Fix up try_to_freeze() usage in arch/i386/kernel/signal.c
[deliverable/linux.git] / arch / arm / mach-versatile / core.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mach-versatile/core.c
3 *
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21#include <linux/config.h>
22#include <linux/init.h>
23#include <linux/device.h>
24#include <linux/dma-mapping.h>
25#include <linux/sysdev.h>
26#include <linux/interrupt.h>
27
28#include <asm/system.h>
29#include <asm/hardware.h>
30#include <asm/io.h>
31#include <asm/irq.h>
32#include <asm/leds.h>
33#include <asm/mach-types.h>
34#include <asm/hardware/amba.h>
35#include <asm/hardware/amba_clcd.h>
36#include <asm/hardware/icst307.h>
37
38#include <asm/mach/arch.h>
39#include <asm/mach/flash.h>
40#include <asm/mach/irq.h>
41#include <asm/mach/time.h>
42#include <asm/mach/map.h>
43#include <asm/mach/mmc.h>
44
45#include "core.h"
46#include "clock.h"
47
48/*
49 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
50 * is the (PA >> 12).
51 *
52 * Setup a VA for the Versatile Vectored Interrupt Controller.
53 */
54#define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
55#define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
56
57static void vic_mask_irq(unsigned int irq)
58{
59 irq -= IRQ_VIC_START;
60 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
61}
62
63static void vic_unmask_irq(unsigned int irq)
64{
65 irq -= IRQ_VIC_START;
66 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
67}
68
69static struct irqchip vic_chip = {
70 .ack = vic_mask_irq,
71 .mask = vic_mask_irq,
72 .unmask = vic_unmask_irq,
73};
74
75static void sic_mask_irq(unsigned int irq)
76{
77 irq -= IRQ_SIC_START;
78 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
79}
80
81static void sic_unmask_irq(unsigned int irq)
82{
83 irq -= IRQ_SIC_START;
84 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
85}
86
87static struct irqchip sic_chip = {
88 .ack = sic_mask_irq,
89 .mask = sic_mask_irq,
90 .unmask = sic_unmask_irq,
91};
92
93static void
94sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
95{
96 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
97
98 if (status == 0) {
99 do_bad_IRQ(irq, desc, regs);
100 return;
101 }
102
103 do {
104 irq = ffs(status) - 1;
105 status &= ~(1 << irq);
106
107 irq += IRQ_SIC_START;
108
109 desc = irq_desc + irq;
110 desc->handle(irq, desc, regs);
111 } while (status);
112}
113
114#if 1
115#define IRQ_MMCI0A IRQ_VICSOURCE22
116#define IRQ_AACI IRQ_VICSOURCE24
117#define IRQ_ETH IRQ_VICSOURCE25
118#define PIC_MASK 0xFFD00000
119#else
120#define IRQ_MMCI0A IRQ_SIC_MMCI0A
121#define IRQ_AACI IRQ_SIC_AACI
122#define IRQ_ETH IRQ_SIC_ETH
123#define PIC_MASK 0
124#endif
125
126void __init versatile_init_irq(void)
127{
128 unsigned int i, value;
129
130 /* Disable all interrupts initially. */
131
132 writel(0, VA_VIC_BASE + VIC_INT_SELECT);
133 writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
134 writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
135 writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
136 writel(0, VA_VIC_BASE + VIC_ITCR);
137 writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
138
139 /*
140 * Make sure we clear all existing interrupts
141 */
142 writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
143 for (i = 0; i < 19; i++) {
144 value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
145 writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
146 }
147
148 for (i = 0; i < 16; i++) {
149 value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
150 writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
151 }
152
153 writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
154
155 for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
156 if (i != IRQ_VICSOURCE31) {
157 set_irq_chip(i, &vic_chip);
158 set_irq_handler(i, do_level_IRQ);
159 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
160 }
161 }
162
163 set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
164 vic_unmask_irq(IRQ_VICSOURCE31);
165
166 /* Do second interrupt controller */
167 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
168
169 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
170 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
171 set_irq_chip(i, &sic_chip);
172 set_irq_handler(i, do_level_IRQ);
173 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
174 }
175 }
176
177 /*
178 * Interrupts on secondary controller from 0 to 8 are routed to
179 * source 31 on PIC.
