Merge remote-tracking branches 'spi/fix/gqspi', 'spi/fix/imx', 'spi/fix/mg-spfi'...
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
99b4ac9a 25#include <asm/fixmap.h>
ebd4922e 26#include <asm/sections.h>
d111e8f9 27#include <asm/setup.h>
e616c591 28#include <asm/smp_plat.h>
d111e8f9 29#include <asm/tlb.h>
d73cd428 30#include <asm/highmem.h>
9f97da78 31#include <asm/system_info.h>
247055aa 32#include <asm/traps.h>
a77e0c7b
SS
33#include <asm/procinfo.h>
34#include <asm/memory.h>
d111e8f9
RK
35
36#include <asm/mach/arch.h>
37#include <asm/mach/map.h>
c2794437 38#include <asm/mach/pci.h>
a05e54c1 39#include <asm/fixmap.h>
d111e8f9
RK
40
41#include "mm.h"
de40614e 42#include "tcm.h"
d111e8f9 43
d111e8f9
RK
44/*
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
47 */
48struct page *empty_zero_page;
3653f3ab 49EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
50
51/*
52 * The pmd table for the upper-most set of pages.
53 */
54pmd_t *top_pmd;
55
1d4d3715
JL
56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57
ae8f1541
RK
58#define CPOLICY_UNCACHED 0
59#define CPOLICY_BUFFERED 1
60#define CPOLICY_WRITETHROUGH 2
61#define CPOLICY_WRITEBACK 3
62#define CPOLICY_WRITEALLOC 4
63
64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65static unsigned int ecc_mask __initdata = 0;
44b18693 66pgprot_t pgprot_user;
ae8f1541 67pgprot_t pgprot_kernel;
cc577c26
CD
68pgprot_t pgprot_hyp_device;
69pgprot_t pgprot_s2;
70pgprot_t pgprot_s2_device;
ae8f1541 71
44b18693 72EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
73EXPORT_SYMBOL(pgprot_kernel);
74
75struct cachepolicy {
76 const char policy[16];
77 unsigned int cr_mask;
442e70c0 78 pmdval_t pmd;
f6e3354d 79 pteval_t pte;
cc577c26 80 pteval_t pte_s2;
ae8f1541
RK
81};
82
cc577c26
CD
83#ifdef CONFIG_ARM_LPAE
84#define s2_policy(policy) policy
85#else
86#define s2_policy(policy) 0
87#endif
88
ae8f1541
RK
89static struct cachepolicy cache_policies[] __initdata = {
90 {
91 .policy = "uncached",
92 .cr_mask = CR_W|CR_C,
93 .pmd = PMD_SECT_UNCACHED,
bb30f36f 94 .pte = L_PTE_MT_UNCACHED,
cc577c26 95 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
96 }, {
97 .policy = "buffered",
98 .cr_mask = CR_C,
99 .pmd = PMD_SECT_BUFFERED,
bb30f36f 100 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 101 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
102 }, {
103 .policy = "writethrough",
104 .cr_mask = 0,
105 .pmd = PMD_SECT_WT,
bb30f36f 106 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 107 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
108 }, {
109 .policy = "writeback",
110 .cr_mask = 0,
111 .pmd = PMD_SECT_WB,
bb30f36f 112 .pte = L_PTE_MT_WRITEBACK,
cc577c26 113 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
114 }, {
115 .policy = "writealloc",
116 .cr_mask = 0,
117 .pmd = PMD_SECT_WBWA,
bb30f36f 118 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 119 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
120 }
121};
122
b849a60e 123#ifdef CONFIG_CPU_CP15
20e7e364
RK
124static unsigned long initial_pmd_value __initdata = 0;
125
ae8f1541 126/*
ca8f0b0a
RK
127 * Initialise the cache_policy variable with the initial state specified
128 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
129 * the C code sets the page tables up with the same policy as the head
130 * assembly code, which avoids an illegal state where the TLBs can get
131 * confused. See comments in early_cachepolicy() for more information.
ae8f1541 132 */
ca8f0b0a 133void __init init_default_cache_policy(unsigned long pmd)
ae8f1541
RK
134{
135 int i;
136
20e7e364
RK
137 initial_pmd_value = pmd;
138
ca8f0b0a
RK
139 pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
140
141 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
142 if (cache_policies[i].pmd == pmd) {
143 cachepolicy = i;
144 break;
145 }
146
147 if (i == ARRAY_SIZE(cache_policies))
148 pr_err("ERROR: could not find cache policy\n");
149}
150
151/*
152 * These are useful for identifying cache coherency problems by allowing
153 * the cache or the cache and writebuffer to be turned off. (Note: the
154 * write buffer should not be on and the cache off).
155 */
156static int __init early_cachepolicy(char *p)
157{
158 int i, selected = -1;
159
ae8f1541
RK
160 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
161 int len = strlen(cache_policies[i].policy);
162
2b0d8c25 163 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ca8f0b0a 164 selected = i;
ae8f1541
RK
165 break;
166 }
167 }
ca8f0b0a
RK
168
169 if (selected == -1)
170 pr_err("ERROR: unknown or unsupported cache policy\n");
171
4b46d641
RK
172 /*
173 * This restriction is partly to do with the way we boot; it is
174 * unpredictable to have memory mapped using two different sets of
175 * memory attributes (shared, type, and cache attribs). We can not
176 * change these attributes once the initial assembly has setup the
177 * page tables.
