ARM: iop3xx: use fixed PCI i/o mapping
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
d111e8f9 19
15d07dc9 20#include <asm/cp15.h>
0ba8b9b2 21#include <asm/cputype.h>
37efe642 22#include <asm/sections.h>
3f973e22 23#include <asm/cachetype.h>
d111e8f9
RK
24#include <asm/setup.h>
25#include <asm/sizes.h>
e616c591 26#include <asm/smp_plat.h>
d111e8f9 27#include <asm/tlb.h>
d73cd428 28#include <asm/highmem.h>
9f97da78 29#include <asm/system_info.h>
247055aa 30#include <asm/traps.h>
d111e8f9
RK
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
c2794437 34#include <asm/mach/pci.h>
d111e8f9
RK
35
36#include "mm.h"
37
d111e8f9
RK
38/*
39 * empty_zero_page is a special page that is used for
40 * zero-initialized data and COW.
41 */
42struct page *empty_zero_page;
3653f3ab 43EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
44
45/*
46 * The pmd table for the upper-most set of pages.
47 */
48pmd_t *top_pmd;
49
ae8f1541
RK
50#define CPOLICY_UNCACHED 0
51#define CPOLICY_BUFFERED 1
52#define CPOLICY_WRITETHROUGH 2
53#define CPOLICY_WRITEBACK 3
54#define CPOLICY_WRITEALLOC 4
55
56static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
57static unsigned int ecc_mask __initdata = 0;
44b18693 58pgprot_t pgprot_user;
ae8f1541
RK
59pgprot_t pgprot_kernel;
60
44b18693 61EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
62EXPORT_SYMBOL(pgprot_kernel);
63
64struct cachepolicy {
65 const char policy[16];
66 unsigned int cr_mask;
442e70c0 67 pmdval_t pmd;
f6e3354d 68 pteval_t pte;
ae8f1541
RK
69};
70
71static struct cachepolicy cache_policies[] __initdata = {
72 {
73 .policy = "uncached",
74 .cr_mask = CR_W|CR_C,
75 .pmd = PMD_SECT_UNCACHED,
bb30f36f 76 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
77 }, {
78 .policy = "buffered",
79 .cr_mask = CR_C,
80 .pmd = PMD_SECT_BUFFERED,
bb30f36f 81 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
82 }, {
83 .policy = "writethrough",
84 .cr_mask = 0,
85 .pmd = PMD_SECT_WT,
bb30f36f 86 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
87 }, {
88 .policy = "writeback",
89 .cr_mask = 0,
90 .pmd = PMD_SECT_WB,
bb30f36f 91 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
92 }, {
93 .policy = "writealloc",
94 .cr_mask = 0,
95 .pmd = PMD_SECT_WBWA,
bb30f36f 96 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
97 }
98};
99
100/*
6cbdc8c5 101 * These are useful for identifying cache coherency
ae8f1541
RK
102 * problems by allowing the cache or the cache and
103 * writebuffer to be turned off. (Note: the write
104 * buffer should not be on and the cache off).
105 */
2b0d8c25 106static int __init early_cachepolicy(char *p)
ae8f1541
RK
107{
108 int i;
109
110 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
111 int len = strlen(cache_policies[i].policy);
112
2b0d8c25 113 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
114 cachepolicy = i;
115 cr_alignment &= ~cache_policies[i].cr_mask;
116 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
117 break;
118 }
119 }
120 if (i == ARRAY_SIZE(cache_policies))
121 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
122 /*
123 * This restriction is partly to do with the way we boot; it is
124 * unpredictable to have memory mapped using two different sets of
125 * memory attributes (shared, type, and cache attribs). We can not
126 * change these attributes once the initial assembly has setup the
127 * page tables.
