Merge tag 'platform-drivers-x86-v4.6-1' of git://git.infradead.org/users/dvhart/linux...
[deliverable/linux.git] / arch / arm64 / kvm / sys_regs.c
CommitLineData
7c8c5e6a
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
623eefa8 23#include <linux/bsearch.h>
7c8c5e6a 24#include <linux/kvm_host.h>
c6d01a94 25#include <linux/mm.h>
7c8c5e6a 26#include <linux/uaccess.h>
c6d01a94 27
7c8c5e6a
MZ
28#include <asm/cacheflush.h>
29#include <asm/cputype.h>
0c557ed4 30#include <asm/debug-monitors.h>
c6d01a94
MR
31#include <asm/esr.h>
32#include <asm/kvm_arm.h>
9d8415d6 33#include <asm/kvm_asm.h>
c6d01a94
MR
34#include <asm/kvm_coproc.h>
35#include <asm/kvm_emulate.h>
36#include <asm/kvm_host.h>
37#include <asm/kvm_mmu.h>
ab946834 38#include <asm/perf_event.h>
c6d01a94 39
7c8c5e6a
MZ
40#include <trace/events/kvm.h>
41
42#include "sys_regs.h"
43
eef8c85a
AB
44#include "trace.h"
45
7c8c5e6a
MZ
46/*
47 * All of this file is extremly similar to the ARM coproc.c, but the
48 * types are different. My gut feeling is that it should be pretty
49 * easy to merge, but that would be an ABI breakage -- again. VFP
50 * would also need to be abstracted.
62a89c44
MZ
51 *
52 * For AArch32, we only take care of what is being trapped. Anything
53 * that has to do with init and userspace access has to go via the
54 * 64bit interface.
7c8c5e6a
MZ
55 */
56
57/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
58static u32 cache_levels;
59
60/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
61#define CSSELR_MAX 12
62
63/* Which cache CCSIDR represents depends on CSSELR value. */
64static u32 get_ccsidr(u32 csselr)
65{
66 u32 ccsidr;
67
68 /* Make sure noone else changes CSSELR during this! */
69 local_irq_disable();
70 /* Put value into CSSELR */
71 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
72 isb();
73 /* Read result out of CCSIDR */
74 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
75 local_irq_enable();
76
77 return ccsidr;
78}
79
3c1e7165
MZ
80/*
81 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
82 */
7c8c5e6a 83static bool access_dcsw(struct kvm_vcpu *vcpu,
3fec037d 84 struct sys_reg_params *p,
7c8c5e6a
MZ
85 const struct sys_reg_desc *r)
86{
7c8c5e6a
MZ
87 if (!p->is_write)
88 return read_from_write_only(vcpu, p);
89
3c1e7165 90 kvm_set_way_flush(vcpu);
7c8c5e6a
MZ
91 return true;
92}
93
4d44923b
MZ
94/*
95 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
96 * is set. If the guest enables the MMU, we stop trapping the VM
97 * sys_regs and leave it in complete control of the caches.
4d44923b
MZ
98 */
99static bool access_vm_reg(struct kvm_vcpu *vcpu,
3fec037d 100 struct sys_reg_params *p,
4d44923b
MZ
101 const struct sys_reg_desc *r)
102{
3c1e7165 103 bool was_enabled = vcpu_has_cache_enabled(vcpu);
4d44923b
MZ
104
105 BUG_ON(!p->is_write);
106
dedf97e8 107 if (!p->is_aarch32) {
2ec5be3d 108 vcpu_sys_reg(vcpu, r->reg) = p->regval;
dedf97e8
MZ
109 } else {
110 if (!p->is_32bit)
2ec5be3d
PF
111 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
112 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
dedf97e8 113 }
f0a3eaff 114
3c1e7165 115 kvm_toggle_cache(vcpu, was_enabled);
4d44923b
MZ
116 return true;
117}
118
6d52f35a
AP
119/*
120 * Trap handler for the GICv3 SGI generation system register.
121 * Forward the request to the VGIC emulation.
122 * The cp15_64 code makes sure this automatically works
123 * for both AArch64 and AArch32 accesses.
124 */
125static bool access_gic_sgi(struct kvm_vcpu *vcpu,
3fec037d 126 struct sys_reg_params *p,
6d52f35a
AP
127 const struct sys_reg_desc *r)
128{
6d52f35a
AP
129 if (!p->is_write)
130 return read_from_write_only(vcpu, p);
131
2ec5be3d 132 vgic_v3_dispatch_sgi(vcpu, p->regval);
6d52f35a
AP
133
134 return true;
135}
136
7609c125 137static bool trap_raz_wi(struct kvm_vcpu *vcpu,
3fec037d 138 struct sys_reg_params *p,
7609c125 139 const struct sys_reg_desc *r)
7c8c5e6a
MZ
140{
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143 else
144 return read_zero(vcpu, p);
145}
146
0c557ed4 147static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
3fec037d 148 struct sys_reg_params *p,
0c557ed4
MZ
149 const struct sys_reg_desc *r)
150{
151 if (p->is_write) {
152 return ignore_write(vcpu, p);
153 } else {
2ec5be3d 154 p->regval = (1 << 3);
0c557ed4
MZ
155 return true;
156 }
157}
158
159static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
3fec037d 160 struct sys_reg_params *p,
0c557ed4
MZ
161 const struct sys_reg_desc *r)
162{
163 if (p->is_write) {
164 return ignore_write(vcpu, p);
165 } else {
166 u32 val;
167 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
2ec5be3d 168 p->regval = val;
0c557ed4
MZ
169 return true;
170 }
171}
172
173/*
174 * We want to avoid world-switching all the DBG registers all the
175 * time:
176 *
177 * - If we've touched any debug register, it is likely that we're
178 * going to touch more of them. It then makes sense to disable the
179 * traps and start doing the save/restore dance
180 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
181 * then mandatory to save/restore the registers, as the guest
182 * depends on them.
183 *
184 * For this, we use a DIRTY bit, indicating the guest has modified the
185 * debug registers, used as follow:
186 *
187 * On guest entry:
188 * - If the dirty bit is set (because we're coming back from trapping),
189 * disable the traps, save host registers, restore guest registers.
190 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
191 * set the dirty bit, disable the traps, save host registers,
192 * restore guest registers.
193 * - Otherwise, enable the traps
194 *
195 * On guest exit:
196 * - If the dirty bit is set, save guest registers, restore host
197 * registers and clear the dirty bit. This ensure that the host can
198 * now use the debug registers.
199 */
200static bool trap_debug_regs(struct kvm_vcpu *vcpu,
3fec037d 201 struct sys_reg_params *p,
0c557ed4
MZ
202 const struct sys_reg_desc *r)
203{
204 if (p->is_write) {
2ec5be3d 205 vcpu_sys_reg(vcpu, r->reg) = p->regval;
0c557ed4
MZ
206 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
207 } else {
2ec5be3d 208 p->regval = vcpu_sys_reg(vcpu, r->reg);
0c557ed4
MZ
209 }
210
2ec5be3d 211 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
eef8c85a 212
0c557ed4
MZ
213 return true;
214}
215
84e690bf
AB
216/*
217 * reg_to_dbg/dbg_to_reg
218 *
219 * A 32 bit write to a debug register leave top bits alone
220 * A 32 bit read from a debug register only returns the bottom bits
221 *
222 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
223 * hyp.S code switches between host and guest values in future.