180 * Interrupts from 21 to 31 are routed directly to the VIC on
181 * the corresponding number on primary controller. This is controlled
182 * by setting PIC_ENABLEx.
183 */
184 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
185}
186
187static struct map_desc versatile_io_desc[] __initdata = {
188 { IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
189 { IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
190 { IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
191 { IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
192#ifdef CONFIG_MACH_VERSATILE_AB
193 { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K, MT_DEVICE },
194 { IO_ADDRESS(VERSATILE_IB2_BASE), VERSATILE_IB2_BASE, SZ_64M, MT_DEVICE },
195#endif
196#ifdef CONFIG_DEBUG_LL
197 { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
198#endif
c0da085a
CM
199#ifdef CONFIG_PCI
200 { IO_ADDRESS(VERSATILE_PCI_CORE_BASE), VERSATILE_PCI_CORE_BASE, SZ_4K, MT_DEVICE },
201 { VERSATILE_PCI_VIRT_BASE, VERSATILE_PCI_BASE, VERSATILE_PCI_BASE_SIZE, MT_DEVICE },
202 { VERSATILE_PCI_CFG_VIRT_BASE, VERSATILE_PCI_CFG_BASE, VERSATILE_PCI_CFG_BASE_SIZE, MT_DEVICE },
203#if 0
204 { VERSATILE_PCI_VIRT_MEM_BASE0, VERSATILE_PCI_MEM_BASE0, SZ_16M, MT_DEVICE },
205 { VERSATILE_PCI_VIRT_MEM_BASE1, VERSATILE_PCI_MEM_BASE1, SZ_16M, MT_DEVICE },
206 { VERSATILE_PCI_VIRT_MEM_BASE2, VERSATILE_PCI_MEM_BASE2, SZ_16M, MT_DEVICE },
207#endif
1da177e4
LT
208#endif
209};
210
211void __init versatile_map_io(void)
212{
213 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
214}
215
216#define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
217
218/*
219 * This is the Versatile sched_clock implementation. This has
220 * a resolution of 41.7ns, and a maximum value of about 179s.
221 */
222unsigned long long sched_clock(void)
223{
224 unsigned long long v;
225
226 v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
227 do_div(v, 3);
228
229 return v;
230}
231
232
233#define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
234
235static int versatile_flash_init(void)
236{
237 u32 val;
238
239 val = __raw_readl(VERSATILE_FLASHCTRL);
240 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
241 __raw_writel(val, VERSATILE_FLASHCTRL);
242
243 return 0;
244}
245
246static void versatile_flash_exit(void)
247{
248 u32 val;
249
250 val = __raw_readl(VERSATILE_FLASHCTRL);
251 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
252 __raw_writel(val, VERSATILE_FLASHCTRL);
253}
254
255static void versatile_flash_set_vpp(int on)
256{
257 u32 val;
258
259 val = __raw_readl(VERSATILE_FLASHCTRL);
260 if (on)
261 val |= VERSATILE_FLASHPROG_FLVPPEN;
262 else
263 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
264 __raw_writel(val, VERSATILE_FLASHCTRL);
265}
266
267static struct flash_platform_data versatile_flash_data = {
268 .map_name = "cfi_probe",
269 .width = 4,
270 .init = versatile_flash_init,
271 .exit = versatile_flash_exit,
272 .set_vpp = versatile_flash_set_vpp,
273};
274
275static struct resource versatile_flash_resource = {
276 .start = VERSATILE_FLASH_BASE,
277 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
278 .flags = IORESOURCE_MEM,
279};
280
281static struct platform_device versatile_flash_device = {
282 .name = "armflash",
283 .id = 0,
284 .dev = {
285 .platform_data = &versatile_flash_data,
286 },
287 .num_resources = 1,
288 .resource = &versatile_flash_resource,
289};
290
291static struct resource smc91x_resources[] = {
292 [0] = {
293 .start = VERSATILE_ETH_BASE,
294 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
295 .flags = IORESOURCE_MEM,
296 },
297 [1] = {
298 .start = IRQ_ETH,
299 .end = IRQ_ETH,
300 .flags = IORESOURCE_IRQ,
301 },
302};
303
304static struct platform_device smc91x_device = {
305 .name = "smc91x",
306 .id = 0,
307 .num_resources = ARRAY_SIZE(smc91x_resources),
308 .resource = smc91x_resources,
309};
310
311#define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
312
313unsigned int mmc_status(struct device *dev)
314{
315 struct amba_device *adev = container_of(dev, struct amba_device, dev);
316 u32 mask;
317
318 if (adev->res.start == VERSATILE_MMCI0_BASE)
319 mask = 1;
