ARM: 8612/1: LPAE: initialize cache policy correctly
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
99b4ac9a 25#include <asm/fixmap.h>
ebd4922e 26#include <asm/sections.h>
d111e8f9 27#include <asm/setup.h>
e616c591 28#include <asm/smp_plat.h>
d111e8f9 29#include <asm/tlb.h>
d73cd428 30#include <asm/highmem.h>
9f97da78 31#include <asm/system_info.h>
247055aa 32#include <asm/traps.h>
a77e0c7b
SS
33#include <asm/procinfo.h>
34#include <asm/memory.h>
d111e8f9
RK
35
36#include <asm/mach/arch.h>
37#include <asm/mach/map.h>
c2794437 38#include <asm/mach/pci.h>
a05e54c1 39#include <asm/fixmap.h>
d111e8f9 40
9254970c 41#include "fault.h"
d111e8f9 42#include "mm.h"
de40614e 43#include "tcm.h"
d111e8f9 44
d111e8f9
RK
45/*
46 * empty_zero_page is a special page that is used for
47 * zero-initialized data and COW.
48 */
49struct page *empty_zero_page;
3653f3ab 50EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
51
52/*
53 * The pmd table for the upper-most set of pages.
54 */
55pmd_t *top_pmd;
56
1d4d3715
JL
57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
58
ae8f1541
RK
59#define CPOLICY_UNCACHED 0
60#define CPOLICY_BUFFERED 1
61#define CPOLICY_WRITETHROUGH 2
62#define CPOLICY_WRITEBACK 3
63#define CPOLICY_WRITEALLOC 4
64
65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
66static unsigned int ecc_mask __initdata = 0;
44b18693 67pgprot_t pgprot_user;
ae8f1541 68pgprot_t pgprot_kernel;
cc577c26
CD
69pgprot_t pgprot_hyp_device;
70pgprot_t pgprot_s2;
71pgprot_t pgprot_s2_device;
ae8f1541 72
44b18693 73EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
74EXPORT_SYMBOL(pgprot_kernel);
75
76struct cachepolicy {
77 const char policy[16];
78 unsigned int cr_mask;
442e70c0 79 pmdval_t pmd;
f6e3354d 80 pteval_t pte;
cc577c26 81 pteval_t pte_s2;
ae8f1541
RK
82};
83
cc577c26
CD
84#ifdef CONFIG_ARM_LPAE
85#define s2_policy(policy) policy
86#else
87#define s2_policy(policy) 0
88#endif
89
ae8f1541
RK
90static struct cachepolicy cache_policies[] __initdata = {
91 {
92 .policy = "uncached",
93 .cr_mask = CR_W|CR_C,
94 .pmd = PMD_SECT_UNCACHED,
bb30f36f 95 .pte = L_PTE_MT_UNCACHED,
cc577c26 96 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
97 }, {
98 .policy = "buffered",
99 .cr_mask = CR_C,
100 .pmd = PMD_SECT_BUFFERED,
bb30f36f 101 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 102 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
103 }, {
104 .policy = "writethrough",
105 .cr_mask = 0,
106 .pmd = PMD_SECT_WT,
bb30f36f 107 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 108 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
109 }, {
110 .policy = "writeback",
111 .cr_mask = 0,
112 .pmd = PMD_SECT_WB,
bb30f36f 113 .pte = L_PTE_MT_WRITEBACK,
cc577c26 114 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
115 }, {
116 .policy = "writealloc",
117 .cr_mask = 0,
118 .pmd = PMD_SECT_WBWA,
bb30f36f 119 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 120 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
121 }
122};
123
b849a60e 124#ifdef CONFIG_CPU_CP15
20e7e364
RK
125static unsigned long initial_pmd_value __initdata = 0;
126
ae8f1541 127/*
ca8f0b0a
RK
128 * Initialise the cache_policy variable with the initial state specified
129 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
130 * the C code sets the page tables up with the same policy as the head
131 * assembly code, which avoids an illegal state where the TLBs can get
132 * confused. See comments in early_cachepolicy() for more information.
ae8f1541 133 */
ca8f0b0a 134void __init init_default_cache_policy(unsigned long pmd)
ae8f1541
RK
135{
136 int i;
137
20e7e364
RK
138 initial_pmd_value = pmd;
139
6b3142b2 140 pmd &= PMD_SECT_CACHE_MASK;
ca8f0b0a
RK
141
142 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
143 if (cache_policies[i].pmd == pmd) {
144 cachepolicy = i;
145 break;
146 }
147
148 if (i == ARRAY_SIZE(cache_policies))
149 pr_err("ERROR: could not find cache policy\n");
150}
151
152/*
153 * These are useful for identifying cache coherency problems by allowing
154 * the cache or the cache and writebuffer to be turned off. (Note: the
155 * write buffer should not be on and the cache off).
156 */
157static int __init early_cachepolicy(char *p)
158{
159 int i, selected = -1;
160
ae8f1541
RK
161 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
162 int len = strlen(cache_policies[i].policy);
163
2b0d8c25 164 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ca8f0b0a 165 selected = i;
ae8f1541
RK
166 break;
167 }
168 }
ca8f0b0a
RK
169
170 if (selected == -1)
171 pr_err("ERROR: unknown or unsupported cache policy\n");
172
4b46d641
RK
173 /*
174 * This restriction is partly to do with the way we boot; it is
175 * unpredictable to have memory mapped using two different sets of
176 * memory attributes (shared, type, and cache attribs). We can not
177 * change these attributes once the initial assembly has setup the
178 * page tables.
