ARM: LPAE: accomodate >32-bit addresses for page table base
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
d111e8f9 25#include <asm/setup.h>
e616c591 26#include <asm/smp_plat.h>
d111e8f9 27#include <asm/tlb.h>
d73cd428 28#include <asm/highmem.h>
9f97da78 29#include <asm/system_info.h>
247055aa 30#include <asm/traps.h>
d111e8f9
RK
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
c2794437 34#include <asm/mach/pci.h>
d111e8f9
RK
35
36#include "mm.h"
de40614e 37#include "tcm.h"
d111e8f9 38
d111e8f9
RK
39/*
40 * empty_zero_page is a special page that is used for
41 * zero-initialized data and COW.
42 */
43struct page *empty_zero_page;
3653f3ab 44EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
45
46/*
47 * The pmd table for the upper-most set of pages.
48 */
49pmd_t *top_pmd;
50
ae8f1541
RK
51#define CPOLICY_UNCACHED 0
52#define CPOLICY_BUFFERED 1
53#define CPOLICY_WRITETHROUGH 2
54#define CPOLICY_WRITEBACK 3
55#define CPOLICY_WRITEALLOC 4
56
57static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58static unsigned int ecc_mask __initdata = 0;
44b18693 59pgprot_t pgprot_user;
ae8f1541 60pgprot_t pgprot_kernel;
cc577c26
CD
61pgprot_t pgprot_hyp_device;
62pgprot_t pgprot_s2;
63pgprot_t pgprot_s2_device;
ae8f1541 64
44b18693 65EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
66EXPORT_SYMBOL(pgprot_kernel);
67
68struct cachepolicy {
69 const char policy[16];
70 unsigned int cr_mask;
442e70c0 71 pmdval_t pmd;
f6e3354d 72 pteval_t pte;
cc577c26 73 pteval_t pte_s2;
ae8f1541
RK
74};
75
cc577c26
CD
76#ifdef CONFIG_ARM_LPAE
77#define s2_policy(policy) policy
78#else
79#define s2_policy(policy) 0
80#endif
81
ae8f1541
RK
82static struct cachepolicy cache_policies[] __initdata = {
83 {
84 .policy = "uncached",
85 .cr_mask = CR_W|CR_C,
86 .pmd = PMD_SECT_UNCACHED,
bb30f36f 87 .pte = L_PTE_MT_UNCACHED,
cc577c26 88 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
89 }, {
90 .policy = "buffered",
91 .cr_mask = CR_C,
92 .pmd = PMD_SECT_BUFFERED,
bb30f36f 93 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 94 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
95 }, {
96 .policy = "writethrough",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WT,
bb30f36f 99 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 100 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
101 }, {
102 .policy = "writeback",
103 .cr_mask = 0,
104 .pmd = PMD_SECT_WB,
bb30f36f 105 .pte = L_PTE_MT_WRITEBACK,
cc577c26 106 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
107 }, {
108 .policy = "writealloc",
109 .cr_mask = 0,
110 .pmd = PMD_SECT_WBWA,
bb30f36f 111 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 112 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
113 }
114};
115
b849a60e 116#ifdef CONFIG_CPU_CP15
ae8f1541 117/*
6cbdc8c5 118 * These are useful for identifying cache coherency
ae8f1541
RK
119 * problems by allowing the cache or the cache and
120 * writebuffer to be turned off. (Note: the write
121 * buffer should not be on and the cache off).
122 */
2b0d8c25 123static int __init early_cachepolicy(char *p)
ae8f1541
RK
124{
125 int i;
126
127 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
128 int len = strlen(cache_policies[i].policy);
129
2b0d8c25 130 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
131 cachepolicy = i;
132 cr_alignment &= ~cache_policies[i].cr_mask;
133 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
134 break;
135 }
136 }
137 if (i == ARRAY_SIZE(cache_policies))
138 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
139 /*
140 * This restriction is partly to do with the way we boot; it is
141 * unpredictable to have memory mapped using two different sets of
142 * memory attributes (shared, type, and cache attribs). We can not
143 * change these attributes once the initial assembly has setup the
144 * page tables.