320 else
321 mask = 2;
322
323 return readl(VERSATILE_SYSMCI) & mask;
324}
325
326static struct mmc_platform_data mmc0_plat_data = {
327 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
328 .status = mmc_status,
329};
330
331/*
332 * Clock handling
333 */
334static const struct icst307_params versatile_oscvco_params = {
335 .ref = 24000,
336 .vco_max = 200000,
337 .vd_min = 4 + 8,
338 .vd_max = 511 + 8,
339 .rd_min = 1 + 2,
340 .rd_max = 127 + 2,
341};
342
343static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
344{
345 unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
346#if defined(CONFIG_ARCH_VERSATILE_PB)
347 unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
348#elif defined(CONFIG_MACH_VERSATILE_AB)
349 unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
350#endif
351 u32 val;
352
353 val = readl(sys_osc) & ~0x7ffff;
354 val |= vco.v | (vco.r << 9) | (vco.s << 16);
355
356 writel(0xa05f, sys_lock);
357 writel(val, sys_osc);
358 writel(0, sys_lock);
359}
360
361static struct clk versatile_clcd_clk = {
362 .name = "CLCDCLK",
363 .params = &versatile_oscvco_params,
364 .setvco = versatile_oscvco_set,
365};
366
367/*
368 * CLCD support.
369 */
370#define SYS_CLCD_MODE_MASK (3 << 0)
371#define SYS_CLCD_MODE_888 (0 << 0)
372#define SYS_CLCD_MODE_5551 (1 << 0)
373#define SYS_CLCD_MODE_565_RLSB (2 << 0)
374#define SYS_CLCD_MODE_565_BLSB (3 << 0)
375#define SYS_CLCD_NLCDIOON (1 << 2)
376#define SYS_CLCD_VDDPOSSWITCH (1 << 3)
377#define SYS_CLCD_PWR3V5SWITCH (1 << 4)
378#define SYS_CLCD_ID_MASK (0x1f << 8)
379#define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
380#define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
381#define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
382#define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
383#define SYS_CLCD_ID_VGA (0x1f << 8)
384
385static struct clcd_panel vga = {
386 .mode = {
387 .name = "VGA",
388 .refresh = 60,
389 .xres = 640,
390 .yres = 480,
391 .pixclock = 39721,
392 .left_margin = 40,
393 .right_margin = 24,
394 .upper_margin = 32,
395 .lower_margin = 11,
396 .hsync_len = 96,
397 .vsync_len = 2,
398 .sync = 0,
399 .vmode = FB_VMODE_NONINTERLACED,
400 },
401 .width = -1,
402 .height = -1,
403 .tim2 = TIM2_BCD | TIM2_IPC,
404 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
405 .bpp = 16,
406};
407
408static struct clcd_panel sanyo_3_8_in = {
409 .mode = {
410 .name = "Sanyo QVGA",
411 .refresh = 116,
412 .xres = 320,
413 .yres = 240,
414 .pixclock = 100000,
415 .left_margin = 6,
416 .right_margin = 6,
417 .upper_margin = 5,
418 .lower_margin = 5,
419 .hsync_len = 6,
420 .vsync_len = 6,
421 .sync = 0,
422 .vmode = FB_VMODE_NONINTERLACED,
423 },
424 .width = -1,
425 .height = -1,
426 .tim2 = TIM2_BCD,
427 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
428 .bpp = 16,
429};
430
431static struct clcd_panel sanyo_2_5_in = {
432 .mode = {
433 .name = "Sanyo QVGA Portrait",
434 .refresh = 116,
435 .xres = 240,
436 .yres = 320,
437 .pixclock = 100000,
438 .left_margin = 20,
439 .right_margin = 10,
440 .upper_margin = 2,
441 .lower_margin = 2,
442 .hsync_len = 10,
443 .vsync_len = 2,
444 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
445 .vmode = FB_VMODE_NONINTERLACED,
446 },
447 .width = -1,
448 .height = -1,
449 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
450 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
451 .bpp = 16,
452};
453
454static struct clcd_panel epson_2_2_in = {
455 .mode = {
456 .name = "Epson QCIF",
457 .refresh = 390,
458 .xres = 176,
459 .yres = 220,
460 .pixclock = 62500,
461 .left_margin = 3,
462 .right_margin = 2,
463 .upper_margin = 1,
464 .lower_margin = 0,
465 .hsync_len = 3,
466 .vsync_len = 2,
467 .sync = 0,
468 .vmode = FB_VMODE_NONINTERLACED,
469 },
470 .width = -1,
471 .height = -1,
472 .tim2 = TIM2_BCD | TIM2_IPC,
473 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
474 .bpp = 16,
475};
476
477/*
478 * Detect which LCD panel is connected, and return the appropriate
479 * clcd_panel structure. Note: we do not have any information on
480 * the required timings for the 8.4in panel, so we presently assume
481 * VGA timings.