128 */
11179d8c
CM
129 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
130 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
131 cachepolicy = CPOLICY_WRITEBACK;
132 }
ae8f1541
RK
133 flush_cache_all();
134 set_cr(cr_alignment);
2b0d8c25 135 return 0;
ae8f1541 136}
2b0d8c25 137early_param("cachepolicy", early_cachepolicy);
ae8f1541 138
2b0d8c25 139static int __init early_nocache(char *__unused)
ae8f1541
RK
140{
141 char *p = "buffered";
142 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
143 early_cachepolicy(p);
144 return 0;
ae8f1541 145}
2b0d8c25 146early_param("nocache", early_nocache);
ae8f1541 147
2b0d8c25 148static int __init early_nowrite(char *__unused)
ae8f1541
RK
149{
150 char *p = "uncached";
151 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
152 early_cachepolicy(p);
153 return 0;
ae8f1541 154}
2b0d8c25 155early_param("nowb", early_nowrite);
ae8f1541 156
1b6ba46b 157#ifndef CONFIG_ARM_LPAE
2b0d8c25 158static int __init early_ecc(char *p)
ae8f1541 159{
2b0d8c25 160 if (memcmp(p, "on", 2) == 0)
ae8f1541 161 ecc_mask = PMD_PROTECTION;
2b0d8c25 162 else if (memcmp(p, "off", 3) == 0)
ae8f1541 163 ecc_mask = 0;
2b0d8c25 164 return 0;
ae8f1541 165}
2b0d8c25 166early_param("ecc", early_ecc);
1b6ba46b 167#endif
ae8f1541
RK
168
169static int __init noalign_setup(char *__unused)
170{
171 cr_alignment &= ~CR_A;
172 cr_no_alignment &= ~CR_A;
173 set_cr(cr_alignment);
174 return 1;
175}
176__setup("noalign", noalign_setup);
177
255d1f86
RK
178#ifndef CONFIG_SMP
179void adjust_cr(unsigned long mask, unsigned long set)
180{
181 unsigned long flags;
182
183 mask &= ~CR_A;
184
185 set &= mask;
186
187 local_irq_save(flags);
188
189 cr_no_alignment = (cr_no_alignment & ~mask) | set;
190 cr_alignment = (cr_alignment & ~mask) | set;
191
192 set_cr((get_cr() & ~mask) | set);
193
194 local_irq_restore(flags);
195}
196#endif
197
36bb94ba 198#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 199#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 200
b29e9f5e 201static struct mem_type mem_types[] = {
0af92bef 202 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
203 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
204 L_PTE_SHARED,
0af92bef 205 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 206 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
207 .domain = DOMAIN_IO,
208 },
209 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 210 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 211 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 212 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
213 .domain = DOMAIN_IO,
214 },
215 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 216 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
217 .prot_l1 = PMD_TYPE_TABLE,
218 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
219 .domain = DOMAIN_IO,
c2794437 220 },
1ad77a87 221 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 222 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 223 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 224 .prot_sect = PROT_SECT_DEVICE,
0af92bef 225 .domain = DOMAIN_IO,
ae8f1541 226 },
ebb4c658
RK
227 [MT_UNCACHED] = {
228 .prot_pte = PROT_PTE_DEVICE,
229 .prot_l1 = PMD_TYPE_TABLE,
230 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231 .domain = DOMAIN_IO,
232 },
ae8f1541 233 [MT_CACHECLEAN] = {
9ef79635 234 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
235 .domain = DOMAIN_KERNEL,
236 },
1b6ba46b 237#ifndef CONFIG_ARM_LPAE
ae8f1541 238 [MT_MINICLEAN] = {
9ef79635 239 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
240 .domain = DOMAIN_KERNEL,
241 },
1b6ba46b 242#endif
ae8f1541
RK
243 [MT_LOW_VECTORS] = {
244 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 245 L_PTE_RDONLY,
ae8f1541
RK
246 .prot_l1 = PMD_TYPE_TABLE,
247 .domain = DOMAIN_USER,
248 },
249 [MT_HIGH_VECTORS] = {
250 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 251 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
252 .prot_l1 = PMD_TYPE_TABLE,
253 .domain = DOMAIN_USER,
254 },
255 [MT_MEMORY] = {
36bb94ba 256 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 257 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 258 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
259 .domain = DOMAIN_KERNEL,
260 },
261 [MT_ROM] = {
9ef79635 262 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
263 .domain = DOMAIN_KERNEL,
264 },
e4707dd3 265 [MT_MEMORY_NONCACHED] = {
f1a2481c 266 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 267 L_PTE_MT_BUFFERABLE,
f1a2481c 268 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
269 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
270 .domain = DOMAIN_KERNEL,
271 },
cb9d7707 272 [MT_MEMORY_DTCM] = {
f444fce3 273 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 274 L_PTE_XN,
f444fce3
LW
275 .prot_l1 = PMD_TYPE_TABLE,
276 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
277 .domain = DOMAIN_KERNEL,
cb9d7707
LW
278 },
279 [MT_MEMORY_ITCM] = {
36bb94ba 280 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 281 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 282 .domain = DOMAIN_KERNEL,
cb9d7707 283 },
8fb54284
SS
284 [MT_MEMORY_SO] = {
285 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286 L_PTE_MT_UNCACHED,
287 .prot_l1 = PMD_TYPE_TABLE,
288 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
289 PMD_SECT_UNCACHED | PMD_SECT_XN,
290 .domain = DOMAIN_KERNEL,
291 },
c7909509
MS
292 [MT_MEMORY_DMA_READY] = {
293 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
294 .prot_l1 = PMD_TYPE_TABLE,
295 .domain = DOMAIN_KERNEL,
296 },
ae8f1541
RK
297};
298
b29e9f5e
RK
299const struct mem_type *get_mem_type(unsigned int type)
300{
301 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
302}
69d3a84a 303EXPORT_SYMBOL(get_mem_type);
b29e9f5e 304
ae8f1541
RK
305/*
306 * Adjust the PMD section entries according to the CPU in use.