179 */
ca8f0b0a
RK
180 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
181 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
182 cache_policies[cachepolicy].policy);
183 return 0;
184 }
185
186 if (selected != cachepolicy) {
187 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
188 cachepolicy = selected;
189 flush_cache_all();
190 set_cr(cr);
11179d8c 191 }
2b0d8c25 192 return 0;
ae8f1541 193}
2b0d8c25 194early_param("cachepolicy", early_cachepolicy);
ae8f1541 195
2b0d8c25 196static int __init early_nocache(char *__unused)
ae8f1541
RK
197{
198 char *p = "buffered";
4ed89f22 199 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
200 early_cachepolicy(p);
201 return 0;
ae8f1541 202}
2b0d8c25 203early_param("nocache", early_nocache);
ae8f1541 204
2b0d8c25 205static int __init early_nowrite(char *__unused)
ae8f1541
RK
206{
207 char *p = "uncached";
4ed89f22 208 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
209 early_cachepolicy(p);
210 return 0;
ae8f1541 211}
2b0d8c25 212early_param("nowb", early_nowrite);
ae8f1541 213
1b6ba46b 214#ifndef CONFIG_ARM_LPAE
2b0d8c25 215static int __init early_ecc(char *p)
ae8f1541 216{
2b0d8c25 217 if (memcmp(p, "on", 2) == 0)
ae8f1541 218 ecc_mask = PMD_PROTECTION;
2b0d8c25 219 else if (memcmp(p, "off", 3) == 0)
ae8f1541 220 ecc_mask = 0;
2b0d8c25 221 return 0;
ae8f1541 222}
2b0d8c25 223early_param("ecc", early_ecc);
1b6ba46b 224#endif
ae8f1541 225
b849a60e
UKK
226#else /* ifdef CONFIG_CPU_CP15 */
227
228static int __init early_cachepolicy(char *p)
229{
8b521cb2 230 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
b849a60e
UKK
231}
232early_param("cachepolicy", early_cachepolicy);
233
234static int __init noalign_setup(char *__unused)
235{
8b521cb2 236 pr_warn("noalign kernel parameter not supported without cp15\n");
b849a60e
UKK
237}
238__setup("noalign", noalign_setup);
239
240#endif /* ifdef CONFIG_CPU_CP15 / else */
241
36bb94ba 242#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
4d9c5b89 243#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
b1cce6b1 244#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 245
b29e9f5e 246static struct mem_type mem_types[] = {
0af92bef 247 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
248 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
249 L_PTE_SHARED,
4d9c5b89
CD
250 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
251 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
252 L_PTE_SHARED,
0af92bef 253 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 254 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
255 .domain = DOMAIN_IO,
256 },
257 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 258 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 259 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 260 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
261 .domain = DOMAIN_IO,
262 },
263 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 264 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
267 .domain = DOMAIN_IO,
c2794437 268 },
1ad77a87 269 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 270 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 271 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 272 .prot_sect = PROT_SECT_DEVICE,
0af92bef 273 .domain = DOMAIN_IO,
ae8f1541 274 },
ebb4c658
RK
275 [MT_UNCACHED] = {
276 .prot_pte = PROT_PTE_DEVICE,
277 .prot_l1 = PMD_TYPE_TABLE,
278 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
279 .domain = DOMAIN_IO,
280 },
ae8f1541 281 [MT_CACHECLEAN] = {
9ef79635 282 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
283 .domain = DOMAIN_KERNEL,
284 },
1b6ba46b 285#ifndef CONFIG_ARM_LPAE
ae8f1541 286 [MT_MINICLEAN] = {
9ef79635 287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
288 .domain = DOMAIN_KERNEL,
289 },
1b6ba46b 290#endif
ae8f1541
RK
291 [MT_LOW_VECTORS] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 293 L_PTE_RDONLY,
ae8f1541 294 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 295 .domain = DOMAIN_VECTORS,
ae8f1541
RK
296 },
297 [MT_HIGH_VECTORS] = {
298 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 299 L_PTE_USER | L_PTE_RDONLY,
ae8f1541 300 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 301 .domain = DOMAIN_VECTORS,
ae8f1541 302 },
2e2c9de2 303 [MT_MEMORY_RWX] = {
36bb94ba 304 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 305 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 306 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
307 .domain = DOMAIN_KERNEL,
308 },
ebd4922e
RK
309 [MT_MEMORY_RW] = {
310 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
311 L_PTE_XN,
312 .prot_l1 = PMD_TYPE_TABLE,
313 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
314 .domain = DOMAIN_KERNEL,
315 },
ae8f1541 316 [MT_ROM] = {
9ef79635 317 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
318 .domain = DOMAIN_KERNEL,
319 },
2e2c9de2 320 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 321 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 322 L_PTE_MT_BUFFERABLE,
f1a2481c 323 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
324 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
325 .domain = DOMAIN_KERNEL,
326 },
2e2c9de2 327 [MT_MEMORY_RW_DTCM] = {
f444fce3 328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 329 L_PTE_XN,
f444fce3
LW
330 .prot_l1 = PMD_TYPE_TABLE,
331 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
332 .domain = DOMAIN_KERNEL,
cb9d7707 333 },
2e2c9de2 334 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 335 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 336 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 337 .domain = DOMAIN_KERNEL,
cb9d7707 338 },
2e2c9de2 339 [MT_MEMORY_RW_SO] = {
8fb54284 340 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 341 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
342 .prot_l1 = PMD_TYPE_TABLE,
343 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
344 PMD_SECT_UNCACHED | PMD_SECT_XN,
345 .domain = DOMAIN_KERNEL,
346 },
c7909509 347 [MT_MEMORY_DMA_READY] = {
71b55663
RK
348 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
349 L_PTE_XN,
c7909509
MS
350 .prot_l1 = PMD_TYPE_TABLE,
351 .domain = DOMAIN_KERNEL,
352 },
ae8f1541
RK
353};
354
b29e9f5e
RK
355const struct mem_type *get_mem_type(unsigned int type)
356{
357 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
358}
69d3a84a 359EXPORT_SYMBOL(get_mem_type);
b29e9f5e 360
a5f4c561
SA
361static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
362
363static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
364 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
365
366static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
367{
368 return &bm_pte[pte_index(addr)];
369}
370
371static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
372{
373 return pte_offset_kernel(dir, addr);
374}
375
376static inline pmd_t * __init fixmap_pmd(unsigned long addr)
377{
378 pgd_t *pgd = pgd_offset_k(addr);
379 pud_t *pud = pud_offset(pgd, addr);
380 pmd_t *pmd = pmd_offset(pud, addr);
381
382 return pmd;
383}
384
385void __init early_fixmap_init(void)
386{
387 pmd_t *pmd;
388
389 /*
390 * The early fixmap range spans multiple pmds, for which
391 * we are not prepared:
392 */
2937367b 393 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
a5f4c561
SA
394 != FIXADDR_TOP >> PMD_SHIFT);
395
396 pmd = fixmap_pmd(FIXADDR_TOP);
397 pmd_populate_kernel(&init_mm, pmd, bm_pte);
398
399 pte_offset_fixmap = pte_offset_early_fixmap;
400}
401
99b4ac9a
KC
402/*
403 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
404 * As a result, this can only be called with preemption disabled, as under
405 * stop_machine().
406 */
407void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
408{
409 unsigned long vaddr = __fix_to_virt(idx);
a5f4c561 410 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
99b4ac9a
KC
411
412 /* Make sure fixmap region does not exceed available allocation. */
413 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
414 FIXADDR_END);
415 BUG_ON(idx >= __end_of_fixed_addresses);
416
417 if (pgprot_val(prot))
418 set_pte_at(NULL, vaddr, pte,
419 pfn_pte(phys >> PAGE_SHIFT, prot));
420 else
421 pte_clear(NULL, vaddr, pte);
422 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
423}
424
ae8f1541
RK
425/*
426 * Adjust the PMD section entries according to the CPU in use.