482 */
483static struct clcd_panel *versatile_clcd_panel(void)
484{
485 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
486 struct clcd_panel *panel = &vga;
487 u32 val;
488
489 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
490 if (val == SYS_CLCD_ID_SANYO_3_8)
491 panel = &sanyo_3_8_in;
492 else if (val == SYS_CLCD_ID_SANYO_2_5)
493 panel = &sanyo_2_5_in;
494 else if (val == SYS_CLCD_ID_EPSON_2_2)
495 panel = &epson_2_2_in;
496 else if (val == SYS_CLCD_ID_VGA)
497 panel = &vga;
498 else {
499 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
500 val);
501 panel = &vga;
502 }
503
504 return panel;
505}
506
507/*
508 * Disable all display connectors on the interface module.
509 */
510static void versatile_clcd_disable(struct clcd_fb *fb)
511{
512 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
513 u32 val;
514
515 val = readl(sys_clcd);
516 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
517 writel(val, sys_clcd);
518
519#ifdef CONFIG_MACH_VERSATILE_AB
520 /*
521 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
522 */
523 if (fb->panel == &sanyo_2_5_in) {
524 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
525 unsigned long ctrl;
526
527 ctrl = readl(versatile_ib2_ctrl);
528 ctrl &= ~0x01;
529 writel(ctrl, versatile_ib2_ctrl);
530 }
531#endif
532}
533
534/*
535 * Enable the relevant connector on the interface module.
536 */
537static void versatile_clcd_enable(struct clcd_fb *fb)
538{
539 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
540 u32 val;
541
542 val = readl(sys_clcd);
543 val &= ~SYS_CLCD_MODE_MASK;
544
545 switch (fb->fb.var.green.length) {
546 case 5:
547 val |= SYS_CLCD_MODE_5551;
548 break;
549 case 6:
90ef713b 550 val |= SYS_CLCD_MODE_565_RLSB;
1da177e4
LT
551 break;
552 case 8:
553 val |= SYS_CLCD_MODE_888;
554 break;
555 }
556
557 /*
558 * Set the MUX
559 */
560 writel(val, sys_clcd);
561
562 /*
563 * And now enable the PSUs
564 */
565 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
566 writel(val, sys_clcd);
567
568#ifdef CONFIG_MACH_VERSATILE_AB
569 /*
570 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
571 */
572 if (fb->panel == &sanyo_2_5_in) {
573 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
574 unsigned long ctrl;
575
576 ctrl = readl(versatile_ib2_ctrl);
577 ctrl |= 0x01;
578 writel(ctrl, versatile_ib2_ctrl);
579 }
580#endif
581}
582
583static unsigned long framesize = SZ_1M;
584
585static int versatile_clcd_setup(struct clcd_fb *fb)
586{
587 dma_addr_t dma;
588
589 fb->panel = versatile_clcd_panel();
590
591 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
592 &dma, GFP_KERNEL);
593 if (!fb->fb.screen_base) {
594 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
595 return -ENOMEM;
596 }
597
598 fb->fb.fix.smem_start = dma;
599 fb->fb.fix.smem_len = framesize;
600
601 return 0;
602}
603
604static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
605{
606 return dma_mmap_writecombine(&fb->dev->dev, vma,
607 fb->fb.screen_base,
608 fb->fb.fix.smem_start,
609 fb->fb.fix.smem_len);
610}
611
612static void versatile_clcd_remove(struct clcd_fb *fb)
613{
614 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
615 fb->fb.screen_base, fb->fb.fix.smem_start);
616}
617
618static struct clcd_board clcd_plat_data = {
619 .name = "Versatile",
620 .check = clcdfb_check,
621 .decode = clcdfb_decode,
622 .disable = versatile_clcd_disable,
623 .enable = versatile_clcd_enable,
624 .setup = versatile_clcd_setup,
625 .mmap = versatile_clcd_mmap,
626 .remove = versatile_clcd_remove,
627};
628
629#define AACI_IRQ { IRQ_AACI, NO_IRQ }
630#define AACI_DMA { 0x80, 0x81 }
631#define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
632#define MMCI0_DMA { 0x84, 0 }
633#define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
634#define KMI0_DMA { 0, 0 }
635#define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
636#define KMI1_DMA { 0, 0 }
637
638/*
639 * These devices are connected directly to the multi-layer AHB switch
640 */
641#define SMC_IRQ { NO_IRQ, NO_IRQ }