307 */
308static void __init build_mem_type_table(void)
309{
310 struct cachepolicy *cp;
311 unsigned int cr = get_cr();
442e70c0 312 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
313 int cpu_arch = cpu_architecture();
314 int i;
315
11179d8c 316 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 317#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
318 if (cachepolicy > CPOLICY_BUFFERED)
319 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 320#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
321 if (cachepolicy > CPOLICY_WRITETHROUGH)
322 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 323#endif
11179d8c 324 }
ae8f1541
RK
325 if (cpu_arch < CPU_ARCH_ARMv5) {
326 if (cachepolicy >= CPOLICY_WRITEALLOC)
327 cachepolicy = CPOLICY_WRITEBACK;
328 ecc_mask = 0;
329 }
f00ec48f
RK
330 if (is_smp())
331 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 332
1ad77a87 333 /*
b1cce6b1
RK
334 * Strip out features not present on earlier architectures.
335 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
336 * without extended page tables don't have the 'Shared' bit.
1ad77a87 337 */
b1cce6b1
RK
338 if (cpu_arch < CPU_ARCH_ARMv5)
339 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
340 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
341 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
342 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
343 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
344
345 /*
b1cce6b1
RK
346 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
347 * "update-able on write" bit on ARM610). However, Xscale and
348 * Xscale3 require this bit to be cleared.
ae8f1541 349 */
b1cce6b1 350 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 351 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 352 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
353 mem_types[i].prot_l1 &= ~PMD_BIT4;
354 }
355 } else if (cpu_arch < CPU_ARCH_ARMv6) {
356 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
357 if (mem_types[i].prot_l1)
358 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
359 if (mem_types[i].prot_sect)
360 mem_types[i].prot_sect |= PMD_BIT4;
361 }
362 }
ae8f1541 363
b1cce6b1
RK
364 /*
365 * Mark the device areas according to the CPU/architecture.
366 */
367 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
368 if (!cpu_is_xsc3()) {
369 /*
370 * Mark device regions on ARMv6+ as execute-never
371 * to prevent speculative instruction fetches.
372 */
373 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
374 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
375 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
376 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
377 }
378 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
379 /*
380 * For ARMv7 with TEX remapping,
381 * - shared device is SXCB=1100
382 * - nonshared device is SXCB=0100
383 * - write combine device mem is SXCB=0001
384 * (Uncached Normal memory)
385 */
386 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
387 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
388 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
389 } else if (cpu_is_xsc3()) {
390 /*
391 * For Xscale3,
392 * - shared device is TEXCB=00101
393 * - nonshared device is TEXCB=01000
394 * - write combine device mem is TEXCB=00100
395 * (Inner/Outer Uncacheable in xsc3 parlance)
396 */
397 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
398 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
399 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
400 } else {
401 /*
402 * For ARMv6 and ARMv7 without TEX remapping,
403 * - shared device is TEXCB=00001
404 * - nonshared device is TEXCB=01000
405 * - write combine device mem is TEXCB=00100
406 * (Uncached Normal in ARMv6 parlance).
407 */
408 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
409 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
410 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
411 }
412 } else {
413 /*
414 * On others, write combining is "Uncached/Buffered"
415 */
416 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
417 }
418
419 /*
420 * Now deal with the memory-type mappings
421 */
ae8f1541 422 cp = &cache_policies[cachepolicy];
bb30f36f
RK
423 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
424
bb30f36f
RK
425 /*
426 * Only use write-through for non-SMP systems
427 */
f00ec48f 428 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
bb30f36f 429 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
ae8f1541
RK
430
431 /*
432 * Enable CPU-specific coherency if supported.
433 * (Only available on XSC3 at the moment.)
434 */
f1a2481c 435 if (arch_is_coherent() && cpu_is_xsc3()) {
b1cce6b1 436 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
f1a2481c 437 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 438 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f1a2481c
SS
439 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
440 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
441 }
ae8f1541
RK
442 /*
443 * ARMv6 and above have extended page tables.
444 */
445 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 446#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
447 /*
448 * Mark cache clean areas and XIP ROM read only
449 * from SVC mode and no access from userspace.
