ARM: initial LMB trial
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
ceb683d3 17#include <linux/sort.h>
d111e8f9 18
0ba8b9b2 19#include <asm/cputype.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
d111e8f9
RK
22#include <asm/setup.h>
23#include <asm/sizes.h>
e616c591 24#include <asm/smp_plat.h>
d111e8f9 25#include <asm/tlb.h>
d73cd428 26#include <asm/highmem.h>
d111e8f9
RK
27
28#include <asm/mach/arch.h>
29#include <asm/mach/map.h>
30
31#include "mm.h"
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
d111e8f9
RK
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
3653f3ab 40EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
ae8f1541
RK
47#define CPOLICY_UNCACHED 0
48#define CPOLICY_BUFFERED 1
49#define CPOLICY_WRITETHROUGH 2
50#define CPOLICY_WRITEBACK 3
51#define CPOLICY_WRITEALLOC 4
52
53static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54static unsigned int ecc_mask __initdata = 0;
44b18693 55pgprot_t pgprot_user;
ae8f1541
RK
56pgprot_t pgprot_kernel;
57
44b18693 58EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
59EXPORT_SYMBOL(pgprot_kernel);
60
61struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
66};
67
68static struct cachepolicy cache_policies[] __initdata = {
69 {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
bb30f36f 73 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
bb30f36f 78 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
bb30f36f 83 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
bb30f36f 88 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
bb30f36f 93 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
94 }
95};
96
97/*
6cbdc8c5 98 * These are useful for identifying cache coherency
ae8f1541
RK
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
102 */
2b0d8c25 103static int __init early_cachepolicy(char *p)
ae8f1541
RK
104{
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
109
2b0d8c25 110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
114 break;
115 }
116 }
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
119 /*
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
125 */
11179d8c
CM
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
129 }
ae8f1541
RK
130 flush_cache_all();
131 set_cr(cr_alignment);
2b0d8c25 132 return 0;
ae8f1541 133}
2b0d8c25 134early_param("cachepolicy", early_cachepolicy);
ae8f1541 135
2b0d8c25 136static int __init early_nocache(char *__unused)
ae8f1541
RK
137{
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
140 early_cachepolicy(p);
141 return 0;
ae8f1541 142}
2b0d8c25 143early_param("nocache", early_nocache);
ae8f1541 144
2b0d8c25 145static int __init early_nowrite(char *__unused)
ae8f1541
RK
146{
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
149 early_cachepolicy(p);
150 return 0;
ae8f1541 151}
2b0d8c25 152early_param("nowb", early_nowrite);
ae8f1541 153
2b0d8c25 154static int __init early_ecc(char *p)
ae8f1541 155{
2b0d8c25 156 if (memcmp(p, "on", 2) == 0)
ae8f1541 157 ecc_mask = PMD_PROTECTION;
2b0d8c25 158 else if (memcmp(p, "off", 3) == 0)
ae8f1541 159 ecc_mask = 0;
2b0d8c25 160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("ecc", early_ecc);
ae8f1541
RK
163
164static int __init noalign_setup(char *__unused)
165{
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
170}
171__setup("noalign", noalign_setup);
172
255d1f86
RK
173#ifndef CONFIG_SMP
174void adjust_cr(unsigned long mask, unsigned long set)
175{
176 unsigned long flags;
177
178 mask &= ~CR_A;
179
180 set &= mask;
181
182 local_irq_save(flags);
183
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
186
187 set_cr((get_cr() & ~mask) | set);
188
189 local_irq_restore(flags);
190}
191#endif
192
0af92bef 193#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 194#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 195
b29e9f5e 196static struct mem_type mem_types[] = {
0af92bef 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
0af92bef 200 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
202 .domain = DOMAIN_IO,
203 },
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 206 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 207 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
208 .domain = DOMAIN_IO,
209 },
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
215 },
1ad77a87 216 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 218 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 219 .prot_sect = PROT_SECT_DEVICE,
0af92bef 220 .domain = DOMAIN_IO,
ae8f1541 221 },
ebb4c658
RK
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
227 },
ae8f1541 228 [MT_CACHECLEAN] = {
9ef79635 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
230 .domain = DOMAIN_KERNEL,
231 },
232 [MT_MINICLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
241 },
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_MEMORY] = {
9ef79635 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
250 .domain = DOMAIN_KERNEL,
251 },
252 [MT_ROM] = {
9ef79635 253 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
254 .domain = DOMAIN_KERNEL,
255 },
e4707dd3
PW
256 [MT_MEMORY_NONCACHED] = {
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
ae8f1541
RK
260};
261
b29e9f5e
RK
262const struct mem_type *get_mem_type(unsigned int type)
263{
264 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
265}
69d3a84a 266EXPORT_SYMBOL(get_mem_type);
b29e9f5e 267
ae8f1541
RK
268/*
269 * Adjust the PMD section entries according to the CPU in use.