145 */
11179d8c
CM
146 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
147 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
148 cachepolicy = CPOLICY_WRITEBACK;
149 }
ae8f1541
RK
150 flush_cache_all();
151 set_cr(cr_alignment);
2b0d8c25 152 return 0;
ae8f1541 153}
2b0d8c25 154early_param("cachepolicy", early_cachepolicy);
ae8f1541 155
2b0d8c25 156static int __init early_nocache(char *__unused)
ae8f1541
RK
157{
158 char *p = "buffered";
159 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
160 early_cachepolicy(p);
161 return 0;
ae8f1541 162}
2b0d8c25 163early_param("nocache", early_nocache);
ae8f1541 164
2b0d8c25 165static int __init early_nowrite(char *__unused)
ae8f1541
RK
166{
167 char *p = "uncached";
168 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
169 early_cachepolicy(p);
170 return 0;
ae8f1541 171}
2b0d8c25 172early_param("nowb", early_nowrite);
ae8f1541 173
1b6ba46b 174#ifndef CONFIG_ARM_LPAE
2b0d8c25 175static int __init early_ecc(char *p)
ae8f1541 176{
2b0d8c25 177 if (memcmp(p, "on", 2) == 0)
ae8f1541 178 ecc_mask = PMD_PROTECTION;
2b0d8c25 179 else if (memcmp(p, "off", 3) == 0)
ae8f1541 180 ecc_mask = 0;
2b0d8c25 181 return 0;
ae8f1541 182}
2b0d8c25 183early_param("ecc", early_ecc);
1b6ba46b 184#endif
ae8f1541
RK
185
186static int __init noalign_setup(char *__unused)
187{
188 cr_alignment &= ~CR_A;
189 cr_no_alignment &= ~CR_A;
190 set_cr(cr_alignment);
191 return 1;
192}
193__setup("noalign", noalign_setup);
194
255d1f86
RK
195#ifndef CONFIG_SMP
196void adjust_cr(unsigned long mask, unsigned long set)
197{
198 unsigned long flags;
199
200 mask &= ~CR_A;
201
202 set &= mask;
203
204 local_irq_save(flags);
205
206 cr_no_alignment = (cr_no_alignment & ~mask) | set;
207 cr_alignment = (cr_alignment & ~mask) | set;
208
209 set_cr((get_cr() & ~mask) | set);
210
211 local_irq_restore(flags);
212}
213#endif
214
b849a60e
UKK
215#else /* ifdef CONFIG_CPU_CP15 */
216
217static int __init early_cachepolicy(char *p)
218{
219 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
220}
221early_param("cachepolicy", early_cachepolicy);
222
223static int __init noalign_setup(char *__unused)
224{
225 pr_warning("noalign kernel parameter not supported without cp15\n");
226}
227__setup("noalign", noalign_setup);
228
229#endif /* ifdef CONFIG_CPU_CP15 / else */
230
36bb94ba 231#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 232#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 233
b29e9f5e 234static struct mem_type mem_types[] = {
0af92bef 235 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
236 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
237 L_PTE_SHARED,
0af92bef 238 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 239 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
240 .domain = DOMAIN_IO,
241 },
242 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 243 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 244 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 245 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
246 .domain = DOMAIN_IO,
247 },
248 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 249 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
250 .prot_l1 = PMD_TYPE_TABLE,
251 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
252 .domain = DOMAIN_IO,
c2794437 253 },
1ad77a87 254 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 255 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 256 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 257 .prot_sect = PROT_SECT_DEVICE,
0af92bef 258 .domain = DOMAIN_IO,
ae8f1541 259 },
ebb4c658
RK
260 [MT_UNCACHED] = {
261 .prot_pte = PROT_PTE_DEVICE,
262 .prot_l1 = PMD_TYPE_TABLE,
263 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
264 .domain = DOMAIN_IO,
265 },
ae8f1541 266 [MT_CACHECLEAN] = {
9ef79635 267 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
268 .domain = DOMAIN_KERNEL,
269 },
1b6ba46b 270#ifndef CONFIG_ARM_LPAE
ae8f1541 271 [MT_MINICLEAN] = {
9ef79635 272 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
273 .domain = DOMAIN_KERNEL,
274 },
1b6ba46b 275#endif
ae8f1541
RK
276 [MT_LOW_VECTORS] = {
277 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 278 L_PTE_RDONLY,
ae8f1541
RK
279 .prot_l1 = PMD_TYPE_TABLE,
280 .domain = DOMAIN_USER,
281 },
282 [MT_HIGH_VECTORS] = {
283 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 284 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
285 .prot_l1 = PMD_TYPE_TABLE,
286 .domain = DOMAIN_USER,
287 },
288 [MT_MEMORY] = {
36bb94ba 289 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 290 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 291 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
292 .domain = DOMAIN_KERNEL,
293 },
294 [MT_ROM] = {
9ef79635 295 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
296 .domain = DOMAIN_KERNEL,
297 },
e4707dd3 298 [MT_MEMORY_NONCACHED] = {
f1a2481c 299 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 300 L_PTE_MT_BUFFERABLE,
f1a2481c 301 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
302 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303 .domain = DOMAIN_KERNEL,
304 },
cb9d7707 305 [MT_MEMORY_DTCM] = {
f444fce3 306 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 307 L_PTE_XN,
f444fce3
LW
308 .prot_l1 = PMD_TYPE_TABLE,
309 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
310 .domain = DOMAIN_KERNEL,
cb9d7707
LW
311 },
312 [MT_MEMORY_ITCM] = {
36bb94ba 313 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 314 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 315 .domain = DOMAIN_KERNEL,
cb9d7707 316 },
8fb54284
SS
317 [MT_MEMORY_SO] = {
318 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 319 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
320 .prot_l1 = PMD_TYPE_TABLE,
321 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
322 PMD_SECT_UNCACHED | PMD_SECT_XN,
323 .domain = DOMAIN_KERNEL,
324 },
c7909509
MS
325 [MT_MEMORY_DMA_READY] = {
326 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
327 .prot_l1 = PMD_TYPE_TABLE,
328 .domain = DOMAIN_KERNEL,
329 },
ae8f1541
RK
330};
331
b29e9f5e
RK
332const struct mem_type *get_mem_type(unsigned int type)
333{
334 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
335}
69d3a84a 336EXPORT_SYMBOL(get_mem_type);
b29e9f5e 337
ae8f1541
RK
338/*
339 * Adjust the PMD section entries according to the CPU in use.