450 */
451 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
452 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 454#endif
ae8f1541 455
f00ec48f
RK
456 if (is_smp()) {
457 /*
458 * Mark memory with the "shared" attribute
459 * for SMP systems
460 */
461 user_pgprot |= L_PTE_SHARED;
462 kern_pgprot |= L_PTE_SHARED;
463 vecs_pgprot |= L_PTE_SHARED;
464 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
465 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
466 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
467 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
468 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
469 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 470 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f00ec48f
RK
471 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
472 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
473 }
ae8f1541
RK
474 }
475
e4707dd3
PW
476 /*
477 * Non-cacheable Normal - intended for memory areas that must
478 * not cause dirty cache line writebacks when used
479 */
480 if (cpu_arch >= CPU_ARCH_ARMv6) {
481 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
482 /* Non-cacheable Normal is XCB = 001 */
483 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
484 PMD_SECT_BUFFERED;
485 } else {
486 /* For both ARMv6 and non-TEX-remapping ARMv7 */
487 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
488 PMD_SECT_TEX(1);
489 }
490 } else {
491 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
492 }
493
1b6ba46b
CM
494#ifdef CONFIG_ARM_LPAE
495 /*
496 * Do not generate access flag faults for the kernel mappings.
497 */
498 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
499 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
500 if (mem_types[i].prot_sect)
501 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
502 }
503 kern_pgprot |= PTE_EXT_AF;
504 vecs_pgprot |= PTE_EXT_AF;
505#endif
506
ae8f1541
RK
507 for (i = 0; i < 16; i++) {
508 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 509 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
510 }
511
bb30f36f
RK
512 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
513 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 514
44b18693 515 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 516 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 517 L_PTE_DIRTY | kern_pgprot);
ae8f1541
RK
518
519 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
520 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
521 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c 522 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
c7909509 523 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
f1a2481c 524 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
525 mem_types[MT_ROM].prot_sect |= cp->pmd;
526
527 switch (cp->pmd) {
528 case PMD_SECT_WT:
529 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
530 break;
531 case PMD_SECT_WB:
532 case PMD_SECT_WBWA:
533 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
534 break;
535 }
536 printk("Memory policy: ECC %sabled, Data cache %s\n",
537 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
538
539 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
540 struct mem_type *t = &mem_types[i];
541 if (t->prot_l1)
542 t->prot_l1 |= PMD_DOMAIN(t->domain);
543 if (t->prot_sect)
544 t->prot_sect |= PMD_DOMAIN(t->domain);
545 }
ae8f1541
RK
546}
547
d907387c
CM
548#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
549pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
550 unsigned long size, pgprot_t vma_prot)
551{
552 if (!pfn_valid(pfn))
553 return pgprot_noncached(vma_prot);
554 else if (file->f_flags & O_SYNC)
555 return pgprot_writecombine(vma_prot);
556 return vma_prot;
557}
558EXPORT_SYMBOL(phys_mem_access_prot);
559#endif
560
ae8f1541
RK
561#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
562
0536bdf3 563static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 564{
0536bdf3 565 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
566 memset(ptr, 0, sz);
567 return ptr;
3abe9d33
RK
568}
569
0536bdf3
NP
570static void __init *early_alloc(unsigned long sz)
571{
572 return early_alloc_aligned(sz, sz);
573}
574
4bb2e27d 575static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 576{
24e6c699 577 if (pmd_none(*pmd)) {
410f1483 578 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 579 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 580 }
4bb2e27d
RK
581 BUG_ON(pmd_bad(*pmd));
582 return pte_offset_kernel(pmd, addr);
583}
ae8f1541 584
4bb2e27d
RK
585static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
586 unsigned long end, unsigned long pfn,
587 const struct mem_type *type)
588{
589 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 590 do {
40d192b6 591 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
592 pfn++;
593 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
594}
595
516295e5 596static void __init alloc_init_section(pud_t *pud, unsigned long addr,
97092e0c 597 unsigned long end, phys_addr_t phys,
24e6c699 598 const struct mem_type *type)
ae8f1541 599{
516295e5 600 pmd_t *pmd = pmd_offset(pud, addr);
ae8f1541 601
24e6c699
RK
602 /*
603 * Try a section mapping - end, addr and phys must all be aligned
604 * to a section boundary. Note that PMDs refer to the individual
605 * L1 entries, whereas PGDs refer to a group of L1 entries making
606 * up one logical pointer to an L2 table.
607 */
c7909509 608 if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
24e6c699 609 pmd_t *p = pmd;
ae8f1541 610
1b6ba46b 611#ifndef CONFIG_ARM_LPAE
24e6c699
RK
612 if (addr & SECTION_SIZE)
613 pmd++;
1b6ba46b 614#endif
24e6c699
RK
615
616 do {
617 *pmd = __pmd(phys | type->prot_sect);
618 phys += SECTION_SIZE;
619 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 620
24e6c699
RK
621 flush_pmd_entry(p);
622 } else {
623 /*
624 * No need to loop; pte's aren't interested in the
625 * individual L1 entries.