178 */
ca8f0b0a
RK
179 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181 cache_policies[cachepolicy].policy);
182 return 0;
183 }
184
185 if (selected != cachepolicy) {
186 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
187 cachepolicy = selected;
188 flush_cache_all();
189 set_cr(cr);
11179d8c 190 }
2b0d8c25 191 return 0;
ae8f1541 192}
2b0d8c25 193early_param("cachepolicy", early_cachepolicy);
ae8f1541 194
2b0d8c25 195static int __init early_nocache(char *__unused)
ae8f1541
RK
196{
197 char *p = "buffered";
4ed89f22 198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
199 early_cachepolicy(p);
200 return 0;
ae8f1541 201}
2b0d8c25 202early_param("nocache", early_nocache);
ae8f1541 203
2b0d8c25 204static int __init early_nowrite(char *__unused)
ae8f1541
RK
205{
206 char *p = "uncached";
4ed89f22 207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
208 early_cachepolicy(p);
209 return 0;
ae8f1541 210}
2b0d8c25 211early_param("nowb", early_nowrite);
ae8f1541 212
1b6ba46b 213#ifndef CONFIG_ARM_LPAE
2b0d8c25 214static int __init early_ecc(char *p)
ae8f1541 215{
2b0d8c25 216 if (memcmp(p, "on", 2) == 0)
ae8f1541 217 ecc_mask = PMD_PROTECTION;
2b0d8c25 218 else if (memcmp(p, "off", 3) == 0)
ae8f1541 219 ecc_mask = 0;
2b0d8c25 220 return 0;
ae8f1541 221}
2b0d8c25 222early_param("ecc", early_ecc);
1b6ba46b 223#endif
ae8f1541 224
b849a60e
UKK
225#else /* ifdef CONFIG_CPU_CP15 */
226
227static int __init early_cachepolicy(char *p)
228{
8b521cb2 229 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
b849a60e
UKK
230}
231early_param("cachepolicy", early_cachepolicy);
232
233static int __init noalign_setup(char *__unused)
234{
8b521cb2 235 pr_warn("noalign kernel parameter not supported without cp15\n");
b849a60e
UKK
236}
237__setup("noalign", noalign_setup);
238
239#endif /* ifdef CONFIG_CPU_CP15 / else */
240
36bb94ba 241#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
4d9c5b89 242#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
b1cce6b1 243#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 244
b29e9f5e 245static struct mem_type mem_types[] = {
0af92bef 246 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
248 L_PTE_SHARED,
4d9c5b89
CD
249 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
250 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
251 L_PTE_SHARED,
0af92bef 252 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 253 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
254 .domain = DOMAIN_IO,
255 },
256 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 258 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 259 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
260 .domain = DOMAIN_IO,
261 },
262 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 263 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
264 .prot_l1 = PMD_TYPE_TABLE,
265 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
266 .domain = DOMAIN_IO,
c2794437 267 },
1ad77a87 268 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 269 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 270 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 271 .prot_sect = PROT_SECT_DEVICE,
0af92bef 272 .domain = DOMAIN_IO,
ae8f1541 273 },
ebb4c658
RK
274 [MT_UNCACHED] = {
275 .prot_pte = PROT_PTE_DEVICE,
276 .prot_l1 = PMD_TYPE_TABLE,
277 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
278 .domain = DOMAIN_IO,
279 },
ae8f1541 280 [MT_CACHECLEAN] = {
9ef79635 281 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
282 .domain = DOMAIN_KERNEL,
283 },
1b6ba46b 284#ifndef CONFIG_ARM_LPAE
ae8f1541 285 [MT_MINICLEAN] = {
9ef79635 286 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
287 .domain = DOMAIN_KERNEL,
288 },
1b6ba46b 289#endif
ae8f1541
RK
290 [MT_LOW_VECTORS] = {
291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 292 L_PTE_RDONLY,
ae8f1541
RK
293 .prot_l1 = PMD_TYPE_TABLE,
294 .domain = DOMAIN_USER,
295 },
296 [MT_HIGH_VECTORS] = {
297 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 298 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
299 .prot_l1 = PMD_TYPE_TABLE,
300 .domain = DOMAIN_USER,
301 },
2e2c9de2 302 [MT_MEMORY_RWX] = {
36bb94ba 303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 304 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
306 .domain = DOMAIN_KERNEL,
307 },
ebd4922e
RK
308 [MT_MEMORY_RW] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 L_PTE_XN,
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
314 },
ae8f1541 315 [MT_ROM] = {
9ef79635 316 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
317 .domain = DOMAIN_KERNEL,
318 },
2e2c9de2 319 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 321 L_PTE_MT_BUFFERABLE,
f1a2481c 322 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
324 .domain = DOMAIN_KERNEL,
325 },
2e2c9de2 326 [MT_MEMORY_RW_DTCM] = {
f444fce3 327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 328 L_PTE_XN,
f444fce3
LW
329 .prot_l1 = PMD_TYPE_TABLE,
330 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
331 .domain = DOMAIN_KERNEL,
cb9d7707 332 },
2e2c9de2 333 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 335 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 336 .domain = DOMAIN_KERNEL,
cb9d7707 337 },
2e2c9de2 338 [MT_MEMORY_RW_SO] = {
8fb54284 339 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 340 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
341 .prot_l1 = PMD_TYPE_TABLE,
342 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
343 PMD_SECT_UNCACHED | PMD_SECT_XN,
344 .domain = DOMAIN_KERNEL,
345 },
c7909509 346 [MT_MEMORY_DMA_READY] = {
71b55663
RK
347 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
348 L_PTE_XN,
c7909509
MS
349 .prot_l1 = PMD_TYPE_TABLE,
350 .domain = DOMAIN_KERNEL,
351 },
ae8f1541
RK
352};
353
b29e9f5e
RK
354const struct mem_type *get_mem_type(unsigned int type)
355{
356 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
357}
69d3a84a 358EXPORT_SYMBOL(get_mem_type);
b29e9f5e 359
99b4ac9a
KC
360/*
361 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
362 * As a result, this can only be called with preemption disabled, as under
363 * stop_machine().
364 */
365void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
366{
367 unsigned long vaddr = __fix_to_virt(idx);
368 pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);
369
370 /* Make sure fixmap region does not exceed available allocation. */
371 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
372 FIXADDR_END);
373 BUG_ON(idx >= __end_of_fixed_addresses);
374
375 if (pgprot_val(prot))
376 set_pte_at(NULL, vaddr, pte,
377 pfn_pte(phys >> PAGE_SHIFT, prot));
378 else
379 pte_clear(NULL, vaddr, pte);
380 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
381}
382
ae8f1541
RK
383/*
384 * Adjust the PMD section entries according to the CPU in use.