340 */
341static void __init build_mem_type_table(void)
342{
343 struct cachepolicy *cp;
344 unsigned int cr = get_cr();
442e70c0 345 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 346 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
347 int cpu_arch = cpu_architecture();
348 int i;
349
11179d8c 350 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 351#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
352 if (cachepolicy > CPOLICY_BUFFERED)
353 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 354#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
355 if (cachepolicy > CPOLICY_WRITETHROUGH)
356 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 357#endif
11179d8c 358 }
ae8f1541
RK
359 if (cpu_arch < CPU_ARCH_ARMv5) {
360 if (cachepolicy >= CPOLICY_WRITEALLOC)
361 cachepolicy = CPOLICY_WRITEBACK;
362 ecc_mask = 0;
363 }
f00ec48f
RK
364 if (is_smp())
365 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 366
1ad77a87 367 /*
b1cce6b1
RK
368 * Strip out features not present on earlier architectures.
369 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
370 * without extended page tables don't have the 'Shared' bit.
1ad77a87 371 */
b1cce6b1
RK
372 if (cpu_arch < CPU_ARCH_ARMv5)
373 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
374 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
375 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
376 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
377 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
378
379 /*
b1cce6b1
RK
380 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
381 * "update-able on write" bit on ARM610). However, Xscale and
382 * Xscale3 require this bit to be cleared.
ae8f1541 383 */
b1cce6b1 384 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 385 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 386 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
387 mem_types[i].prot_l1 &= ~PMD_BIT4;
388 }
389 } else if (cpu_arch < CPU_ARCH_ARMv6) {
390 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
391 if (mem_types[i].prot_l1)
392 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
393 if (mem_types[i].prot_sect)
394 mem_types[i].prot_sect |= PMD_BIT4;
395 }
396 }
ae8f1541 397
b1cce6b1
RK
398 /*
399 * Mark the device areas according to the CPU/architecture.
400 */
401 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
402 if (!cpu_is_xsc3()) {
403 /*
404 * Mark device regions on ARMv6+ as execute-never
405 * to prevent speculative instruction fetches.
406 */
407 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
408 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
409 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
410 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
411 }
412 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
413 /*
414 * For ARMv7 with TEX remapping,
415 * - shared device is SXCB=1100
416 * - nonshared device is SXCB=0100
417 * - write combine device mem is SXCB=0001
418 * (Uncached Normal memory)
419 */
420 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
421 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
422 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
423 } else if (cpu_is_xsc3()) {
424 /*
425 * For Xscale3,
426 * - shared device is TEXCB=00101
427 * - nonshared device is TEXCB=01000
428 * - write combine device mem is TEXCB=00100
429 * (Inner/Outer Uncacheable in xsc3 parlance)
430 */
431 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
432 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
433 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
434 } else {
435 /*
436 * For ARMv6 and ARMv7 without TEX remapping,
437 * - shared device is TEXCB=00001
438 * - nonshared device is TEXCB=01000
439 * - write combine device mem is TEXCB=00100
440 * (Uncached Normal in ARMv6 parlance).
441 */
442 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
443 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
444 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
445 }
446 } else {
447 /*
448 * On others, write combining is "Uncached/Buffered"
449 */
450 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
451 }
452
453 /*
454 * Now deal with the memory-type mappings
455 */
ae8f1541 456 cp = &cache_policies[cachepolicy];
bb30f36f 457 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26
CD
458 s2_pgprot = cp->pte_s2;
459 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
bb30f36f 460
ae8f1541
RK
461 /*
462 * ARMv6 and above have extended page tables.
463 */
464 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 465#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
466 /*
467 * Mark cache clean areas and XIP ROM read only
468 * from SVC mode and no access from userspace.
469 */
470 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
471 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
472 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 473#endif
ae8f1541 474
f00ec48f
RK
475 if (is_smp()) {
476 /*
477 * Mark memory with the "shared" attribute
478 * for SMP systems
479 */
480 user_pgprot |= L_PTE_SHARED;
481 kern_pgprot |= L_PTE_SHARED;
482 vecs_pgprot |= L_PTE_SHARED;
cc577c26 483 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
484 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
485 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
486 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
487 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
488 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
489 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 490 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f00ec48f
RK
491 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
492 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
493 }
ae8f1541
RK
494 }
495
e4707dd3
PW
496 /*
497 * Non-cacheable Normal - intended for memory areas that must
498 * not cause dirty cache line writebacks when used
499 */
500 if (cpu_arch >= CPU_ARCH_ARMv6) {
501 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
502 /* Non-cacheable Normal is XCB = 001 */
503 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
504 PMD_SECT_BUFFERED;
505 } else {
506 /* For both ARMv6 and non-TEX-remapping ARMv7 */
507 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
508 PMD_SECT_TEX(1);
509 }
510 } else {
511 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
512 }
513
1b6ba46b
CM
514#ifdef CONFIG_ARM_LPAE
515 /*
516 * Do not generate access flag faults for the kernel mappings.
