i386: move common parts of smp into their own file
[deliverable/linux.git] / arch / i386 / mach-voyager / voyager_smp.c
CommitLineData
1da177e4
LT
1/* -*- mode: c; c-basic-offset: 8 -*- */
2
3/* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * linux/arch/i386/kernel/voyager_smp.c
8 *
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
11 */
153f8057 12#include <linux/module.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/mc146818rtc.h>
17#include <linux/cache.h>
18#include <linux/interrupt.h>
1da177e4
LT
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/bootmem.h>
22#include <linux/completion.h>
23#include <asm/desc.h>
24#include <asm/voyager.h>
25#include <asm/vic.h>
26#include <asm/mtrr.h>
27#include <asm/pgalloc.h>
28#include <asm/tlbflush.h>
29#include <asm/arch_hooks.h>
62111195 30#include <asm/pda.h>
1da177e4 31
1da177e4
LT
32/* TLB state -- visible externally, indexed physically */
33DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
34
35/* CPU IRQ affinity -- set to all ones initially */
36static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
37
38/* per CPU data structure (for /proc/cpuinfo et al), visible externally
39 * indexed physically */
40struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
153f8057 41EXPORT_SYMBOL(cpu_data);
1da177e4
LT
42
43/* physical ID of the CPU used to boot the system */
44unsigned char boot_cpu_id;
45
46/* The memory line addresses for the Quad CPIs */
47struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48
49/* The masks for the Extended VIC processors, filled in by cat_init */
50__u32 voyager_extended_vic_processors = 0;
51
52/* Masks for the extended Quad processors which cannot be VIC booted */
53__u32 voyager_allowed_boot_processors = 0;
54
55/* The mask for the Quad Processors (both extended and non-extended) */
56__u32 voyager_quad_processors = 0;
57
58/* Total count of live CPUs, used in process.c to display
59 * the CPU information and in irq.c for the per CPU irq
60 * activity count. Finally exported by i386_ksyms.c */
61static int voyager_extended_cpus = 1;
62
63/* Have we found an SMP box - used by time.c to do the profiling
64 interrupt for timeslicing; do not set to 1 until the per CPU timer
65 interrupt is active */
66int smp_found_config = 0;
67
68/* Used for the invalidate map that's also checked in the spinlock */
69static volatile unsigned long smp_invalidate_needed;
70
71/* Bitmask of currently online CPUs - used by setup.c for
72 /proc/cpuinfo, visible externally but still physical */
73cpumask_t cpu_online_map = CPU_MASK_NONE;
153f8057 74EXPORT_SYMBOL(cpu_online_map);
1da177e4
LT
75
76/* Bitmask of CPUs present in the system - exported by i386_syms.c, used
77 * by scheduler but indexed physically */
78cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
79
80
81/* The internal functions */
82static void send_CPI(__u32 cpuset, __u8 cpi);
83static void ack_CPI(__u8 cpi);
84static int ack_QIC_CPI(__u8 cpi);
85static void ack_special_QIC_CPI(__u8 cpi);
86static void ack_VIC_CPI(__u8 cpi);
87static void send_CPI_allbutself(__u8 cpi);
c771746e
JB
88static void mask_vic_irq(unsigned int irq);
89static void unmask_vic_irq(unsigned int irq);
1da177e4
LT
90static unsigned int startup_vic_irq(unsigned int irq);
91static void enable_local_vic_irq(unsigned int irq);
92static void disable_local_vic_irq(unsigned int irq);
93static void before_handle_vic_irq(unsigned int irq);
94static void after_handle_vic_irq(unsigned int irq);
95static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
96static void ack_vic_irq(unsigned int irq);
97static void vic_enable_cpi(void);
98static void do_boot_cpu(__u8 cpuid);
99static void do_quad_bootstrap(void);
1da177e4
LT
100
101int hard_smp_processor_id(void);
2654c08c 102int safe_smp_processor_id(void);
1da177e4
LT
103
104/* Inline functions */
105static inline void
106send_one_QIC_CPI(__u8 cpu, __u8 cpi)
107{
108 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
109 (smp_processor_id() << 16) + cpi;
110}
111
112static inline void
113send_QIC_CPI(__u32 cpuset, __u8 cpi)
114{
115 int cpu;
116
117 for_each_online_cpu(cpu) {
118 if(cpuset & (1<<cpu)) {
119#ifdef VOYAGER_DEBUG
120 if(!cpu_isset(cpu, cpu_online_map))
121 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
122#endif
123 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
124 }
125 }
126}
127
6431e6a2 128static inline void
7d12e780 129wrapper_smp_local_timer_interrupt(void)
6431e6a2
DH
130{
131 irq_enter();
7d12e780 132 smp_local_timer_interrupt();
6431e6a2
DH
133 irq_exit();
134}
135
1da177e4
LT
136static inline void
137send_one_CPI(__u8 cpu, __u8 cpi)
138{
139 if(voyager_quad_processors & (1<<cpu))
140 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
141 else
142 send_CPI(1<<cpu, cpi);
143}
144
145static inline void
146send_CPI_allbutself(__u8 cpi)
147{
148 __u8 cpu = smp_processor_id();
149 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
150 send_CPI(mask, cpi);
151}
152
153static inline int
154is_cpu_quad(void)
155{
156 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
157 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
158}
159
160static inline int
161is_cpu_extended(void)
162{
163 __u8 cpu = hard_smp_processor_id();
164
165 return(voyager_extended_vic_processors & (1<<cpu));
166}
167
168static inline int
169is_cpu_vic_boot(void)
170{
171 __u8 cpu = hard_smp_processor_id();
172
173 return(voyager_extended_vic_processors
174 & voyager_allowed_boot_processors & (1<<cpu));
175}
176
177
178static inline void
179ack_CPI(__u8 cpi)
180{
181 switch(cpi) {
182 case VIC_CPU_BOOT_CPI:
183 if(is_cpu_quad() && !is_cpu_vic_boot())
184 ack_QIC_CPI(cpi);
185 else
186 ack_VIC_CPI(cpi);
187 break;
188 case VIC_SYS_INT:
189 case VIC_CMN_INT:
190 /* These are slightly strange. Even on the Quad card,
191 * They are vectored as VIC CPIs */
192 if(is_cpu_quad())
193 ack_special_QIC_CPI(cpi);
194 else
195 ack_VIC_CPI(cpi);
196 break;
197 default:
198 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
199 break;
200 }
201}
202
203/* local variables */
204
205/* The VIC IRQ descriptors -- these look almost identical to the
206 * 8259 IRQs except that masks and things must be kept per processor
207 */
c771746e
JB
208static struct irq_chip vic_chip = {
209 .name = "VIC",
210 .startup = startup_vic_irq,
211 .mask = mask_vic_irq,
212 .unmask = unmask_vic_irq,
213 .set_affinity = set_vic_irq_affinity,
1da177e4
LT
214};
215
216/* used to count up as CPUs are brought on line (starts at 0) */
217static int cpucount = 0;
218
219/* steal a page from the bottom of memory for the trampoline and
220 * squirrel its address away here. This will be in kernel virtual
221 * space */
222static __u32 trampoline_base;
223
224/* The per cpu profile stuff - used in smp_local_timer_interrupt */
225static DEFINE_PER_CPU(int, prof_multiplier) = 1;
226static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
227static DEFINE_PER_CPU(int, prof_counter) = 1;
228
229/* the map used to check if a CPU has booted */
230static __u32 cpu_booted_map;
231
232/* the synchronize flag used to hold all secondary CPUs spinning in
233 * a tight loop until the boot sequence is ready for them */
234static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
235
236/* This is for the new dynamic CPU boot code */
237cpumask_t cpu_callin_map = CPU_MASK_NONE;
238cpumask_t cpu_callout_map = CPU_MASK_NONE;
153f8057 239EXPORT_SYMBOL(cpu_callout_map);
7a8ef1cb 240cpumask_t cpu_possible_map = CPU_MASK_NONE;
4ad8d383 241EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
242
243/* The per processor IRQ masks (these are usually kept in sync) */
244static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
245
246/* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
247static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
248
249/* Lock for enable/disable of VIC interrupts */
250static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
251
252/* The boot processor is correctly set up in PC mode when it
253 * comes up, but the secondaries need their master/slave 8259