385 */
386static void __init build_mem_type_table(void)
387{
388 struct cachepolicy *cp;
389 unsigned int cr = get_cr();
442e70c0 390 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 391 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
392 int cpu_arch = cpu_architecture();
393 int i;
394
11179d8c 395 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 396#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
397 if (cachepolicy > CPOLICY_BUFFERED)
398 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 399#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
400 if (cachepolicy > CPOLICY_WRITETHROUGH)
401 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 402#endif
11179d8c 403 }
ae8f1541
RK
404 if (cpu_arch < CPU_ARCH_ARMv5) {
405 if (cachepolicy >= CPOLICY_WRITEALLOC)
406 cachepolicy = CPOLICY_WRITEBACK;
407 ecc_mask = 0;
408 }
ca8f0b0a 409
20e7e364
RK
410 if (is_smp()) {
411 if (cachepolicy != CPOLICY_WRITEALLOC) {
412 pr_warn("Forcing write-allocate cache policy for SMP\n");
413 cachepolicy = CPOLICY_WRITEALLOC;
414 }
415 if (!(initial_pmd_value & PMD_SECT_S)) {
416 pr_warn("Forcing shared mappings for SMP\n");
417 initial_pmd_value |= PMD_SECT_S;
418 }
ca8f0b0a 419 }
ae8f1541 420
1ad77a87 421 /*
b1cce6b1
RK
422 * Strip out features not present on earlier architectures.
423 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
424 * without extended page tables don't have the 'Shared' bit.
1ad77a87 425 */
b1cce6b1
RK
426 if (cpu_arch < CPU_ARCH_ARMv5)
427 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
428 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
429 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
430 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
431 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
432
433 /*
b1cce6b1
RK
434 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
435 * "update-able on write" bit on ARM610). However, Xscale and
436 * Xscale3 require this bit to be cleared.
ae8f1541 437 */
b1cce6b1 438 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 439 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 440 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
441 mem_types[i].prot_l1 &= ~PMD_BIT4;
442 }
443 } else if (cpu_arch < CPU_ARCH_ARMv6) {
444 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
445 if (mem_types[i].prot_l1)
446 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
447 if (mem_types[i].prot_sect)
448 mem_types[i].prot_sect |= PMD_BIT4;
449 }
450 }
ae8f1541 451
b1cce6b1
RK
452 /*
453 * Mark the device areas according to the CPU/architecture.
454 */
455 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
456 if (!cpu_is_xsc3()) {
457 /*
458 * Mark device regions on ARMv6+ as execute-never
459 * to prevent speculative instruction fetches.
460 */
461 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
462 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
463 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
464 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
465
466 /* Also setup NX memory mapping */
467 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
468 }
469 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
470 /*
471 * For ARMv7 with TEX remapping,
472 * - shared device is SXCB=1100
473 * - nonshared device is SXCB=0100
474 * - write combine device mem is SXCB=0001
475 * (Uncached Normal memory)
476 */
477 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
478 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
479 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
480 } else if (cpu_is_xsc3()) {
481 /*
482 * For Xscale3,
483 * - shared device is TEXCB=00101
484 * - nonshared device is TEXCB=01000
485 * - write combine device mem is TEXCB=00100
486 * (Inner/Outer Uncacheable in xsc3 parlance)
487 */
488 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
489 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
490 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
491 } else {
492 /*
493 * For ARMv6 and ARMv7 without TEX remapping,
494 * - shared device is TEXCB=00001
495 * - nonshared device is TEXCB=01000
496 * - write combine device mem is TEXCB=00100
497 * (Uncached Normal in ARMv6 parlance).
498 */
499 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
500 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
501 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
502 }
503 } else {
504 /*
505 * On others, write combining is "Uncached/Buffered"
506 */
507 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
508 }
509
510 /*
511 * Now deal with the memory-type mappings
512 */
ae8f1541 513 cp = &cache_policies[cachepolicy];
bb30f36f 514 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26 515 s2_pgprot = cp->pte_s2;
4d9c5b89
CD
516 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
517 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
bb30f36f 518
1d4d3715 519#ifndef CONFIG_ARM_LPAE
b6ccb980
WD
520 /*
521 * We don't use domains on ARMv6 (since this causes problems with
522 * v6/v7 kernels), so we must use a separate memory type for user
523 * r/o, kernel r/w to map the vectors page.
524 */
b6ccb980
WD
525 if (cpu_arch == CPU_ARCH_ARMv6)
526 vecs_pgprot |= L_PTE_MT_VECTORS;
1d4d3715
JL
527
528 /*
529 * Check is it with support for the PXN bit
530 * in the Short-descriptor translation table format descriptors.
531 */
532 if (cpu_arch == CPU_ARCH_ARMv7 &&
533 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
534 user_pmd_table |= PMD_PXNTABLE;
535 }
b6ccb980 536#endif
bb30f36f 537
ae8f1541
RK
538 /*
539 * ARMv6 and above have extended page tables.
540 */
541 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 542#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
543 /*
544 * Mark cache clean areas and XIP ROM read only
545 * from SVC mode and no access from userspace.
546 */
547 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
548 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
549 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 550#endif
ae8f1541 551
20e7e364
RK
552 /*
553 * If the initial page tables were created with the S bit
554 * set, then we need to do the same here for the same
555 * reasons given in early_cachepolicy().
556 */
557 if (initial_pmd_value & PMD_SECT_S) {
f00ec48f
RK
558 user_pgprot |= L_PTE_SHARED;
559 kern_pgprot |= L_PTE_SHARED;
560 vecs_pgprot |= L_PTE_SHARED;
cc577c26 561 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
562 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
563 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
564 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
565 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
566 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
567 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
568 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
569 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 570 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
571 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
572 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 573 }
ae8f1541
RK
574 }
575
e4707dd3
PW
576 /*
577 * Non-cacheable Normal - intended for memory areas that must
578 * not cause dirty cache line writebacks when used
579 */
580 if (cpu_arch >= CPU_ARCH_ARMv6) {
581 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
582 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 583 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
584 PMD_SECT_BUFFERED;
585 } else {
586 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 587 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
588 PMD_SECT_TEX(1);
589 }
590 } else {
2e2c9de2 591 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
592 }
593
1b6ba46b
CM
594#ifdef CONFIG_ARM_LPAE
595 /*
596 * Do not generate access flag faults for the kernel mappings.