427 */
428static void __init build_mem_type_table(void)
429{
430 struct cachepolicy *cp;
431 unsigned int cr = get_cr();
442e70c0 432 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 433 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
434 int cpu_arch = cpu_architecture();
435 int i;
436
11179d8c 437 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 438#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
439 if (cachepolicy > CPOLICY_BUFFERED)
440 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 441#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
442 if (cachepolicy > CPOLICY_WRITETHROUGH)
443 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 444#endif
11179d8c 445 }
ae8f1541
RK
446 if (cpu_arch < CPU_ARCH_ARMv5) {
447 if (cachepolicy >= CPOLICY_WRITEALLOC)
448 cachepolicy = CPOLICY_WRITEBACK;
449 ecc_mask = 0;
450 }
ca8f0b0a 451
20e7e364
RK
452 if (is_smp()) {
453 if (cachepolicy != CPOLICY_WRITEALLOC) {
454 pr_warn("Forcing write-allocate cache policy for SMP\n");
455 cachepolicy = CPOLICY_WRITEALLOC;
456 }
457 if (!(initial_pmd_value & PMD_SECT_S)) {
458 pr_warn("Forcing shared mappings for SMP\n");
459 initial_pmd_value |= PMD_SECT_S;
460 }
ca8f0b0a 461 }
ae8f1541 462
1ad77a87 463 /*
b1cce6b1
RK
464 * Strip out features not present on earlier architectures.
465 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
466 * without extended page tables don't have the 'Shared' bit.
1ad77a87 467 */
b1cce6b1
RK
468 if (cpu_arch < CPU_ARCH_ARMv5)
469 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
470 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
471 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
472 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
473 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
474
475 /*
b1cce6b1
RK
476 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
477 * "update-able on write" bit on ARM610). However, Xscale and
478 * Xscale3 require this bit to be cleared.
ae8f1541 479 */
d33c43ac 480 if (cpu_is_xscale_family()) {
9ef79635 481 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 482 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
483 mem_types[i].prot_l1 &= ~PMD_BIT4;
484 }
485 } else if (cpu_arch < CPU_ARCH_ARMv6) {
486 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
487 if (mem_types[i].prot_l1)
488 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
489 if (mem_types[i].prot_sect)
490 mem_types[i].prot_sect |= PMD_BIT4;
491 }
492 }
ae8f1541 493
b1cce6b1
RK
494 /*
495 * Mark the device areas according to the CPU/architecture.
496 */
497 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
498 if (!cpu_is_xsc3()) {
499 /*
500 * Mark device regions on ARMv6+ as execute-never
501 * to prevent speculative instruction fetches.
502 */
503 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
504 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
505 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
506 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
507
508 /* Also setup NX memory mapping */
509 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
510 }
511 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
512 /*
513 * For ARMv7 with TEX remapping,
514 * - shared device is SXCB=1100
515 * - nonshared device is SXCB=0100
516 * - write combine device mem is SXCB=0001
517 * (Uncached Normal memory)
518 */
519 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
520 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
521 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
522 } else if (cpu_is_xsc3()) {
523 /*
524 * For Xscale3,
525 * - shared device is TEXCB=00101
526 * - nonshared device is TEXCB=01000
527 * - write combine device mem is TEXCB=00100
528 * (Inner/Outer Uncacheable in xsc3 parlance)
529 */
530 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
531 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
532 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
533 } else {
534 /*
535 * For ARMv6 and ARMv7 without TEX remapping,
536 * - shared device is TEXCB=00001
537 * - nonshared device is TEXCB=01000
538 * - write combine device mem is TEXCB=00100
539 * (Uncached Normal in ARMv6 parlance).
540 */
541 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
542 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
543 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
544 }
545 } else {
546 /*
547 * On others, write combining is "Uncached/Buffered"
548 */
549 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
550 }
551
552 /*
553 * Now deal with the memory-type mappings
554 */
ae8f1541 555 cp = &cache_policies[cachepolicy];
bb30f36f 556 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26 557 s2_pgprot = cp->pte_s2;
4d9c5b89
CD
558 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
559 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
bb30f36f 560
1d4d3715 561#ifndef CONFIG_ARM_LPAE
b6ccb980
WD
562 /*
563 * We don't use domains on ARMv6 (since this causes problems with
564 * v6/v7 kernels), so we must use a separate memory type for user
565 * r/o, kernel r/w to map the vectors page.
566 */
b6ccb980
WD
567 if (cpu_arch == CPU_ARCH_ARMv6)
568 vecs_pgprot |= L_PTE_MT_VECTORS;
1d4d3715
JL
569
570 /*
571 * Check is it with support for the PXN bit
572 * in the Short-descriptor translation table format descriptors.
573 */
574 if (cpu_arch == CPU_ARCH_ARMv7 &&
ad84f56b 575 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
1d4d3715
JL
576 user_pmd_table |= PMD_PXNTABLE;
577 }
b6ccb980 578#endif
bb30f36f 579
ae8f1541
RK
580 /*
581 * ARMv6 and above have extended page tables.
582 */
583 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 584#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
585 /*
586 * Mark cache clean areas and XIP ROM read only
587 * from SVC mode and no access from userspace.
588 */
589 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
590 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
591 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 592#endif
ae8f1541 593
20e7e364
RK
594 /*
595 * If the initial page tables were created with the S bit
596 * set, then we need to do the same here for the same
597 * reasons given in early_cachepolicy().
598 */
599 if (initial_pmd_value & PMD_SECT_S) {
f00ec48f
RK
600 user_pgprot |= L_PTE_SHARED;
601 kern_pgprot |= L_PTE_SHARED;
602 vecs_pgprot |= L_PTE_SHARED;
cc577c26 603 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
604 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
605 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
606 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
607 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
608 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
609 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
610 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
611 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 612 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
613 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
614 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 615 }
ae8f1541
RK
616 }
617
e4707dd3
PW
618 /*
619 * Non-cacheable Normal - intended for memory areas that must
620 * not cause dirty cache line writebacks when used
621 */
622 if (cpu_arch >= CPU_ARCH_ARMv6) {
623 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
624 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 625 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
626 PMD_SECT_BUFFERED;
627 } else {
628 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 629 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
630 PMD_SECT_TEX(1);
631 }
632 } else {
2e2c9de2 633 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
634 }
635
1b6ba46b
CM
636#ifdef CONFIG_ARM_LPAE
637 /*
638 * Do not generate access flag faults for the kernel mappings.