254 * pairs initializing correctly */
255
256/* Interrupt counters (per cpu) and total - used to try to
257 * even up the interrupt handling routines */
258static long vic_intr_total = 0;
259static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
260static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
261
262/* Since we can only use CPI0, we fake all the other CPIs */
263static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
264
265/* debugging routine to read the isr of the cpu's pic */
266static inline __u16
267vic_read_isr(void)
268{
269 __u16 isr;
270
271 outb(0x0b, 0xa0);
272 isr = inb(0xa0) << 8;
273 outb(0x0b, 0x20);
274 isr |= inb(0x20);
275
276 return isr;
277}
278
279static __init void
280qic_setup(void)
281{
282 if(!is_cpu_quad()) {
283 /* not a quad, no setup */
284 return;
285 }
286 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
287 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
288
289 if(is_cpu_extended()) {
290 /* the QIC duplicate of the VIC base register */
291 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
292 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
293
294 /* FIXME: should set up the QIC timer and memory parity
295 * error vectors here */
296 }
297}
298
299static __init void
300vic_setup_pic(void)
301{
302 outb(1, VIC_REDIRECT_REGISTER_1);
303 /* clear the claim registers for dynamic routing */
304 outb(0, VIC_CLAIM_REGISTER_0);
305 outb(0, VIC_CLAIM_REGISTER_1);
306
307 outb(0, VIC_PRIORITY_REGISTER);
308 /* Set the Primary and Secondary Microchannel vector
309 * bases to be the same as the ordinary interrupts
310 *
311 * FIXME: This would be more efficient using separate
312 * vectors. */
313 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
314 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
315 /* Now initiallise the master PIC belonging to this CPU by
316 * sending the four ICWs */
317
318 /* ICW1: level triggered, ICW4 needed */
319 outb(0x19, 0x20);
320
321 /* ICW2: vector base */
322 outb(FIRST_EXTERNAL_VECTOR, 0x21);
323
324 /* ICW3: slave at line 2 */
325 outb(0x04, 0x21);
326
327 /* ICW4: 8086 mode */
328 outb(0x01, 0x21);
329
330 /* now the same for the slave PIC */
331
332 /* ICW1: level trigger, ICW4 needed */
333 outb(0x19, 0xA0);
334
335 /* ICW2: slave vector base */
336 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
337
338 /* ICW3: slave ID */
339 outb(0x02, 0xA1);
340
341 /* ICW4: 8086 mode */
342 outb(0x01, 0xA1);
343}
344
345static void
346do_quad_bootstrap(void)
347{
348 if(is_cpu_quad() && is_cpu_vic_boot()) {
349 int i;
350 unsigned long flags;
351 __u8 cpuid = hard_smp_processor_id();
352
353 local_irq_save(flags);
354
355 for(i = 0; i<4; i++) {
356 /* FIXME: this would be >>3 &0x7 on the 32 way */
357 if(((cpuid >> 2) & 0x03) == i)
358 /* don't lower our own mask! */
359 continue;
360
361 /* masquerade as local Quad CPU */
362 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
363 /* enable the startup CPI */
364 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
365 /* restore cpu id */
366 outb(0, QIC_PROCESSOR_ID);
367 }
368 local_irq_restore(flags);
369 }
370}
371
372
373/* Set up all the basic stuff: read the SMP config and make all the
374 * SMP information reflect only the boot cpu. All others will be
375 * brought on-line later. */
376void __init
377find_smp_config(void)
378{
379 int i;
380
381 boot_cpu_id = hard_smp_processor_id();
382
383 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
384
385 /* initialize the CPU structures (moved from smp_boot_cpus) */
386 for(i=0; i<NR_CPUS; i++) {
387 cpu_irq_affinity[i] = ~0;
388 }
389 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
390
391 /* The boot CPU must be extended */
392 voyager_extended_vic_processors = 1<<boot_cpu_id;
393 /* initially, all of the first 8 cpu's can boot */
394 voyager_allowed_boot_processors = 0xff;
395 /* set up everything for just this CPU, we can alter
396 * this as we start the other CPUs later */
397 /* now get the CPU disposition from the extended CMOS */
398 cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
399 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
400 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
401 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
f68a106f 402 cpu_possible_map = phys_cpu_present_map;
1da177e4
LT
403 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
404 /* Here we set up the VIC to enable SMP */
405 /* enable the CPIs by writing the base vector to their register */
406 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
407 outb(1, VIC_REDIRECT_REGISTER_1);
408 /* set the claim registers for static routing --- Boot CPU gets
409 * all interrupts untill all other CPUs started */
410 outb(0xff, VIC_CLAIM_REGISTER_0);
411 outb(0xff, VIC_CLAIM_REGISTER_1);
412 /* Set the Primary and Secondary Microchannel vector
413 * bases to be the same as the ordinary interrupts
414 *
415 * FIXME: This would be more efficient using separate
416 * vectors. */
417 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
418 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
419
420 /* Finally tell the firmware that we're driving */
421 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
422 VOYAGER_SUS_IN_CONTROL_PORT);
423
424 current_thread_info()->cpu = boot_cpu_id;
62111195 425 write_pda(cpu_number, boot_cpu_id);
1da177e4
LT
426}
427
428/*
429 * The bootstrap kernel entry code has set these up. Save them
430 * for a given CPU, id is physical */
431void __init
432smp_store_cpu_info(int id)
433{
434 struct cpuinfo_x86 *c=&cpu_data[id];
435
436 *c = boot_cpu_data;
437
438 identify_cpu(c);
439}
440
441/* set up the trampoline and return the physical address of the code */
442static __u32 __init
443setup_trampoline(void)
444{
445 /* these two are global symbols in trampoline.S */
446 extern __u8 trampoline_end[];
447 extern __u8 trampoline_data[];
448
449 memcpy((__u8 *)trampoline_base, trampoline_data,
450 trampoline_end - trampoline_data);
451 return virt_to_phys((__u8 *)trampoline_base);
452}
453
454/* Routine initially called when a non-boot CPU is brought online */
455static void __init
456start_secondary(void *unused)
457{
458 __u8 cpuid = hard_smp_processor_id();
459 /* external functions not defined in the headers */
460 extern void calibrate_delay(void);
461
62111195 462 secondary_cpu_init();
1da177e4
LT
463
464 /* OK, we're in the routine */
465 ack_CPI(VIC_CPU_BOOT_CPI);
466
467 /* setup the 8259 master slave pair belonging to this CPU ---
468 * we won't actually receive any until the boot CPU
469 * relinquishes it's static routing mask */
470 vic_setup_pic();
471
472 qic_setup();
473
474 if(is_cpu_quad() && !is_cpu_vic_boot()) {
475 /* clear the boot CPI */
476 __u8 dummy;
477
478 dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
479 printk("read dummy %d\n", dummy);
480 }
481
482 /* lower the mask to receive CPIs */
483 vic_enable_cpi();
484
485 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
486
487 /* enable interrupts */
488 local_irq_enable();
489
490 /* get our bogomips */
491 calibrate_delay();
492
493 /* save our processor parameters */
494 smp_store_cpu_info(cpuid);
495
496 /* if we're a quad, we may need to bootstrap other CPUs */
497 do_quad_bootstrap();
498
499 /* FIXME: this is rather a poor hack to prevent the CPU
500 * activating softirqs while it's supposed to be waiting for
501 * permission to proceed. Without this, the new per CPU stuff
502 * in the softirqs will fail */
503 local_irq_disable();
504 cpu_set(cpuid, cpu_callin_map);
505
506 /* signal that we're done */
507 cpu_booted_map = 1;
508
509 while (!cpu_isset(cpuid, smp_commenced_mask))
510 rep_nop();
511 local_irq_enable();
512
513 local_flush_tlb();
514
515 cpu_set(cpuid, cpu_online_map);
516 wmb();
517 cpu_idle();
518}
519
520
521/* Routine to kick start the given CPU and wait for it to report ready
522 * (or timeout in startup). When this routine returns, the requested
523 * CPU is either fully running and configured or known to be dead.