597 */
598 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
599 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
600 if (mem_types[i].prot_sect)
601 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
602 }
603 kern_pgprot |= PTE_EXT_AF;
604 vecs_pgprot |= PTE_EXT_AF;
1d4d3715
JL
605
606 /*
607 * Set PXN for user mappings
608 */
609 user_pgprot |= PTE_EXT_PXN;
1b6ba46b
CM
610#endif
611
ae8f1541 612 for (i = 0; i < 16; i++) {
864aa04c 613 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 614 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
615 }
616
bb30f36f
RK
617 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
618 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 619
44b18693 620 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 621 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 622 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
623 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
624 pgprot_s2_device = __pgprot(s2_device_pgprot);
625 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
626
627 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
628 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
629 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
630 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
631 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
632 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 633 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 634 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
635 mem_types[MT_ROM].prot_sect |= cp->pmd;
636
637 switch (cp->pmd) {
638 case PMD_SECT_WT:
639 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
640 break;
641 case PMD_SECT_WB:
642 case PMD_SECT_WBWA:
643 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
644 break;
645 }
905b5797
MS
646 pr_info("Memory policy: %sData cache %s\n",
647 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
648
649 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
650 struct mem_type *t = &mem_types[i];
651 if (t->prot_l1)
652 t->prot_l1 |= PMD_DOMAIN(t->domain);
653 if (t->prot_sect)
654 t->prot_sect |= PMD_DOMAIN(t->domain);
655 }
ae8f1541
RK
656}
657
d907387c
CM
658#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
659pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
660 unsigned long size, pgprot_t vma_prot)
661{
662 if (!pfn_valid(pfn))
663 return pgprot_noncached(vma_prot);
664 else if (file->f_flags & O_SYNC)
665 return pgprot_writecombine(vma_prot);
666 return vma_prot;
667}
668EXPORT_SYMBOL(phys_mem_access_prot);
669#endif
670
ae8f1541
RK
671#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
672
0536bdf3 673static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 674{
0536bdf3 675 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
676 memset(ptr, 0, sz);
677 return ptr;
3abe9d33
RK
678}
679
0536bdf3
NP
680static void __init *early_alloc(unsigned long sz)
681{
682 return early_alloc_aligned(sz, sz);
683}
684
4bb2e27d 685static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 686{
24e6c699 687 if (pmd_none(*pmd)) {
410f1483 688 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 689 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 690 }
4bb2e27d
RK
691 BUG_ON(pmd_bad(*pmd));
692 return pte_offset_kernel(pmd, addr);
693}
ae8f1541 694
4bb2e27d
RK
695static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
696 unsigned long end, unsigned long pfn,
697 const struct mem_type *type)
698{
699 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 700 do {
40d192b6 701 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
702 pfn++;
703 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
704}
705
37468b30 706static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0
S
707 unsigned long end, phys_addr_t phys,
708 const struct mem_type *type)
ae8f1541 709{
37468b30
PYC
710 pmd_t *p = pmd;
711
e651eab0 712#ifndef CONFIG_ARM_LPAE
24e6c699 713 /*
e651eab0
S
714 * In classic MMU format, puds and pmds are folded in to
715 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
716 * group of L1 entries making up one logical pointer to
717 * an L2 table (2MB), where as PMDs refer to the individual
718 * L1 entries (1MB). Hence increment to get the correct
719 * offset for odd 1MB sections.
720 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 721 */
e651eab0
S
722 if (addr & SECTION_SIZE)
723 pmd++;
1b6ba46b 724#endif
e651eab0
S
725 do {
726 *pmd = __pmd(phys | type->prot_sect);
727 phys += SECTION_SIZE;
728 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 729
37468b30 730 flush_pmd_entry(p);
e651eab0 731}
ae8f1541 732
e651eab0
S
733static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
734 unsigned long end, phys_addr_t phys,
735 const struct mem_type *type)
736{
737 pmd_t *pmd = pmd_offset(pud, addr);
738 unsigned long next;
739
740 do {
24e6c699 741 /*
e651eab0
S
742 * With LPAE, we must loop over to map
743 * all the pmds for the given range.
24e6c699 744 */
e651eab0
S
745 next = pmd_addr_end(addr, end);
746
747 /*
748 * Try a section mapping - addr, next and phys must all be
749 * aligned to a section boundary.
750 */
751 if (type->prot_sect &&
752 ((addr | next | phys) & ~SECTION_MASK) == 0) {
37468b30 753 __map_init_section(pmd, addr, next, phys, type);
e651eab0
S
754 } else {
755 alloc_init_pte(pmd, addr, next,
756 __phys_to_pfn(phys), type);
757 }
758
759 phys += next - addr;
760
761 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
762}
763
14904927 764static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d
VA
765 unsigned long end, phys_addr_t phys,
766 const struct mem_type *type)
516295e5
RK
767{
768 pud_t *pud = pud_offset(pgd, addr);
769 unsigned long next;
770
771 do {
772 next = pud_addr_end(addr, end);
e651eab0 773 alloc_init_pmd(pud, addr, next, phys, type);
516295e5
RK
774 phys += next - addr;
775 } while (pud++, addr = next, addr != end);
776}
777
1b6ba46b 778#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
779static void __init create_36bit_mapping(struct map_desc *md,
780 const struct mem_type *type)
781{
97092e0c
RK
782 unsigned long addr, length, end;
783 phys_addr_t phys;
4a56c1e4
RK
784 pgd_t *pgd;
785
786 addr = md->virtual;
cae6292b 787 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
788 length = PAGE_ALIGN(md->length);
789
790 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
4ed89f22 791 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 792 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
793 return;
794 }
795
796 /* N.B. ARMv6 supersections are only defined to work with domain 0.
797 * Since domain assignments can in fact be arbitrary, the
798 * 'domain == 0' check below is required to insure that ARMv6
799 * supersections are only allocated for domain 0 regardless
800 * of the actual domain assignments in use.
801 */
802 if (type->domain) {
4ed89f22 803 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 804 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
805 return;
806 }
807
808 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
4ed89f22 809 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
29a38193 810 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
811 return;
812 }
813
814 /*
815 * Shift bits [35:32] of address into bits [23:20] of PMD
816 * (See ARMv6 spec).