626 */
627 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
628 }
ae8f1541
RK
629}
630
14904927
SB
631static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
632 unsigned long end, unsigned long phys, const struct mem_type *type)
516295e5
RK
633{
634 pud_t *pud = pud_offset(pgd, addr);
635 unsigned long next;
636
637 do {
638 next = pud_addr_end(addr, end);
639 alloc_init_section(pud, addr, next, phys, type);
640 phys += next - addr;
641 } while (pud++, addr = next, addr != end);
642}
643
1b6ba46b 644#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
645static void __init create_36bit_mapping(struct map_desc *md,
646 const struct mem_type *type)
647{
97092e0c
RK
648 unsigned long addr, length, end;
649 phys_addr_t phys;
4a56c1e4
RK
650 pgd_t *pgd;
651
652 addr = md->virtual;
cae6292b 653 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
654 length = PAGE_ALIGN(md->length);
655
656 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
657 printk(KERN_ERR "MM: CPU does not support supersection "
658 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 659 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
660 return;
661 }
662
663 /* N.B. ARMv6 supersections are only defined to work with domain 0.
664 * Since domain assignments can in fact be arbitrary, the
665 * 'domain == 0' check below is required to insure that ARMv6
666 * supersections are only allocated for domain 0 regardless
667 * of the actual domain assignments in use.
668 */
669 if (type->domain) {
670 printk(KERN_ERR "MM: invalid domain in supersection "
671 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 672 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
673 return;
674 }
675
676 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
677 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
678 " at 0x%08lx invalid alignment\n",
679 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
680 return;
681 }
682
683 /*
684 * Shift bits [35:32] of address into bits [23:20] of PMD
685 * (See ARMv6 spec).
686 */
687 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
688
689 pgd = pgd_offset_k(addr);
690 end = addr + length;
691 do {
516295e5
RK
692 pud_t *pud = pud_offset(pgd, addr);
693 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
694 int i;
695
696 for (i = 0; i < 16; i++)
697 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
698
699 addr += SUPERSECTION_SIZE;
700 phys += SUPERSECTION_SIZE;
701 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
702 } while (addr != end);
703}
1b6ba46b 704#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 705
ae8f1541
RK
706/*
707 * Create the page directory entries and any necessary
708 * page tables for the mapping specified by `md'. We
709 * are able to cope here with varying sizes and address
710 * offsets, and we take full advantage of sections and
711 * supersections.
712 */
a2227120 713static void __init create_mapping(struct map_desc *md)
ae8f1541 714{
cae6292b
WD
715 unsigned long addr, length, end;
716 phys_addr_t phys;
d5c98176 717 const struct mem_type *type;
24e6c699 718 pgd_t *pgd;
ae8f1541
RK
719
720 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
721 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
722 " at 0x%08lx in user region\n",
723 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
724 return;
725 }
726
727 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
728 md->virtual >= PAGE_OFFSET &&
729 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 730 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 731 " at 0x%08lx out of vmalloc space\n",
29a38193 732 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
733 }
734
d5c98176 735 type = &mem_types[md->type];
ae8f1541 736
1b6ba46b 737#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
738 /*
739 * Catch 36-bit addresses
740 */
4a56c1e4
RK
741 if (md->pfn >= 0x100000) {
742 create_36bit_mapping(md, type);
743 return;
ae8f1541 744 }
1b6ba46b 745#endif
ae8f1541 746
7b9c7b4d 747 addr = md->virtual & PAGE_MASK;
cae6292b 748 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 749 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 750
24e6c699 751 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 752 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 753 "be mapped using pages, ignoring.\n",
29a38193 754 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
755 return;
756 }
757
24e6c699
RK
758 pgd = pgd_offset_k(addr);
759 end = addr + length;
760 do {
761 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 762
516295e5 763 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 764
24e6c699
RK
765 phys += next - addr;
766 addr = next;
767 } while (pgd++, addr != end);
ae8f1541
RK
768}
769
770/*
771 * Create the architecture specific mappings
772 */
773void __init iotable_init(struct map_desc *io_desc, int nr)
774{
0536bdf3
NP
775 struct map_desc *md;
776 struct vm_struct *vm;
777
778 if (!nr)
779 return;
ae8f1541 780
0536bdf3
NP
781 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
782
783 for (md = io_desc; nr; md++, nr--) {
784 create_mapping(md);
785 vm->addr = (void *)(md->virtual & PAGE_MASK);
786 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
787 vm->phys_addr = __pfn_to_phys(md->pfn);
788 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 789 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3
NP
790 vm->caller = iotable_init;
791 vm_area_add_early(vm++);
792 }
ae8f1541
RK
793}
794
c2794437
RH
795void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
796 void *caller)
797{
798 struct vm_struct *vm;
799
800 vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
801 vm->addr = (void *)addr;
802 vm->size = size;
803 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
804 vm->caller = caller;
805 vm_area_add_early(vm);
806}
807
19b52abe
NP
808#ifndef CONFIG_ARM_LPAE
809
810/*
811 * The Linux PMD is made of two consecutive section entries covering 2MB
812 * (see definition in include/asm/pgtable-2level.h). However a call to
813 * create_mapping() may optimize static mappings by using individual
814 * 1MB section mappings. This leaves the actual PMD potentially half
815 * initialized if the top or bottom section entry isn't used, leaving it
816 * open to problems if a subsequent ioremap() or vmalloc() tries to use
817 * the virtual space left free by that unused section entry.