524 *
525 * We call this routine sequentially 1 CPU at a time, so no need for
526 * locking */
527
528static void __init
529do_boot_cpu(__u8 cpu)
530{
531 struct task_struct *idle;
532 int timeout;
533 unsigned long flags;
534 int quad_boot = (1<<cpu) & voyager_quad_processors
535 & ~( voyager_extended_vic_processors
536 & voyager_allowed_boot_processors);
537
1da177e4
LT
538 /* This is an area in head.S which was used to set up the
539 * initial kernel stack. We need to alter this to give the
540 * booting CPU a new stack (taken from its idle process) */
541 extern struct {
542 __u8 *esp;
543 unsigned short ss;
544 } stack_start;
545 /* This is the format of the CPI IDT gate (in real mode) which
546 * we're hijacking to boot the CPU */
547 union IDTFormat {
548 struct seg {
549 __u16 Offset;
550 __u16 Segment;
551 } idt;
552 __u32 val;
553 } hijack_source;
554
555 __u32 *hijack_vector;
556 __u32 start_phys_address = setup_trampoline();
557
558 /* There's a clever trick to this: The linux trampoline is
559 * compiled to begin at absolute location zero, so make the
560 * address zero but have the data segment selector compensate
561 * for the actual address */
562 hijack_source.idt.Offset = start_phys_address & 0x000F;
563 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
564
565 cpucount++;
d6444514
JB
566 alternatives_smp_switch(1);
567
1da177e4
LT
568 idle = fork_idle(cpu);
569 if(IS_ERR(idle))
570 panic("failed fork for CPU%d", cpu);
571 idle->thread.eip = (unsigned long) start_secondary;
572 /* init_tasks (in sched.c) is indexed logically */
573 stack_start.esp = (void *) idle->thread.esp;
574
ae1ee11b 575 init_gdt(cpu, idle);
1da177e4
LT
576 irq_ctx_init(cpu);
577
578 /* Note: Don't modify initial ss override */
579 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
580 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
581 hijack_source.idt.Offset, stack_start.esp));
9d0e59a3
EB
582
583 /* init lowmem identity mapping */
584 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
585 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
586 flush_tlb_all();
1da177e4
LT
587
588 if(quad_boot) {
589 printk("CPU %d: non extended Quad boot\n", cpu);
590 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
591 *hijack_vector = hijack_source.val;
592 } else {
593 printk("CPU%d: extended VIC boot\n", cpu);
594 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
595 *hijack_vector = hijack_source.val;
596 /* VIC errata, may also receive interrupt at this address */
597 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
598 *hijack_vector = hijack_source.val;
599 }
600 /* All non-boot CPUs start with interrupts fully masked. Need
601 * to lower the mask of the CPI we're about to send. We do
602 * this in the VIC by masquerading as the processor we're
603 * about to boot and lowering its interrupt mask */
604 local_irq_save(flags);
605 if(quad_boot) {
606 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
607 } else {
608 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
609 /* here we're altering registers belonging to `cpu' */
610
611 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
612 /* now go back to our original identity */
613 outb(boot_cpu_id, VIC_PROCESSOR_ID);
614
615 /* and boot the CPU */
616
617 send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
618 }
619 cpu_booted_map = 0;
620 local_irq_restore(flags);
621
622 /* now wait for it to become ready (or timeout) */
623 for(timeout = 0; timeout < 50000; timeout++) {
624 if(cpu_booted_map)
625 break;
626 udelay(100);
627 }
628 /* reset the page table */
9d0e59a3 629 zap_low_mappings();
1da177e4
LT
630
631 if (cpu_booted_map) {
632 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
633 cpu, smp_processor_id()));
634
635 printk("CPU%d: ", cpu);
636 print_cpu_info(&cpu_data[cpu]);
637 wmb();
638 cpu_set(cpu, cpu_callout_map);
3c101cf0 639 cpu_set(cpu, cpu_present_map);
1da177e4
LT
640 }
641 else {
642 printk("CPU%d FAILED TO BOOT: ", cpu);
643 if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
644 printk("Stuck.\n");
645 else
646 printk("Not responding.\n");
647
648 cpucount--;
649 }
650}
651
652void __init
653smp_boot_cpus(void)
654{
655 int i;
656
657 /* CAT BUS initialisation must be done after the memory */
658 /* FIXME: The L4 has a catbus too, it just needs to be
659 * accessed in a totally different way */
660 if(voyager_level == 5) {
661 voyager_cat_init();
662
663 /* now that the cat has probed the Voyager System Bus, sanity
664 * check the cpu map */
665 if( ((voyager_quad_processors | voyager_extended_vic_processors)
666 & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
667 /* should panic */
668 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
669 }
670 } else if(voyager_level == 4)
671 voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
672
673 /* this sets up the idle task to run on the current cpu */
674 voyager_extended_cpus = 1;
675 /* Remove the global_irq_holder setting, it triggers a BUG() on
676 * schedule at the moment */
677 //global_irq_holder = boot_cpu_id;
678
679 /* FIXME: Need to do something about this but currently only works
680 * on CPUs with a tsc which none of mine have.