639 */
640 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
641 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
642 if (mem_types[i].prot_sect)
643 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
644 }
645 kern_pgprot |= PTE_EXT_AF;
646 vecs_pgprot |= PTE_EXT_AF;
1d4d3715
JL
647
648 /*
649 * Set PXN for user mappings
650 */
651 user_pgprot |= PTE_EXT_PXN;
1b6ba46b
CM
652#endif
653
ae8f1541 654 for (i = 0; i < 16; i++) {
864aa04c 655 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 656 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
657 }
658
bb30f36f
RK
659 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
660 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 661
44b18693 662 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 663 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 664 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
665 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
666 pgprot_s2_device = __pgprot(s2_device_pgprot);
667 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
668
669 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
670 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
671 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
672 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
673 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
674 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 675 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 676 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
677 mem_types[MT_ROM].prot_sect |= cp->pmd;
678
679 switch (cp->pmd) {
680 case PMD_SECT_WT:
681 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
682 break;
683 case PMD_SECT_WB:
684 case PMD_SECT_WBWA:
685 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
686 break;
687 }
905b5797
MS
688 pr_info("Memory policy: %sData cache %s\n",
689 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
690
691 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
692 struct mem_type *t = &mem_types[i];
693 if (t->prot_l1)
694 t->prot_l1 |= PMD_DOMAIN(t->domain);
695 if (t->prot_sect)
696 t->prot_sect |= PMD_DOMAIN(t->domain);
697 }
ae8f1541
RK
698}
699
d907387c
CM
700#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
701pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
702 unsigned long size, pgprot_t vma_prot)
703{
704 if (!pfn_valid(pfn))
705 return pgprot_noncached(vma_prot);
706 else if (file->f_flags & O_SYNC)
707 return pgprot_writecombine(vma_prot);
708 return vma_prot;
709}
710EXPORT_SYMBOL(phys_mem_access_prot);
711#endif
712
ae8f1541
RK
713#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
714
0536bdf3 715static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 716{
0536bdf3 717 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
718 memset(ptr, 0, sz);
719 return ptr;
3abe9d33
RK
720}
721
0536bdf3
NP
722static void __init *early_alloc(unsigned long sz)
723{
724 return early_alloc_aligned(sz, sz);
725}
726
c7936206
AB
727static void *__init late_alloc(unsigned long sz)
728{
729 void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
730
61444cde
AB
731 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
732 BUG();
c7936206
AB
733 return ptr;
734}
735
3ed3a4f0 736static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
f579b2b1
AB
737 unsigned long prot,
738 void *(*alloc)(unsigned long sz))
ae8f1541 739{
24e6c699 740 if (pmd_none(*pmd)) {
f579b2b1 741 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 742 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 743 }
4bb2e27d
RK
744 BUG_ON(pmd_bad(*pmd));
745 return pte_offset_kernel(pmd, addr);
746}
ae8f1541 747
f579b2b1
AB
748static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
749 unsigned long prot)
750{
3ed3a4f0 751 return arm_pte_alloc(pmd, addr, prot, early_alloc);
f579b2b1
AB
752}
753
4bb2e27d
RK
754static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
755 unsigned long end, unsigned long pfn,
f579b2b1 756 const struct mem_type *type,
b430e55b
AB
757 void *(*alloc)(unsigned long sz),
758 bool ng)
4bb2e27d 759{
3ed3a4f0 760 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
24e6c699 761 do {
b430e55b
AB
762 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
763 ng ? PTE_EXT_NG : 0);
24e6c699
RK
764 pfn++;
765 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
766}
767
37468b30 768static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0 769 unsigned long end, phys_addr_t phys,
b430e55b 770 const struct mem_type *type, bool ng)
ae8f1541 771{
37468b30
PYC
772 pmd_t *p = pmd;
773
e651eab0 774#ifndef CONFIG_ARM_LPAE
24e6c699 775 /*
e651eab0
S
776 * In classic MMU format, puds and pmds are folded in to
777 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
778 * group of L1 entries making up one logical pointer to
779 * an L2 table (2MB), where as PMDs refer to the individual
780 * L1 entries (1MB). Hence increment to get the correct
781 * offset for odd 1MB sections.
782 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 783 */
e651eab0
S
784 if (addr & SECTION_SIZE)
785 pmd++;
1b6ba46b 786#endif
e651eab0 787 do {
b430e55b 788 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
e651eab0
S
789 phys += SECTION_SIZE;
790 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 791
37468b30 792 flush_pmd_entry(p);
e651eab0 793}
ae8f1541 794
e651eab0
S
795static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
796 unsigned long end, phys_addr_t phys,
f579b2b1 797 const struct mem_type *type,
b430e55b 798 void *(*alloc)(unsigned long sz), bool ng)
e651eab0
S
799{
800 pmd_t *pmd = pmd_offset(pud, addr);
801 unsigned long next;
802
803 do {
24e6c699 804 /*
e651eab0
S
805 * With LPAE, we must loop over to map
806 * all the pmds for the given range.
24e6c699 807 */
e651eab0
S
808 next = pmd_addr_end(addr, end);
809
810 /*
811 * Try a section mapping - addr, next and phys must all be
812 * aligned to a section boundary.
813 */
814 if (type->prot_sect &&
815 ((addr | next | phys) & ~SECTION_MASK) == 0) {
b430e55b 816 __map_init_section(pmd, addr, next, phys, type, ng);
e651eab0
S
817 } else {
818 alloc_init_pte(pmd, addr, next,
b430e55b 819 __phys_to_pfn(phys), type, alloc, ng);
e651eab0
S
820 }
821
822 phys += next - addr;
823
824 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
825}
826
14904927 827static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d 828 unsigned long end, phys_addr_t phys,
f579b2b1 829 const struct mem_type *type,
b430e55b 830 void *(*alloc)(unsigned long sz), bool ng)
516295e5
RK
831{
832 pud_t *pud = pud_offset(pgd, addr);
833 unsigned long next;
834
835 do {
836 next = pud_addr_end(addr, end);
b430e55b 837 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
516295e5
RK
838 phys += next - addr;
839 } while (pud++, addr = next, addr != end);
840}
841
1b6ba46b 842#ifndef CONFIG_ARM_LPAE
1bdb2d4e
AB
843static void __init create_36bit_mapping(struct mm_struct *mm,
844 struct map_desc *md,
b430e55b
AB
845 const struct mem_type *type,
846 bool ng)
4a56c1e4 847{
97092e0c
RK
848 unsigned long addr, length, end;
849 phys_addr_t phys;
4a56c1e4
RK
850 pgd_t *pgd;
851
852 addr = md->virtual;
cae6292b 853 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
854 length = PAGE_ALIGN(md->length);
855
856 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
4ed89f22 857 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 858 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
859 return;
860 }
861
862 /* N.B. ARMv6 supersections are only defined to work with domain 0.
863 * Since domain assignments can in fact be arbitrary, the
864 * 'domain == 0' check below is required to insure that ARMv6
865 * supersections are only allocated for domain 0 regardless
866 * of the actual domain assignments in use.
867 */
868 if (type->domain) {
4ed89f22 869 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 870 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
871 return;
872 }
873
874 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
4ed89f22 875 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
29a38193 876 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
877 return;
878 }
879
880 /*
881 * Shift bits [35:32] of address into bits [23:20] of PMD
882 * (See ARMv6 spec).