224 */
281243cb
MZ
225static void reg_to_dbg(struct kvm_vcpu *vcpu,
226 struct sys_reg_params *p,
227 u64 *dbg_reg)
84e690bf 228{
2ec5be3d 229 u64 val = p->regval;
84e690bf
AB
230
231 if (p->is_32bit) {
232 val &= 0xffffffffUL;
233 val |= ((*dbg_reg >> 32) << 32);
234 }
235
236 *dbg_reg = val;
237 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238}
239
281243cb
MZ
240static void dbg_to_reg(struct kvm_vcpu *vcpu,
241 struct sys_reg_params *p,
242 u64 *dbg_reg)
84e690bf 243{
2ec5be3d 244 p->regval = *dbg_reg;
84e690bf 245 if (p->is_32bit)
2ec5be3d 246 p->regval &= 0xffffffffUL;
84e690bf
AB
247}
248
281243cb
MZ
249static bool trap_bvr(struct kvm_vcpu *vcpu,
250 struct sys_reg_params *p,
251 const struct sys_reg_desc *rd)
84e690bf
AB
252{
253 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
254
255 if (p->is_write)
256 reg_to_dbg(vcpu, p, dbg_reg);
257 else
258 dbg_to_reg(vcpu, p, dbg_reg);
259
eef8c85a
AB
260 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
261
84e690bf
AB
262 return true;
263}
264
265static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
266 const struct kvm_one_reg *reg, void __user *uaddr)
267{
268 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
269
1713e5aa 270 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
271 return -EFAULT;
272 return 0;
273}
274
275static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
276 const struct kvm_one_reg *reg, void __user *uaddr)
277{
278 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
279
280 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
281 return -EFAULT;
282 return 0;
283}
284
281243cb
MZ
285static void reset_bvr(struct kvm_vcpu *vcpu,
286 const struct sys_reg_desc *rd)
84e690bf
AB
287{
288 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
289}
290
281243cb
MZ
291static bool trap_bcr(struct kvm_vcpu *vcpu,
292 struct sys_reg_params *p,
293 const struct sys_reg_desc *rd)
84e690bf
AB
294{
295 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
296
297 if (p->is_write)
298 reg_to_dbg(vcpu, p, dbg_reg);
299 else
300 dbg_to_reg(vcpu, p, dbg_reg);
301
eef8c85a
AB
302 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
303
84e690bf
AB
304 return true;
305}
306
307static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
308 const struct kvm_one_reg *reg, void __user *uaddr)
309{
310 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
311
1713e5aa 312 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
313 return -EFAULT;
314
315 return 0;
316}
317
318static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
319 const struct kvm_one_reg *reg, void __user *uaddr)
320{
321 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
322
323 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
324 return -EFAULT;
325 return 0;
326}
327
281243cb
MZ
328static void reset_bcr(struct kvm_vcpu *vcpu,
329 const struct sys_reg_desc *rd)
84e690bf
AB
330{
331 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
332}
333
281243cb
MZ
334static bool trap_wvr(struct kvm_vcpu *vcpu,
335 struct sys_reg_params *p,
336 const struct sys_reg_desc *rd)
84e690bf
AB
337{
338 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
339
340 if (p->is_write)
341 reg_to_dbg(vcpu, p, dbg_reg);
342 else
343 dbg_to_reg(vcpu, p, dbg_reg);
344
eef8c85a
AB
345 trace_trap_reg(__func__, rd->reg, p->is_write,
346 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
347
84e690bf
AB
348 return true;
349}
350
351static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
352 const struct kvm_one_reg *reg, void __user *uaddr)
353{
354 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
355
1713e5aa 356 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
357 return -EFAULT;
358 return 0;
359}
360
361static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
362 const struct kvm_one_reg *reg, void __user *uaddr)
363{
364 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
365
366 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
367 return -EFAULT;
368 return 0;
369}
370
281243cb
MZ
371static void reset_wvr(struct kvm_vcpu *vcpu,
372 const struct sys_reg_desc *rd)
84e690bf
AB
373{
374 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
375}
376
281243cb
MZ
377static bool trap_wcr(struct kvm_vcpu *vcpu,
378 struct sys_reg_params *p,
379 const struct sys_reg_desc *rd)
84e690bf
AB
380{
381 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
382
383 if (p->is_write)
384 reg_to_dbg(vcpu, p, dbg_reg);
385 else
386 dbg_to_reg(vcpu, p, dbg_reg);
387
eef8c85a
AB
388 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
389
84e690bf
AB
390 return true;
391}
392
393static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
394 const struct kvm_one_reg *reg, void __user *uaddr)
395{
396 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
397
1713e5aa 398 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
84e690bf
AB
399 return -EFAULT;
400 return 0;
401}
402
403static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
404 const struct kvm_one_reg *reg, void __user *uaddr)
405{
406 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
407
408 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
409 return -EFAULT;
410 return 0;
411}
412
281243cb
MZ
413static void reset_wcr(struct kvm_vcpu *vcpu,
414 const struct sys_reg_desc *rd)
84e690bf
AB
415{
416 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
417}
418
7c8c5e6a
MZ
419static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
420{
421 u64 amair;
422
423 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
424 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
425}
426
427static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428{
4429fc64
AP
429 u64 mpidr;
430
7c8c5e6a 431 /*
4429fc64
AP
432 * Map the vcpu_id into the first three affinity level fields of
433 * the MPIDR. We limit the number of VCPUs in level 0 due to a
434 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
435 * of the GICv3 to be able to address each CPU directly when
436 * sending IPIs.
7c8c5e6a 437 */
4429fc64
AP
438 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
439 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
440 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
441 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
7c8c5e6a
MZ
442}
443
ab946834
SZ
444static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
445{
446 u64 pmcr, val;
447
448 asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
449 /* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
450 * except PMCR.E resetting to zero.
451 */
452 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
453 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
454 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
455}
456
d692b8ad
SZ
457static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
458{
459 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
460
461 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
462}
463
464static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
465{
466 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
467
468 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
469 || vcpu_mode_priv(vcpu));
470}
471
472static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
473{
474 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
475
476 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
477 || vcpu_mode_priv(vcpu));
478}
479
480static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
481{
482 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
483
484 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
485 || vcpu_mode_priv(vcpu));
486}
487
ab946834
SZ
488static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
489 const struct sys_reg_desc *r)
490{
491 u64 val;
492
493 if (!kvm_arm_pmu_v3_ready(vcpu))
494 return trap_raz_wi(vcpu, p, r);
495
d692b8ad
SZ
496 if (pmu_access_el0_disabled(vcpu))
497 return false;
498
ab946834
SZ
499 if (p->is_write) {
500 /* Only update writeable bits of PMCR */
501 val = vcpu_sys_reg(vcpu, PMCR_EL0);
502 val &= ~ARMV8_PMU_PMCR_MASK;
503 val |= p->regval & ARMV8_PMU_PMCR_MASK;
504 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
76993739 505 kvm_pmu_handle_pmcr(vcpu, val);
ab946834
SZ
506 } else {
507 /* PMCR.P & PMCR.C are RAZ */
508 val = vcpu_sys_reg(vcpu, PMCR_EL0)
509 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
510 p->regval = val;
511 }
512
513 return true;
514}
515
3965c3ce
SZ
516static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
517 const struct sys_reg_desc *r)
518{
519 if (!kvm_arm_pmu_v3_ready(vcpu))
520 return trap_raz_wi(vcpu, p, r);
521
d692b8ad
SZ
522 if (pmu_access_event_counter_el0_disabled(vcpu))
523 return false;
524
3965c3ce
SZ
525 if (p->is_write)
526 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
527 else
528 /* return PMSELR.SEL field */
529 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
530 & ARMV8_PMU_COUNTER_MASK;
531
532 return true;
533}
534
a86b5505
SZ
535static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
536 const struct sys_reg_desc *r)
537{
538 u64 pmceid;
539
540 if (!kvm_arm_pmu_v3_ready(vcpu))