681 smp_tune_scheduling();
682 */
683 smp_store_cpu_info(boot_cpu_id);
684 printk("CPU%d: ", boot_cpu_id);
685 print_cpu_info(&cpu_data[boot_cpu_id]);
686
687 if(is_cpu_quad()) {
688 /* booting on a Quad CPU */
689 printk("VOYAGER SMP: Boot CPU is Quad\n");
690 qic_setup();
691 do_quad_bootstrap();
692 }
693
694 /* enable our own CPIs */
695 vic_enable_cpi();
696
697 cpu_set(boot_cpu_id, cpu_online_map);
698 cpu_set(boot_cpu_id, cpu_callout_map);
699
700 /* loop over all the extended VIC CPUs and boot them. The
701 * Quad CPUs must be bootstrapped by their extended VIC cpu */
702 for(i = 0; i < NR_CPUS; i++) {
703 if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
704 continue;
705 do_boot_cpu(i);
706 /* This udelay seems to be needed for the Quad boots
707 * don't remove unless you know what you're doing */
708 udelay(1000);
709 }
710 /* we could compute the total bogomips here, but why bother?,
711 * Code added from smpboot.c */
712 {
713 unsigned long bogosum = 0;
714 for (i = 0; i < NR_CPUS; i++)
715 if (cpu_isset(i, cpu_online_map))
716 bogosum += cpu_data[i].loops_per_jiffy;
717 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
718 cpucount+1,
719 bogosum/(500000/HZ),
720 (bogosum/(5000/HZ))%100);
721 }
722 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
723 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
724 /* that's it, switch to symmetric mode */
725 outb(0, VIC_PRIORITY_REGISTER);
726 outb(0, VIC_CLAIM_REGISTER_0);
727 outb(0, VIC_CLAIM_REGISTER_1);
728
729 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
730}
731
732/* Reload the secondary CPUs task structure (this function does not
733 * return ) */
734void __init
735initialize_secondary(void)
736{
737#if 0
738 // AC kernels only
739 set_current(hard_get_current());
740#endif
741
742 /*
743 * We don't actually need to load the full TSS,
744 * basically just the stack pointer and the eip.
745 */
746
747 asm volatile(
748 "movl %0,%%esp\n\t"
749 "jmp *%1"
750 :
751 :"r" (current->thread.esp),"r" (current->thread.eip));
752}
753
754/* handle a Voyager SYS_INT -- If we don't, the base board will
755 * panic the system.
756 *
757 * System interrupts occur because some problem was detected on the
758 * various busses. To find out what you have to probe all the
759 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
760fastcall void
761smp_vic_sys_interrupt(struct pt_regs *regs)
762{
763 ack_CPI(VIC_SYS_INT);
7d12e780 764 printk("Voyager SYSTEM INTERRUPT\n");
1da177e4
LT
765}
766
767/* Handle a voyager CMN_INT; These interrupts occur either because of
768 * a system status change or because a single bit memory error
769 * occurred. FIXME: At the moment, ignore all this. */
770fastcall void
771smp_vic_cmn_interrupt(struct pt_regs *regs)
772{
773 static __u8 in_cmn_int = 0;
774 static DEFINE_SPINLOCK(cmn_int_lock);
775
776 /* common ints are broadcast, so make sure we only do this once */
777 _raw_spin_lock(&cmn_int_lock);
778 if(in_cmn_int)
779 goto unlock_end;
780
781 in_cmn_int++;
782 _raw_spin_unlock(&cmn_int_lock);
783
784 VDEBUG(("Voyager COMMON INTERRUPT\n"));
785
786 if(voyager_level == 5)
787 voyager_cat_do_common_interrupt();
788
789 _raw_spin_lock(&cmn_int_lock);
790 in_cmn_int = 0;
791 unlock_end:
792 _raw_spin_unlock(&cmn_int_lock);
793 ack_CPI(VIC_CMN_INT);
794}
795
796/*
797 * Reschedule call back. Nothing to do, all the work is done
798 * automatically when we return from the interrupt. */
799static void
800smp_reschedule_interrupt(void)
801{
802 /* do nothing */
803}
804
805static struct mm_struct * flush_mm;
806static unsigned long flush_va;
807static DEFINE_SPINLOCK(tlbstate_lock);
808#define FLUSH_ALL 0xffffffff
809
810/*
811 * We cannot call mmdrop() because we are in interrupt context,
812 * instead update mm->cpu_vm_mask.
813 *
814 * We need to reload %cr3 since the page tables may be going
815 * away from under us..
816 */
817static inline void
818leave_mm (unsigned long cpu)
819{
820 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
821 BUG();
822 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
823 load_cr3(swapper_pg_dir);
824}
825
826
827/*
828 * Invalidate call-back
829 */
830static void
831smp_invalidate_interrupt(void)
832{
833 __u8 cpu = smp_processor_id();
834
835 if (!test_bit(cpu, &smp_invalidate_needed))
836 return;
837 /* This will flood messages. Don't uncomment unless you see
838 * Problems with cross cpu invalidation
839 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
840 smp_processor_id()));
841 */
842
843 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
844 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
845 if (flush_va == FLUSH_ALL)
846 local_flush_tlb();
847 else
848 __flush_tlb_one(flush_va);
849 } else
850 leave_mm(cpu);
851 }
852 smp_mb__before_clear_bit();
853 clear_bit(cpu, &smp_invalidate_needed);
854 smp_mb__after_clear_bit();
855}
856
857/* All the new flush operations for 2.4 */
858
859
860/* This routine is called with a physical cpu mask */
861static void
862flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
863 unsigned long va)
864{
865 int stuck = 50000;
866
867 if (!cpumask)
868 BUG();
869 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
870 BUG();
871 if (cpumask & (1 << smp_processor_id()))
872 BUG();
873 if (!mm)
874 BUG();
875
876 spin_lock(&tlbstate_lock);
877
878 flush_mm = mm;
879 flush_va = va;
880 atomic_set_mask(cpumask, &smp_invalidate_needed);
881 /*
882 * We have to send the CPI only to
883 * CPUs affected.
884 */
885 send_CPI(cpumask, VIC_INVALIDATE_CPI);
886
887 while (smp_invalidate_needed) {
888 mb();
889 if(--stuck == 0) {
890 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
891 break;
892 }
893 }
894
895 /* Uncomment only to debug invalidation problems
896 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
897 */
898
899 flush_mm = NULL;
900 flush_va = 0;
901 spin_unlock(&tlbstate_lock);
902}
903
904void
905flush_tlb_current_task(void)
906{
907 struct mm_struct *mm = current->mm;
908 unsigned long cpu_mask;
909
910 preempt_disable();
911
912 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
913 local_flush_tlb();
914 if (cpu_mask)
915 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
916
917 preempt_enable();
918}
919
920
921void
922flush_tlb_mm (struct mm_struct * mm)
923{
924 unsigned long cpu_mask;
925
926 preempt_disable();
927
928 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
929
930 if (current->active_mm == mm) {
931 if (current->mm)
932 local_flush_tlb();
933 else
934 leave_mm(smp_processor_id());
935 }
936 if (cpu_mask)
937 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
938
939 preempt_enable();
940}
941
942void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
943{
944 struct mm_struct *mm = vma->vm_mm;
945 unsigned long cpu_mask;
946
947 preempt_disable();
948
949 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
950 if (current->active_mm == mm) {
951 if(current->mm)
952 __flush_tlb_one(va);
953 else
954 leave_mm(smp_processor_id());
955 }
956
957 if (cpu_mask)
958 flush_tlb_others(cpu_mask, mm, va);
959
960 preempt_enable();
961}
153f8057 962EXPORT_SYMBOL(flush_tlb_page);
1da177e4
LT
963
964/* enable the requested IRQs */
965static void
966smp_enable_irq_interrupt(void)
967{
968 __u8 irq;
969 __u8 cpu = get_cpu();
970
971 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
972 vic_irq_enable_mask[cpu]));
973
974 spin_lock(&vic_irq_lock);
975 for(irq = 0; irq < 16; irq++) {
976 if(vic_irq_enable_mask[cpu] & (1<<irq))
977 enable_local_vic_irq(irq);
978 }
979 vic_irq_enable_mask[cpu] = 0;
980 spin_unlock(&vic_irq_lock);
981
982 put_cpu_no_resched();
983}
984
985/*
986 * CPU halt call-back
987 */
988static void
989smp_stop_cpu_function(void *dummy)
990{
991 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
992 cpu_clear(smp_processor_id(), cpu_online_map);
993 local_irq_disable();
994 for(;;)
f2ab4461 995 halt();
1da177e4
LT
996}
997
998static DEFINE_SPINLOCK(call_lock);
999
1000struct call_data_struct {
1001 void (*func) (void *info);
1002 void *info;
1003 volatile unsigned long started;
1004 volatile unsigned long finished;
1005 int wait;
1006};
1007
1008static struct call_data_struct * call_data;
1009
1010/* execute a thread on a new CPU. The function to be called must be
1011 * previously set up. This is used to schedule a function for