517 */
518 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
519 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
520 if (mem_types[i].prot_sect)
521 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
522 }
523 kern_pgprot |= PTE_EXT_AF;
524 vecs_pgprot |= PTE_EXT_AF;
525#endif
526
ae8f1541 527 for (i = 0; i < 16; i++) {
864aa04c 528 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 529 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
530 }
531
bb30f36f
RK
532 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
533 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 534
44b18693 535 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 536 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 537 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
538 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
539 pgprot_s2_device = __pgprot(s2_device_pgprot);
540 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
541
542 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
543 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
544 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c 545 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
c7909509 546 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
f1a2481c 547 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
548 mem_types[MT_ROM].prot_sect |= cp->pmd;
549
550 switch (cp->pmd) {
551 case PMD_SECT_WT:
552 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
553 break;
554 case PMD_SECT_WB:
555 case PMD_SECT_WBWA:
556 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
557 break;
558 }
559 printk("Memory policy: ECC %sabled, Data cache %s\n",
560 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
561
562 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
563 struct mem_type *t = &mem_types[i];
564 if (t->prot_l1)
565 t->prot_l1 |= PMD_DOMAIN(t->domain);
566 if (t->prot_sect)
567 t->prot_sect |= PMD_DOMAIN(t->domain);
568 }
ae8f1541
RK
569}
570
d907387c
CM
571#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
572pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
573 unsigned long size, pgprot_t vma_prot)
574{
575 if (!pfn_valid(pfn))
576 return pgprot_noncached(vma_prot);
577 else if (file->f_flags & O_SYNC)
578 return pgprot_writecombine(vma_prot);
579 return vma_prot;
580}
581EXPORT_SYMBOL(phys_mem_access_prot);
582#endif
583
ae8f1541
RK
584#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
585
0536bdf3 586static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 587{
0536bdf3 588 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
589 memset(ptr, 0, sz);
590 return ptr;
3abe9d33
RK
591}
592
0536bdf3
NP
593static void __init *early_alloc(unsigned long sz)
594{
595 return early_alloc_aligned(sz, sz);
596}
597
4bb2e27d 598static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 599{
24e6c699 600 if (pmd_none(*pmd)) {
410f1483 601 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 602 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 603 }
4bb2e27d
RK
604 BUG_ON(pmd_bad(*pmd));
605 return pte_offset_kernel(pmd, addr);
606}
ae8f1541 607
4bb2e27d
RK
608static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
609 unsigned long end, unsigned long pfn,
610 const struct mem_type *type)
611{
612 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 613 do {
40d192b6 614 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
615 pfn++;
616 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
617}
618
e651eab0
S
619static void __init map_init_section(pmd_t *pmd, unsigned long addr,
620 unsigned long end, phys_addr_t phys,
621 const struct mem_type *type)
ae8f1541 622{
e651eab0 623#ifndef CONFIG_ARM_LPAE
24e6c699 624 /*
e651eab0
S
625 * In classic MMU format, puds and pmds are folded in to
626 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
627 * group of L1 entries making up one logical pointer to
628 * an L2 table (2MB), where as PMDs refer to the individual
629 * L1 entries (1MB). Hence increment to get the correct
630 * offset for odd 1MB sections.
631 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 632 */
e651eab0
S
633 if (addr & SECTION_SIZE)
634 pmd++;
1b6ba46b 635#endif
e651eab0
S
636 do {
637 *pmd = __pmd(phys | type->prot_sect);
638 phys += SECTION_SIZE;
639 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 640
e651eab0
S
641 flush_pmd_entry(pmd);
642}
ae8f1541 643
e651eab0
S
644static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
645 unsigned long end, phys_addr_t phys,
646 const struct mem_type *type)
647{
648 pmd_t *pmd = pmd_offset(pud, addr);
649 unsigned long next;
650
651 do {
24e6c699 652 /*
e651eab0
S
653 * With LPAE, we must loop over to map
654 * all the pmds for the given range.
24e6c699 655 */
e651eab0
S
656 next = pmd_addr_end(addr, end);
657
658 /*
659 * Try a section mapping - addr, next and phys must all be
660 * aligned to a section boundary.