818 *
819 * Let's avoid the issue by inserting dummy vm entries covering the unused
820 * PMD halves once the static mappings are in place.
821 */
822
823static void __init pmd_empty_section_gap(unsigned long addr)
824{
c2794437 825 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
826}
827
828static void __init fill_pmd_gaps(void)
829{
830 struct vm_struct *vm;
831 unsigned long addr, next = 0;
832 pmd_t *pmd;
833
834 /* we're still single threaded hence no lock needed here */
835 for (vm = vmlist; vm; vm = vm->next) {
836 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
837 continue;
838 addr = (unsigned long)vm->addr;
839 if (addr < next)
840 continue;
841
842 /*
843 * Check if this vm starts on an odd section boundary.
844 * If so and the first section entry for this PMD is free
845 * then we block the corresponding virtual address.
846 */
847 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
848 pmd = pmd_off_k(addr);
849 if (pmd_none(*pmd))
850 pmd_empty_section_gap(addr & PMD_MASK);
851 }
852
853 /*
854 * Then check if this vm ends on an odd section boundary.
855 * If so and the second section entry for this PMD is empty
856 * then we block the corresponding virtual address.
857 */
858 addr += vm->size;
859 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
860 pmd = pmd_off_k(addr) + 1;
861 if (pmd_none(*pmd))
862 pmd_empty_section_gap(addr);
863 }
864
865 /* no need to look at any vm entry until we hit the next PMD */
866 next = (addr + PMD_SIZE - 1) & PMD_MASK;
867 }
868}
869
870#else
871#define fill_pmd_gaps() do { } while (0)
872#endif
873
c2794437
RH
874#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
875static void __init pci_reserve_io(void)
876{
877 struct vm_struct *vm;
878 unsigned long addr;
879
880 /* we're still single threaded hence no lock needed here */
881 for (vm = vmlist; vm; vm = vm->next) {
882 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
883 continue;
884 addr = (unsigned long)vm->addr;
885 addr &= ~(SZ_2M - 1);
886 if (addr == PCI_IO_VIRT_BASE)
887 return;
888
889 }
890 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
891}
892#else
893#define pci_reserve_io() do { } while (0)
894#endif
895
0536bdf3
NP
896static void * __initdata vmalloc_min =
897 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
898
899/*
900 * vmalloc=size forces the vmalloc area to be exactly 'size'
901 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 902 * area - the default is 240m.
6c5da7ac 903 */
2b0d8c25 904static int __init early_vmalloc(char *arg)
6c5da7ac 905{
79612395 906 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
907
908 if (vmalloc_reserve < SZ_16M) {
909 vmalloc_reserve = SZ_16M;
910 printk(KERN_WARNING
911 "vmalloc area too small, limiting to %luMB\n",
912 vmalloc_reserve >> 20);
913 }
9210807c
NP
914
915 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
916 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
917 printk(KERN_WARNING
918 "vmalloc area is too big, limiting to %luMB\n",
919 vmalloc_reserve >> 20);
920 }
79612395
RK
921
922 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 923 return 0;
6c5da7ac 924}
2b0d8c25 925early_param("vmalloc", early_vmalloc);
6c5da7ac 926
c7909509 927phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 928
0371d3f7 929void __init sanity_check_meminfo(void)
60296c71 930{
dde5828f 931 int i, j, highmem = 0;
60296c71 932
4b5f32ce 933 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
934 struct membank *bank = &meminfo.bank[j];
935 *bank = meminfo.bank[i];
60296c71 936
77f73a2c
WD
937 if (bank->start > ULONG_MAX)
938 highmem = 1;
939
a1bbaec0 940#ifdef CONFIG_HIGHMEM
40f7bfe4 941 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
942 __va(bank->start) < (void *)PAGE_OFFSET)
943 highmem = 1;
944
945 bank->highmem = highmem;
946
a1bbaec0
NP
947 /*
948 * Split those memory banks which are partially overlapping
949 * the vmalloc area greatly simplifying things later.
950 */
77f73a2c 951 if (!highmem && __va(bank->start) < vmalloc_min &&
79612395 952 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
953 if (meminfo.nr_banks >= NR_BANKS) {
954 printk(KERN_CRIT "NR_BANKS too low, "
955 "ignoring high memory\n");
956 } else {
957 memmove(bank + 1, bank,
958 (meminfo.nr_banks - i) * sizeof(*bank));
959 meminfo.nr_banks++;
960 i++;
79612395
RK
961 bank[1].size -= vmalloc_min - __va(bank->start);
962 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 963 bank[1].highmem = highmem = 1;
a1bbaec0
NP
964 j++;
965 }
79612395 966 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
967 }
968#else
041d785f
RK
969 bank->highmem = highmem;
970
77f73a2c
WD
971 /*
972 * Highmem banks not allowed with !CONFIG_HIGHMEM.