270 */
271static void __init build_mem_type_table(void)
272{
273 struct cachepolicy *cp;
274 unsigned int cr = get_cr();
bb30f36f 275 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
276 int cpu_arch = cpu_architecture();
277 int i;
278
11179d8c 279 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 280#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
281 if (cachepolicy > CPOLICY_BUFFERED)
282 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 283#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
284 if (cachepolicy > CPOLICY_WRITETHROUGH)
285 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 286#endif
11179d8c 287 }
ae8f1541
RK
288 if (cpu_arch < CPU_ARCH_ARMv5) {
289 if (cachepolicy >= CPOLICY_WRITEALLOC)
290 cachepolicy = CPOLICY_WRITEBACK;
291 ecc_mask = 0;
292 }
bb30f36f
RK
293#ifdef CONFIG_SMP
294 cachepolicy = CPOLICY_WRITEALLOC;
295#endif
ae8f1541 296
1ad77a87 297 /*
b1cce6b1
RK
298 * Strip out features not present on earlier architectures.
299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
300 * without extended page tables don't have the 'Shared' bit.
1ad77a87 301 */
b1cce6b1
RK
302 if (cpu_arch < CPU_ARCH_ARMv5)
303 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
308
309 /*
b1cce6b1
RK
310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 * "update-able on write" bit on ARM610). However, Xscale and
312 * Xscale3 require this bit to be cleared.
ae8f1541 313 */
b1cce6b1 314 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 315 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 316 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
317 mem_types[i].prot_l1 &= ~PMD_BIT4;
318 }
319 } else if (cpu_arch < CPU_ARCH_ARMv6) {
320 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
321 if (mem_types[i].prot_l1)
322 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
323 if (mem_types[i].prot_sect)
324 mem_types[i].prot_sect |= PMD_BIT4;
325 }
326 }
ae8f1541 327
b1cce6b1
RK
328 /*
329 * Mark the device areas according to the CPU/architecture.
330 */
331 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332 if (!cpu_is_xsc3()) {
333 /*
334 * Mark device regions on ARMv6+ as execute-never
335 * to prevent speculative instruction fetches.
336 */
337 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
341 }
342 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
343 /*
344 * For ARMv7 with TEX remapping,
345 * - shared device is SXCB=1100
346 * - nonshared device is SXCB=0100
347 * - write combine device mem is SXCB=0001
348 * (Uncached Normal memory)
349 */
350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353 } else if (cpu_is_xsc3()) {
354 /*
355 * For Xscale3,
356 * - shared device is TEXCB=00101
357 * - nonshared device is TEXCB=01000
358 * - write combine device mem is TEXCB=00100
359 * (Inner/Outer Uncacheable in xsc3 parlance)
360 */
361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364 } else {
365 /*
366 * For ARMv6 and ARMv7 without TEX remapping,
367 * - shared device is TEXCB=00001
368 * - nonshared device is TEXCB=01000
369 * - write combine device mem is TEXCB=00100
370 * (Uncached Normal in ARMv6 parlance).