1012 * execution on all CPU's - set up the function then broadcast a
1013 * function_interrupt CPI to come here on each CPU */
1014static void
1015smp_call_function_interrupt(void)
1016{
1017 void (*func) (void *info) = call_data->func;
1018 void *info = call_data->info;
1019 /* must take copy of wait because call_data may be replaced
1020 * unless the function is waiting for us to finish */
1021 int wait = call_data->wait;
1022 __u8 cpu = smp_processor_id();
1023
1024 /*
1025 * Notify initiating CPU that I've grabbed the data and am
1026 * about to execute the function
1027 */
1028 mb();
1029 if(!test_and_clear_bit(cpu, &call_data->started)) {
1030 /* If the bit wasn't set, this could be a replay */
1031 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1032 return;
1033 }
1034 /*
1035 * At this point the info structure may be out of scope unless wait==1
1036 */
1037 irq_enter();
1038 (*func)(info);
1039 irq_exit();
1040 if (wait) {
1041 mb();
1042 clear_bit(cpu, &call_data->finished);
1043 }
1044}
1045
0293ca81
JB
1046static int
1047__smp_call_function_mask (void (*func) (void *info), void *info, int retry,
1048 int wait, __u32 mask)
1da177e4
LT
1049{
1050 struct call_data_struct data;
1da177e4
LT
1051
1052 mask &= ~(1<<smp_processor_id());
1053
1054 if (!mask)
1055 return 0;
1056
1057 /* Can deadlock when called with interrupts disabled */
1058 WARN_ON(irqs_disabled());
1059
1060 data.func = func;
1061 data.info = info;
1062 data.started = mask;
1063 data.wait = wait;
1064 if (wait)
1065 data.finished = mask;
1066
1067 spin_lock(&call_lock);
1068 call_data = &data;
1069 wmb();
1070 /* Send a message to all other CPUs and wait for them to respond */
0293ca81 1071 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1da177e4
LT
1072
1073 /* Wait for response */
1074 while (data.started)
1075 barrier();
1076
1077 if (wait)
1078 while (data.finished)
1079 barrier();
1080
1081 spin_unlock(&call_lock);
1082
1083 return 0;
1084}
0293ca81
JB
1085
1086/* Call this function on all CPUs using the function_interrupt above
1087 <func> The function to run. This must be fast and non-blocking.
1088 <info> An arbitrary pointer to pass to the function.
1089 <retry> If true, keep retrying until ready.
1090 <wait> If true, wait until function has completed on other CPUs.
1091 [RETURNS] 0 on success, else a negative status code. Does not return until
1092 remote CPUs are nearly ready to execute <<func>> or are or have executed.
1093*/
1094int
1095smp_call_function(void (*func) (void *info), void *info, int retry,
1096 int wait)
1097{
1098 __u32 mask = cpus_addr(cpu_online_map)[0];
1099
1100 return __smp_call_function_mask(func, info, retry, wait, mask);
1101}
153f8057 1102EXPORT_SYMBOL(smp_call_function);
1da177e4 1103
0293ca81
JB
1104/*
1105 * smp_call_function_single - Run a function on another CPU
1106 * @func: The function to run. This must be fast and non-blocking.
1107 * @info: An arbitrary pointer to pass to the function.
1108 * @nonatomic: Currently unused.
1109 * @wait: If true, wait until function has completed on other CPUs.
1110 *
1111 * Retrurns 0 on success, else a negative status code.
1112 *
1113 * Does not return until the remote CPU is nearly ready to execute <func>
1114 * or is or has executed.
1115 */
1116
1117int
1118smp_call_function_single(int cpu, void (*func) (void *info), void *info,
1119 int nonatomic, int wait)
1120{
1121 __u32 mask = 1 << cpu;
1122
1123 return __smp_call_function_mask(func, info, nonatomic, wait, mask);
1124}
1125EXPORT_SYMBOL(smp_call_function_single);
1126
1da177e4
LT
1127/* Sorry about the name. In an APIC based system, the APICs
1128 * themselves are programmed to send a timer interrupt. This is used
1129 * by linux to reschedule the processor. Voyager doesn't have this,
1130 * so we use the system clock to interrupt one processor, which in
1131 * turn, broadcasts a timer CPI to all the others --- we receive that
1132 * CPI here. We don't use this actually for counting so losing
1133 * ticks doesn't matter
1134 *
1135 * FIXME: For those CPU's which actually have a local APIC, we could
1136 * try to use it to trigger this interrupt instead of having to
1137 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1138 * no local APIC, so I can't do this
1139 *
1140 * This function is currently a placeholder and is unused in the code */
1141fastcall void
1142smp_apic_timer_interrupt(struct pt_regs *regs)
1143{
7d12e780
DH
1144 struct pt_regs *old_regs = set_irq_regs(regs);
1145 wrapper_smp_local_timer_interrupt();
1146 set_irq_regs(old_regs);
1da177e4
LT
1147}
1148
1149/* All of the QUAD interrupt GATES */
1150fastcall void
1151smp_qic_timer_interrupt(struct pt_regs *regs)
1152{
7d12e780 1153 struct pt_regs *old_regs = set_irq_regs(regs);
81c06b10
JB
1154 ack_QIC_CPI(QIC_TIMER_CPI);
1155 wrapper_smp_local_timer_interrupt();
7d12e780 1156 set_irq_regs(old_regs);
1da177e4
LT
1157}
1158
1159fastcall void
1160smp_qic_invalidate_interrupt(struct pt_regs *regs)
1161{
1162 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1163 smp_invalidate_interrupt();
1164}
1165
1166fastcall void
1167smp_qic_reschedule_interrupt(struct pt_regs *regs)
1168{
1169 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1170 smp_reschedule_interrupt();
1171}
1172
1173fastcall void
1174smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1175{
1176 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1177 smp_enable_irq_interrupt();
1178}
1179
1180fastcall void
1181smp_qic_call_function_interrupt(struct pt_regs *regs)
1182{
1183 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1184 smp_call_function_interrupt();
1185}
1186
1187fastcall void
1188smp_vic_cpi_interrupt(struct pt_regs *regs)
1189{
7d12e780 1190 struct pt_regs *old_regs = set_irq_regs(regs);
1da177e4
LT
1191 __u8 cpu = smp_processor_id();
1192
1193 if(is_cpu_quad())
1194 ack_QIC_CPI(VIC_CPI_LEVEL0);
1195 else
1196 ack_VIC_CPI(VIC_CPI_LEVEL0);
1197
1198 if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
7d12e780 1199 wrapper_smp_local_timer_interrupt();
1da177e4
LT
1200 if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1201 smp_invalidate_interrupt();
1202 if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1203 smp_reschedule_interrupt();
1204 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1205 smp_enable_irq_interrupt();
1206 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1207 smp_call_function_interrupt();
7d12e780 1208 set_irq_regs(old_regs);
1da177e4
LT
1209}
1210
1211static void
1212do_flush_tlb_all(void* info)
1213{
1214 unsigned long cpu = smp_processor_id();
1215
1216 __flush_tlb_all();
1217 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1218 leave_mm(cpu);
1219}
1220
1221
1222/* flush the TLB of every active CPU in the system */
1223void
1224flush_tlb_all(void)
1225{
1226 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1227}
1228
1229/* used to set up the trampoline for other CPUs when the memory manager
1230 * is sorted out */
1231void __init
1232smp_alloc_memory(void)
1233{
1234 trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1235 if(__pa(trampoline_base) >= 0x93000)
1236 BUG();
1237}
1238
1239/* send a reschedule CPI to one CPU by physical CPU number*/
1240void
1241smp_send_reschedule(int cpu)
1242{
1243 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1244}
1245
1246
1247int
1248hard_smp_processor_id(void)
1249{
1250 __u8 i;
1251 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1252 if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1253 return cpumask & 0x1F;
1254
1255 for(i = 0; i < 8; i++) {
1256 if(cpumask & (1<<i))
1257 return i;
1258 }
1259 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1260 return 0;
1261}
1262
2654c08c
FV
1263int
1264safe_smp_processor_id(void)
1265{
1266 return hard_smp_processor_id();
1267}
1268
1da177e4
LT
1269/* broadcast a halt to all other CPUs */
1270void
1271smp_send_stop(void)
1272{
1273 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1274}
1275
1276/* this function is triggered in time.c when a clock tick fires
1277 * we need to re-broadcast the tick to all CPUs */
1278void
81c06b10 1279smp_vic_timer_interrupt(void)
1da177e4
LT
1280{
1281 send_CPI_allbutself(VIC_TIMER_CPI);
7d12e780 1282 smp_local_timer_interrupt();
1da177e4
LT
1283}
1284
1da177e4
LT
1285/* local (per CPU) timer interrupt. It does both profiling and
1286 * process statistics/rescheduling.