817 */
818 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
819
820 pgd = pgd_offset_k(addr);
821 end = addr + length;
822 do {
516295e5
RK
823 pud_t *pud = pud_offset(pgd, addr);
824 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
825 int i;
826
827 for (i = 0; i < 16; i++)
828 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
829
830 addr += SUPERSECTION_SIZE;
831 phys += SUPERSECTION_SIZE;
832 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
833 } while (addr != end);
834}
1b6ba46b 835#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 836
ae8f1541
RK
837/*
838 * Create the page directory entries and any necessary
839 * page tables for the mapping specified by `md'. We
840 * are able to cope here with varying sizes and address
841 * offsets, and we take full advantage of sections and
842 * supersections.
843 */
a2227120 844static void __init create_mapping(struct map_desc *md)
ae8f1541 845{
cae6292b
WD
846 unsigned long addr, length, end;
847 phys_addr_t phys;
d5c98176 848 const struct mem_type *type;
24e6c699 849 pgd_t *pgd;
ae8f1541
RK
850
851 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
4ed89f22
RK
852 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
853 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
854 return;
855 }
856
857 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
858 md->virtual >= PAGE_OFFSET &&
859 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
4ed89f22
RK
860 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
861 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
862 }
863
d5c98176 864 type = &mem_types[md->type];
ae8f1541 865
1b6ba46b 866#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
867 /*
868 * Catch 36-bit addresses
869 */
4a56c1e4
RK
870 if (md->pfn >= 0x100000) {
871 create_36bit_mapping(md, type);
872 return;
ae8f1541 873 }
1b6ba46b 874#endif
ae8f1541 875
7b9c7b4d 876 addr = md->virtual & PAGE_MASK;
cae6292b 877 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 878 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 879
24e6c699 880 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
4ed89f22
RK
881 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
882 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
883 return;
884 }
885
24e6c699
RK
886 pgd = pgd_offset_k(addr);
887 end = addr + length;
888 do {
889 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 890
516295e5 891 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 892
24e6c699
RK
893 phys += next - addr;
894 addr = next;
895 } while (pgd++, addr != end);
ae8f1541
RK
896}
897
898/*
899 * Create the architecture specific mappings
900 */
901void __init iotable_init(struct map_desc *io_desc, int nr)
902{
0536bdf3
NP
903 struct map_desc *md;
904 struct vm_struct *vm;
101eeda3 905 struct static_vm *svm;
0536bdf3
NP
906
907 if (!nr)
908 return;
ae8f1541 909
101eeda3 910 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
911
912 for (md = io_desc; nr; md++, nr--) {
913 create_mapping(md);
101eeda3
JK
914
915 vm = &svm->vm;
0536bdf3
NP
916 vm->addr = (void *)(md->virtual & PAGE_MASK);
917 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
918 vm->phys_addr = __pfn_to_phys(md->pfn);
919 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 920 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 921 vm->caller = iotable_init;
101eeda3 922 add_static_vm_early(svm++);
0536bdf3 923 }
ae8f1541
RK
924}
925
c2794437
RH
926void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
927 void *caller)
928{
929 struct vm_struct *vm;
101eeda3
JK
930 struct static_vm *svm;
931
932 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 933
101eeda3 934 vm = &svm->vm;
c2794437
RH
935 vm->addr = (void *)addr;
936 vm->size = size;
863e99a8 937 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 938 vm->caller = caller;
101eeda3 939 add_static_vm_early(svm);
c2794437
RH
940}
941
19b52abe
NP
942#ifndef CONFIG_ARM_LPAE
943
944/*
945 * The Linux PMD is made of two consecutive section entries covering 2MB
946 * (see definition in include/asm/pgtable-2level.h). However a call to
947 * create_mapping() may optimize static mappings by using individual
948 * 1MB section mappings. This leaves the actual PMD potentially half
949 * initialized if the top or bottom section entry isn't used, leaving it
950 * open to problems if a subsequent ioremap() or vmalloc() tries to use
951 * the virtual space left free by that unused section entry.
952 *
953 * Let's avoid the issue by inserting dummy vm entries covering the unused
954 * PMD halves once the static mappings are in place.
955 */
956
957static void __init pmd_empty_section_gap(unsigned long addr)
958{
c2794437 959 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
960}
961
962static void __init fill_pmd_gaps(void)
963{
101eeda3 964 struct static_vm *svm;
19b52abe
NP
965 struct vm_struct *vm;
966 unsigned long addr, next = 0;
967 pmd_t *pmd;
968
101eeda3
JK
969 list_for_each_entry(svm, &static_vmlist, list) {
970 vm = &svm->vm;
19b52abe
NP
971 addr = (unsigned long)vm->addr;
972 if (addr < next)
973 continue;
974
975 /*
976 * Check if this vm starts on an odd section boundary.
977 * If so and the first section entry for this PMD is free
978 * then we block the corresponding virtual address.
979 */
980 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
981 pmd = pmd_off_k(addr);
982 if (pmd_none(*pmd))
983 pmd_empty_section_gap(addr & PMD_MASK);
984 }
985
986 /*
987 * Then check if this vm ends on an odd section boundary.
988 * If so and the second section entry for this PMD is empty
989 * then we block the corresponding virtual address.
990 */
991 addr += vm->size;
992 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
993 pmd = pmd_off_k(addr) + 1;
994 if (pmd_none(*pmd))
995 pmd_empty_section_gap(addr);
996 }
997
998 /* no need to look at any vm entry until we hit the next PMD */
999 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1000 }
1001}
1002
1003#else
1004#define fill_pmd_gaps() do { } while (0)
1005#endif
1006
c2794437
RH
1007#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1008static void __init pci_reserve_io(void)
1009{
101eeda3 1010 struct static_vm *svm;
c2794437 1011
101eeda3
JK
1012 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1013 if (svm)
1014 return;
c2794437 1015
c2794437
RH
1016 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1017}
1018#else
1019#define pci_reserve_io() do { } while (0)
1020#endif
1021
e5c5f2ad
RH
1022#ifdef CONFIG_DEBUG_LL
1023void __init debug_ll_io_init(void)
1024{
1025 struct map_desc map;
1026
1027 debug_ll_addr(&map.pfn, &map.virtual);
1028 if (!map.pfn || !map.virtual)
1029 return;
1030 map.pfn = __phys_to_pfn(map.pfn);
1031 map.virtual &= PAGE_MASK;
1032 map.length = PAGE_SIZE;
1033 map.type = MT_DEVICE;
ee4de5d9 1034 iotable_init(&map, 1);
e5c5f2ad
RH
1035}
1036#endif
1037
0536bdf3
NP
1038static void * __initdata vmalloc_min =
1039 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
1040
1041/*
1042 * vmalloc=size forces the vmalloc area to be exactly 'size'
1043 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 1044 * area - the default is 240m.