973 */
974 if (highmem) {
975 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
976 "(!CONFIG_HIGHMEM).\n",
977 (unsigned long long)bank->start,
978 (unsigned long long)bank->start + bank->size - 1);
979 continue;
980 }
981
a1bbaec0
NP
982 /*
983 * Check whether this memory bank would entirely overlap
984 * the vmalloc area.
985 */
79612395 986 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 987 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 988 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 989 "(vmalloc region overlap).\n",
e33b9d08
RK
990 (unsigned long long)bank->start,
991 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
992 continue;
993 }
60296c71 994
a1bbaec0
NP
995 /*
996 * Check whether this memory bank would partially overlap
997 * the vmalloc area.
998 */
79612395 999 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 1000 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 1001 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
1002 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1003 "to -%.8llx (vmalloc region overlap).\n",
1004 (unsigned long long)bank->start,
1005 (unsigned long long)bank->start + bank->size - 1,
1006 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
1007 bank->size = newsize;
1008 }
1009#endif
c7909509
MS
1010 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1011 arm_lowmem_limit = bank->start + bank->size;
40f7bfe4 1012
a1bbaec0 1013 j++;
60296c71 1014 }
e616c591
RK
1015#ifdef CONFIG_HIGHMEM
1016 if (highmem) {
1017 const char *reason = NULL;
1018
1019 if (cache_is_vipt_aliasing()) {
1020 /*
1021 * Interactions between kmap and other mappings
1022 * make highmem support with aliasing VIPT caches
1023 * rather difficult.
1024 */
1025 reason = "with VIPT aliasing cache";
e616c591
RK
1026 }
1027 if (reason) {
1028 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1029 reason);
1030 while (j > 0 && meminfo.bank[j - 1].highmem)
1031 j--;
1032 }
1033 }
1034#endif
4b5f32ce 1035 meminfo.nr_banks = j;
c7909509
MS
1036 high_memory = __va(arm_lowmem_limit - 1) + 1;
1037 memblock_set_current_limit(arm_lowmem_limit);
60296c71
LB
1038}
1039
4b5f32ce 1040static inline void prepare_page_table(void)
d111e8f9
RK
1041{
1042 unsigned long addr;
8df65168 1043 phys_addr_t end;
d111e8f9
RK
1044
1045 /*
1046 * Clear out all the mappings below the kernel image.
1047 */
e73fc88e 1048 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1049 pmd_clear(pmd_off_k(addr));
1050
1051#ifdef CONFIG_XIP_KERNEL
1052 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1053 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1054#endif
e73fc88e 1055 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1056 pmd_clear(pmd_off_k(addr));
1057
8df65168
RK
1058 /*
1059 * Find the end of the first block of lowmem.
1060 */
1061 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1062 if (end >= arm_lowmem_limit)
1063 end = arm_lowmem_limit;
8df65168 1064
d111e8f9
RK
1065 /*
1066 * Clear out all the kernel space mappings, except for the first
0536bdf3 1067 * memory bank, up to the vmalloc region.
d111e8f9 1068 */
8df65168 1069 for (addr = __phys_to_virt(end);
0536bdf3 1070 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1071 pmd_clear(pmd_off_k(addr));
1072}
1073
1b6ba46b
CM
1074#ifdef CONFIG_ARM_LPAE
1075/* the first page is reserved for pgd */
1076#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1077 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1078#else
e73fc88e 1079#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1080#endif
e73fc88e 1081
d111e8f9 1082/*
2778f620 1083 * Reserve the special regions of memory
d111e8f9 1084 */
2778f620 1085void __init arm_mm_memblock_reserve(void)
d111e8f9 1086{
d111e8f9
RK
1087 /*
1088 * Reserve the page tables. These are already in use,
1089 * and can only be in node 0.
1090 */
e73fc88e 1091 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1092
d111e8f9
RK
1093#ifdef CONFIG_SA1111
1094 /*
1095 * Because of the SA1111 DMA bug, we want to preserve our
1096 * precious DMA-able memory...
1097 */
2778f620 1098 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1099#endif
d111e8f9
RK
1100}
1101
1102/*
0536bdf3
NP
1103 * Set up the device mappings. Since we clear out the page tables for all
1104 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1105 * This means you have to be careful how you debug this function, or any
1106 * called function. This means you can't use any function or debugging
1107 * method which may touch any device, otherwise the kernel _will_ crash.