642#define SMC_DMA { 0, 0 }
643#define MPMC_IRQ { NO_IRQ, NO_IRQ }
644#define MPMC_DMA { 0, 0 }
645#define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
646#define CLCD_DMA { 0, 0 }
647#define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
648#define DMAC_DMA { 0, 0 }
649
650/*
651 * These devices are connected via the core APB bridge
652 */
653#define SCTL_IRQ { NO_IRQ, NO_IRQ }
654#define SCTL_DMA { 0, 0 }
655#define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
656#define WATCHDOG_DMA { 0, 0 }
657#define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
658#define GPIO0_DMA { 0, 0 }
659#define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
660#define GPIO1_DMA { 0, 0 }
661#define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
662#define RTC_DMA { 0, 0 }
663
664/*
665 * These devices are connected via the DMA APB bridge
666 */
667#define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
668#define SCI_DMA { 7, 6 }
669#define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
670#define UART0_DMA { 15, 14 }
671#define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
672#define UART1_DMA { 13, 12 }
673#define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
674#define UART2_DMA { 11, 10 }
675#define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
676#define SSP_DMA { 9, 8 }
677
678/* FPGA Primecells */
679AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
680AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
681AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
682AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
683
684/* DevChip Primecells */
685AMBA_DEVICE(smc, "dev:00", SMC, NULL);
686AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
687AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
688AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
689AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
690AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
691AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
692AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
693AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
694AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
695AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
696AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
697AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
698AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
699
700static struct amba_device *amba_devs[] __initdata = {
701 &dmac_device,
702 &uart0_device,
703 &uart1_device,
704 &uart2_device,
705 &smc_device,
706 &mpmc_device,
707 &clcd_device,
708 &sctl_device,
709 &wdog_device,
710 &gpio0_device,
711 &gpio1_device,
712 &rtc_device,
713 &sci0_device,
714 &ssp0_device,
715 &aaci_device,
716 &mmc0_device,
717 &kmi0_device,
718 &kmi1_device,
719};
720
721#ifdef CONFIG_LEDS
722#define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
723
724static void versatile_leds_event(led_event_t ledevt)
725{
726 unsigned long flags;
727 u32 val;
728
729 local_irq_save(flags);
730 val = readl(VA_LEDS_BASE);
731
732 switch (ledevt) {
733 case led_idle_start:
734 val = val & ~VERSATILE_SYS_LED0;
735 break;
736
737 case led_idle_end:
738 val = val | VERSATILE_SYS_LED0;
739 break;
740
741 case led_timer:
742 val = val ^ VERSATILE_SYS_LED1;
743 break;
744
745 case led_halted:
746 val = 0;
747 break;
748
749 default:
750 break;
751 }
752
753 writel(val, VA_LEDS_BASE);
754 local_irq_restore(flags);
755}
756#endif /* CONFIG_LEDS */
757
758void __init versatile_init(void)
759{
760 int i;
761
762 clk_register(&versatile_clcd_clk);
763
764 platform_device_register(&versatile_flash_device);
765 platform_device_register(&smc91x_device);
766
767 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
768 struct amba_device *d = amba_devs[i];
769 amba_device_register(d, &iomem_resource);
770 }
771
772#ifdef CONFIG_LEDS
773 leds_event = versatile_leds_event;
774#endif
775}
776
777/*
778 * Where is the timer (VA)?