1287 *
1288 * We do profiling in every local tick, statistics/rescheduling
1289 * happen only every 'profiling multiplier' ticks. The default
1290 * multiplier is 1 and it can be changed by writing the new multiplier
1291 * value into /proc/profile.
1292 */
1293void
7d12e780 1294smp_local_timer_interrupt(void)
1da177e4
LT
1295{
1296 int cpu = smp_processor_id();
1297 long weight;
1298
7d12e780 1299 profile_tick(CPU_PROFILING);
1da177e4
LT
1300 if (--per_cpu(prof_counter, cpu) <= 0) {
1301 /*
1302 * The multiplier may have changed since the last time we got
1303 * to this point as a result of the user writing to
1304 * /proc/profile. In this case we need to adjust the APIC
1305 * timer accordingly.
1306 *
1307 * Interrupts are already masked off at this point.
1308 */
1309 per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1310 if (per_cpu(prof_counter, cpu) !=
1311 per_cpu(prof_old_multiplier, cpu)) {
1312 /* FIXME: need to update the vic timer tick here */
1313 per_cpu(prof_old_multiplier, cpu) =
1314 per_cpu(prof_counter, cpu);
1315 }
1316
81c06b10 1317 update_process_times(user_mode_vm(get_irq_regs()));
1da177e4
LT
1318 }
1319
1320 if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1321 /* only extended VIC processors participate in
1322 * interrupt distribution */
1323 return;
1324
1325 /*
1326 * We take the 'long' return path, and there every subsystem
1327 * grabs the apropriate locks (kernel lock/ irq lock).
1328 *
1329 * we might want to decouple profiling from the 'long path',
1330 * and do the profiling totally in assembly.
1331 *
1332 * Currently this isn't too much of an issue (performance wise),
1333 * we can take more than 100K local irqs per second on a 100 MHz P5.
1334 */
1335
1336 if((++vic_tick[cpu] & 0x7) != 0)
1337 return;
1338 /* get here every 16 ticks (about every 1/6 of a second) */
1339
1340 /* Change our priority to give someone else a chance at getting
1341 * the IRQ. The algorithm goes like this:
1342 *
1343 * In the VIC, the dynamically routed interrupt is always
1344 * handled by the lowest priority eligible (i.e. receiving
1345 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1346 * lowest processor number gets it.
1347 *
1348 * The priority of a CPU is controlled by a special per-CPU
1349 * VIC priority register which is 3 bits wide 0 being lowest
1350 * and 7 highest priority..
1351 *
1352 * Therefore we subtract the average number of interrupts from
1353 * the number we've fielded. If this number is negative, we
1354 * lower the activity count and if it is positive, we raise
1355 * it.
1356 *
1357 * I'm afraid this still leads to odd looking interrupt counts:
1358 * the totals are all roughly equal, but the individual ones
1359 * look rather skewed.
1360 *
1361 * FIXME: This algorithm is total crap when mixed with SMP
1362 * affinity code since we now try to even up the interrupt
1363 * counts when an affinity binding is keeping them on a
1364 * particular CPU*/
1365 weight = (vic_intr_count[cpu]*voyager_extended_cpus
1366 - vic_intr_total) >> 4;
1367 weight += 4;
1368 if(weight > 7)
1369 weight = 7;
1370 if(weight < 0)
1371 weight = 0;
1372
1373 outb((__u8)weight, VIC_PRIORITY_REGISTER);
1374
1375#ifdef VOYAGER_DEBUG
1376 if((vic_tick[cpu] & 0xFFF) == 0) {
1377 /* print this message roughly every 25 secs */
1378 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1379 cpu, vic_tick[cpu], weight);
1380 }
1381#endif
1382}
1383
1384/* setup the profiling timer */
1385int
1386setup_profiling_timer(unsigned int multiplier)
1387{
1388 int i;
1389
1390 if ( (!multiplier))
1391 return -EINVAL;
1392
1393 /*
1394 * Set the new multiplier for each CPU. CPUs don't start using the
1395 * new values until the next timer interrupt in which they do process
1396 * accounting.
1397 */
1398 for (i = 0; i < NR_CPUS; ++i)
1399 per_cpu(prof_multiplier, i) = multiplier;
1400
1401 return 0;
1402}
1403
c771746e
JB
1404/* This is a bit of a mess, but forced on us by the genirq changes
1405 * there's no genirq handler that really does what voyager wants
1406 * so hack it up with the simple IRQ handler */
1407static void fastcall
1408handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1409{
1410 before_handle_vic_irq(irq);
1411 handle_simple_irq(irq, desc);
1412 after_handle_vic_irq(irq);
1413}
1414
1da177e4
LT
1415
1416/* The CPIs are handled in the per cpu 8259s, so they must be
1417 * enabled to be received: FIX: enabling the CPIs in the early
1418 * boot sequence interferes with bug checking; enable them later
1419 * on in smp_init */
1420#define VIC_SET_GATE(cpi, vector) \
1421 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1422#define QIC_SET_GATE(cpi, vector) \
1423 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1424
1425void __init
1426smp_intr_init(void)
1427{
1428 int i;
1429
1430 /* initialize the per cpu irq mask to all disabled */
1431 for(i = 0; i < NR_CPUS; i++)
1432 vic_irq_mask[i] = 0xFFFF;
1433
1434 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1435
1436 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1437 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1438
1439 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1440 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1441 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1442 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1443 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1444
1445
1446 /* now put the VIC descriptor into the first 48 IRQs
1447 *
1448 * This is for later: first 16 correspond to PC IRQs; next 16
1449 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1450 for(i = 0; i < 48; i++)
c771746e 1451 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1da177e4
LT
1452}
1453
1454/* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1455 * processor to receive CPI */
1456static void
1457send_CPI(__u32 cpuset, __u8 cpi)
1458{
1459 int cpu;
1460 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1461
1462 if(cpi < VIC_START_FAKE_CPI) {
1463 /* fake CPI are only used for booting, so send to the
1464 * extended quads as well---Quads must be VIC booted */
1465 outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1466 return;
1467 }
1468 if(quad_cpuset)
1469 send_QIC_CPI(quad_cpuset, cpi);
1470 cpuset &= ~quad_cpuset;
1471 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1472 if(cpuset == 0)
1473 return;
1474 for_each_online_cpu(cpu) {
1475 if(cpuset & (1<<cpu))
1476 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1477 }
1478 if(cpuset)
1479 outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1480}
1481
1482/* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1483 * set the cache line to shared by reading it.