661 */
662 if (type->prot_sect &&
663 ((addr | next | phys) & ~SECTION_MASK) == 0) {
664 map_init_section(pmd, addr, next, phys, type);
665 } else {
666 alloc_init_pte(pmd, addr, next,
667 __phys_to_pfn(phys), type);
668 }
669
670 phys += next - addr;
671
672 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
673}
674
14904927 675static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d
VA
676 unsigned long end, phys_addr_t phys,
677 const struct mem_type *type)
516295e5
RK
678{
679 pud_t *pud = pud_offset(pgd, addr);
680 unsigned long next;
681
682 do {
683 next = pud_addr_end(addr, end);
e651eab0 684 alloc_init_pmd(pud, addr, next, phys, type);
516295e5
RK
685 phys += next - addr;
686 } while (pud++, addr = next, addr != end);
687}
688
1b6ba46b 689#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
690static void __init create_36bit_mapping(struct map_desc *md,
691 const struct mem_type *type)
692{
97092e0c
RK
693 unsigned long addr, length, end;
694 phys_addr_t phys;
4a56c1e4
RK
695 pgd_t *pgd;
696
697 addr = md->virtual;
cae6292b 698 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
699 length = PAGE_ALIGN(md->length);
700
701 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
702 printk(KERN_ERR "MM: CPU does not support supersection "
703 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 704 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
705 return;
706 }
707
708 /* N.B. ARMv6 supersections are only defined to work with domain 0.
709 * Since domain assignments can in fact be arbitrary, the
710 * 'domain == 0' check below is required to insure that ARMv6
711 * supersections are only allocated for domain 0 regardless
712 * of the actual domain assignments in use.
713 */
714 if (type->domain) {
715 printk(KERN_ERR "MM: invalid domain in supersection "
716 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 717 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
718 return;
719 }
720
721 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
722 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
723 " at 0x%08lx invalid alignment\n",
724 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
725 return;
726 }
727
728 /*
729 * Shift bits [35:32] of address into bits [23:20] of PMD
730 * (See ARMv6 spec).
731 */
732 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
733
734 pgd = pgd_offset_k(addr);
735 end = addr + length;
736 do {
516295e5
RK
737 pud_t *pud = pud_offset(pgd, addr);
738 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
739 int i;
740
741 for (i = 0; i < 16; i++)
742 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
743
744 addr += SUPERSECTION_SIZE;
745 phys += SUPERSECTION_SIZE;
746 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
747 } while (addr != end);
748}
1b6ba46b 749#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 750
ae8f1541
RK
751/*
752 * Create the page directory entries and any necessary
753 * page tables for the mapping specified by `md'. We
754 * are able to cope here with varying sizes and address
755 * offsets, and we take full advantage of sections and
756 * supersections.
757 */
a2227120 758static void __init create_mapping(struct map_desc *md)
ae8f1541 759{
cae6292b
WD
760 unsigned long addr, length, end;
761 phys_addr_t phys;
d5c98176 762 const struct mem_type *type;
24e6c699 763 pgd_t *pgd;
ae8f1541
RK
764
765 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
766 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
767 " at 0x%08lx in user region\n",
768 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
769 return;
770 }
771
772 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
773 md->virtual >= PAGE_OFFSET &&
774 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 775 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 776 " at 0x%08lx out of vmalloc space\n",
29a38193 777 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
778 }
779
d5c98176 780 type = &mem_types[md->type];
ae8f1541 781
1b6ba46b 782#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
783 /*
784 * Catch 36-bit addresses
785 */
4a56c1e4
RK
786 if (md->pfn >= 0x100000) {
787 create_36bit_mapping(md, type);
788 return;
ae8f1541 789 }
1b6ba46b 790#endif
ae8f1541 791
7b9c7b4d 792 addr = md->virtual & PAGE_MASK;
cae6292b 793 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 794 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 795
24e6c699 796 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 797 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 798 "be mapped using pages, ignoring.\n",
29a38193 799 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
800 return;
801 }
802
24e6c699
RK
803 pgd = pgd_offset_k(addr);
804 end = addr + length;
805 do {
806 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 807
516295e5 808 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 809
24e6c699
RK
810 phys += next - addr;
811 addr = next;
812 } while (pgd++, addr != end);
ae8f1541
RK
813}
814
815/*
816 * Create the architecture specific mappings
817 */
818void __init iotable_init(struct map_desc *io_desc, int nr)
819{
0536bdf3
NP
820 struct map_desc *md;
821 struct vm_struct *vm;
101eeda3 822 struct static_vm *svm;
0536bdf3
NP
823
824 if (!nr)
825 return;
ae8f1541 826
101eeda3 827 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
828
829 for (md = io_desc; nr; md++, nr--) {
830 create_mapping(md);
101eeda3
JK
831
832 vm = &svm->vm;
0536bdf3
NP
833 vm->addr = (void *)(md->virtual & PAGE_MASK);
834 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
835 vm->phys_addr = __pfn_to_phys(md->pfn);
836 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 837 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 838 vm->caller = iotable_init;
101eeda3 839 add_static_vm_early(svm++);
0536bdf3 840 }
ae8f1541
RK
841}
842
c2794437
RH
843void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
844 void *caller)
845{
846 struct vm_struct *vm;
101eeda3
JK
847 struct static_vm *svm;
848
849 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 850
101eeda3 851 vm = &svm->vm;
c2794437
RH
852 vm->addr = (void *)addr;
853 vm->size = size;
863e99a8 854 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 855 vm->caller = caller;
101eeda3 856 add_static_vm_early(svm);
c2794437
RH
857}
858
19b52abe
NP
859#ifndef CONFIG_ARM_LPAE
860
861/*
862 * The Linux PMD is made of two consecutive section entries covering 2MB
863 * (see definition in include/asm/pgtable-2level.h). However a call to
864 * create_mapping() may optimize static mappings by using individual
865 * 1MB section mappings. This leaves the actual PMD potentially half
866 * initialized if the top or bottom section entry isn't used, leaving it
867 * open to problems if a subsequent ioremap() or vmalloc() tries to use
868 * the virtual space left free by that unused section entry.
