ARM: keystone: dts: add a k2hk-evm specific dts file
[deliverable/linux.git] / arch / arm / mm / nommu.c
CommitLineData
5924486d
RK
1/*
2 * linux/arch/arm/mm/nommu.c
3 *
4 * ARM uCLinux supporting functions.
5 */
6#include <linux/module.h>
e6b1b38c
RK
7#include <linux/mm.h>
8#include <linux/pagemap.h>
fced80c7 9#include <linux/io.h>
2778f620 10#include <linux/memblock.h>
5ad7dcbe 11#include <linux/kernel.h>
5924486d 12
e6b1b38c 13#include <asm/cacheflush.h>
37efe642 14#include <asm/sections.h>
5924486d 15#include <asm/page.h>
b32f3afe 16#include <asm/setup.h>
6b8e5c91 17#include <asm/traps.h>
3ff1559e 18#include <asm/mach/arch.h>
5ad7dcbe
JA
19#include <asm/cputype.h>
20#include <asm/mpu.h>
83651bb9 21#include <asm/procinfo.h>
5924486d 22
d111e8f9
RK
23#include "mm.h"
24
5ad7dcbe
JA
25#ifdef CONFIG_ARM_MPU
26struct mpu_rgn_info mpu_rgn_info;
27
28/* Region number */
29static void rgnr_write(u32 v)
30{
31 asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
32}
33
34/* Data-side / unified region attributes */
35
36/* Region access control register */
37static void dracr_write(u32 v)
38{
39 asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
40}
41
42/* Region size register */
43static void drsr_write(u32 v)
44{
45 asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
46}
47
48/* Region base address register */
49static void drbar_write(u32 v)
50{
51 asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
52}
53
54static u32 drbar_read(void)
55{
56 u32 v;
57 asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
58 return v;
59}
60/* Optional instruction-side region attributes */
61
62/* I-side Region access control register */
63static void iracr_write(u32 v)
64{
65 asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
66}
67
68/* I-side Region size register */
69static void irsr_write(u32 v)
70{
71 asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
72}
73
74/* I-side Region base address register */
75static void irbar_write(u32 v)
76{
77 asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
78}
79
80static unsigned long irbar_read(void)
81{
82 unsigned long v;
83 asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
84 return v;
85}
86
87/* MPU initialisation functions */
88void __init sanity_check_meminfo_mpu(void)
89{
90 int i;
91 struct membank *bank = meminfo.bank;
92 phys_addr_t phys_offset = PHYS_OFFSET;
93 phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
94
95 /* Initially only use memory continuous from PHYS_OFFSET */
96 if (bank_phys_start(&bank[0]) != phys_offset)
97 panic("First memory bank must be contiguous from PHYS_OFFSET");
98
99 /* Banks have already been sorted by start address */
100 for (i = 1; i < meminfo.nr_banks; i++) {
101 if (bank[i].start <= bank_phys_end(&bank[0]) &&
102 bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
103 bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
104 } else {
105 pr_notice("Ignoring RAM after 0x%.8lx. "
106 "First non-contiguous (ignored) bank start: 0x%.8lx\n",
107 (unsigned long)bank_phys_end(&bank[0]),
108 (unsigned long)bank_phys_start(&bank[i]));
109 break;
110 }
111 }
112 /* All contiguous banks are now merged in to the first bank */
113 meminfo.nr_banks = 1;
114 specified_mem_size = bank[0].size;
115
116 /*
117 * MPU has curious alignment requirements: Size must be power of 2, and
118 * region start must be aligned to the region size
119 */
120 if (phys_offset != 0)
121 pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
122
123 /*
124 * Maximum aligned region might overflow phys_addr_t if phys_offset is
125 * 0. Hence we keep everything below 4G until we take the smaller of
126 * the aligned_region_size and rounded_mem_size, one of which is
127 * guaranteed to be smaller than the maximum physical address.