1484 *
1485 * DON'T make this inline otherwise the cache line read will be
1486 * optimised away
1487 * */
1488static int
1489ack_QIC_CPI(__u8 cpi) {
1490 __u8 cpu = hard_smp_processor_id();
1491
1492 cpi &= 7;
1493
1494 outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1495 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1496}
1497
1498static void
1499ack_special_QIC_CPI(__u8 cpi)
1500{
1501 switch(cpi) {
1502 case VIC_CMN_INT:
1503 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1504 break;
1505 case VIC_SYS_INT:
1506 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1507 break;
1508 }
1509 /* also clear at the VIC, just in case (nop for non-extended proc) */
1510 ack_VIC_CPI(cpi);
1511}
1512
1513/* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1514static void
1515ack_VIC_CPI(__u8 cpi)
1516{
1517#ifdef VOYAGER_DEBUG
1518 unsigned long flags;
1519 __u16 isr;
1520 __u8 cpu = smp_processor_id();
1521
1522 local_irq_save(flags);
1523 isr = vic_read_isr();
1524 if((isr & (1<<(cpi &7))) == 0) {
1525 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1526 }
1527#endif
1528 /* send specific EOI; the two system interrupts have
1529 * bit 4 set for a separate vector but behave as the
1530 * corresponding 3 bit intr */
1531 outb_p(0x60|(cpi & 7),0x20);
1532
1533#ifdef VOYAGER_DEBUG
1534 if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1535 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1536 }
1537 local_irq_restore(flags);
1538#endif
1539}
1540
1541/* cribbed with thanks from irq.c */
1542#define __byte(x,y) (((unsigned char *)&(y))[x])
1543#define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1544#define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1545
1546static unsigned int
1547startup_vic_irq(unsigned int irq)
1548{
c771746e 1549 unmask_vic_irq(irq);
1da177e4
LT
1550
1551 return 0;
1552}
1553
1554/* The enable and disable routines. This is where we run into
1555 * conflicting architectural philosophy. Fundamentally, the voyager
1556 * architecture does not expect to have to disable interrupts globally
1557 * (the IRQ controllers belong to each CPU). The processor masquerade
1558 * which is used to start the system shouldn't be used in a running OS
1559 * since it will cause great confusion if two separate CPUs drive to
1560 * the same IRQ controller (I know, I've tried it).
1561 *
1562 * The solution is a variant on the NCR lazy SPL design:
1563 *
1564 * 1) To disable an interrupt, do nothing (other than set the
1565 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1566 *
1567 * 2) If the interrupt dares to come in, raise the local mask against
1568 * it (this will result in all the CPU masks being raised
1569 * eventually).
1570 *
1571 * 3) To enable the interrupt, lower the mask on the local CPU and
1572 * broadcast an Interrupt enable CPI which causes all other CPUs to
1573 * adjust their masks accordingly. */
1574
1575static void
c771746e 1576unmask_vic_irq(unsigned int irq)
1da177e4
LT
1577{
1578 /* linux doesn't to processor-irq affinity, so enable on
1579 * all CPUs we know about */
1580 int cpu = smp_processor_id(), real_cpu;
1581 __u16 mask = (1<<irq);
1582 __u32 processorList = 0;
1583 unsigned long flags;
1584
c771746e 1585 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1da177e4
LT
1586 irq, cpu, cpu_irq_affinity[cpu]));
1587 spin_lock_irqsave(&vic_irq_lock, flags);
1588 for_each_online_cpu(real_cpu) {
1589 if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1590 continue;
1591 if(!(cpu_irq_affinity[real_cpu] & mask)) {
1592 /* irq has no affinity for this CPU, ignore */
1593 continue;
1594 }
1595 if(real_cpu == cpu) {
1596 enable_local_vic_irq(irq);
1597 }
1598 else if(vic_irq_mask[real_cpu] & mask) {
1599 vic_irq_enable_mask[real_cpu] |= mask;
1600 processorList |= (1<<real_cpu);
1601 }
1602 }
1603 spin_unlock_irqrestore(&vic_irq_lock, flags);
1604 if(processorList)
1605 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1606}
1607
1608static void
c771746e 1609mask_vic_irq(unsigned int irq)
1da177e4
LT
1610{
1611 /* lazy disable, do nothing */
1612}
1613
1614static void
1615enable_local_vic_irq(unsigned int irq)
1616{
1617 __u8 cpu = smp_processor_id();
1618 __u16 mask = ~(1 << irq);
1619 __u16 old_mask = vic_irq_mask[cpu];
1620
1621 vic_irq_mask[cpu] &= mask;
1622 if(vic_irq_mask[cpu] == old_mask)
1623 return;
1624
1625 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1626 irq, cpu));
1627
1628 if (irq & 8) {
1629 outb_p(cached_A1(cpu),0xA1);
1630 (void)inb_p(0xA1);
1631 }
1632 else {
1633 outb_p(cached_21(cpu),0x21);
1634 (void)inb_p(0x21);
1635 }
1636}
1637
1638static void
1639disable_local_vic_irq(unsigned int irq)
1640{
1641 __u8 cpu = smp_processor_id();
1642 __u16 mask = (1 << irq);
1643 __u16 old_mask = vic_irq_mask[cpu];
1644
1645 if(irq == 7)
1646 return;
1647
1648 vic_irq_mask[cpu] |= mask;
1649 if(old_mask == vic_irq_mask[cpu])
1650 return;
1651
1652 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1653 irq, cpu));
1654
1655 if (irq & 8) {
1656 outb_p(cached_A1(cpu),0xA1);
1657 (void)inb_p(0xA1);
1658 }
1659 else {
1660 outb_p(cached_21(cpu),0x21);
1661 (void)inb_p(0x21);
1662 }
1663}
1664
1665/* The VIC is level triggered, so the ack can only be issued after the
1666 * interrupt completes. However, we do Voyager lazy interrupt
1667 * handling here: It is an extremely expensive operation to mask an
1668 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1669 * this interrupt actually comes in, then we mask and ack here to push
1670 * the interrupt off to another CPU */
1671static void
1672before_handle_vic_irq(unsigned int irq)
1673{
1674 irq_desc_t *desc = irq_desc + irq;
1675 __u8 cpu = smp_processor_id();
1676
1677 _raw_spin_lock(&vic_irq_lock);
1678 vic_intr_total++;
1679 vic_intr_count[cpu]++;
1680
1681 if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1682 /* The irq is not in our affinity mask, push it off
1683 * onto another CPU */
1684 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1685 irq, cpu));
1686 disable_local_vic_irq(irq);
1687 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1688 * actually calling the interrupt routine */
1689 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1690 } else if(desc->status & IRQ_DISABLED) {
1691 /* Damn, the interrupt actually arrived, do the lazy
1692 * disable thing. The interrupt routine in irq.c will
1693 * not handle a IRQ_DISABLED interrupt, so nothing more
1694 * need be done here */
1695 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1696 irq, cpu));