6c5da7ac 1045 */
2b0d8c25 1046static int __init early_vmalloc(char *arg)
6c5da7ac 1047{
79612395 1048 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
1049
1050 if (vmalloc_reserve < SZ_16M) {
1051 vmalloc_reserve = SZ_16M;
4ed89f22 1052 pr_warn("vmalloc area too small, limiting to %luMB\n",
6c5da7ac
RK
1053 vmalloc_reserve >> 20);
1054 }
9210807c
NP
1055
1056 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1057 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
4ed89f22 1058 pr_warn("vmalloc area is too big, limiting to %luMB\n",
9210807c
NP
1059 vmalloc_reserve >> 20);
1060 }
79612395
RK
1061
1062 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1063 return 0;
6c5da7ac 1064}
2b0d8c25 1065early_param("vmalloc", early_vmalloc);
6c5da7ac 1066
c7909509 1067phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1068
0371d3f7 1069void __init sanity_check_meminfo(void)
60296c71 1070{
c65b7e98 1071 phys_addr_t memblock_limit = 0;
1c2f87c2 1072 int highmem = 0;
82f66704 1073 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1c2f87c2 1074 struct memblock_region *reg;
eeb3fee8 1075 bool should_use_highmem = false;
60296c71 1076
1c2f87c2
LA
1077 for_each_memblock(memory, reg) {
1078 phys_addr_t block_start = reg->base;
1079 phys_addr_t block_end = reg->base + reg->size;
1080 phys_addr_t size_limit = reg->size;
77f73a2c 1081
1c2f87c2 1082 if (reg->base >= vmalloc_limit)
dde5828f 1083 highmem = 1;
28d4bf7a 1084 else
1c2f87c2 1085 size_limit = vmalloc_limit - reg->base;
dde5828f 1086
dde5828f 1087
1c2f87c2
LA
1088 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1089
1090 if (highmem) {
1091 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
4ed89f22 1092 &block_start, &block_end);
1c2f87c2 1093 memblock_remove(reg->base, reg->size);
eeb3fee8 1094 should_use_highmem = true;
1c2f87c2 1095 continue;
a1bbaec0 1096 }
77f73a2c 1097
1c2f87c2
LA
1098 if (reg->size > size_limit) {
1099 phys_addr_t overlap_size = reg->size - size_limit;
1100
1101 pr_notice("Truncating RAM at %pa-%pa to -%pa",
4ed89f22 1102 &block_start, &block_end, &vmalloc_limit);
1c2f87c2
LA
1103 memblock_remove(vmalloc_limit, overlap_size);
1104 block_end = vmalloc_limit;
eeb3fee8 1105 should_use_highmem = true;
1c2f87c2 1106 }
a1bbaec0 1107 }
40f7bfe4 1108
1c2f87c2
LA
1109 if (!highmem) {
1110 if (block_end > arm_lowmem_limit) {
1111 if (reg->size > size_limit)
1112 arm_lowmem_limit = vmalloc_limit;
1113 else
1114 arm_lowmem_limit = block_end;
1115 }
c65b7e98
RK
1116
1117 /*
965278dc 1118 * Find the first non-pmd-aligned page, and point
c65b7e98 1119 * memblock_limit at it. This relies on rounding the
965278dc
MR
1120 * limit down to be pmd-aligned, which happens at the
1121 * end of this function.
c65b7e98
RK
1122 *
1123 * With this algorithm, the start or end of almost any
965278dc
MR
1124 * bank can be non-pmd-aligned. The only exception is
1125 * that the start of the bank 0 must be section-
c65b7e98
RK
1126 * aligned, since otherwise memory would need to be
1127 * allocated when mapping the start of bank 0, which
1128 * occurs before any free memory is mapped.
1129 */
1130 if (!memblock_limit) {
965278dc 1131 if (!IS_ALIGNED(block_start, PMD_SIZE))
1c2f87c2 1132 memblock_limit = block_start;
965278dc 1133 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1c2f87c2 1134 memblock_limit = arm_lowmem_limit;
c65b7e98 1135 }
e616c591 1136
e616c591
RK
1137 }
1138 }
1c2f87c2 1139
eeb3fee8
RK
1140 if (should_use_highmem)
1141 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1142
c7909509 1143 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98
RK
1144
1145 /*
965278dc 1146 * Round the memblock limit down to a pmd size. This
c65b7e98 1147 * helps to ensure that we will allocate memory from the
965278dc 1148 * last full pmd, which should be mapped.
c65b7e98
RK
1149 */
1150 if (memblock_limit)
965278dc 1151 memblock_limit = round_down(memblock_limit, PMD_SIZE);
c65b7e98
RK
1152 if (!memblock_limit)
1153 memblock_limit = arm_lowmem_limit;
1154
1155 memblock_set_current_limit(memblock_limit);
60296c71
LB
1156}
1157
4b5f32ce 1158static inline void prepare_page_table(void)
d111e8f9
RK
1159{
1160 unsigned long addr;
8df65168 1161 phys_addr_t end;
d111e8f9
RK
1162
1163 /*
1164 * Clear out all the mappings below the kernel image.
1165 */
e73fc88e 1166 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1167 pmd_clear(pmd_off_k(addr));
1168
1169#ifdef CONFIG_XIP_KERNEL
1170 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1171 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1172#endif
e73fc88e 1173 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1174 pmd_clear(pmd_off_k(addr));
1175
8df65168
RK
1176 /*
1177 * Find the end of the first block of lowmem.