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
375 }
376 } else {
377 /*
378 * On others, write combining is "Uncached/Buffered"
379 */
380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
381 }
382
383 /*
384 * Now deal with the memory-type mappings
385 */
ae8f1541 386 cp = &cache_policies[cachepolicy];
bb30f36f
RK
387 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
388
389#ifndef CONFIG_SMP
390 /*
391 * Only use write-through for non-SMP systems
392 */
393 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395#endif
ae8f1541
RK
396
397 /*
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
400 */
b1cce6b1
RK
401 if (arch_is_coherent() && cpu_is_xsc3())
402 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
ae8f1541
RK
403
404 /*
405 * ARMv6 and above have extended page tables.
406 */
407 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
408 /*
409 * Mark cache clean areas and XIP ROM read only
410 * from SVC mode and no access from userspace.
411 */
412 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415
ae8f1541
RK
416#ifdef CONFIG_SMP
417 /*
418 * Mark memory with the "shared" attribute for SMP systems
419 */
420 user_pgprot |= L_PTE_SHARED;
421 kern_pgprot |= L_PTE_SHARED;
bb30f36f 422 vecs_pgprot |= L_PTE_SHARED;
85b3cce8
RK
423 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
424 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
425 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
426 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
ae8f1541 427 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
e4707dd3 428 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
ae8f1541
RK
429#endif
430 }
431
e4707dd3
PW
432 /*
433 * Non-cacheable Normal - intended for memory areas that must
434 * not cause dirty cache line writebacks when used
435 */
436 if (cpu_arch >= CPU_ARCH_ARMv6) {
437 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
438 /* Non-cacheable Normal is XCB = 001 */
439 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440 PMD_SECT_BUFFERED;
441 } else {
442 /* For both ARMv6 and non-TEX-remapping ARMv7 */
443 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
444 PMD_SECT_TEX(1);
445 }
446 } else {
447 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
448 }
449
ae8f1541
RK
450 for (i = 0; i < 16; i++) {
451 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 452 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
453 }
454
bb30f36f
RK
455 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
456 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 457
44b18693 458 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 459 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 460 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
461
462 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
463 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
464 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
465 mem_types[MT_ROM].prot_sect |= cp->pmd;
466
467 switch (cp->pmd) {
468 case PMD_SECT_WT:
469 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
470 break;
471 case PMD_SECT_WB:
472 case PMD_SECT_WBWA:
473 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
474 break;
475 }
476 printk("Memory policy: ECC %sabled, Data cache %s\n",
477 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
478
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
480 struct mem_type *t = &mem_types[i];
481 if (t->prot_l1)
482 t->prot_l1 |= PMD_DOMAIN(t->domain);
483 if (t->prot_sect)
484 t->prot_sect |= PMD_DOMAIN(t->domain);
485 }
ae8f1541
RK
486}
487
488#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
489
3abe9d33
RK
490static void __init *early_alloc(unsigned long sz)
491{
2778f620
RK
492 void *ptr = __va(memblock_alloc(sz, sz));
493 memset(ptr, 0, sz);
494 return ptr;
3abe9d33
RK
495}
496
4bb2e27d 497static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 498{
24e6c699 499 if (pmd_none(*pmd)) {
4bb2e27d
RK
500 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
501 __pmd_populate(pmd, __pa(pte) | prot);
24e6c699 502 }
4bb2e27d
RK
503 BUG_ON(pmd_bad(*pmd));
504 return pte_offset_kernel(pmd, addr);
505}
ae8f1541 506
4bb2e27d
RK
507static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
508 unsigned long end, unsigned long pfn,
509 const struct mem_type *type)
510{
511 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 512 do {
40d192b6 513 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
514 pfn++;
515 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
516}
517
24e6c699
RK
518static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
519 unsigned long end, unsigned long phys,
520 const struct mem_type *type)
ae8f1541 521{
24e6c699 522 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 523
24e6c699
RK
524 /*
525 * Try a section mapping - end, addr and phys must all be aligned
526 * to a section boundary. Note that PMDs refer to the individual
527 * L1 entries, whereas PGDs refer to a group of L1 entries making
528 * up one logical pointer to an L2 table.