883 */
884 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
885
1bdb2d4e 886 pgd = pgd_offset(mm, addr);
4a56c1e4
RK
887 end = addr + length;
888 do {
516295e5
RK
889 pud_t *pud = pud_offset(pgd, addr);
890 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
891 int i;
892
893 for (i = 0; i < 16; i++)
b430e55b
AB
894 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
895 (ng ? PMD_SECT_nG : 0));
4a56c1e4
RK
896
897 addr += SUPERSECTION_SIZE;
898 phys += SUPERSECTION_SIZE;
899 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
900 } while (addr != end);
901}
1b6ba46b 902#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 903
f579b2b1 904static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
b430e55b
AB
905 void *(*alloc)(unsigned long sz),
906 bool ng)
ae8f1541 907{
cae6292b
WD
908 unsigned long addr, length, end;
909 phys_addr_t phys;
d5c98176 910 const struct mem_type *type;
24e6c699 911 pgd_t *pgd;
ae8f1541 912
d5c98176 913 type = &mem_types[md->type];
ae8f1541 914
1b6ba46b 915#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
916 /*
917 * Catch 36-bit addresses
918 */
4a56c1e4 919 if (md->pfn >= 0x100000) {
b430e55b 920 create_36bit_mapping(mm, md, type, ng);
4a56c1e4 921 return;
ae8f1541 922 }
1b6ba46b 923#endif
ae8f1541 924
7b9c7b4d 925 addr = md->virtual & PAGE_MASK;
cae6292b 926 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 927 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 928
24e6c699 929 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
4ed89f22
RK
930 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
931 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
932 return;
933 }
934
1bdb2d4e 935 pgd = pgd_offset(mm, addr);
24e6c699
RK
936 end = addr + length;
937 do {
938 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 939
b430e55b 940 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
ae8f1541 941
24e6c699
RK
942 phys += next - addr;
943 addr = next;
944 } while (pgd++, addr != end);
ae8f1541
RK
945}
946
1bdb2d4e
AB
947/*
948 * Create the page directory entries and any necessary
949 * page tables for the mapping specified by `md'. We
950 * are able to cope here with varying sizes and address
951 * offsets, and we take full advantage of sections and
952 * supersections.
953 */
954static void __init create_mapping(struct map_desc *md)
955{
956 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
957 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
958 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
959 return;
960 }
961
962 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
963 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
964 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
965 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
966 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
967 }
968
b430e55b 969 __create_mapping(&init_mm, md, early_alloc, false);
1bdb2d4e
AB
970}
971
c7936206
AB
972void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
973 bool ng)
974{
975#ifdef CONFIG_ARM_LPAE
976 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
977 if (WARN_ON(!pud))
978 return;
979 pmd_alloc(mm, pud, 0);
980#endif
981 __create_mapping(mm, md, late_alloc, ng);
982}
983
ae8f1541
RK
984/*
985 * Create the architecture specific mappings
986 */
987void __init iotable_init(struct map_desc *io_desc, int nr)
988{
0536bdf3
NP
989 struct map_desc *md;
990 struct vm_struct *vm;
101eeda3 991 struct static_vm *svm;
0536bdf3
NP
992
993 if (!nr)
994 return;
ae8f1541 995
101eeda3 996 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
997
998 for (md = io_desc; nr; md++, nr--) {
999 create_mapping(md);
101eeda3
JK
1000
1001 vm = &svm->vm;
0536bdf3
NP
1002 vm->addr = (void *)(md->virtual & PAGE_MASK);
1003 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
1004 vm->phys_addr = __pfn_to_phys(md->pfn);
1005 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 1006 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 1007 vm->caller = iotable_init;
101eeda3 1008 add_static_vm_early(svm++);
0536bdf3 1009 }
ae8f1541
RK
1010}
1011
c2794437
RH
1012void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1013 void *caller)
1014{
1015 struct vm_struct *vm;
101eeda3
JK
1016 struct static_vm *svm;
1017
1018 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 1019
101eeda3 1020 vm = &svm->vm;
c2794437
RH
1021 vm->addr = (void *)addr;
1022 vm->size = size;
863e99a8 1023 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 1024 vm->caller = caller;
101eeda3 1025 add_static_vm_early(svm);
c2794437
RH
1026}
1027
19b52abe
NP
1028#ifndef CONFIG_ARM_LPAE
1029
1030/*
1031 * The Linux PMD is made of two consecutive section entries covering 2MB
1032 * (see definition in include/asm/pgtable-2level.h). However a call to
1033 * create_mapping() may optimize static mappings by using individual
1034 * 1MB section mappings. This leaves the actual PMD potentially half
1035 * initialized if the top or bottom section entry isn't used, leaving it
1036 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037 * the virtual space left free by that unused section entry.
1038 *
1039 * Let's avoid the issue by inserting dummy vm entries covering the unused
1040 * PMD halves once the static mappings are in place.
1041 */
1042
1043static void __init pmd_empty_section_gap(unsigned long addr)
1044{
c2794437 1045 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
1046}
1047
1048static void __init fill_pmd_gaps(void)
1049{
101eeda3 1050 struct static_vm *svm;
19b52abe
NP
1051 struct vm_struct *vm;
1052 unsigned long addr, next = 0;
1053 pmd_t *pmd;
1054
101eeda3
JK
1055 list_for_each_entry(svm, &static_vmlist, list) {
1056 vm = &svm->vm;
19b52abe
NP
1057 addr = (unsigned long)vm->addr;
1058 if (addr < next)
1059 continue;
1060
1061 /*
1062 * Check if this vm starts on an odd section boundary.
1063 * If so and the first section entry for this PMD is free
1064 * then we block the corresponding virtual address.
1065 */
1066 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067 pmd = pmd_off_k(addr);
1068 if (pmd_none(*pmd))
1069 pmd_empty_section_gap(addr & PMD_MASK);
1070 }
1071
1072 /*
1073 * Then check if this vm ends on an odd section boundary.
1074 * If so and the second section entry for this PMD is empty
1075 * then we block the corresponding virtual address.