869 *
870 * Let's avoid the issue by inserting dummy vm entries covering the unused
871 * PMD halves once the static mappings are in place.
872 */
873
874static void __init pmd_empty_section_gap(unsigned long addr)
875{
c2794437 876 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
877}
878
879static void __init fill_pmd_gaps(void)
880{
101eeda3 881 struct static_vm *svm;
19b52abe
NP
882 struct vm_struct *vm;
883 unsigned long addr, next = 0;
884 pmd_t *pmd;
885
101eeda3
JK
886 list_for_each_entry(svm, &static_vmlist, list) {
887 vm = &svm->vm;
19b52abe
NP
888 addr = (unsigned long)vm->addr;
889 if (addr < next)
890 continue;
891
892 /*
893 * Check if this vm starts on an odd section boundary.
894 * If so and the first section entry for this PMD is free
895 * then we block the corresponding virtual address.
896 */
897 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
898 pmd = pmd_off_k(addr);
899 if (pmd_none(*pmd))
900 pmd_empty_section_gap(addr & PMD_MASK);
901 }
902
903 /*
904 * Then check if this vm ends on an odd section boundary.
905 * If so and the second section entry for this PMD is empty
906 * then we block the corresponding virtual address.
907 */
908 addr += vm->size;
909 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
910 pmd = pmd_off_k(addr) + 1;
911 if (pmd_none(*pmd))
912 pmd_empty_section_gap(addr);
913 }
914
915 /* no need to look at any vm entry until we hit the next PMD */
916 next = (addr + PMD_SIZE - 1) & PMD_MASK;
917 }
918}
919
920#else
921#define fill_pmd_gaps() do { } while (0)
922#endif
923
c2794437
RH
924#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
925static void __init pci_reserve_io(void)
926{
101eeda3 927 struct static_vm *svm;
c2794437 928
101eeda3
JK
929 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
930 if (svm)
931 return;
c2794437 932
c2794437
RH
933 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
934}
935#else
936#define pci_reserve_io() do { } while (0)
937#endif
938
e5c5f2ad
RH
939#ifdef CONFIG_DEBUG_LL
940void __init debug_ll_io_init(void)
941{
942 struct map_desc map;
943
944 debug_ll_addr(&map.pfn, &map.virtual);
945 if (!map.pfn || !map.virtual)
946 return;
947 map.pfn = __phys_to_pfn(map.pfn);
948 map.virtual &= PAGE_MASK;
949 map.length = PAGE_SIZE;
950 map.type = MT_DEVICE;
951 create_mapping(&map);
952}
953#endif
954
0536bdf3
NP
955static void * __initdata vmalloc_min =
956 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
957
958/*
959 * vmalloc=size forces the vmalloc area to be exactly 'size'
960 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 961 * area - the default is 240m.
6c5da7ac 962 */
2b0d8c25 963static int __init early_vmalloc(char *arg)
6c5da7ac 964{
79612395 965 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
966
967 if (vmalloc_reserve < SZ_16M) {
968 vmalloc_reserve = SZ_16M;
969 printk(KERN_WARNING
970 "vmalloc area too small, limiting to %luMB\n",
971 vmalloc_reserve >> 20);
972 }
9210807c
NP
973
974 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
975 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
976 printk(KERN_WARNING
977 "vmalloc area is too big, limiting to %luMB\n",
978 vmalloc_reserve >> 20);
979 }
79612395
RK
980
981 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 982 return 0;
6c5da7ac 983}
2b0d8c25 984early_param("vmalloc", early_vmalloc);
6c5da7ac 985
c7909509 986phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 987
0371d3f7 988void __init sanity_check_meminfo(void)
60296c71 989{
dde5828f 990 int i, j, highmem = 0;
60296c71 991
4b5f32ce 992 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
993 struct membank *bank = &meminfo.bank[j];
994 *bank = meminfo.bank[i];
60296c71 995
77f73a2c
WD
996 if (bank->start > ULONG_MAX)
997 highmem = 1;
998
a1bbaec0 999#ifdef CONFIG_HIGHMEM
40f7bfe4 1000 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
1001 __va(bank->start) < (void *)PAGE_OFFSET)
1002 highmem = 1;
1003
1004 bank->highmem = highmem;
1005
a1bbaec0
NP
1006 /*
1007 * Split those memory banks which are partially overlapping
1008 * the vmalloc area greatly simplifying things later.