541 return trap_raz_wi(vcpu, p, r);
542
543 BUG_ON(p->is_write);
544
d692b8ad
SZ
545 if (pmu_access_el0_disabled(vcpu))
546 return false;
547
a86b5505
SZ
548 if (!(p->Op2 & 1))
549 asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
550 else
551 asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
552
553 p->regval = pmceid;
554
555 return true;
556}
557
051ff581
SZ
558static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
559{
560 u64 pmcr, val;
561
562 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
563 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
564 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
565 return false;
566
567 return true;
568}
569
570static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
571 struct sys_reg_params *p,
572 const struct sys_reg_desc *r)
573{
574 u64 idx;
575
576 if (!kvm_arm_pmu_v3_ready(vcpu))
577 return trap_raz_wi(vcpu, p, r);
578
579 if (r->CRn == 9 && r->CRm == 13) {
580 if (r->Op2 == 2) {
581 /* PMXEVCNTR_EL0 */
d692b8ad
SZ
582 if (pmu_access_event_counter_el0_disabled(vcpu))
583 return false;
584
051ff581
SZ
585 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
586 & ARMV8_PMU_COUNTER_MASK;
587 } else if (r->Op2 == 0) {
588 /* PMCCNTR_EL0 */
d692b8ad
SZ
589 if (pmu_access_cycle_counter_el0_disabled(vcpu))
590 return false;
591
051ff581
SZ
592 idx = ARMV8_PMU_CYCLE_IDX;
593 } else {
594 BUG();
595 }
596 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
597 /* PMEVCNTRn_EL0 */
d692b8ad
SZ
598 if (pmu_access_event_counter_el0_disabled(vcpu))
599 return false;
600
051ff581
SZ
601 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
602 } else {
603 BUG();
604 }
605
606 if (!pmu_counter_idx_valid(vcpu, idx))
607 return false;
608
d692b8ad
SZ
609 if (p->is_write) {
610 if (pmu_access_el0_disabled(vcpu))
611 return false;
612
051ff581 613 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
d692b8ad 614 } else {
051ff581 615 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
d692b8ad 616 }
051ff581
SZ
617
618 return true;
619}
620
9feb21ac
SZ
621static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
622 const struct sys_reg_desc *r)
623{
624 u64 idx, reg;
625
626 if (!kvm_arm_pmu_v3_ready(vcpu))
627 return trap_raz_wi(vcpu, p, r);
628
d692b8ad
SZ
629 if (pmu_access_el0_disabled(vcpu))
630 return false;
631
9feb21ac
SZ
632 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
633 /* PMXEVTYPER_EL0 */
634 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
635 reg = PMEVTYPER0_EL0 + idx;
636 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
637 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
638 if (idx == ARMV8_PMU_CYCLE_IDX)
639 reg = PMCCFILTR_EL0;
640 else
641 /* PMEVTYPERn_EL0 */
642 reg = PMEVTYPER0_EL0 + idx;
643 } else {
644 BUG();
645 }
646
647 if (!pmu_counter_idx_valid(vcpu, idx))
648 return false;
649
650 if (p->is_write) {
651 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
652 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
653 } else {
654 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
655 }
656
657 return true;
658}
659
96b0eebc
SZ
660static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
661 const struct sys_reg_desc *r)
662{
663 u64 val, mask;
664
665 if (!kvm_arm_pmu_v3_ready(vcpu))
666 return trap_raz_wi(vcpu, p, r);
667
d692b8ad
SZ
668 if (pmu_access_el0_disabled(vcpu))
669 return false;
670
96b0eebc
SZ
671 mask = kvm_pmu_valid_counter_mask(vcpu);
672 if (p->is_write) {
673 val = p->regval & mask;
674 if (r->Op2 & 0x1) {
675 /* accessing PMCNTENSET_EL0 */
676 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
677 kvm_pmu_enable_counter(vcpu, val);
678 } else {
679 /* accessing PMCNTENCLR_EL0 */
680 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
681 kvm_pmu_disable_counter(vcpu, val);
682 }
683 } else {
684 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
685 }
686
687 return true;
688}
689
9db52c78
SZ
690static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
691 const struct sys_reg_desc *r)
692{
693 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
694
695 if (!kvm_arm_pmu_v3_ready(vcpu))
696 return trap_raz_wi(vcpu, p, r);
697
d692b8ad
SZ
698 if (!vcpu_mode_priv(vcpu))
699 return false;
700
9db52c78
SZ
701 if (p->is_write) {
702 u64 val = p->regval & mask;
703
704 if (r->Op2 & 0x1)
705 /* accessing PMINTENSET_EL1 */
706 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
707 else
708 /* accessing PMINTENCLR_EL1 */
709 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
710 } else {
711 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
712 }
713
714 return true;
715}
716
76d883c4
SZ
717static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
718 const struct sys_reg_desc *r)
719{
720 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
721
722 if (!kvm_arm_pmu_v3_ready(vcpu))
723 return trap_raz_wi(vcpu, p, r);
724
d692b8ad
SZ
725 if (pmu_access_el0_disabled(vcpu))
726 return false;
727
76d883c4
SZ
728 if (p->is_write) {
729 if (r->CRm & 0x2)
730 /* accessing PMOVSSET_EL0 */
731 kvm_pmu_overflow_set(vcpu, p->regval & mask);
732 else
733 /* accessing PMOVSCLR_EL0 */
734 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
735 } else {
736 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
737 }
738
739 return true;
740}
741
7a0adc70
SZ
742static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
743 const struct sys_reg_desc *r)
744{
745 u64 mask;
746
747 if (!kvm_arm_pmu_v3_ready(vcpu))
748 return trap_raz_wi(vcpu, p, r);
749
d692b8ad
SZ
750 if (pmu_write_swinc_el0_disabled(vcpu))
751 return false;
752
7a0adc70
SZ
753 if (p->is_write) {
754 mask = kvm_pmu_valid_counter_mask(vcpu);
755 kvm_pmu_software_increment(vcpu, p->regval & mask);
756 return true;
757 }
758
759 return false;
760}
761
d692b8ad
SZ
762static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
763 const struct sys_reg_desc *r)
764{
765 if (!kvm_arm_pmu_v3_ready(vcpu))
766 return trap_raz_wi(vcpu, p, r);
767
768 if (p->is_write) {
769 if (!vcpu_mode_priv(vcpu))
770 return false;
771
772 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
773 & ARMV8_PMU_USERENR_MASK;
774 } else {
775 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
776 & ARMV8_PMU_USERENR_MASK;
777 }
778
779 return true;
780}
781
0c557ed4
MZ
782/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
783#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
784 /* DBGBVRn_EL1 */ \
785 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
84e690bf 786 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
0c557ed4
MZ
787 /* DBGBCRn_EL1 */ \
788 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
84e690bf 789 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
0c557ed4
MZ
790 /* DBGWVRn_EL1 */ \
791 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
84e690bf 792 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
0c557ed4
MZ
793 /* DBGWCRn_EL1 */ \
794 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
84e690bf 795 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
0c557ed4 796
051ff581
SZ
797/* Macro to expand the PMEVCNTRn_EL0 register */
798#define PMU_PMEVCNTR_EL0(n) \
799 /* PMEVCNTRn_EL0 */ \
800 { Op0(0b11), Op1(0b011), CRn(0b1110), \
801 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
802 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
803
9feb21ac
SZ
804/* Macro to expand the PMEVTYPERn_EL0 register */
805#define PMU_PMEVTYPER_EL0(n) \
806 /* PMEVTYPERn_EL0 */ \
807 { Op0(0b11), Op1(0b011), CRn(0b1110), \
808 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
809 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
810
7c8c5e6a
MZ
811/*
812 * Architected system registers.
813 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
7609c125
MZ
814 *
815 * We could trap ID_DFR0 and tell the guest we don't support performance
816 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
817 * NAKed, so it will read the PMCR anyway.
818 *
819 * Therefore we tell the guest we have 0 counters. Unfortunately, we
820 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
821 * all PM registers, which doesn't crash the guest kernel at least.
822 *
0c557ed4
MZ
823 * Debug handling: We do trap most, if not all debug related system
824 * registers. The implementation is good enough to ensure that a guest
825 * can use these with minimal performance degradation. The drawback is
826 * that we don't implement any of the external debug, none of the
827 * OSlock protocol. This should be revisited if we ever encounter a
828 * more demanding guest...
7c8c5e6a
MZ
829 */
830static const struct sys_reg_desc sys_reg_descs[] = {
831 /* DC ISW */
832 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
833 access_dcsw },
834 /* DC CSW */
835 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
836 access_dcsw },
837 /* DC CISW */
838 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
839 access_dcsw },
840
0c557ed4
MZ
841 DBG_BCR_BVR_WCR_WVR_EL1(0),
842 DBG_BCR_BVR_WCR_WVR_EL1(1),
843 /* MDCCINT_EL1 */
844 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
845 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