529 */
530 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
531 pmd_t *p = pmd;
ae8f1541 532
24e6c699
RK
533 if (addr & SECTION_SIZE)
534 pmd++;
535
536 do {
537 *pmd = __pmd(phys | type->prot_sect);
538 phys += SECTION_SIZE;
539 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 540
24e6c699
RK
541 flush_pmd_entry(p);
542 } else {
543 /*
544 * No need to loop; pte's aren't interested in the
545 * individual L1 entries.
546 */
547 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
548 }
ae8f1541
RK
549}
550
4a56c1e4
RK
551static void __init create_36bit_mapping(struct map_desc *md,
552 const struct mem_type *type)
553{
554 unsigned long phys, addr, length, end;
555 pgd_t *pgd;
556
557 addr = md->virtual;
558 phys = (unsigned long)__pfn_to_phys(md->pfn);
559 length = PAGE_ALIGN(md->length);
560
561 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
562 printk(KERN_ERR "MM: CPU does not support supersection "
563 "mapping for 0x%08llx at 0x%08lx\n",
564 __pfn_to_phys((u64)md->pfn), addr);
565 return;
566 }
567
568 /* N.B. ARMv6 supersections are only defined to work with domain 0.
569 * Since domain assignments can in fact be arbitrary, the
570 * 'domain == 0' check below is required to insure that ARMv6
571 * supersections are only allocated for domain 0 regardless
572 * of the actual domain assignments in use.
573 */
574 if (type->domain) {
575 printk(KERN_ERR "MM: invalid domain in supersection "
576 "mapping for 0x%08llx at 0x%08lx\n",
577 __pfn_to_phys((u64)md->pfn), addr);
578 return;
579 }
580
581 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
582 printk(KERN_ERR "MM: cannot create mapping for "
583 "0x%08llx at 0x%08lx invalid alignment\n",
584 __pfn_to_phys((u64)md->pfn), addr);
585 return;
586 }
587
588 /*
589 * Shift bits [35:32] of address into bits [23:20] of PMD
590 * (See ARMv6 spec).
591 */
592 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
593
594 pgd = pgd_offset_k(addr);
595 end = addr + length;
596 do {
597 pmd_t *pmd = pmd_offset(pgd, addr);
598 int i;
599
600 for (i = 0; i < 16; i++)
601 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
602
603 addr += SUPERSECTION_SIZE;
604 phys += SUPERSECTION_SIZE;
605 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
606 } while (addr != end);
607}
608
ae8f1541
RK
609/*
610 * Create the page directory entries and any necessary
611 * page tables for the mapping specified by `md'. We
612 * are able to cope here with varying sizes and address
613 * offsets, and we take full advantage of sections and
614 * supersections.
615 */
a2227120 616static void __init create_mapping(struct map_desc *md)
ae8f1541 617{
24e6c699 618 unsigned long phys, addr, length, end;
d5c98176 619 const struct mem_type *type;
24e6c699 620 pgd_t *pgd;
ae8f1541
RK
621
622 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
623 printk(KERN_WARNING "BUG: not creating mapping for "
624 "0x%08llx at 0x%08lx in user region\n",
625 __pfn_to_phys((u64)md->pfn), md->virtual);
626 return;
627 }
628
629 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
630 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
631 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
632 "overlaps vmalloc space\n",
633 __pfn_to_phys((u64)md->pfn), md->virtual);
634 }
635
d5c98176 636 type = &mem_types[md->type];
ae8f1541
RK
637
638 /*
639 * Catch 36-bit addresses
640 */
4a56c1e4
RK
641 if (md->pfn >= 0x100000) {
642 create_36bit_mapping(md, type);
643 return;
ae8f1541
RK
644 }
645
7b9c7b4d 646 addr = md->virtual & PAGE_MASK;
24e6c699 647 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 648 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 649
24e6c699 650 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
651 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
652 "be mapped using pages, ignoring.\n",
24e6c699 653 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
654 return;
655 }
656
24e6c699
RK
657 pgd = pgd_offset_k(addr);
658 end = addr + length;
659 do {
660 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 661
24e6c699 662 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 663
24e6c699
RK
664 phys += next - addr;
665 addr = next;
666 } while (pgd++, addr != end);
ae8f1541
RK
667}
668
669/*
670 * Create the architecture specific mappings
671 */
672void __init iotable_init(struct map_desc *io_desc, int nr)
673{
674 int i;
675
676 for (i = 0; i < nr; i++)
677 create_mapping(io_desc + i);
678}
679
79612395 680static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
6c5da7ac
RK
681
682/*
683 * vmalloc=size forces the vmalloc area to be exactly 'size'
684 * bytes. This can be used to increase (or decrease) the vmalloc
685 * area - the default is 128m.