1076 */
1077 addr += vm->size;
1078 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079 pmd = pmd_off_k(addr) + 1;
1080 if (pmd_none(*pmd))
1081 pmd_empty_section_gap(addr);
1082 }
1083
1084 /* no need to look at any vm entry until we hit the next PMD */
1085 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086 }
1087}
1088
1089#else
1090#define fill_pmd_gaps() do { } while (0)
1091#endif
1092
c2794437
RH
1093#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094static void __init pci_reserve_io(void)
1095{
101eeda3 1096 struct static_vm *svm;
c2794437 1097
101eeda3
JK
1098 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099 if (svm)
1100 return;
c2794437 1101
c2794437
RH
1102 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103}
1104#else
1105#define pci_reserve_io() do { } while (0)
1106#endif
1107
e5c5f2ad
RH
1108#ifdef CONFIG_DEBUG_LL
1109void __init debug_ll_io_init(void)
1110{
1111 struct map_desc map;
1112
1113 debug_ll_addr(&map.pfn, &map.virtual);
1114 if (!map.pfn || !map.virtual)
1115 return;
1116 map.pfn = __phys_to_pfn(map.pfn);
1117 map.virtual &= PAGE_MASK;
1118 map.length = PAGE_SIZE;
1119 map.type = MT_DEVICE;
ee4de5d9 1120 iotable_init(&map, 1);
e5c5f2ad
RH
1121}
1122#endif
1123
0536bdf3
NP
1124static void * __initdata vmalloc_min =
1125 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
1126
1127/*
1128 * vmalloc=size forces the vmalloc area to be exactly 'size'
1129 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 1130 * area - the default is 240m.
6c5da7ac 1131 */
2b0d8c25 1132static int __init early_vmalloc(char *arg)
6c5da7ac 1133{
79612395 1134 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
1135
1136 if (vmalloc_reserve < SZ_16M) {
1137 vmalloc_reserve = SZ_16M;
4ed89f22 1138 pr_warn("vmalloc area too small, limiting to %luMB\n",
6c5da7ac
RK
1139 vmalloc_reserve >> 20);
1140 }
9210807c
NP
1141
1142 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1143 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
4ed89f22 1144 pr_warn("vmalloc area is too big, limiting to %luMB\n",
9210807c
NP
1145 vmalloc_reserve >> 20);
1146 }
79612395
RK
1147
1148 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1149 return 0;
6c5da7ac 1150}
2b0d8c25 1151early_param("vmalloc", early_vmalloc);
6c5da7ac 1152
c7909509 1153phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1154
0371d3f7 1155void __init sanity_check_meminfo(void)
60296c71 1156{
c65b7e98 1157 phys_addr_t memblock_limit = 0;
1c2f87c2 1158 int highmem = 0;
b9a01989 1159 u64 vmalloc_limit;
1c2f87c2 1160 struct memblock_region *reg;
eeb3fee8 1161 bool should_use_highmem = false;
60296c71 1162
b9a01989
NP
1163 /*
1164 * Let's use our own (unoptimized) equivalent of __pa() that is
1165 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1166 * The result is used as the upper bound on physical memory address
1167 * and may itself be outside the valid range for which phys_addr_t
1168 * and therefore __pa() is defined.
1169 */
1170 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1171
1c2f87c2
LA
1172 for_each_memblock(memory, reg) {
1173 phys_addr_t block_start = reg->base;
1174 phys_addr_t block_end = reg->base + reg->size;
1175 phys_addr_t size_limit = reg->size;
77f73a2c 1176
1c2f87c2 1177 if (reg->base >= vmalloc_limit)
dde5828f 1178 highmem = 1;
28d4bf7a 1179 else
1c2f87c2 1180 size_limit = vmalloc_limit - reg->base;
dde5828f 1181
dde5828f 1182
1c2f87c2
LA
1183 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1184
1185 if (highmem) {
1186 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
4ed89f22 1187 &block_start, &block_end);
1c2f87c2 1188 memblock_remove(reg->base, reg->size);
eeb3fee8 1189 should_use_highmem = true;
1c2f87c2 1190 continue;
a1bbaec0 1191 }
77f73a2c 1192
1c2f87c2
LA
1193 if (reg->size > size_limit) {
1194 phys_addr_t overlap_size = reg->size - size_limit;
1195
b9a01989
NP
1196 pr_notice("Truncating RAM at %pa-%pa",
1197 &block_start, &block_end);
1c2f87c2 1198 block_end = vmalloc_limit;
b9a01989
NP
1199 pr_cont(" to -%pa", &block_end);
1200 memblock_remove(vmalloc_limit, overlap_size);
eeb3fee8 1201 should_use_highmem = true;
1c2f87c2 1202 }
a1bbaec0 1203 }
40f7bfe4 1204
1c2f87c2
LA
1205 if (!highmem) {
1206 if (block_end > arm_lowmem_limit) {
1207 if (reg->size > size_limit)
1208 arm_lowmem_limit = vmalloc_limit;
1209 else
1210 arm_lowmem_limit = block_end;
1211 }
c65b7e98
RK
1212
1213 /*
965278dc 1214 * Find the first non-pmd-aligned page, and point
c65b7e98 1215 * memblock_limit at it. This relies on rounding the
965278dc
MR
1216 * limit down to be pmd-aligned, which happens at the
1217 * end of this function.
c65b7e98
RK
1218 *
1219 * With this algorithm, the start or end of almost any
965278dc
MR
1220 * bank can be non-pmd-aligned. The only exception is
1221 * that the start of the bank 0 must be section-
c65b7e98
RK
1222 * aligned, since otherwise memory would need to be
1223 * allocated when mapping the start of bank 0, which
1224 * occurs before any free memory is mapped.
1225 */
1226 if (!memblock_limit) {
965278dc 1227 if (!IS_ALIGNED(block_start, PMD_SIZE))
1c2f87c2 1228 memblock_limit = block_start;
965278dc 1229 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1c2f87c2 1230 memblock_limit = arm_lowmem_limit;
c65b7e98 1231 }
e616c591 1232
e616c591
RK
1233 }
1234 }
1c2f87c2 1235
eeb3fee8
RK
1236 if (should_use_highmem)
1237 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1238
c7909509 1239 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98
RK
1240
1241 /*
965278dc 1242 * Round the memblock limit down to a pmd size. This
c65b7e98 1243 * helps to ensure that we will allocate memory from the
965278dc 1244 * last full pmd, which should be mapped.
c65b7e98
RK
1245 */
1246 if (memblock_limit)
965278dc 1247 memblock_limit = round_down(memblock_limit, PMD_SIZE);
c65b7e98
RK
1248 if (!memblock_limit)
1249 memblock_limit = arm_lowmem_limit;
1250
1251 memblock_set_current_limit(memblock_limit);
60296c71
LB
1252}
1253
4b5f32ce 1254static inline void prepare_page_table(void)
d111e8f9
RK
1255{
1256 unsigned long addr;
8df65168 1257 phys_addr_t end;
d111e8f9
RK
1258
1259 /*
1260 * Clear out all the mappings below the kernel image.
1261 */
e73fc88e 1262 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1263 pmd_clear(pmd_off_k(addr));
1264
1265#ifdef CONFIG_XIP_KERNEL
1266 /* The XIP kernel is mapped in the module area -- skip over it */
02afa9a8 1267 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1268#endif
e73fc88e 1269 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1270 pmd_clear(pmd_off_k(addr));
1271
8df65168
RK
1272 /*
1273 * Find the end of the first block of lowmem.