846 /* MDSCR_EL1 */
847 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
848 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
849 DBG_BCR_BVR_WCR_WVR_EL1(2),
850 DBG_BCR_BVR_WCR_WVR_EL1(3),
851 DBG_BCR_BVR_WCR_WVR_EL1(4),
852 DBG_BCR_BVR_WCR_WVR_EL1(5),
853 DBG_BCR_BVR_WCR_WVR_EL1(6),
854 DBG_BCR_BVR_WCR_WVR_EL1(7),
855 DBG_BCR_BVR_WCR_WVR_EL1(8),
856 DBG_BCR_BVR_WCR_WVR_EL1(9),
857 DBG_BCR_BVR_WCR_WVR_EL1(10),
858 DBG_BCR_BVR_WCR_WVR_EL1(11),
859 DBG_BCR_BVR_WCR_WVR_EL1(12),
860 DBG_BCR_BVR_WCR_WVR_EL1(13),
861 DBG_BCR_BVR_WCR_WVR_EL1(14),
862 DBG_BCR_BVR_WCR_WVR_EL1(15),
863
864 /* MDRAR_EL1 */
865 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
866 trap_raz_wi },
867 /* OSLAR_EL1 */
868 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
869 trap_raz_wi },
870 /* OSLSR_EL1 */
871 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
872 trap_oslsr_el1 },
873 /* OSDLR_EL1 */
874 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
875 trap_raz_wi },
876 /* DBGPRCR_EL1 */
877 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
878 trap_raz_wi },
879 /* DBGCLAIMSET_EL1 */
880 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
881 trap_raz_wi },
882 /* DBGCLAIMCLR_EL1 */
883 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
884 trap_raz_wi },
885 /* DBGAUTHSTATUS_EL1 */
886 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
887 trap_dbgauthstatus_el1 },
888
0c557ed4
MZ
889 /* MDCCSR_EL1 */
890 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
891 trap_raz_wi },
892 /* DBGDTR_EL0 */
893 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
894 trap_raz_wi },
895 /* DBGDTR[TR]X_EL0 */
896 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
897 trap_raz_wi },
898
62a89c44
MZ
899 /* DBGVCR32_EL2 */
900 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
901 NULL, reset_val, DBGVCR32_EL2, 0 },
902
7c8c5e6a
MZ
903 /* MPIDR_EL1 */
904 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
905 NULL, reset_mpidr, MPIDR_EL1 },
906 /* SCTLR_EL1 */
907 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
3c1e7165 908 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
7c8c5e6a
MZ
909 /* CPACR_EL1 */
910 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
911 NULL, reset_val, CPACR_EL1, 0 },
912 /* TTBR0_EL1 */
913 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
4d44923b 914 access_vm_reg, reset_unknown, TTBR0_EL1 },
7c8c5e6a
MZ
915 /* TTBR1_EL1 */
916 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
4d44923b 917 access_vm_reg, reset_unknown, TTBR1_EL1 },
7c8c5e6a
MZ
918 /* TCR_EL1 */
919 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
4d44923b 920 access_vm_reg, reset_val, TCR_EL1, 0 },
7c8c5e6a
MZ
921
922 /* AFSR0_EL1 */
923 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
4d44923b 924 access_vm_reg, reset_unknown, AFSR0_EL1 },
7c8c5e6a
MZ
925 /* AFSR1_EL1 */
926 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
4d44923b 927 access_vm_reg, reset_unknown, AFSR1_EL1 },
7c8c5e6a
MZ
928 /* ESR_EL1 */
929 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
4d44923b 930 access_vm_reg, reset_unknown, ESR_EL1 },
7c8c5e6a
MZ
931 /* FAR_EL1 */
932 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
4d44923b 933 access_vm_reg, reset_unknown, FAR_EL1 },
1bbd8054
MZ
934 /* PAR_EL1 */
935 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
936 NULL, reset_unknown, PAR_EL1 },
7c8c5e6a
MZ
937
938 /* PMINTENSET_EL1 */
939 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
9db52c78 940 access_pminten, reset_unknown, PMINTENSET_EL1 },
7c8c5e6a
MZ
941 /* PMINTENCLR_EL1 */
942 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
9db52c78 943 access_pminten, NULL, PMINTENSET_EL1 },
7c8c5e6a
MZ
944
945 /* MAIR_EL1 */
946 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
4d44923b 947 access_vm_reg, reset_unknown, MAIR_EL1 },
7c8c5e6a
MZ
948 /* AMAIR_EL1 */
949 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
4d44923b 950 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
7c8c5e6a
MZ
951
952 /* VBAR_EL1 */
953 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
954 NULL, reset_val, VBAR_EL1, 0 },
db7dedd0 955
6d52f35a
AP
956 /* ICC_SGI1R_EL1 */
957 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
958 access_gic_sgi },
db7dedd0
CD
959 /* ICC_SRE_EL1 */
960 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
961 trap_raz_wi },
962
7c8c5e6a
MZ
963 /* CONTEXTIDR_EL1 */
964 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
4d44923b 965 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
7c8c5e6a
MZ
966 /* TPIDR_EL1 */
967 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
968 NULL, reset_unknown, TPIDR_EL1 },
969
970 /* CNTKCTL_EL1 */
971 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
972 NULL, reset_val, CNTKCTL_EL1, 0},
973
974 /* CSSELR_EL1 */
975 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
976 NULL, reset_unknown, CSSELR_EL1 },
977
978 /* PMCR_EL0 */
979 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
ab946834 980 access_pmcr, reset_pmcr, },
7c8c5e6a
MZ
981 /* PMCNTENSET_EL0 */
982 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
96b0eebc 983 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
7c8c5e6a
MZ
984 /* PMCNTENCLR_EL0 */
985 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
96b0eebc 986 access_pmcnten, NULL, PMCNTENSET_EL0 },
7c8c5e6a
MZ
987 /* PMOVSCLR_EL0 */
988 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
76d883c4 989 access_pmovs, NULL, PMOVSSET_EL0 },
7c8c5e6a
MZ
990 /* PMSWINC_EL0 */
991 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
7a0adc70 992 access_pmswinc, reset_unknown, PMSWINC_EL0 },
7c8c5e6a
MZ
993 /* PMSELR_EL0 */
994 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
3965c3ce 995 access_pmselr, reset_unknown, PMSELR_EL0 },
7c8c5e6a
MZ
996 /* PMCEID0_EL0 */
997 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
a86b5505 998 access_pmceid },
7c8c5e6a
MZ
999 /* PMCEID1_EL0 */
1000 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
a86b5505 1001 access_pmceid },
7c8c5e6a
MZ
1002 /* PMCCNTR_EL0 */
1003 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
051ff581 1004 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
7c8c5e6a
MZ
1005 /* PMXEVTYPER_EL0 */
1006 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
9feb21ac 1007 access_pmu_evtyper },
7c8c5e6a
MZ
1008 /* PMXEVCNTR_EL0 */
1009 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
051ff581 1010 access_pmu_evcntr },
d692b8ad
SZ
1011 /* PMUSERENR_EL0
1012 * This register resets as unknown in 64bit mode while it resets as zero
1013 * in 32bit mode. Here we choose to reset it as zero for consistency.
1014 */
7c8c5e6a 1015 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
d692b8ad 1016 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
7c8c5e6a
MZ
1017 /* PMOVSSET_EL0 */
1018 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
76d883c4 1019 access_pmovs, reset_unknown, PMOVSSET_EL0 },
7c8c5e6a
MZ
1020
1021 /* TPIDR_EL0 */
1022 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1023 NULL, reset_unknown, TPIDR_EL0 },
1024 /* TPIDRRO_EL0 */
1025 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1026 NULL, reset_unknown, TPIDRRO_EL0 },
62a89c44 1027
051ff581
SZ
1028 /* PMEVCNTRn_EL0 */
1029 PMU_PMEVCNTR_EL0(0),
1030 PMU_PMEVCNTR_EL0(1),
1031 PMU_PMEVCNTR_EL0(2),
1032 PMU_PMEVCNTR_EL0(3),
1033 PMU_PMEVCNTR_EL0(4),
1034 PMU_PMEVCNTR_EL0(5),
1035 PMU_PMEVCNTR_EL0(6),
1036 PMU_PMEVCNTR_EL0(7),
1037 PMU_PMEVCNTR_EL0(8),
1038 PMU_PMEVCNTR_EL0(9),
1039 PMU_PMEVCNTR_EL0(10),
1040 PMU_PMEVCNTR_EL0(11),
1041 PMU_PMEVCNTR_EL0(12),
1042 PMU_PMEVCNTR_EL0(13),
1043 PMU_PMEVCNTR_EL0(14),
1044 PMU_PMEVCNTR_EL0(15),
1045 PMU_PMEVCNTR_EL0(16),
1046 PMU_PMEVCNTR_EL0(17),
1047 PMU_PMEVCNTR_EL0(18),
1048 PMU_PMEVCNTR_EL0(19),
1049 PMU_PMEVCNTR_EL0(20),
1050 PMU_PMEVCNTR_EL0(21),
1051 PMU_PMEVCNTR_EL0(22),
1052 PMU_PMEVCNTR_EL0(23),
1053 PMU_PMEVCNTR_EL0(24),
1054 PMU_PMEVCNTR_EL0(25),
1055 PMU_PMEVCNTR_EL0(26),
1056 PMU_PMEVCNTR_EL0(27),
1057 PMU_PMEVCNTR_EL0(28),
1058 PMU_PMEVCNTR_EL0(29),
1059 PMU_PMEVCNTR_EL0(30),
9feb21ac
SZ
1060 /* PMEVTYPERn_EL0 */
1061 PMU_PMEVTYPER_EL0(0),
1062 PMU_PMEVTYPER_EL0(1),
1063 PMU_PMEVTYPER_EL0(2),
1064 PMU_PMEVTYPER_EL0(3),
1065 PMU_PMEVTYPER_EL0(4),
1066 PMU_PMEVTYPER_EL0(5),
1067 PMU_PMEVTYPER_EL0(6),
1068 PMU_PMEVTYPER_EL0(7),
1069 PMU_PMEVTYPER_EL0(8),
1070 PMU_PMEVTYPER_EL0(9),
1071 PMU_PMEVTYPER_EL0(10),
1072 PMU_PMEVTYPER_EL0(11),
1073 PMU_PMEVTYPER_EL0(12),
1074 PMU_PMEVTYPER_EL0(13),
1075 PMU_PMEVTYPER_EL0(14),
1076 PMU_PMEVTYPER_EL0(15),
1077 PMU_PMEVTYPER_EL0(16),
1078 PMU_PMEVTYPER_EL0(17),
1079 PMU_PMEVTYPER_EL0(18),
1080 PMU_PMEVTYPER_EL0(19),
1081 PMU_PMEVTYPER_EL0(20),
1082 PMU_PMEVTYPER_EL0(21),
1083 PMU_PMEVTYPER_EL0(22),
1084 PMU_PMEVTYPER_EL0(23),
1085 PMU_PMEVTYPER_EL0(24),
1086 PMU_PMEVTYPER_EL0(25),
1087 PMU_PMEVTYPER_EL0(26),
1088 PMU_PMEVTYPER_EL0(27),
1089 PMU_PMEVTYPER_EL0(28),
1090 PMU_PMEVTYPER_EL0(29),
1091 PMU_PMEVTYPER_EL0(30),
1092 /* PMCCFILTR_EL0
1093 * This register resets as unknown in 64bit mode while it resets as zero
1094 * in 32bit mode. Here we choose to reset it as zero for consistency.