686 */
2b0d8c25 687static int __init early_vmalloc(char *arg)
6c5da7ac 688{
79612395 689 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
690
691 if (vmalloc_reserve < SZ_16M) {
692 vmalloc_reserve = SZ_16M;
693 printk(KERN_WARNING
694 "vmalloc area too small, limiting to %luMB\n",
695 vmalloc_reserve >> 20);
696 }
9210807c
NP
697
698 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
699 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
700 printk(KERN_WARNING
701 "vmalloc area is too big, limiting to %luMB\n",
702 vmalloc_reserve >> 20);
703 }
79612395
RK
704
705 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 706 return 0;
6c5da7ac 707}
2b0d8c25 708early_param("vmalloc", early_vmalloc);
6c5da7ac 709
2778f620
RK
710phys_addr_t lowmem_end_addr;
711
4b5f32ce 712static void __init sanity_check_meminfo(void)
60296c71 713{
dde5828f 714 int i, j, highmem = 0;
60296c71 715
2778f620
RK
716 lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
717
4b5f32ce 718 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
719 struct membank *bank = &meminfo.bank[j];
720 *bank = meminfo.bank[i];
60296c71 721
a1bbaec0 722#ifdef CONFIG_HIGHMEM
79612395 723 if (__va(bank->start) > vmalloc_min ||
dde5828f
RK
724 __va(bank->start) < (void *)PAGE_OFFSET)
725 highmem = 1;
726
727 bank->highmem = highmem;
728
a1bbaec0
NP
729 /*
730 * Split those memory banks which are partially overlapping
731 * the vmalloc area greatly simplifying things later.
732 */
79612395
RK
733 if (__va(bank->start) < vmalloc_min &&
734 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
735 if (meminfo.nr_banks >= NR_BANKS) {
736 printk(KERN_CRIT "NR_BANKS too low, "
737 "ignoring high memory\n");
738 } else {
739 memmove(bank + 1, bank,
740 (meminfo.nr_banks - i) * sizeof(*bank));
741 meminfo.nr_banks++;
742 i++;
79612395
RK
743 bank[1].size -= vmalloc_min - __va(bank->start);
744 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 745 bank[1].highmem = highmem = 1;
a1bbaec0
NP
746 j++;
747 }
79612395 748 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
749 }
750#else
041d785f
RK
751 bank->highmem = highmem;
752
a1bbaec0
NP
753 /*
754 * Check whether this memory bank would entirely overlap
755 * the vmalloc area.
756 */
79612395 757 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 758 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
759 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
760 "(vmalloc region overlap).\n",
761 bank->start, bank->start + bank->size - 1);
762 continue;
763 }
60296c71 764
a1bbaec0
NP
765 /*
766 * Check whether this memory bank would partially overlap
767 * the vmalloc area.
768 */
79612395 769 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 770 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 771 unsigned long newsize = vmalloc_min - __va(bank->start);
a1bbaec0
NP
772 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
773 "to -%.8lx (vmalloc region overlap).\n",
774 bank->start, bank->start + bank->size - 1,
775 bank->start + newsize - 1);
776 bank->size = newsize;
777 }
778#endif
779 j++;
60296c71 780 }
e616c591
RK
781#ifdef CONFIG_HIGHMEM
782 if (highmem) {
783 const char *reason = NULL;
784
785 if (cache_is_vipt_aliasing()) {
786 /*
787 * Interactions between kmap and other mappings
788 * make highmem support with aliasing VIPT caches
789 * rather difficult.
