfn_t gfn, gfn_end;
661
662 hva_start = max(start, memslot->userspace_addr);
663 hva_end = min(end, memslot->userspace_addr +
664 (memslot->npages << PAGE_SHIFT));
665 if (hva_start >= hva_end)
666 continue;
667
668 /*
669 * {gfn(page) | page intersects with [hva_start, hva_end)} =
670 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
671 */
672 gfn = hva_to_gfn_memslot(hva_start, memslot);
673 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
674
675 for (; gfn < gfn_end; ++gfn) {
676 gpa_t gpa = gfn << PAGE_SHIFT;
677 handler(kvm, gpa, data);
678 }
679 }
680}
681
682static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
683{
684 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
685 kvm_tlb_flush_vmid(kvm);
686}
687
688int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
689{
690 unsigned long end = hva + PAGE_SIZE;
691
692 if (!kvm->arch.pgd)
693 return 0;
694
695 trace_kvm_unmap_hva(hva);
696 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
697 return 0;
698}
699
700int kvm_unmap_hva_range(struct kvm *kvm,
701 unsigned long start, unsigned long end)
702{
703 if (!kvm->arch.pgd)
704 return 0;
705
706 trace_kvm_unmap_hva_range(start, end);
707 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
708 return 0;
709}
710
711static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
712{
713 pte_t *pte = (pte_t *)data;
714
715 stage2_set_pte(kvm, NULL, gpa, pte, false);
716}
717
718
719void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
720{
721 unsigned long end = hva + PAGE_SIZE;
722 pte_t stage2_pte;
723
724 if (!kvm->arch.pgd)
725 return;
726
727 trace_kvm_set_spte_hva(hva);
728 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
729 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
730}
731
732void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
733{
734 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
735}
736
342cd0ab
CD
737phys_addr_t kvm_mmu_get_httbr(void)
738{
739 VM_BUG_ON(!virt_addr_valid(hyp_pgd));
740 return virt_to_phys(hyp_pgd);
741}
742
743int kvm_mmu_init(void)
744{
d5d8184d
CD
745 if (!hyp_pgd) {
746 kvm_err("Hyp mode PGD not allocated\n");
747 return -ENOMEM;
748 }
749
750 return 0;
342cd0ab
CD
751}
752
753/**
754 * kvm_clear_idmap - remove all idmaps from the hyp pgd
755 *
756 * Free the underlying pmds for all pgds in range and clear the pgds (but
757 * don't free them) afterwards.
758 */
759void kvm_clear_hyp_idmap(void)
760{
761 unsigned long addr, end;
762 unsigned long next;
763 pgd_t *pgd = hyp_pgd;
764 pud_t *pud;
765 pmd_t *pmd;
766
767 addr = virt_to_phys(__hyp_idmap_text_start);
768 end = virt_to_phys(__hyp_idmap_text_end);
769
770 pgd += pgd_index(addr);
771 do {
772 next = pgd_addr_end(addr, end);
773 if (pgd_none_or_clear_bad(pgd))
774 continue;
775 pud = pud_offset(pgd, addr);
776 pmd = pmd_offset(pud, addr);
777
778 pud_clear(pud);
779 clean_pmd_entry(pmd);
780 pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK));
781 } while (pgd++, addr = next, addr < end);
782}
This page took 0.071446 seconds and 5 git commands to generate.