1095 */
1096 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1097 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
051ff581 1098
62a89c44
MZ
1099 /* DACR32_EL2 */
1100 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1101 NULL, reset_unknown, DACR32_EL2 },
1102 /* IFSR32_EL2 */
1103 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1104 NULL, reset_unknown, IFSR32_EL2 },
1105 /* FPEXC32_EL2 */
1106 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1107 NULL, reset_val, FPEXC32_EL2, 0x70 },
1108};
1109
bdfb4b38 1110static bool trap_dbgidr(struct kvm_vcpu *vcpu,
3fec037d 1111 struct sys_reg_params *p,
bdfb4b38
MZ
1112 const struct sys_reg_desc *r)
1113{
1114 if (p->is_write) {
1115 return ignore_write(vcpu, p);
1116 } else {
4db8e5ea
SP
1117 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1118 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
28c5dcb2 1119 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
bdfb4b38 1120
2ec5be3d
PF
1121 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1122 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1123 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1124 | (6 << 16) | (el3 << 14) | (el3 << 12));
bdfb4b38
MZ
1125 return true;
1126 }
1127}
1128
1129static bool trap_debug32(struct kvm_vcpu *vcpu,
3fec037d 1130 struct sys_reg_params *p,
bdfb4b38
MZ
1131 const struct sys_reg_desc *r)
1132{
1133 if (p->is_write) {
2ec5be3d 1134 vcpu_cp14(vcpu, r->reg) = p->regval;
bdfb4b38
MZ
1135 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1136 } else {
2ec5be3d 1137 p->regval = vcpu_cp14(vcpu, r->reg);
bdfb4b38
MZ
1138 }
1139
1140 return true;
1141}
1142
84e690bf
AB
1143/* AArch32 debug register mappings
1144 *
1145 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1146 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1147 *
1148 * All control registers and watchpoint value registers are mapped to
1149 * the lower 32 bits of their AArch64 equivalents. We share the trap
1150 * handlers with the above AArch64 code which checks what mode the
1151 * system is in.
1152 */
1153
281243cb
MZ
1154static bool trap_xvr(struct kvm_vcpu *vcpu,
1155 struct sys_reg_params *p,
1156 const struct sys_reg_desc *rd)
84e690bf
AB
1157{
1158 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1159
1160 if (p->is_write) {
1161 u64 val = *dbg_reg;
1162
1163 val &= 0xffffffffUL;
2ec5be3d 1164 val |= p->regval << 32;
84e690bf
AB
1165 *dbg_reg = val;
1166
1167 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1168 } else {
2ec5be3d 1169 p->regval = *dbg_reg >> 32;
84e690bf
AB
1170 }
1171
eef8c85a
AB
1172 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1173
84e690bf
AB
1174 return true;
1175}
1176
1177#define DBG_BCR_BVR_WCR_WVR(n) \
1178 /* DBGBVRn */ \
1179 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1180 /* DBGBCRn */ \
1181 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1182 /* DBGWVRn */ \
1183 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1184 /* DBGWCRn */ \
1185 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1186
1187#define DBGBXVR(n) \
1188 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
bdfb4b38
MZ
1189
1190/*
1191 * Trapped cp14 registers. We generally ignore most of the external
1192 * debug, on the principle that they don't really make sense to a
84e690bf 1193 * guest. Revisit this one day, would this principle change.
bdfb4b38 1194 */
72564016 1195static const struct sys_reg_desc cp14_regs[] = {
bdfb4b38
MZ
1196 /* DBGIDR */
1197 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1198 /* DBGDTRRXext */
1199 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1200
1201 DBG_BCR_BVR_WCR_WVR(0),
1202 /* DBGDSCRint */
1203 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1204 DBG_BCR_BVR_WCR_WVR(1),
1205 /* DBGDCCINT */
1206 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1207 /* DBGDSCRext */
1208 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1209 DBG_BCR_BVR_WCR_WVR(2),
1210 /* DBGDTR[RT]Xint */
1211 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1212 /* DBGDTR[RT]Xext */
1213 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1214 DBG_BCR_BVR_WCR_WVR(3),
1215 DBG_BCR_BVR_WCR_WVR(4),
1216 DBG_BCR_BVR_WCR_WVR(5),
1217 /* DBGWFAR */
1218 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1219 /* DBGOSECCR */
1220 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1221 DBG_BCR_BVR_WCR_WVR(6),
1222 /* DBGVCR */
1223 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1224 DBG_BCR_BVR_WCR_WVR(7),
1225 DBG_BCR_BVR_WCR_WVR(8),
1226 DBG_BCR_BVR_WCR_WVR(9),
1227 DBG_BCR_BVR_WCR_WVR(10),
1228 DBG_BCR_BVR_WCR_WVR(11),
1229 DBG_BCR_BVR_WCR_WVR(12),
1230 DBG_BCR_BVR_WCR_WVR(13),
1231 DBG_BCR_BVR_WCR_WVR(14),
1232 DBG_BCR_BVR_WCR_WVR(15),
1233
1234 /* DBGDRAR (32bit) */
1235 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1236
1237 DBGBXVR(0),
1238 /* DBGOSLAR */
1239 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1240 DBGBXVR(1),
1241 /* DBGOSLSR */
1242 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1243 DBGBXVR(2),
1244 DBGBXVR(3),
1245 /* DBGOSDLR */
1246 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1247 DBGBXVR(4),
1248 /* DBGPRCR */
1249 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1250 DBGBXVR(5),
1251 DBGBXVR(6),
1252 DBGBXVR(7),
1253 DBGBXVR(8),
1254 DBGBXVR(9),
1255 DBGBXVR(10),
1256 DBGBXVR(11),
1257 DBGBXVR(12),
1258 DBGBXVR(13),
1259 DBGBXVR(14),
1260 DBGBXVR(15),
1261
1262 /* DBGDSAR (32bit) */
1263 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1264
1265 /* DBGDEVID2 */
1266 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1267 /* DBGDEVID1 */
1268 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1269 /* DBGDEVID */
1270 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1271 /* DBGCLAIMSET */
1272 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1273 /* DBGCLAIMCLR */
1274 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1275 /* DBGAUTHSTATUS */
1276 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
72564016
MZ
1277};
1278
a9866ba0
MZ
1279/* Trapped cp14 64bit registers */
1280static const struct sys_reg_desc cp14_64_regs[] = {
bdfb4b38
MZ
1281 /* DBGDRAR (64bit) */
1282 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1283
1284 /* DBGDSAR (64bit) */
1285 { Op1( 0), CRm( 2), .access = trap_raz_wi },
a9866ba0
MZ
1286};
1287
051ff581
SZ
1288/* Macro to expand the PMEVCNTRn register */
1289#define PMU_PMEVCNTR(n) \
1290 /* PMEVCNTRn */ \
1291 { Op1(0), CRn(0b1110), \
1292 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1293 access_pmu_evcntr }
1294
9feb21ac
SZ
1295/* Macro to expand the PMEVTYPERn register */
1296#define PMU_PMEVTYPER(n) \
1297 /* PMEVTYPERn */ \
1298 { Op1(0), CRn(0b1110), \
1299 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1300 access_pmu_evtyper }
1301
4d44923b
MZ
1302/*
1303 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1304 * depending on the way they are accessed (as a 32bit or a 64bit
1305 * register).