1274 */
1275 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1276 if (end >= arm_lowmem_limit)
1277 end = arm_lowmem_limit;
8df65168 1278
d111e8f9
RK
1279 /*
1280 * Clear out all the kernel space mappings, except for the first
0536bdf3 1281 * memory bank, up to the vmalloc region.
d111e8f9 1282 */
8df65168 1283 for (addr = __phys_to_virt(end);
0536bdf3 1284 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1285 pmd_clear(pmd_off_k(addr));
1286}
1287
1b6ba46b
CM
1288#ifdef CONFIG_ARM_LPAE
1289/* the first page is reserved for pgd */
1290#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1291 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1292#else
e73fc88e 1293#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1294#endif
e73fc88e 1295
d111e8f9 1296/*
2778f620 1297 * Reserve the special regions of memory
d111e8f9 1298 */
2778f620 1299void __init arm_mm_memblock_reserve(void)
d111e8f9 1300{
d111e8f9
RK
1301 /*
1302 * Reserve the page tables. These are already in use,
1303 * and can only be in node 0.
1304 */
e73fc88e 1305 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1306
d111e8f9
RK
1307#ifdef CONFIG_SA1111
1308 /*
1309 * Because of the SA1111 DMA bug, we want to preserve our
1310 * precious DMA-able memory...
1311 */
2778f620 1312 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1313#endif
d111e8f9
RK
1314}
1315
1316/*
0536bdf3 1317 * Set up the device mappings. Since we clear out the page tables for all
a5f4c561
SA
1318 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1319 * device mappings. This means earlycon can be used to debug this function
1320 * Any other function or debugging method which may touch any device _will_
1321 * crash the kernel.
d111e8f9 1322 */
ff69a4c8 1323static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1324{
1325 struct map_desc map;
1326 unsigned long addr;
94e5a85b 1327 void *vectors;
d111e8f9
RK
1328
1329 /*
1330 * Allocate the vector page early.
1331 */
19accfd3 1332 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1333
1334 early_trap_init(vectors);
d111e8f9 1335
a5f4c561
SA
1336 /*
1337 * Clear page table except top pmd used by early fixmaps
1338 */
1339 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
d111e8f9
RK
1340 pmd_clear(pmd_off_k(addr));
1341
1342 /*
1343 * Map the kernel if it is XIP.
1344 * It is always first in the modulearea.
1345 */
1346#ifdef CONFIG_XIP_KERNEL
1347 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1348 map.virtual = MODULES_VADDR;
02afa9a8 1349 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1350 map.type = MT_ROM;
1351 create_mapping(&map);
1352#endif
1353
1354 /*
1355 * Map the cache flushing regions.
1356 */
1357#ifdef FLUSH_BASE
1358 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1359 map.virtual = FLUSH_BASE;
1360 map.length = SZ_1M;
1361 map.type = MT_CACHECLEAN;
1362 create_mapping(&map);
1363#endif
1364#ifdef FLUSH_BASE_MINICACHE
1365 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1366 map.virtual = FLUSH_BASE_MINICACHE;
1367 map.length = SZ_1M;
1368 map.type = MT_MINICLEAN;
1369 create_mapping(&map);
1370#endif
1371
1372 /*
1373 * Create a mapping for the machine vectors at the high-vectors
1374 * location (0xffff0000). If we aren't using high-vectors, also
1375 * create a mapping at the low-vectors virtual address.
1376 */
94e5a85b 1377 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1378 map.virtual = 0xffff0000;
1379 map.length = PAGE_SIZE;
a5463cd3 1380#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1381 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1382#else
1383 map.type = MT_LOW_VECTORS;
1384#endif
d111e8f9
RK
1385 create_mapping(&map);
1386
1387 if (!vectors_high()) {
1388 map.virtual = 0;
19accfd3 1389 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1390 map.type = MT_LOW_VECTORS;
1391 create_mapping(&map);
1392 }
1393
19accfd3
RK
1394 /* Now create a kernel read-only mapping */
1395 map.pfn += 1;
1396 map.virtual = 0xffff0000 + PAGE_SIZE;
1397 map.length = PAGE_SIZE;
1398 map.type = MT_LOW_VECTORS;
1399 create_mapping(&map);
1400
d111e8f9
RK
1401 /*
1402 * Ask the machine support to map in the statically mapped devices.
1403 */
1404 if (mdesc->map_io)
1405 mdesc->map_io();
bc37324e
MR
1406 else
1407 debug_ll_io_init();
19b52abe 1408 fill_pmd_gaps();
d111e8f9 1409
c2794437
RH
1410 /* Reserve fixed i/o space in VMALLOC region */
1411 pci_reserve_io();
1412
d111e8f9
RK
1413 /*
1414 * Finally flush the caches and tlb to ensure that we're in a
1415 * consistent state wrt the writebuffer. This also ensures that
1416 * any write-allocated cache lines in the vector page are written
1417 * back. After this point, we can start to touch devices again.