1009 */
77f73a2c 1010 if (!highmem && __va(bank->start) < vmalloc_min &&
79612395 1011 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
1012 if (meminfo.nr_banks >= NR_BANKS) {
1013 printk(KERN_CRIT "NR_BANKS too low, "
1014 "ignoring high memory\n");
1015 } else {
1016 memmove(bank + 1, bank,
1017 (meminfo.nr_banks - i) * sizeof(*bank));
1018 meminfo.nr_banks++;
1019 i++;
79612395
RK
1020 bank[1].size -= vmalloc_min - __va(bank->start);
1021 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 1022 bank[1].highmem = highmem = 1;
a1bbaec0
NP
1023 j++;
1024 }
79612395 1025 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
1026 }
1027#else
041d785f
RK
1028 bank->highmem = highmem;
1029
77f73a2c
WD
1030 /*
1031 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1032 */
1033 if (highmem) {
1034 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1035 "(!CONFIG_HIGHMEM).\n",
1036 (unsigned long long)bank->start,
1037 (unsigned long long)bank->start + bank->size - 1);
1038 continue;
1039 }
1040
a1bbaec0
NP
1041 /*
1042 * Check whether this memory bank would entirely overlap
1043 * the vmalloc area.
1044 */
79612395 1045 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 1046 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 1047 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 1048 "(vmalloc region overlap).\n",
e33b9d08
RK
1049 (unsigned long long)bank->start,
1050 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
1051 continue;
1052 }
60296c71 1053
a1bbaec0
NP
1054 /*
1055 * Check whether this memory bank would partially overlap
1056 * the vmalloc area.
1057 */
36418c51
JA
1058 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1059 __va(bank->start + bank->size - 1) <= __va(bank->start)) {
79612395 1060 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
1061 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1062 "to -%.8llx (vmalloc region overlap).\n",
1063 (unsigned long long)bank->start,
1064 (unsigned long long)bank->start + bank->size - 1,
1065 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
1066 bank->size = newsize;
1067 }
1068#endif
c7909509
MS
1069 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1070 arm_lowmem_limit = bank->start + bank->size;
40f7bfe4 1071
a1bbaec0 1072 j++;
60296c71 1073 }
e616c591
RK
1074#ifdef CONFIG_HIGHMEM
1075 if (highmem) {
1076 const char *reason = NULL;
1077
1078 if (cache_is_vipt_aliasing()) {
1079 /*
1080 * Interactions between kmap and other mappings
1081 * make highmem support with aliasing VIPT caches
1082 * rather difficult.
1083 */
1084 reason = "with VIPT aliasing cache";
e616c591
RK
1085 }
1086 if (reason) {
1087 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1088 reason);
1089 while (j > 0 && meminfo.bank[j - 1].highmem)
1090 j--;
1091 }
1092 }
1093#endif
4b5f32ce 1094 meminfo.nr_banks = j;
c7909509
MS
1095 high_memory = __va(arm_lowmem_limit - 1) + 1;
1096 memblock_set_current_limit(arm_lowmem_limit);
60296c71
LB
1097}
1098
4b5f32ce 1099static inline void prepare_page_table(void)
d111e8f9
RK
1100{
1101 unsigned long addr;
8df65168 1102 phys_addr_t end;
d111e8f9
RK
1103
1104 /*
1105 * Clear out all the mappings below the kernel image.
1106 */
e73fc88e 1107 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1108 pmd_clear(pmd_off_k(addr));
1109
1110#ifdef CONFIG_XIP_KERNEL
1111 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1112 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1113#endif
e73fc88e 1114 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1115 pmd_clear(pmd_off_k(addr));
1116
8df65168
RK
1117 /*
1118 * Find the end of the first block of lowmem.
1119 */
1120 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1121 if (end >= arm_lowmem_limit)
1122 end = arm_lowmem_limit;
8df65168 1123
d111e8f9
RK
1124 /*
1125 * Clear out all the kernel space mappings, except for the first
0536bdf3 1126 * memory bank, up to the vmalloc region.
d111e8f9 1127 */
8df65168 1128 for (addr = __phys_to_virt(end);
0536bdf3 1129 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1130 pmd_clear(pmd_off_k(addr));
1131}
1132
1b6ba46b
CM
1133#ifdef CONFIG_ARM_LPAE
1134/* the first page is reserved for pgd */
1135#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1136 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1137#else
e73fc88e 1138#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1139#endif
e73fc88e 1140
d111e8f9 1141/*
2778f620 1142 * Reserve the special regions of memory
d111e8f9 1143 */
2778f620 1144void __init arm_mm_memblock_reserve(void)
d111e8f9 1145{
d111e8f9
RK
1146 /*
1147 * Reserve the page tables. These are already in use,
1148 * and can only be in node 0.
1149 */
e73fc88e 1150 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1151
d111e8f9
RK
1152#ifdef CONFIG_SA1111
1153 /*
1154 * Because of the SA1111 DMA bug, we want to preserve our
1155 * precious DMA-able memory...
1156 */
2778f620 1157 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1158#endif
d111e8f9
RK
1159}
1160
1161/*
0536bdf3
NP
1162 * Set up the device mappings. Since we clear out the page tables for all
1163 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1164 * This means you have to be careful how you debug this function, or any
1165 * called function. This means you can't use any function or debugging
1166 * method which may touch any device, otherwise the kernel _will_ crash.