1306 */
62a89c44 1307static const struct sys_reg_desc cp15_regs[] = {
6d52f35a
AP
1308 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1309
3c1e7165 1310 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
4d44923b
MZ
1311 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1312 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1313 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1314 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1315 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1316 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1317 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1318 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1319 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1320 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1321
62a89c44
MZ
1322 /*
1323 * DC{C,I,CI}SW operations:
1324 */
1325 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1326 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1327 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
4d44923b 1328
7609c125 1329 /* PMU */
ab946834 1330 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
96b0eebc
SZ
1331 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1332 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
76d883c4 1333 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
7a0adc70 1334 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
3965c3ce 1335 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
a86b5505
SZ
1336 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1337 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
051ff581 1338 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
9feb21ac 1339 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
051ff581 1340 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
d692b8ad 1341 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
9db52c78
SZ
1342 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1343 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
76d883c4 1344 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
4d44923b
MZ
1345
1346 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1347 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1348 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1349 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
db7dedd0
CD
1350
1351 /* ICC_SRE */
1352 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
1353
4d44923b 1354 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
051ff581
SZ
1355
1356 /* PMEVCNTRn */
1357 PMU_PMEVCNTR(0),
1358 PMU_PMEVCNTR(1),
1359 PMU_PMEVCNTR(2),
1360 PMU_PMEVCNTR(3),
1361 PMU_PMEVCNTR(4),
1362 PMU_PMEVCNTR(5),
1363 PMU_PMEVCNTR(6),
1364 PMU_PMEVCNTR(7),
1365 PMU_PMEVCNTR(8),
1366 PMU_PMEVCNTR(9),
1367 PMU_PMEVCNTR(10),
1368 PMU_PMEVCNTR(11),
1369 PMU_PMEVCNTR(12),
1370 PMU_PMEVCNTR(13),
1371 PMU_PMEVCNTR(14),
1372 PMU_PMEVCNTR(15),
1373 PMU_PMEVCNTR(16),
1374 PMU_PMEVCNTR(17),
1375 PMU_PMEVCNTR(18),
1376 PMU_PMEVCNTR(19),
1377 PMU_PMEVCNTR(20),
1378 PMU_PMEVCNTR(21),
1379 PMU_PMEVCNTR(22),
1380 PMU_PMEVCNTR(23),
1381 PMU_PMEVCNTR(24),
1382 PMU_PMEVCNTR(25),
1383 PMU_PMEVCNTR(26),
1384 PMU_PMEVCNTR(27),
1385 PMU_PMEVCNTR(28),
1386 PMU_PMEVCNTR(29),
1387 PMU_PMEVCNTR(30),
9feb21ac
SZ
1388 /* PMEVTYPERn */
1389 PMU_PMEVTYPER(0),
1390 PMU_PMEVTYPER(1),
1391 PMU_PMEVTYPER(2),
1392 PMU_PMEVTYPER(3),
1393 PMU_PMEVTYPER(4),
1394 PMU_PMEVTYPER(5),
1395 PMU_PMEVTYPER(6),
1396 PMU_PMEVTYPER(7),
1397 PMU_PMEVTYPER(8),
1398 PMU_PMEVTYPER(9),
1399 PMU_PMEVTYPER(10),
1400 PMU_PMEVTYPER(11),
1401 PMU_PMEVTYPER(12),
1402 PMU_PMEVTYPER(13),
1403 PMU_PMEVTYPER(14),
1404 PMU_PMEVTYPER(15),
1405 PMU_PMEVTYPER(16),
1406 PMU_PMEVTYPER(17),
1407 PMU_PMEVTYPER(18),
1408 PMU_PMEVTYPER(19),
1409 PMU_PMEVTYPER(20),
1410 PMU_PMEVTYPER(21),
1411 PMU_PMEVTYPER(22),
1412 PMU_PMEVTYPER(23),
1413 PMU_PMEVTYPER(24),
1414 PMU_PMEVTYPER(25),
1415 PMU_PMEVTYPER(26),
1416 PMU_PMEVTYPER(27),
1417 PMU_PMEVTYPER(28),
1418 PMU_PMEVTYPER(29),
1419 PMU_PMEVTYPER(30),
1420 /* PMCCFILTR */
1421 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
a9866ba0
MZ
1422};
1423
1424static const struct sys_reg_desc cp15_64_regs[] = {
1425 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
051ff581 1426 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
6d52f35a 1427 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
4d44923b 1428 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
7c8c5e6a
MZ
1429};
1430
1431/* Target specific emulation tables */
1432static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1433
1434void kvm_register_target_sys_reg_table(unsigned int target,
1435 struct kvm_sys_reg_target_table *table)
1436{
1437 target_tables[target] = table;
1438}
1439
1440/* Get specific register table for this target. */
62a89c44
MZ
1441static const struct sys_reg_desc *get_target_table(unsigned target,
1442 bool mode_is_64,
1443 size_t *num)
7c8c5e6a
MZ
1444{
1445 struct kvm_sys_reg_target_table *table;
1446
1447 table = target_tables[target];
62a89c44
MZ
1448 if (mode_is_64) {
1449 *num = table->table64.num;
1450 return table->table64.table;
1451 } else {
1452 *num = table->table32.num;
1453 return table->table32.table;
1454 }
7c8c5e6a
MZ
1455}
1456
623eefa8
MZ
1457#define reg_to_match_value(x) \
1458 ({ \
1459 unsigned long val; \
1460 val = (x)->Op0 << 14; \
1461 val |= (x)->Op1 << 11; \
1462 val |= (x)->CRn << 7; \
1463 val |= (x)->CRm << 3; \
1464 val |= (x)->Op2; \
1465 val; \
1466 })
1467
1468static int match_sys_reg(const void *key, const void *elt)
1469{
1470 const unsigned long pval = (unsigned long)key;
1471 const struct sys_reg_desc *r = elt;
1472
1473 return pval - reg_to_match_value(r);
1474}
1475
7c8c5e6a
MZ
1476static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1477 const struct sys_reg_desc table[],
1478 unsigned int num)
1479{
623eefa8
MZ
1480 unsigned long pval = reg_to_match_value(params);
1481
1482 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
7c8c5e6a
MZ
1483}
1484
62a89c44
MZ
1485int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1486{
1487 kvm_inject_undefined(vcpu);
1488 return 1;
1489}
1490
72564016
MZ
1491/*
1492 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1493 * call the corresponding trap handler.
1494 *
1495 * @params: pointer to the descriptor of the access
1496 * @table: array of trap descriptors
1497 * @num: size of the trap descriptor array
1498 *
1499 * Return 0 if the access has been handled, and -1 if not.
1500 */
1501static int emulate_cp(struct kvm_vcpu *vcpu,
3fec037d 1502 struct sys_reg_params *params,
72564016
MZ
1503 const struct sys_reg_desc *table,
1504 size_t num)
62a89c44 1505{
72564016 1506 const struct sys_reg_desc *r;
62a89c44 1507
72564016
MZ
1508 if (!table)
1509 return -1; /* Not handled */
62a89c44 1510
62a89c44 1511 r = find_reg(params, table, num);
62a89c44 1512
72564016 1513 if (r) {
62a89c44
MZ
1514 /*
1515 * Not having an accessor means that we have
1516 * configured a trap that we don't know how to
1517 * handle. This certainly qualifies as a gross bug
1518 * that should be fixed right away.
1519 */
1520 BUG_ON(!r->access);
1521
1522 if (likely(r->access(vcpu, params, r))) {
1523 /* Skip instruction, since it was emulated */
1524 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
6327f35a
SZ
1525 /* Handled */
1526 return 0;
62a89c44 1527 }
72564016
MZ
1528 }
1529
1530 /* Not handled */
1531 return -1;
1532}
1533
1534static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1535 struct sys_reg_params *params)
1536{
1537 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1538 int cp;
1539
1540 switch(hsr_ec) {
c6d01a94
MR
1541 case ESR_ELx_EC_CP15_32:
1542 case ESR_ELx_EC_CP15_64:
72564016
MZ
1543 cp = 15;
1544 break;
c6d01a94
MR
1545 case ESR_ELx_EC_CP14_MR:
1546 case ESR_ELx_EC_CP14_64:
72564016
MZ
1547 cp = 14;
1548 break;
1549 default:
1550 WARN_ON((cp = -1));
62a89c44
MZ
1551 }
1552
72564016
MZ
1553 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1554 cp, *vcpu_pc(vcpu));
62a89c44
MZ
1555 print_sys_reg_instr(params);
1556 kvm_inject_undefined(vcpu);
1557}
1558
1559/**
7769db90 1560 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
62a89c44
MZ
1561 * @vcpu: The VCPU pointer
1562 * @run: The kvm_run struct
1563 */
72564016
MZ
1564static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1565 const struct sys_reg_desc *global,
1566 size_t nr_global,
1567 const struct sys_reg_desc *target_specific,
1568 size_t nr_specific)
62a89c44
MZ
1569{
1570 struct sys_reg_params params;
1571 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1572 int Rt = (hsr >> 5) & 0xf;
62a89c44
MZ
1573 int Rt2 = (hsr >> 10) & 0xf;
1574
2072d29c
MZ
1575 params.is_aarch32 = true;
1576 params.is_32bit = false;
62a89c44 1577 params.CRm = (hsr >> 1) & 0xf;
62a89c44
MZ
1578 params.is_write = ((hsr & 1) == 0);
1579
1580 params.Op0 = 0;
1581 params.Op1 = (hsr >> 16) & 0xf;
1582 params.Op2 = 0;
1583 params.CRn = 0;
1584
1585 /*
2ec5be3d 1586 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
62a89c44
MZ
1587 * backends between AArch32 and AArch64, we get away with it.
1588 */
1589 if (params.is_write) {
2ec5be3d
PF
1590 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1591 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
62a89c44
MZ
1592 }
1593
72564016
MZ
1594 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1595 goto out;
1596 if (!emulate_cp(vcpu, &params, global, nr_global))
1597 goto out;
1598
1599 unhandled_cp_access(vcpu, &params);
62a89c44 1600
72564016 1601out:
2ec5be3d 1602 /* Split up the value between registers for the read side */
62a89c44 1603 if (!params.is_write) {
2ec5be3d
PF
1604 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1605 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
62a89c44
MZ
1606 }
1607
1608 return 1;
1609}
1610
1611/**
7769db90 1612 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
62a89c44
MZ
1613 * @vcpu: The VCPU pointer
1614 * @run: The kvm_run struct
1615 */
72564016
MZ
1616static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1617 const struct sys_reg_desc *global,
1618 size_t nr_global,
1619 const struct sys_reg_desc *target_specific,
1620 size_t nr_specific)
62a89c44
MZ
1621{
1622 struct sys_reg_params params;
1623 u32 hsr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d 1624 int Rt = (hsr >> 5) & 0xf;
62a89c44 1625
2072d29c
MZ
1626 params.is_aarch32 = true;
1627 params.is_32bit = true;
62a89c44 1628 params.CRm = (hsr >> 1) & 0xf;
2ec5be3d 1629 params.regval = vcpu_get_reg(vcpu, Rt);
62a89c44
MZ
1630 params.is_write = ((hsr & 1) == 0);
1631 params.CRn = (hsr >> 10) & 0xf;
1632 params.Op0 = 0;
1633 params.Op1 = (hsr >> 14) & 0x7;
1634 params.Op2 = (hsr >> 17) & 0x7;
1635
2ec5be3d
PF
1636 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1637 !emulate_cp(vcpu, &params, global, nr_global)) {
1638 if (!params.is_write)
1639 vcpu_set_reg(vcpu, Rt, params.regval);
72564016 1640 return 1;
2ec5be3d 1641 }
72564016
MZ
1642
1643 unhandled_cp_access(vcpu, &params);
62a89c44
MZ
1644 return 1;
1645}
1646
72564016
MZ
1647int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1648{
1649 const struct sys_reg_desc *target_specific;
1650 size_t num;
1651
1652 target_specific = get_target_table(vcpu->arch.target, false, &num);
1653 return kvm_handle_cp_64(vcpu,
a9866ba0 1654 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
72564016
MZ
1655 target_specific, num);
1656}
1657
1658int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1659{
1660 const struct sys_reg_desc *target_specific;
1661 size_t num;
1662
1663 target_specific = get_target_table(vcpu->arch.target, false, &num);
1664 return kvm_handle_cp_32(vcpu,
1665 cp15_regs, ARRAY_SIZE(cp15_regs),
1666 target_specific, num);
1667}
1668
1669int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1670{
1671 return kvm_handle_cp_64(vcpu,
a9866ba0 1672 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
72564016
MZ
1673 NULL, 0);
1674}
1675
1676int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1677{
1678 return kvm_handle_cp_32(vcpu,
1679 cp14_regs, ARRAY_SIZE(cp14_regs),
1680 NULL, 0);
1681}
1682
7c8c5e6a 1683static int emulate_sys_reg(struct kvm_vcpu *vcpu,
3fec037d 1684 struct sys_reg_params *params)
7c8c5e6a
MZ
1685{
1686 size_t num;
1687 const struct sys_reg_desc *table, *r;
1688
62a89c44 1689 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1690
1691 /* Search target-specific then generic table. */
1692 r = find_reg(params, table, num);
1693 if (!r)
1694 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1695
1696 if (likely(r)) {
1697 /*
1698 * Not having an accessor means that we have
1699 * configured a trap that we don't know how to
1700 * handle. This certainly qualifies as a gross bug
1701 * that should be fixed right away.