1178 */
1179 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1180 if (end >= arm_lowmem_limit)
1181 end = arm_lowmem_limit;
8df65168 1182
d111e8f9
RK
1183 /*
1184 * Clear out all the kernel space mappings, except for the first
0536bdf3 1185 * memory bank, up to the vmalloc region.
d111e8f9 1186 */
8df65168 1187 for (addr = __phys_to_virt(end);
0536bdf3 1188 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1189 pmd_clear(pmd_off_k(addr));
1190}
1191
1b6ba46b
CM
1192#ifdef CONFIG_ARM_LPAE
1193/* the first page is reserved for pgd */
1194#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1195 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1196#else
e73fc88e 1197#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1198#endif
e73fc88e 1199
d111e8f9 1200/*
2778f620 1201 * Reserve the special regions of memory
d111e8f9 1202 */
2778f620 1203void __init arm_mm_memblock_reserve(void)
d111e8f9 1204{
d111e8f9
RK
1205 /*
1206 * Reserve the page tables. These are already in use,
1207 * and can only be in node 0.
1208 */
e73fc88e 1209 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1210
d111e8f9
RK
1211#ifdef CONFIG_SA1111
1212 /*
1213 * Because of the SA1111 DMA bug, we want to preserve our
1214 * precious DMA-able memory...
1215 */
2778f620 1216 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1217#endif
d111e8f9
RK
1218}
1219
1220/*
0536bdf3
NP
1221 * Set up the device mappings. Since we clear out the page tables for all
1222 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1223 * This means you have to be careful how you debug this function, or any
1224 * called function. This means you can't use any function or debugging
1225 * method which may touch any device, otherwise the kernel _will_ crash.
1226 */
ff69a4c8 1227static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1228{
1229 struct map_desc map;
1230 unsigned long addr;
94e5a85b 1231 void *vectors;
d111e8f9
RK
1232
1233 /*
1234 * Allocate the vector page early.
1235 */
19accfd3 1236 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1237
1238 early_trap_init(vectors);
d111e8f9 1239
0536bdf3 1240 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1241 pmd_clear(pmd_off_k(addr));
1242
1243 /*
1244 * Map the kernel if it is XIP.
1245 * It is always first in the modulearea.
1246 */
1247#ifdef CONFIG_XIP_KERNEL
1248 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1249 map.virtual = MODULES_VADDR;
37efe642 1250 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1251 map.type = MT_ROM;
1252 create_mapping(&map);
1253#endif
1254
1255 /*
1256 * Map the cache flushing regions.
1257 */
1258#ifdef FLUSH_BASE
1259 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1260 map.virtual = FLUSH_BASE;
1261 map.length = SZ_1M;
1262 map.type = MT_CACHECLEAN;
1263 create_mapping(&map);
1264#endif
1265#ifdef FLUSH_BASE_MINICACHE
1266 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1267 map.virtual = FLUSH_BASE_MINICACHE;
1268 map.length = SZ_1M;
1269 map.type = MT_MINICLEAN;
1270 create_mapping(&map);
1271#endif
1272
1273 /*
1274 * Create a mapping for the machine vectors at the high-vectors
1275 * location (0xffff0000). If we aren't using high-vectors, also
1276 * create a mapping at the low-vectors virtual address.
1277 */
94e5a85b 1278 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1279 map.virtual = 0xffff0000;
1280 map.length = PAGE_SIZE;
a5463cd3 1281#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1282 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1283#else
1284 map.type = MT_LOW_VECTORS;
1285#endif
d111e8f9
RK
1286 create_mapping(&map);
1287
1288 if (!vectors_high()) {
1289 map.virtual = 0;
19accfd3 1290 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1291 map.type = MT_LOW_VECTORS;
1292 create_mapping(&map);
1293 }
1294
19accfd3
RK
1295 /* Now create a kernel read-only mapping */
1296 map.pfn += 1;
1297 map.virtual = 0xffff0000 + PAGE_SIZE;
1298 map.length = PAGE_SIZE;
1299 map.type = MT_LOW_VECTORS;
1300 create_mapping(&map);
1301
d111e8f9
RK
1302 /*
1303 * Ask the machine support to map in the statically mapped devices.
1304 */
1305 if (mdesc->map_io)
1306 mdesc->map_io();
bc37324e
MR
1307 else
1308 debug_ll_io_init();
19b52abe 1309 fill_pmd_gaps();
d111e8f9 1310
c2794437
RH
1311 /* Reserve fixed i/o space in VMALLOC region */
1312 pci_reserve_io();
1313
d111e8f9
RK
1314 /*
1315 * Finally flush the caches and tlb to ensure that we're in a
1316 * consistent state wrt the writebuffer. This also ensures that
1317 * any write-allocated cache lines in the vector page are written
1318 * back. After this point, we can start to touch devices again.