128 */
129 aligned_region_size = (phys_offset - 1) ^ (phys_offset);
130 /* Find the max power-of-two sized region that fits inside our bank */
131 rounded_mem_size = (1 << __fls(bank[0].size)) - 1;
132
133 /* The actual region size is the smaller of the two */
134 aligned_region_size = aligned_region_size < rounded_mem_size
135 ? aligned_region_size + 1
136 : rounded_mem_size + 1;
137
138 if (aligned_region_size != specified_mem_size)
139 pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
140 (unsigned long)specified_mem_size,
141 (unsigned long)aligned_region_size);
142
143 meminfo.bank[0].size = aligned_region_size;
144 pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
145 (unsigned long)phys_offset,
146 (unsigned long)aligned_region_size,
147 (unsigned long)bank_phys_end(&bank[0]));
148
149}
150
151static int mpu_present(void)
152{
153 return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
154}
155
156static int mpu_max_regions(void)
157{
158 /*
159 * We don't support a different number of I/D side regions so if we
160 * have separate instruction and data memory maps then return
161 * whichever side has a smaller number of supported regions.
162 */
163 u32 dregions, iregions, mpuir;
164 mpuir = read_cpuid(CPUID_MPUIR);
165
166 dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
167
168 /* Check for separate d-side and i-side memory maps */
169 if (mpuir & MPUIR_nU)
170 iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
171
172 /* Use the smallest of the two maxima */
173 return min(dregions, iregions);
174}
175
176static int mpu_iside_independent(void)
177{
178 /* MPUIR.nU specifies whether there is *not* a unified memory map */
179 return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
180}
181
182static int mpu_min_region_order(void)
183{
184 u32 drbar_result, irbar_result;
185 /* We've kept a region free for this probing */
186 rgnr_write(MPU_PROBE_REGION);
187 isb();
188 /*
189 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
190 * region order
191 */
192 drbar_write(0xFFFFFFFC);
193 drbar_result = irbar_result = drbar_read();
194 drbar_write(0x0);
195 /* If the MPU is non-unified, we use the larger of the two minima*/
196 if (mpu_iside_independent()) {
197 irbar_write(0xFFFFFFFC);
198 irbar_result = irbar_read();
199 irbar_write(0x0);
200 }
201 isb(); /* Ensure that MPU region operations have completed */
202 /* Return whichever result is larger */
203 return __ffs(max(drbar_result, irbar_result));
204}
205
206static int mpu_setup_region(unsigned int number, phys_addr_t start,
207 unsigned int size_order, unsigned int properties)
208{
209 u32 size_data;
210
211 /* We kept a region free for probing resolution of MPU regions*/
212 if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
213 return -ENOENT;
214
215 if (size_order > 32)
216 return -ENOMEM;
217
218 if (size_order < mpu_min_region_order())
219 return -ENOMEM;
220
221 /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
222 size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
223
224 dsb(); /* Ensure all previous data accesses occur with old mappings */
225 rgnr_write(number);
226 isb();
227 drbar_write(start);
228 dracr_write(properties);
229 isb(); /* Propagate properties before enabling region */
230 drsr_write(size_data);
231
232 /* Check for independent I-side registers */
233 if (mpu_iside_independent()) {
234 irbar_write(start);
235 iracr_write(properties);
236 isb();
237 irsr_write(size_data);
238 }
239 isb();
240
241 /* Store region info (we treat i/d side the same, so only store d) */
242 mpu_rgn_info.rgns[number].dracr = properties;
243 mpu_rgn_info.rgns[number].drbar = start;
244 mpu_rgn_info.rgns[number].drsr = size_data;
245 return 0;
246}
247
248/*
249* Set up default MPU regions, doing nothing if there is no MPU
250*/
251void __init mpu_setup(void)
252{
253 int region_err;
254 if (!mpu_present())
255 return;
256
257 region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
258 ilog2(meminfo.bank[0].size),
259 MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
260 if (region_err) {
261 panic("MPU region initialization failure! %d", region_err);
262 } else {
263 pr_info("Using ARMv7 PMSA Compliant MPU. "
264 "Region independence: %s, Max regions: %d\n",
265 mpu_iside_independent() ? "Yes" : "No",
266 mpu_max_regions());
267 }
268}
9a271567
JA
269#else
270static void sanity_check_meminfo_mpu(void) {}
271static void __init mpu_setup(void) {}
5ad7dcbe
JA
272#endif /* CONFIG_ARM_MPU */
273
2778f620 274void __init arm_mm_memblock_reserve(void)
d111e8f9 275{
55bdd694 276#ifndef CONFIG_CPU_V7M
d111e8f9
RK
277 /*
278 * Register the exception vector page.