1702 */
1703 BUG_ON(!r->access);
1704
1705 if (likely(r->access(vcpu, params, r))) {
1706 /* Skip instruction, since it was emulated */
1707 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1708 return 1;
1709 }
1710 /* If access function fails, it should complain. */
1711 } else {
1712 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1713 *vcpu_pc(vcpu));
1714 print_sys_reg_instr(params);
1715 }
1716 kvm_inject_undefined(vcpu);
1717 return 1;
1718}
1719
1720static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1721 const struct sys_reg_desc *table, size_t num)
1722{
1723 unsigned long i;
1724
1725 for (i = 0; i < num; i++)
1726 if (table[i].reset)
1727 table[i].reset(vcpu, &table[i]);
1728}
1729
1730/**
1731 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1732 * @vcpu: The VCPU pointer
1733 * @run: The kvm_run struct
1734 */
1735int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1736{
1737 struct sys_reg_params params;
1738 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2ec5be3d
PF
1739 int Rt = (esr >> 5) & 0x1f;
1740 int ret;
7c8c5e6a 1741
eef8c85a
AB
1742 trace_kvm_handle_sys_reg(esr);
1743
2072d29c
MZ
1744 params.is_aarch32 = false;
1745 params.is_32bit = false;
7c8c5e6a
MZ
1746 params.Op0 = (esr >> 20) & 3;
1747 params.Op1 = (esr >> 14) & 0x7;
1748 params.CRn = (esr >> 10) & 0xf;
1749 params.CRm = (esr >> 1) & 0xf;
1750 params.Op2 = (esr >> 17) & 0x7;
2ec5be3d 1751 params.regval = vcpu_get_reg(vcpu, Rt);
7c8c5e6a
MZ
1752 params.is_write = !(esr & 1);
1753
2ec5be3d
PF
1754 ret = emulate_sys_reg(vcpu, &params);
1755
1756 if (!params.is_write)
1757 vcpu_set_reg(vcpu, Rt, params.regval);
1758 return ret;
7c8c5e6a
MZ
1759}
1760
1761/******************************************************************************
1762 * Userspace API
1763 *****************************************************************************/
1764
1765static bool index_to_params(u64 id, struct sys_reg_params *params)
1766{
1767 switch (id & KVM_REG_SIZE_MASK) {
1768 case KVM_REG_SIZE_U64:
1769 /* Any unused index bits means it's not valid. */
1770 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1771 | KVM_REG_ARM_COPROC_MASK
1772 | KVM_REG_ARM64_SYSREG_OP0_MASK
1773 | KVM_REG_ARM64_SYSREG_OP1_MASK
1774 | KVM_REG_ARM64_SYSREG_CRN_MASK
1775 | KVM_REG_ARM64_SYSREG_CRM_MASK
1776 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1777 return false;
1778 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1779 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1780 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1781 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1782 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1783 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1784 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1785 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1786 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1787 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1788 return true;
1789 default:
1790 return false;
1791 }
1792}
1793
1794/* Decode an index value, and find the sys_reg_desc entry. */
1795static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1796 u64 id)
1797{
1798 size_t num;
1799 const struct sys_reg_desc *table, *r;
1800 struct sys_reg_params params;
1801
1802 /* We only do sys_reg for now. */
1803 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1804 return NULL;
1805
1806 if (!index_to_params(id, &params))
1807 return NULL;
1808
62a89c44 1809 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
1810 r = find_reg(&params, table, num);
1811 if (!r)
1812 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1813
1814 /* Not saved in the sys_reg array? */
1815 if (r && !r->reg)
1816 r = NULL;
1817
1818 return r;
1819}
1820
1821/*
1822 * These are the invariant sys_reg registers: we let the guest see the
1823 * host versions of these, so they're part of the guest state.
1824 *
1825 * A future CPU may provide a mechanism to present different values to
1826 * the guest, or a future kvm may trap them.
1827 */
1828
1829#define FUNCTION_INVARIANT(reg) \
1830 static void get_##reg(struct kvm_vcpu *v, \
1831 const struct sys_reg_desc *r) \
1832 { \
1833 u64 val; \
1834 \
1835 asm volatile("mrs %0, " __stringify(reg) "\n" \
1836 : "=r" (val)); \
1837 ((struct sys_reg_desc *)r)->val = val; \
1838 }
1839
1840FUNCTION_INVARIANT(midr_el1)
1841FUNCTION_INVARIANT(ctr_el0)
1842FUNCTION_INVARIANT(revidr_el1)
1843FUNCTION_INVARIANT(id_pfr0_el1)
1844FUNCTION_INVARIANT(id_pfr1_el1)
1845FUNCTION_INVARIANT(id_dfr0_el1)
1846FUNCTION_INVARIANT(id_afr0_el1)
1847FUNCTION_INVARIANT(id_mmfr0_el1)
1848FUNCTION_INVARIANT(id_mmfr1_el1)
1849FUNCTION_INVARIANT(id_mmfr2_el1)
1850FUNCTION_INVARIANT(id_mmfr3_el1)
1851FUNCTION_INVARIANT(id_isar0_el1)
1852FUNCTION_INVARIANT(id_isar1_el1)
1853FUNCTION_INVARIANT(id_isar2_el1)
1854FUNCTION_INVARIANT(id_isar3_el1)
1855FUNCTION_INVARIANT(id_isar4_el1)
1856FUNCTION_INVARIANT(id_isar5_el1)
1857FUNCTION_INVARIANT(clidr_el1)
1858FUNCTION_INVARIANT(aidr_el1)
1859
1860/* ->val is filled in by kvm_sys_reg_table_init() */
1861static struct sys_reg_desc invariant_sys_regs[] = {
1862 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1863 NULL, get_midr_el1 },
1864 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1865 NULL, get_revidr_el1 },
1866 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1867 NULL, get_id_pfr0_el1 },
1868 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1869 NULL, get_id_pfr1_el1 },
1870 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1871 NULL, get_id_dfr0_el1 },
1872 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1873 NULL, get_id_afr0_el1 },
1874 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1875 NULL, get_id_mmfr0_el1 },
1876 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1877 NULL, get_id_mmfr1_el1 },
1878 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1879 NULL, get_id_mmfr2_el1 },
1880 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1881 NULL, get_id_mmfr3_el1 },
1882 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1883 NULL, get_id_isar0_el1 },
1884 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1885 NULL, get_id_isar1_el1 },
1886 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1887 NULL, get_id_isar2_el1 },
1888 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1889 NULL, get_id_isar3_el1 },
1890 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1891 NULL, get_id_isar4_el1 },
1892 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1893 NULL, get_id_isar5_el1 },
1894 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1895 NULL, get_clidr_el1 },
1896 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1897 NULL, get_aidr_el1 },
1898 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1899 NULL, get_ctr_el0 },
1900};
1901
26c99af1 1902static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
7c8c5e6a 1903{
7c8c5e6a
MZ
1904 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1905 return -EFAULT;
1906 return 0;
1907}
1908
26c99af1 1909static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
7c8c5e6a 1910{
7c8c5e6a
MZ
1911 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1912 return -EFAULT;
1913 return 0;
1914}
1915
1916static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1917{
1918 struct sys_reg_params params;
1919 const struct sys_reg_desc *r;
1920
1921 if (!index_to_params(id, &params))
1922 return -ENOENT;
1923
1924 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1925 if (!r)
1926 return -ENOENT;
1927
1928 return reg_to_user(uaddr, &r->val, id);
1929}
1930
1931static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1932{
1933 struct sys_reg_params params;
1934 const struct sys_reg_desc *r;
1935 int err;
1936 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1937
1938 if (!index_to_params(id, &params))
1939 return -ENOENT;
1940 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1941 if (!r)
1942 return -ENOENT;
1943
1944 err = reg_from_user(&val, uaddr, id);
1945 if (err)
1946 return err;
1947
1948 /* This is what we mean by invariant: you can't change it. */
1949 if (r->val != val)
1950 return -EINVAL;
1951
1952 return 0;
1953}
1954
1955static bool is_valid_cache(u32 val)
1956{
1957 u32 level, ctype;
1958
1959 if (val >= CSSELR_MAX)
18d45766 1960 return false;
7c8c5e6a
MZ
1961
1962 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1963 level = (val >> 1);
1964 ctype = (cache_levels >> (level * 3)) & 7;
1965
1966 switch (ctype) {
1967 case 0: /* No cache */
1968 return false;
1969 case 1: /* Instruction cache only */
1970 return (val & 1);
1971 case 2: /* Data cache only */
1972 case 4: /* Unified cache */
1973 return !(val & 1);
1974 case 3: /* Separate instruction and data caches */
1975 return true;
1976 default: /* Reserved: we can't know instruction or data. */
1977 return false;