779 */
780#define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
781#define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
782#define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
783#define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
784#define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
785
786/*
787 * How long is the timer interval?
788 */
789#define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
790#if TIMER_INTERVAL >= 0x100000
791#define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
792#define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
793#define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
794#elif TIMER_INTERVAL >= 0x10000
795#define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
796#define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
797#define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
798#else
799#define TIMER_RELOAD (TIMER_INTERVAL)
800#define TIMER_CTRL 0x80 /* Enable */
801#define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
802#endif
803
804#define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
805
806/*
807 * What does it look like?
808 */
809typedef struct TimerStruct {
810 unsigned long TimerLoad;
811 unsigned long TimerValue;
812 unsigned long TimerControl;
813 unsigned long TimerClear;
814} TimerStruct_t;
815
816/*
817 * Returns number of ms since last clock interrupt. Note that interrupts
818 * will have been disabled by do_gettimeoffset()
819 */
820static unsigned long versatile_gettimeoffset(void)
821{
822 volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
823 unsigned long ticks1, ticks2, status;
824
825 /*
826 * Get the current number of ticks. Note that there is a race
827 * condition between us reading the timer and checking for
828 * an interrupt. We get around this by ensuring that the
829 * counter has not reloaded between our two reads.
830 */
831 ticks2 = timer0->TimerValue & 0xffff;
832 do {
833 ticks1 = ticks2;
834 status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
835 ticks2 = timer0->TimerValue & 0xffff;
836 } while (ticks2 > ticks1);
837
838 /*
839 * Number of ticks since last interrupt.
840 */
841 ticks1 = TIMER_RELOAD - ticks2;
842
843 /*
844 * Interrupt pending? If so, we've reloaded once already.
845 *
846 * FIXME: Need to check this is effectively timer 0 that expires
847 */
848 if (status & IRQMASK_TIMERINT0_1)
849 ticks1 += TIMER_RELOAD;
850
851 /*
852 * Convert the ticks to usecs
853 */
854 return TICKS2USECS(ticks1);
855}
856
857/*
858 * IRQ handler for the timer
859 */
860static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
861{
862 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
863
864 write_seqlock(&xtime_lock);
865
866 // ...clear the interrupt
867 timer0->TimerClear = 1;
868
869 timer_tick(regs);
870
871 write_sequnlock(&xtime_lock);
872
873 return IRQ_HANDLED;
874}
875
876static struct irqaction versatile_timer_irq = {
877 .name = "Versatile Timer Tick",
878 .flags = SA_INTERRUPT,
879 .handler = versatile_timer_interrupt
880};
881
882/*
883 * Set up timer interrupt, and return the current time in seconds.
884 */
885static void __init versatile_timer_init(void)
886{
887 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
888 volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
889 volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
890 volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
891
892 /*
893 * set clock frequency:
894 * VERSATILE_REFCLK is 32KHz
895 * VERSATILE_TIMCLK is 1MHz
896 */
897 *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |=
898 ((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
899 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
900
901 /*
902 * Initialise to a known state (all timers off)
903 */
904 timer0->TimerControl = 0;
905 timer1->TimerControl = 0;
906 timer2->TimerControl = 0;
907 timer3->TimerControl = 0;
908
909 timer0->TimerLoad = TIMER_RELOAD;
910 timer0->TimerValue = TIMER_RELOAD;
911 timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE; /* periodic + IE */
912
913 /*
914 * Make irqs happen for the system timer
915 */
916 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
917}
918
919struct sys_timer versatile_timer = {
920 .init = versatile_timer_init,
921 .offset = versatile_gettimeoffset,
922};
This page took 0.13954 seconds and 5 git commands to generate.