790 */
791 reason = "with VIPT aliasing cache";
792#ifdef CONFIG_SMP
793 } else if (tlb_ops_need_broadcast()) {
794 /*
795 * kmap_high needs to occasionally flush TLB entries,
796 * however, if the TLB entries need to be broadcast
797 * we may deadlock:
798 * kmap_high(irqs off)->flush_all_zero_pkmaps->
799 * flush_tlb_kernel_range->smp_call_function_many
800 * (must not be called with irqs off)
801 */
802 reason = "without hardware TLB ops broadcasting";
803#endif
804 }
805 if (reason) {
806 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
807 reason);
808 while (j > 0 && meminfo.bank[j - 1].highmem)
809 j--;
810 }
811 }
812#endif
4b5f32ce 813 meminfo.nr_banks = j;
60296c71
LB
814}
815
4b5f32ce 816static inline void prepare_page_table(void)
d111e8f9
RK
817{
818 unsigned long addr;
819
820 /*
821 * Clear out all the mappings below the kernel image.
822 */
ab4f2ee1 823 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
824 pmd_clear(pmd_off_k(addr));
825
826#ifdef CONFIG_XIP_KERNEL
827 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 828 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
829#endif
830 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
831 pmd_clear(pmd_off_k(addr));
832
833 /*
834 * Clear out all the kernel space mappings, except for the first
835 * memory bank, up to the end of the vmalloc region.
836 */
4b5f32ce 837 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
d111e8f9
RK
838 addr < VMALLOC_END; addr += PGDIR_SIZE)
839 pmd_clear(pmd_off_k(addr));
840}
841
842/*
2778f620 843 * Reserve the special regions of memory
d111e8f9 844 */
2778f620 845void __init arm_mm_memblock_reserve(void)
d111e8f9 846{
d111e8f9
RK
847 /*
848 * Reserve the page tables. These are already in use,
849 * and can only be in node 0.
850 */
2778f620 851 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
d111e8f9 852
d111e8f9
RK
853#ifdef CONFIG_SA1111
854 /*
855 * Because of the SA1111 DMA bug, we want to preserve our
856 * precious DMA-able memory...
857 */
2778f620 858 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 859#endif
d111e8f9
RK
860}
861
862/*
863 * Set up device the mappings. Since we clear out the page tables for all
864 * mappings above VMALLOC_END, we will remove any debug device mappings.
865 * This means you have to be careful how you debug this function, or any
866 * called function. This means you can't use any function or debugging
867 * method which may touch any device, otherwise the kernel _will_ crash.
868 */
869static void __init devicemaps_init(struct machine_desc *mdesc)
870{
871 struct map_desc map;
872 unsigned long addr;
873 void *vectors;
874
875 /*
876 * Allocate the vector page early.
877 */
3abe9d33 878 vectors = early_alloc(PAGE_SIZE);
d111e8f9
RK
879
880 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
881 pmd_clear(pmd_off_k(addr));
882
883 /*
884 * Map the kernel if it is XIP.
885 * It is always first in the modulearea.
886 */
887#ifdef CONFIG_XIP_KERNEL
888 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 889 map.virtual = MODULES_VADDR;
37efe642 890 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
891 map.type = MT_ROM;
892 create_mapping(&map);
893#endif
894
895 /*
896 * Map the cache flushing regions.
897 */
898#ifdef FLUSH_BASE
899 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
900 map.virtual = FLUSH_BASE;
901 map.length = SZ_1M;
902 map.type = MT_CACHECLEAN;
903 create_mapping(&map);
904#endif
905#ifdef FLUSH_BASE_MINICACHE
906 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
907 map.virtual = FLUSH_BASE_MINICACHE;
908 map.length = SZ_1M;
909 map.type = MT_MINICLEAN;
910 create_mapping(&map);
911#endif
912
913 /*
914 * Create a mapping for the machine vectors at the high-vectors
915 * location (0xffff0000). If we aren't using high-vectors, also
916 * create a mapping at the low-vectors virtual address.