1167 */
1168static void __init devicemaps_init(struct machine_desc *mdesc)
1169{
1170 struct map_desc map;
1171 unsigned long addr;
94e5a85b 1172 void *vectors;
d111e8f9
RK
1173
1174 /*
1175 * Allocate the vector page early.
1176 */
94e5a85b
RK
1177 vectors = early_alloc(PAGE_SIZE);
1178
1179 early_trap_init(vectors);
d111e8f9 1180
0536bdf3 1181 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1182 pmd_clear(pmd_off_k(addr));
1183
1184 /*
1185 * Map the kernel if it is XIP.
1186 * It is always first in the modulearea.
1187 */
1188#ifdef CONFIG_XIP_KERNEL
1189 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1190 map.virtual = MODULES_VADDR;
37efe642 1191 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1192 map.type = MT_ROM;
1193 create_mapping(&map);
1194#endif
1195
1196 /*
1197 * Map the cache flushing regions.
1198 */
1199#ifdef FLUSH_BASE
1200 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1201 map.virtual = FLUSH_BASE;
1202 map.length = SZ_1M;
1203 map.type = MT_CACHECLEAN;
1204 create_mapping(&map);
1205#endif
1206#ifdef FLUSH_BASE_MINICACHE
1207 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1208 map.virtual = FLUSH_BASE_MINICACHE;
1209 map.length = SZ_1M;
1210 map.type = MT_MINICLEAN;
1211 create_mapping(&map);
1212#endif
1213
1214 /*
1215 * Create a mapping for the machine vectors at the high-vectors
1216 * location (0xffff0000). If we aren't using high-vectors, also
1217 * create a mapping at the low-vectors virtual address.
1218 */
94e5a85b 1219 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1220 map.virtual = 0xffff0000;
1221 map.length = PAGE_SIZE;
1222 map.type = MT_HIGH_VECTORS;
1223 create_mapping(&map);
1224
1225 if (!vectors_high()) {
1226 map.virtual = 0;
1227 map.type = MT_LOW_VECTORS;
1228 create_mapping(&map);
1229 }
1230
1231 /*
1232 * Ask the machine support to map in the statically mapped devices.
1233 */
1234 if (mdesc->map_io)
1235 mdesc->map_io();
19b52abe 1236 fill_pmd_gaps();
d111e8f9 1237
c2794437
RH
1238 /* Reserve fixed i/o space in VMALLOC region */
1239 pci_reserve_io();
1240
d111e8f9
RK
1241 /*
1242 * Finally flush the caches and tlb to ensure that we're in a
1243 * consistent state wrt the writebuffer. This also ensures that
1244 * any write-allocated cache lines in the vector page are written
1245 * back. After this point, we can start to touch devices again.
1246 */
1247 local_flush_tlb_all();
1248 flush_cache_all();
1249}
1250
d73cd428
NP
1251static void __init kmap_init(void)
1252{
1253#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1254 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1255 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1256#endif
1257}
1258
a2227120
RK
1259static void __init map_lowmem(void)
1260{
8df65168 1261 struct memblock_region *reg;
a2227120
RK
1262
1263 /* Map all the lowmem memory banks. */
8df65168
RK
1264 for_each_memblock(memory, reg) {
1265 phys_addr_t start = reg->base;
1266 phys_addr_t end = start + reg->size;
1267 struct map_desc map;
1268
c7909509
MS
1269 if (end > arm_lowmem_limit)
1270 end = arm_lowmem_limit;
8df65168
RK
1271 if (start >= end)
1272 break;
1273
1274 map.pfn = __phys_to_pfn(start);
1275 map.virtual = __phys_to_virt(start);
1276 map.length = end - start;
1277 map.type = MT_MEMORY;
a2227120 1278
8df65168 1279 create_mapping(&map);
a2227120
RK
1280 }
1281}
1282
d111e8f9
RK
1283/*
1284 * paging_init() sets up the page tables, initialises the zone memory
1285 * maps, and sets up the zero page, bad page and bad page tables.
1286 */
4b5f32ce 1287void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1288{
1289 void *zero_page;
1290
c7909509 1291 memblock_set_current_limit(arm_lowmem_limit);
0371d3f7 1292
d111e8f9 1293 build_mem_type_table();
4b5f32ce 1294 prepare_page_table();
a2227120 1295 map_lowmem();
c7909509 1296 dma_contiguous_remap();
d111e8f9 1297 devicemaps_init(mdesc);
d73cd428 1298 kmap_init();
de40614e 1299 tcm_init();
d111e8f9
RK
1300
1301 top_pmd = pmd_off_k(0xffff0000);
1302
3abe9d33
RK
1303 /* allocate the zero page. */
1304 zero_page = early_alloc(PAGE_SIZE);
2778f620 1305
8d717a52 1306 bootmem_init();
2778f620 1307
d111e8f9 1308 empty_zero_page = virt_to_page(zero_page);
421fe93c 1309 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1310}
This page took 0.517742 seconds and 5 git commands to generate.