1108 */
1109static void __init devicemaps_init(struct machine_desc *mdesc)
1110{
1111 struct map_desc map;
1112 unsigned long addr;
94e5a85b 1113 void *vectors;
d111e8f9
RK
1114
1115 /*
1116 * Allocate the vector page early.
1117 */
94e5a85b
RK
1118 vectors = early_alloc(PAGE_SIZE);
1119
1120 early_trap_init(vectors);
d111e8f9 1121
0536bdf3 1122 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1123 pmd_clear(pmd_off_k(addr));
1124
1125 /*
1126 * Map the kernel if it is XIP.
1127 * It is always first in the modulearea.
1128 */
1129#ifdef CONFIG_XIP_KERNEL
1130 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1131 map.virtual = MODULES_VADDR;
37efe642 1132 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1133 map.type = MT_ROM;
1134 create_mapping(&map);
1135#endif
1136
1137 /*
1138 * Map the cache flushing regions.
1139 */
1140#ifdef FLUSH_BASE
1141 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1142 map.virtual = FLUSH_BASE;
1143 map.length = SZ_1M;
1144 map.type = MT_CACHECLEAN;
1145 create_mapping(&map);
1146#endif
1147#ifdef FLUSH_BASE_MINICACHE
1148 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1149 map.virtual = FLUSH_BASE_MINICACHE;
1150 map.length = SZ_1M;
1151 map.type = MT_MINICLEAN;
1152 create_mapping(&map);
1153#endif
1154
1155 /*
1156 * Create a mapping for the machine vectors at the high-vectors
1157 * location (0xffff0000). If we aren't using high-vectors, also
1158 * create a mapping at the low-vectors virtual address.
1159 */
94e5a85b 1160 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1161 map.virtual = 0xffff0000;
1162 map.length = PAGE_SIZE;
1163 map.type = MT_HIGH_VECTORS;
1164 create_mapping(&map);
1165
1166 if (!vectors_high()) {
1167 map.virtual = 0;
1168 map.type = MT_LOW_VECTORS;
1169 create_mapping(&map);
1170 }
1171
1172 /*
1173 * Ask the machine support to map in the statically mapped devices.
1174 */
1175 if (mdesc->map_io)
1176 mdesc->map_io();
19b52abe 1177 fill_pmd_gaps();
d111e8f9 1178
c2794437
RH
1179 /* Reserve fixed i/o space in VMALLOC region */
1180 pci_reserve_io();
1181
d111e8f9
RK
1182 /*
1183 * Finally flush the caches and tlb to ensure that we're in a
1184 * consistent state wrt the writebuffer. This also ensures that
1185 * any write-allocated cache lines in the vector page are written
1186 * back. After this point, we can start to touch devices again.
1187 */
1188 local_flush_tlb_all();
1189 flush_cache_all();
1190}
1191
d73cd428
NP
1192static void __init kmap_init(void)
1193{
1194#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1195 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1196 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1197#endif
1198}
1199
a2227120
RK
1200static void __init map_lowmem(void)
1201{
8df65168 1202 struct memblock_region *reg;
a2227120
RK
1203
1204 /* Map all the lowmem memory banks. */
8df65168
RK
1205 for_each_memblock(memory, reg) {
1206 phys_addr_t start = reg->base;
1207 phys_addr_t end = start + reg->size;
1208 struct map_desc map;
1209
c7909509
MS
1210 if (end > arm_lowmem_limit)
1211 end = arm_lowmem_limit;
8df65168
RK
1212 if (start >= end)
1213 break;
1214
1215 map.pfn = __phys_to_pfn(start);
1216 map.virtual = __phys_to_virt(start);
1217 map.length = end - start;
1218 map.type = MT_MEMORY;
a2227120 1219
8df65168 1220 create_mapping(&map);
a2227120
RK
1221 }
1222}
1223
d111e8f9
RK
1224/*
1225 * paging_init() sets up the page tables, initialises the zone memory
1226 * maps, and sets up the zero page, bad page and bad page tables.
1227 */
4b5f32ce 1228void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1229{
1230 void *zero_page;
1231
c7909509 1232 memblock_set_current_limit(arm_lowmem_limit);
0371d3f7 1233
d111e8f9 1234 build_mem_type_table();
4b5f32ce 1235 prepare_page_table();
a2227120 1236 map_lowmem();
c7909509 1237 dma_contiguous_remap();
d111e8f9 1238 devicemaps_init(mdesc);
d73cd428 1239 kmap_init();
d111e8f9
RK
1240
1241 top_pmd = pmd_off_k(0xffff0000);
1242
3abe9d33
RK
1243 /* allocate the zero page. */
1244 zero_page = early_alloc(PAGE_SIZE);
2778f620 1245
8d717a52 1246 bootmem_init();
2778f620 1247
d111e8f9 1248 empty_zero_page = virt_to_page(zero_page);
421fe93c 1249 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1250}
This page took 0.544006 seconds and 5 git commands to generate.