1418 */
1419 local_flush_tlb_all();
1420 flush_cache_all();
bbeb9209
LS
1421
1422 /* Enable asynchronous aborts */
9254970c 1423 early_abt_enable();
d111e8f9
RK
1424}
1425
d73cd428
NP
1426static void __init kmap_init(void)
1427{
1428#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1429 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1430 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428 1431#endif
836a2418
RH
1432
1433 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1434 _PAGE_KERNEL_TABLE);
d73cd428
NP
1435}
1436
a2227120
RK
1437static void __init map_lowmem(void)
1438{
8df65168 1439 struct memblock_region *reg;
02afa9a8
CB
1440#ifdef CONFIG_XIP_KERNEL
1441 phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
1442#else
ac084688 1443 phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
02afa9a8 1444#endif
ac084688 1445 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1446
1447 /* Map all the lowmem memory banks. */
8df65168
RK
1448 for_each_memblock(memory, reg) {
1449 phys_addr_t start = reg->base;
1450 phys_addr_t end = start + reg->size;
1451 struct map_desc map;
1452
09414d00
AB
1453 if (memblock_is_nomap(reg))
1454 continue;
1455
c7909509
MS
1456 if (end > arm_lowmem_limit)
1457 end = arm_lowmem_limit;
8df65168
RK
1458 if (start >= end)
1459 break;
1460
1e6b4811 1461 if (end < kernel_x_start) {
ebd4922e
RK
1462 map.pfn = __phys_to_pfn(start);
1463 map.virtual = __phys_to_virt(start);
1464 map.length = end - start;
1465 map.type = MT_MEMORY_RWX;
a2227120 1466
1e6b4811
KC
1467 create_mapping(&map);
1468 } else if (start >= kernel_x_end) {
1469 map.pfn = __phys_to_pfn(start);
1470 map.virtual = __phys_to_virt(start);
1471 map.length = end - start;
1472 map.type = MT_MEMORY_RW;
1473
ebd4922e
RK
1474 create_mapping(&map);
1475 } else {
1476 /* This better cover the entire kernel */
1477 if (start < kernel_x_start) {
1478 map.pfn = __phys_to_pfn(start);
1479 map.virtual = __phys_to_virt(start);
1480 map.length = kernel_x_start - start;
1481 map.type = MT_MEMORY_RW;
1482
1483 create_mapping(&map);
1484 }
1485
1486 map.pfn = __phys_to_pfn(kernel_x_start);
1487 map.virtual = __phys_to_virt(kernel_x_start);
1488 map.length = kernel_x_end - kernel_x_start;
1489 map.type = MT_MEMORY_RWX;
1490
1491 create_mapping(&map);
1492
1493 if (kernel_x_end < end) {
1494 map.pfn = __phys_to_pfn(kernel_x_end);
1495 map.virtual = __phys_to_virt(kernel_x_end);
1496 map.length = end - kernel_x_end;
1497 map.type = MT_MEMORY_RW;
1498
1499 create_mapping(&map);
1500 }
1501 }
a2227120
RK
1502 }
1503}
1504
d8dc7fbd
RK
1505#ifdef CONFIG_ARM_PV_FIXUP
1506extern unsigned long __atags_pointer;
1507typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1508pgtables_remap lpae_pgtables_remap_asm;
1509
a77e0c7b
SS
1510/*
1511 * early_paging_init() recreates boot time page table setup, allowing machines
1512 * to switch over to a high (>4G) address space on LPAE systems
1513 */
1221ed10 1514void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1515{
d8dc7fbd
RK
1516 pgtables_remap *lpae_pgtables_remap;
1517 unsigned long pa_pgd;
1518 unsigned int cr, ttbcr;
c8ca2b4b 1519 long long offset;
d8dc7fbd 1520 void *boot_data;
a77e0c7b 1521
c0b759d8 1522 if (!mdesc->pv_fixup)
a77e0c7b
SS
1523 return;
1524
c0b759d8 1525 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1526 if (offset == 0)
1527 return;
a77e0c7b 1528
d8dc7fbd
RK
1529 /*
1530 * Get the address of the remap function in the 1:1 identity
1531 * mapping setup by the early page table assembly code. We
1532 * must get this prior to the pv update. The following barrier
1533 * ensures that this is complete before we fixup any P:V offsets.
1534 */
1535 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1536 pa_pgd = __pa(swapper_pg_dir);
1537 boot_data = __va(__atags_pointer);
1538 barrier();
a77e0c7b 1539
39b74fe8
RK
1540 pr_info("Switching physical address space to 0x%08llx\n",
1541 (u64)PHYS_OFFSET + offset);
a77e0c7b 1542
c8ca2b4b
RK
1543 /* Re-set the phys pfn offset, and the pv offset */
1544 __pv_offset += offset;
1545 __pv_phys_pfn_offset += PFN_DOWN(offset);
a77e0c7b
SS
1546
1547 /* Run the patch stub to update the constants */
1548 fixup_pv_table(&__pv_table_begin,
1549 (&__pv_table_end - &__pv_table_begin) << 2);
1550
1551 /*
d8dc7fbd
RK
1552 * We changing not only the virtual to physical mapping, but also
1553 * the physical addresses used to access memory. We need to flush
1554 * all levels of cache in the system with caching disabled to
1555 * ensure that all data is written back, and nothing is prefetched
1556 * into the caches. We also need to prevent the TLB walkers
1557 * allocating into the caches too. Note that this is ARMv7 LPAE
1558 * specific.
3bb70de6 1559 */
d8dc7fbd
RK
1560 cr = get_cr();
1561 set_cr(cr & ~(CR_I | CR_C));
1562 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1563 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1564 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
a77e0c7b 1565 flush_cache_all();
3bb70de6
RK
1566
1567 /*
d8dc7fbd
RK
1568 * Fixup the page tables - this must be in the idmap region as
1569 * we need to disable the MMU to do this safely, and hence it
1570 * needs to be assembly. It's fairly simple, as we're using the
1571 * temporary tables setup by the initial assembly code.
3bb70de6 1572 */
d8dc7fbd 1573 lpae_pgtables_remap(offset, pa_pgd, boot_data);
3bb70de6 1574
d8dc7fbd
RK
1575 /* Re-enable the caches and cacheable TLB walks */
1576 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1577 set_cr(cr);
a77e0c7b
SS
1578}
1579
1580#else
1581
1221ed10 1582void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1583{
c8ca2b4b
RK
1584 long long offset;
1585
c0b759d8 1586 if (!mdesc->pv_fixup)
c8ca2b4b
RK
1587 return;
1588
c0b759d8 1589 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1590 if (offset == 0)
1591 return;
1592
1593 pr_crit("Physical address space modification is only to support Keystone2.\n");
1594 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1595 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1596 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
a77e0c7b
SS
1597}
1598
1599#endif
1600
a5f4c561
SA
1601static void __init early_fixmap_shutdown(void)
1602{
1603 int i;
1604 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1605
1606 pte_offset_fixmap = pte_offset_late_fixmap;
1607 pmd_clear(fixmap_pmd(va));
1608 local_flush_tlb_kernel_page(va);
1609
1610 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1611 pte_t *pte;
1612 struct map_desc map;
1613
1614 map.virtual = fix_to_virt(i);
1615 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1616
1617 /* Only i/o device mappings are supported ATM */
1618 if (pte_none(*pte) ||
1619 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1620 continue;
1621
1622 map.pfn = pte_pfn(*pte);
1623 map.type = MT_DEVICE;
1624 map.length = PAGE_SIZE;
1625
1626 create_mapping(&map);
1627 }
1628}
1629
d111e8f9
RK
1630/*
1631 * paging_init() sets up the page tables, initialises the zone memory
1632 * maps, and sets up the zero page, bad page and bad page tables.
1633 */
ff69a4c8 1634void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1635{
1636 void *zero_page;
1637
1638 build_mem_type_table();
4b5f32ce 1639 prepare_page_table();
a2227120 1640 map_lowmem();
3de1f52a 1641 memblock_set_current_limit(arm_lowmem_limit);
c7909509 1642 dma_contiguous_remap();
a5f4c561 1643 early_fixmap_shutdown();
d111e8f9 1644 devicemaps_init(mdesc);
d73cd428 1645 kmap_init();
de40614e 1646 tcm_init();
d111e8f9
RK
1647
1648 top_pmd = pmd_off_k(0xffff0000);
1649
3abe9d33
RK
1650 /* allocate the zero page. */
1651 zero_page = early_alloc(PAGE_SIZE);
2778f620 1652
8d717a52 1653 bootmem_init();
2778f620 1654
d111e8f9 1655 empty_zero_page = virt_to_page(zero_page);
421fe93c 1656 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1657}
This page took 0.721185 seconds and 5 git commands to generate.