279 * some architectures which the DRAM is the exception vector to trap,
280 * alloc_page breaks with error, although it is not NULL, but "0."
281 */
2778f620 282 memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
55bdd694
CM
283#else /* ifndef CONFIG_CPU_V7M */
284 /*
285 * There is no dedicated vector page on V7-M. So nothing needs to be
286 * reserved here.
287 */
288#endif
d111e8f9
RK
289}
290
0371d3f7
RK
291void __init sanity_check_meminfo(void)
292{
9a271567
JA
293 phys_addr_t end;
294 sanity_check_meminfo_mpu();
295 end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
55a8173c 296 high_memory = __va(end - 1) + 1;
0371d3f7
RK
297}
298
70d42126
TR
299/*
300 * early_paging_init() recreates boot time page table setup, allowing machines
301 * to switch over to a high (>4G) address space on LPAE systems
302 */
303void __init early_paging_init(const struct machine_desc *mdesc,
304 struct proc_info_list *procinfo)
305{
306}
307
d111e8f9
RK
308/*
309 * paging_init() sets up the page tables, initialises the zone memory
310 * maps, and sets up the zero page, bad page and bad page tables.
311 */
ff69a4c8 312void __init paging_init(const struct machine_desc *mdesc)
d111e8f9 313{
6b8e5c91 314 early_trap_init((void *)CONFIG_VECTORS_BASE);
9a271567 315 mpu_setup();
8d717a52 316 bootmem_init();
d111e8f9
RK
317}
318
80878d6c
RK
319/*
320 * We don't need to do anything here for nommu machines.
321 */
5aafec15 322void setup_mm_for_reboot(void)
80878d6c
RK
323{
324}
325
e6b1b38c
RK
326void flush_dcache_page(struct page *page)
327{
2c9b9c84 328 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
e6b1b38c 329}
3e361225 330EXPORT_SYMBOL(flush_dcache_page);
e6b1b38c 331
63384fd0
SB
332void flush_kernel_dcache_page(struct page *page)
333{
334 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
335}
336EXPORT_SYMBOL(flush_kernel_dcache_page);
337
b5a07faa
CM
338void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
339 unsigned long uaddr, void *dst, const void *src,
340 unsigned long len)
341{
342 memcpy(dst, src, len);
343 if (vma->vm_flags & VM_EXEC)
344 __cpuc_coherent_user_range(uaddr, uaddr + len);
345}
346
3603ab2b
RK
347void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
348 size_t size, unsigned int mtype)
5924486d
RK
349{
350 if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
351 return NULL;
352 return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
353}
3603ab2b 354EXPORT_SYMBOL(__arm_ioremap_pfn);
5924486d 355
31aa8fd6
RK
356void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
357 size_t size, unsigned int mtype, void *caller)
358{
359 return __arm_ioremap_pfn(pfn, offset, size, mtype);
360}
361
9b97173e 362void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
3603ab2b 363 unsigned int mtype)
5924486d
RK
364{
365 return (void __iomem *)phys_addr;
366}
3603ab2b 367EXPORT_SYMBOL(__arm_ioremap);
5924486d 368
9b97173e 369void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
8a2b6255 370
9b97173e 371void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
b1a9ceb2 372 unsigned int mtype, void *caller)
31aa8fd6
RK
373{
374 return __arm_ioremap(phys_addr, size, mtype);
375}
376
8a2b6255
RH
377void (*arch_iounmap)(volatile void __iomem *);
378
379void __arm_iounmap(volatile void __iomem *addr)
5924486d
RK
380{
381}
8a2b6255 382EXPORT_SYMBOL(__arm_iounmap);
This page took 0.533886 seconds and 5 git commands to generate.