1978 }
1979}
1980
1981static int demux_c15_get(u64 id, void __user *uaddr)
1982{
1983 u32 val;
1984 u32 __user *uval = uaddr;
1985
1986 /* Fail if we have unknown bits set. */
1987 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1988 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1989 return -ENOENT;
1990
1991 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1992 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1993 if (KVM_REG_SIZE(id) != 4)
1994 return -ENOENT;
1995 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1996 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1997 if (!is_valid_cache(val))
1998 return -ENOENT;
1999
2000 return put_user(get_ccsidr(val), uval);
2001 default:
2002 return -ENOENT;
2003 }
2004}
2005
2006static int demux_c15_set(u64 id, void __user *uaddr)
2007{
2008 u32 val, newval;
2009 u32 __user *uval = uaddr;
2010
2011 /* Fail if we have unknown bits set. */
2012 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2013 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2014 return -ENOENT;
2015
2016 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2017 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2018 if (KVM_REG_SIZE(id) != 4)
2019 return -ENOENT;
2020 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2021 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2022 if (!is_valid_cache(val))
2023 return -ENOENT;
2024
2025 if (get_user(newval, uval))
2026 return -EFAULT;
2027
2028 /* This is also invariant: you can't change it. */
2029 if (newval != get_ccsidr(val))
2030 return -EINVAL;
2031 return 0;
2032 default:
2033 return -ENOENT;
2034 }
2035}
2036
2037int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2038{
2039 const struct sys_reg_desc *r;
2040 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2041
2042 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2043 return demux_c15_get(reg->id, uaddr);
2044
2045 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2046 return -ENOENT;
2047
2048 r = index_to_sys_reg_desc(vcpu, reg->id);
2049 if (!r)
2050 return get_invariant_sys_reg(reg->id, uaddr);
2051
84e690bf
AB
2052 if (r->get_user)
2053 return (r->get_user)(vcpu, r, reg, uaddr);
2054
7c8c5e6a
MZ
2055 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2056}
2057
2058int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2059{
2060 const struct sys_reg_desc *r;
2061 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2062
2063 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2064 return demux_c15_set(reg->id, uaddr);
2065
2066 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2067 return -ENOENT;
2068
2069 r = index_to_sys_reg_desc(vcpu, reg->id);
2070 if (!r)
2071 return set_invariant_sys_reg(reg->id, uaddr);
2072
84e690bf
AB
2073 if (r->set_user)
2074 return (r->set_user)(vcpu, r, reg, uaddr);
2075
7c8c5e6a
MZ
2076 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2077}
2078
2079static unsigned int num_demux_regs(void)
2080{
2081 unsigned int i, count = 0;
2082
2083 for (i = 0; i < CSSELR_MAX; i++)
2084 if (is_valid_cache(i))
2085 count++;
2086
2087 return count;
2088}
2089
2090static int write_demux_regids(u64 __user *uindices)
2091{
efd48cea 2092 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
7c8c5e6a
MZ
2093 unsigned int i;
2094
2095 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2096 for (i = 0; i < CSSELR_MAX; i++) {
2097 if (!is_valid_cache(i))
2098 continue;
2099 if (put_user(val | i, uindices))
2100 return -EFAULT;
2101 uindices++;
2102 }
2103 return 0;
2104}
2105
2106static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2107{
2108 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2109 KVM_REG_ARM64_SYSREG |
2110 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2111 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2112 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2113 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2114 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2115}
2116
2117static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2118{
2119 if (!*uind)
2120 return true;
2121
2122 if (put_user(sys_reg_to_index(reg), *uind))
2123 return false;
2124
2125 (*uind)++;
2126 return true;
2127}
2128
2129/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2130static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2131{
2132 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2133 unsigned int total = 0;
2134 size_t num;
2135
2136 /* We check for duplicates here, to allow arch-specific overrides. */
62a89c44 2137 i1 = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2138 end1 = i1 + num;
2139 i2 = sys_reg_descs;
2140 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2141
2142 BUG_ON(i1 == end1 || i2 == end2);
2143
2144 /* Walk carefully, as both tables may refer to the same register. */
2145 while (i1 || i2) {
2146 int cmp = cmp_sys_reg(i1, i2);
2147 /* target-specific overrides generic entry. */
2148 if (cmp <= 0) {
2149 /* Ignore registers we trap but don't save. */
2150 if (i1->reg) {
2151 if (!copy_reg_to_user(i1, &uind))
2152 return -EFAULT;
2153 total++;
2154 }
2155 } else {
2156 /* Ignore registers we trap but don't save. */
2157 if (i2->reg) {
2158 if (!copy_reg_to_user(i2, &uind))
2159 return -EFAULT;
2160 total++;
2161 }
2162 }
2163
2164 if (cmp <= 0 && ++i1 == end1)
2165 i1 = NULL;
2166 if (cmp >= 0 && ++i2 == end2)
2167 i2 = NULL;
2168 }
2169 return total;
2170}
2171
2172unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2173{
2174 return ARRAY_SIZE(invariant_sys_regs)
2175 + num_demux_regs()
2176 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2177}
2178
2179int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2180{
2181 unsigned int i;
2182 int err;
2183
2184 /* Then give them all the invariant registers' indices. */
2185 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2186 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2187 return -EFAULT;
2188 uindices++;
2189 }
2190
2191 err = walk_sys_regs(vcpu, uindices);
2192 if (err < 0)
2193 return err;
2194 uindices += err;
2195
2196 return write_demux_regids(uindices);
2197}
2198
e6a95517
MZ
2199static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2200{
2201 unsigned int i;
2202
2203 for (i = 1; i < n; i++) {
2204 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2205 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2206 return 1;
2207 }
2208 }
2209
2210 return 0;
2211}
2212
7c8c5e6a
MZ
2213void kvm_sys_reg_table_init(void)
2214{
2215 unsigned int i;
2216 struct sys_reg_desc clidr;
2217
2218 /* Make sure tables are unique and in order. */
e6a95517
MZ
2219 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2220 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2221 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2222 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2223 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2224 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
7c8c5e6a
MZ
2225
2226 /* We abuse the reset function to overwrite the table itself. */
2227 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2228 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2229
2230 /*
2231 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2232 *
2233 * If software reads the Cache Type fields from Ctype1
2234 * upwards, once it has seen a value of 0b000, no caches
2235 * exist at further-out levels of the hierarchy. So, for
2236 * example, if Ctype3 is the first Cache Type field with a
2237 * value of 0b000, the values of Ctype4 to Ctype7 must be
2238 * ignored.
2239 */
2240 get_clidr_el1(NULL, &clidr); /* Ugly... */
2241 cache_levels = clidr.val;
2242 for (i = 0; i < 7; i++)
2243 if (((cache_levels >> (i*3)) & 7) == 0)
2244 break;
2245 /* Clear all higher bits. */
2246 cache_levels &= (1 << (i*3))-1;
2247}
2248
2249/**
2250 * kvm_reset_sys_regs - sets system registers to reset value
2251 * @vcpu: The VCPU pointer
2252 *
2253 * This function finds the right table above and sets the registers on the
2254 * virtual CPU struct to their architecturally defined reset values.
2255 */
2256void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2257{
2258 size_t num;
2259 const struct sys_reg_desc *table;
2260
2261 /* Catch someone adding a register without putting in reset entry. */
2262 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2263
2264 /* Generic chip reset first (so target could override). */
2265 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2266
62a89c44 2267 table = get_target_table(vcpu->arch.target, true, &num);
7c8c5e6a
MZ
2268 reset_sys_reg_descs(vcpu, table, num);
2269
2270 for (num = 1; num < NR_SYS_REGS; num++)
2271 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2272 panic("Didn't reset vcpu_sys_reg(%zi)", num);
2273}
This page took 0.230059 seconds and 5 git commands to generate.