917 */
918 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
919 map.virtual = 0xffff0000;
920 map.length = PAGE_SIZE;
921 map.type = MT_HIGH_VECTORS;
922 create_mapping(&map);
923
924 if (!vectors_high()) {
925 map.virtual = 0;
926 map.type = MT_LOW_VECTORS;
927 create_mapping(&map);
928 }
929
930 /*
931 * Ask the machine support to map in the statically mapped devices.
932 */
933 if (mdesc->map_io)
934 mdesc->map_io();
935
936 /*
937 * Finally flush the caches and tlb to ensure that we're in a
938 * consistent state wrt the writebuffer. This also ensures that
939 * any write-allocated cache lines in the vector page are written
940 * back. After this point, we can start to touch devices again.
941 */
942 local_flush_tlb_all();
943 flush_cache_all();
944}
945
d73cd428
NP
946static void __init kmap_init(void)
947{
948#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
949 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
950 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
951#endif
952}
953
a2227120
RK
954static inline void map_memory_bank(struct membank *bank)
955{
956 struct map_desc map;
957
958 map.pfn = bank_pfn_start(bank);
959 map.virtual = __phys_to_virt(bank_phys_start(bank));
960 map.length = bank_phys_size(bank);
961 map.type = MT_MEMORY;
962
963 create_mapping(&map);
964}
965
966static void __init map_lowmem(void)
967{
968 struct meminfo *mi = &meminfo;
969 int i;
970
971 /* Map all the lowmem memory banks. */
972 for (i = 0; i < mi->nr_banks; i++) {
973 struct membank *bank = &mi->bank[i];
974
975 if (!bank->highmem)
976 map_memory_bank(bank);
977 }
978}
979
ceb683d3
RK
980static int __init meminfo_cmp(const void *_a, const void *_b)
981{
982 const struct membank *a = _a, *b = _b;
983 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
984 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
985}
986
d111e8f9
RK
987/*
988 * paging_init() sets up the page tables, initialises the zone memory
989 * maps, and sets up the zero page, bad page and bad page tables.
990 */
4b5f32ce 991void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
992{
993 void *zero_page;
994
ceb683d3
RK
995 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
996
d111e8f9 997 build_mem_type_table();
4b5f32ce
NP
998 sanity_check_meminfo();
999 prepare_page_table();
a2227120 1000 map_lowmem();
d111e8f9 1001 devicemaps_init(mdesc);
d73cd428 1002 kmap_init();
d111e8f9
RK
1003
1004 top_pmd = pmd_off_k(0xffff0000);
1005
3abe9d33
RK
1006 /* allocate the zero page. */
1007 zero_page = early_alloc(PAGE_SIZE);
2778f620
RK
1008
1009 bootmem_init(mdesc);
1010
d111e8f9 1011 empty_zero_page = virt_to_page(zero_page);
421fe93c 1012 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1013}
ae8f1541
RK
1014
1015/*
1016 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1017 * the user-mode pages. This will then ensure that we have predictable
1018 * results when turning the mmu off
1019 */
1020void setup_mm_for_reboot(char mode)
1021{
1022 unsigned long base_pmdval;
1023 pgd_t *pgd;
1024 int i;
1025
3f2d4f56
MW
1026 /*
1027 * We need to access to user-mode page tables here. For kernel threads
1028 * we don't have any user-mode mappings so we use the context that we
1029 * "borrowed".
1030 */
1031 pgd = current->active_mm->pgd;
ae8f1541
RK
1032
1033 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1034 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1035 base_pmdval |= PMD_BIT4;
1036
1037 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1038 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1039 pmd_t *pmd;
1040
1041 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1042 pmd[0] = __pmd(pmdval);
1043 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1044 flush_pmd_entry(pmd);
1045 }
ad3e6c0b
TL
1046
1047 local_flush_tlb_all();
ae8f1541 1048}
This page took 0.455705 seconds and 5 git commands to generate.