1319 */
1320 local_flush_tlb_all();
1321 flush_cache_all();
1322}
1323
d73cd428
NP
1324static void __init kmap_init(void)
1325{
1326#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1327 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1328 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428 1329#endif
836a2418
RH
1330
1331 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1332 _PAGE_KERNEL_TABLE);
d73cd428
NP
1333}
1334
a2227120
RK
1335static void __init map_lowmem(void)
1336{
8df65168 1337 struct memblock_region *reg;
ac084688
GS
1338 phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1339 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1340
1341 /* Map all the lowmem memory banks. */
8df65168
RK
1342 for_each_memblock(memory, reg) {
1343 phys_addr_t start = reg->base;
1344 phys_addr_t end = start + reg->size;
1345 struct map_desc map;
1346
c7909509
MS
1347 if (end > arm_lowmem_limit)
1348 end = arm_lowmem_limit;
8df65168
RK
1349 if (start >= end)
1350 break;
1351
1e6b4811 1352 if (end < kernel_x_start) {
ebd4922e
RK
1353 map.pfn = __phys_to_pfn(start);
1354 map.virtual = __phys_to_virt(start);
1355 map.length = end - start;
1356 map.type = MT_MEMORY_RWX;
a2227120 1357
1e6b4811
KC
1358 create_mapping(&map);
1359 } else if (start >= kernel_x_end) {
1360 map.pfn = __phys_to_pfn(start);
1361 map.virtual = __phys_to_virt(start);
1362 map.length = end - start;
1363 map.type = MT_MEMORY_RW;
1364
ebd4922e
RK
1365 create_mapping(&map);
1366 } else {
1367 /* This better cover the entire kernel */
1368 if (start < kernel_x_start) {
1369 map.pfn = __phys_to_pfn(start);
1370 map.virtual = __phys_to_virt(start);
1371 map.length = kernel_x_start - start;
1372 map.type = MT_MEMORY_RW;
1373
1374 create_mapping(&map);
1375 }
1376
1377 map.pfn = __phys_to_pfn(kernel_x_start);
1378 map.virtual = __phys_to_virt(kernel_x_start);
1379 map.length = kernel_x_end - kernel_x_start;
1380 map.type = MT_MEMORY_RWX;
1381
1382 create_mapping(&map);
1383
1384 if (kernel_x_end < end) {
1385 map.pfn = __phys_to_pfn(kernel_x_end);
1386 map.virtual = __phys_to_virt(kernel_x_end);
1387 map.length = end - kernel_x_end;
1388 map.type = MT_MEMORY_RW;
1389
1390 create_mapping(&map);
1391 }
1392 }
a2227120
RK
1393 }
1394}
1395
d8dc7fbd
RK
1396#ifdef CONFIG_ARM_PV_FIXUP
1397extern unsigned long __atags_pointer;
1398typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1399pgtables_remap lpae_pgtables_remap_asm;
1400
a77e0c7b
SS
1401/*
1402 * early_paging_init() recreates boot time page table setup, allowing machines
1403 * to switch over to a high (>4G) address space on LPAE systems
1404 */
1221ed10 1405void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1406{
d8dc7fbd
RK
1407 pgtables_remap *lpae_pgtables_remap;
1408 unsigned long pa_pgd;
1409 unsigned int cr, ttbcr;
c8ca2b4b 1410 long long offset;
d8dc7fbd 1411 void *boot_data;
a77e0c7b 1412
c0b759d8 1413 if (!mdesc->pv_fixup)
a77e0c7b
SS
1414 return;
1415
c0b759d8 1416 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1417 if (offset == 0)
1418 return;
a77e0c7b 1419
d8dc7fbd
RK
1420 /*
1421 * Get the address of the remap function in the 1:1 identity
1422 * mapping setup by the early page table assembly code. We
1423 * must get this prior to the pv update. The following barrier
1424 * ensures that this is complete before we fixup any P:V offsets.
1425 */
1426 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1427 pa_pgd = __pa(swapper_pg_dir);
1428 boot_data = __va(__atags_pointer);
1429 barrier();
a77e0c7b 1430
39b74fe8
RK
1431 pr_info("Switching physical address space to 0x%08llx\n",
1432 (u64)PHYS_OFFSET + offset);
a77e0c7b 1433
c8ca2b4b
RK
1434 /* Re-set the phys pfn offset, and the pv offset */
1435 __pv_offset += offset;
1436 __pv_phys_pfn_offset += PFN_DOWN(offset);
a77e0c7b
SS
1437
1438 /* Run the patch stub to update the constants */
1439 fixup_pv_table(&__pv_table_begin,
1440 (&__pv_table_end - &__pv_table_begin) << 2);
1441
1442 /*
d8dc7fbd
RK
1443 * We changing not only the virtual to physical mapping, but also
1444 * the physical addresses used to access memory. We need to flush
1445 * all levels of cache in the system with caching disabled to
1446 * ensure that all data is written back, and nothing is prefetched
1447 * into the caches. We also need to prevent the TLB walkers
1448 * allocating into the caches too. Note that this is ARMv7 LPAE
1449 * specific.
3bb70de6 1450 */
d8dc7fbd
RK
1451 cr = get_cr();
1452 set_cr(cr & ~(CR_I | CR_C));
1453 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1454 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1455 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
a77e0c7b 1456 flush_cache_all();
3bb70de6
RK
1457
1458 /*
d8dc7fbd
RK
1459 * Fixup the page tables - this must be in the idmap region as
1460 * we need to disable the MMU to do this safely, and hence it
1461 * needs to be assembly. It's fairly simple, as we're using the
1462 * temporary tables setup by the initial assembly code.
3bb70de6 1463 */
d8dc7fbd 1464 lpae_pgtables_remap(offset, pa_pgd, boot_data);
3bb70de6 1465
d8dc7fbd
RK
1466 /* Re-enable the caches and cacheable TLB walks */
1467 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1468 set_cr(cr);
a77e0c7b
SS
1469}
1470
1471#else
1472
1221ed10 1473void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1474{
c8ca2b4b
RK
1475 long long offset;
1476
c0b759d8 1477 if (!mdesc->pv_fixup)
c8ca2b4b
RK
1478 return;
1479
c0b759d8 1480 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1481 if (offset == 0)
1482 return;
1483
1484 pr_crit("Physical address space modification is only to support Keystone2.\n");
1485 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1486 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1487 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
a77e0c7b
SS
1488}
1489
1490#endif
1491
d111e8f9
RK
1492/*
1493 * paging_init() sets up the page tables, initialises the zone memory
1494 * maps, and sets up the zero page, bad page and bad page tables.
1495 */
ff69a4c8 1496void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1497{
1498 void *zero_page;
1499
1500 build_mem_type_table();
4b5f32ce 1501 prepare_page_table();
a2227120 1502 map_lowmem();
3de1f52a 1503 memblock_set_current_limit(arm_lowmem_limit);
c7909509 1504 dma_contiguous_remap();
d111e8f9 1505 devicemaps_init(mdesc);
d73cd428 1506 kmap_init();
de40614e 1507 tcm_init();
d111e8f9
RK
1508
1509 top_pmd = pmd_off_k(0xffff0000);
1510
3abe9d33
RK
1511 /* allocate the zero page. */
1512 zero_page = early_alloc(PAGE_SIZE);
2778f620 1513
8d717a52 1514 bootmem_init();
2778f620 1515
d111e8f9 1516 empty_zero_page = virt_to_page(zero_page);
421fe93c 1517 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1518}
This page took 0.671461 seconds and 5 git commands to generate.