1697 disable_local_vic_irq(irq);
1698 desc->status |= IRQ_REPLAY;
1699 } else {
1700 desc->status &= ~IRQ_REPLAY;
1701 }
1702
1703 _raw_spin_unlock(&vic_irq_lock);
1704}
1705
1706/* Finish the VIC interrupt: basically mask */
1707static void
1708after_handle_vic_irq(unsigned int irq)
1709{
1710 irq_desc_t *desc = irq_desc + irq;
1711
1712 _raw_spin_lock(&vic_irq_lock);
1713 {
1714 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1715#ifdef VOYAGER_DEBUG
1716 __u16 isr;
1717#endif
1718
1719 desc->status = status;
1720 if ((status & IRQ_DISABLED))
1721 disable_local_vic_irq(irq);
1722#ifdef VOYAGER_DEBUG
1723 /* DEBUG: before we ack, check what's in progress */
1724 isr = vic_read_isr();
1725 if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1726 int i;
1727 __u8 cpu = smp_processor_id();
1728 __u8 real_cpu;
1729 int mask; /* Um... initialize me??? --RR */
1730
1731 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1732 cpu, irq);
c8912599 1733 for_each_possible_cpu(real_cpu, mask) {
1da177e4
LT
1734
1735 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1736 VIC_PROCESSOR_ID);
1737 isr = vic_read_isr();
1738 if(isr & (1<<irq)) {
1739 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1740 real_cpu, irq);
1741 ack_vic_irq(irq);
1742 }
1743 outb(cpu, VIC_PROCESSOR_ID);
1744 }
1745 }
1746#endif /* VOYAGER_DEBUG */
1747 /* as soon as we ack, the interrupt is eligible for
1748 * receipt by another CPU so everything must be in
1749 * order here */
1750 ack_vic_irq(irq);
1751 if(status & IRQ_REPLAY) {
1752 /* replay is set if we disable the interrupt
1753 * in the before_handle_vic_irq() routine, so
1754 * clear the in progress bit here to allow the
1755 * next CPU to handle this correctly */
1756 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1757 }
1758#ifdef VOYAGER_DEBUG
1759 isr = vic_read_isr();
1760 if((isr & (1<<irq)) != 0)
1761 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1762 irq, isr);
1763#endif /* VOYAGER_DEBUG */
1764 }
1765 _raw_spin_unlock(&vic_irq_lock);
1766
1767 /* All code after this point is out of the main path - the IRQ
1768 * may be intercepted by another CPU if reasserted */
1769}
1770
1771
1772/* Linux processor - interrupt affinity manipulations.
1773 *
1774 * For each processor, we maintain a 32 bit irq affinity mask.
1775 * Initially it is set to all 1's so every processor accepts every
1776 * interrupt. In this call, we change the processor's affinity mask:
1777 *
1778 * Change from enable to disable:
1779 *
1780 * If the interrupt ever comes in to the processor, we will disable it
1781 * and ack it to push it off to another CPU, so just accept the mask here.
1782 *
1783 * Change from disable to enable:
1784 *
1785 * change the mask and then do an interrupt enable CPI to re-enable on
1786 * the selected processors */
1787
1788void
1789set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1790{
1791 /* Only extended processors handle interrupts */
1792 unsigned long real_mask;
1793 unsigned long irq_mask = 1 << irq;
1794 int cpu;
1795
1796 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1797
1798 if(cpus_addr(mask)[0] == 0)
1799 /* can't have no cpu's to accept the interrupt -- extremely
1800 * bad things will happen */
1801 return;
1802
1803 if(irq == 0)
1804 /* can't change the affinity of the timer IRQ. This
1805 * is due to the constraint in the voyager
1806 * architecture that the CPI also comes in on and IRQ
1807 * line and we have chosen IRQ0 for this. If you
1808 * raise the mask on this interrupt, the processor
1809 * will no-longer be able to accept VIC CPIs */
1810 return;
1811
1812 if(irq >= 32)
1813 /* You can only have 32 interrupts in a voyager system
1814 * (and 32 only if you have a secondary microchannel
1815 * bus) */
1816 return;
1817
1818 for_each_online_cpu(cpu) {
1819 unsigned long cpu_mask = 1 << cpu;
1820
1821 if(cpu_mask & real_mask) {
1822 /* enable the interrupt for this cpu */
1823 cpu_irq_affinity[cpu] |= irq_mask;
1824 } else {
1825 /* disable the interrupt for this cpu */
1826 cpu_irq_affinity[cpu] &= ~irq_mask;
1827 }
1828 }
1829 /* this is magic, we now have the correct affinity maps, so
1830 * enable the interrupt. This will send an enable CPI to
1831 * those cpu's who need to enable it in their local masks,
1832 * causing them to correct for the new affinity . If the
1833 * interrupt is currently globally disabled, it will simply be
1834 * disabled again as it comes in (voyager lazy disable). If
1835 * the affinity map is tightened to disable the interrupt on a
1836 * cpu, it will be pushed off when it comes in */
c771746e 1837 unmask_vic_irq(irq);
1da177e4
LT
1838}
1839
1840static void
1841ack_vic_irq(unsigned int irq)
1842{
1843 if (irq & 8) {
1844 outb(0x62,0x20); /* Specific EOI to cascade */
1845 outb(0x60|(irq & 7),0xA0);
1846 } else {
1847 outb(0x60 | (irq & 7),0x20);
1848 }
1849}
1850
1851/* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1852 * but are not vectored by it. This means that the 8259 mask must be
1853 * lowered to receive them */
1854static __init void
1855vic_enable_cpi(void)
1856{
1857 __u8 cpu = smp_processor_id();
1858
1859 /* just take a copy of the current mask (nop for boot cpu) */
1860 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1861
1862 enable_local_vic_irq(VIC_CPI_LEVEL0);
1863 enable_local_vic_irq(VIC_CPI_LEVEL1);
1864 /* for sys int and cmn int */
1865 enable_local_vic_irq(7);
1866
1867 if(is_cpu_quad()) {
1868 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1869 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1870 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1871 cpu, QIC_CPI_ENABLE));
1872 }
1873
1874 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1875 cpu, vic_irq_mask[cpu]));
1876}
1877
1878void
1879voyager_smp_dump()
1880{
1881 int old_cpu = smp_processor_id(), cpu;
1882
1883 /* dump the interrupt masks of each processor */
1884 for_each_online_cpu(cpu) {
1885 __u16 imr, isr, irr;
1886 unsigned long flags;
1887
1888 local_irq_save(flags);
1889 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1890 imr = (inb(0xa1) << 8) | inb(0x21);
1891 outb(0x0a, 0xa0);
1892 irr = inb(0xa0) << 8;
1893 outb(0x0a, 0x20);
1894 irr |= inb(0x20);
1895 outb(0x0b, 0xa0);
1896 isr = inb(0xa0) << 8;
1897 outb(0x0b, 0x20);
1898 isr |= inb(0x20);
1899 outb(old_cpu, VIC_PROCESSOR_ID);
1900 local_irq_restore(flags);
1901 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1902 cpu, vic_irq_mask[cpu], imr, irr, isr);
1903#if 0
1904 /* These lines are put in to try to unstick an un ack'd irq */
1905 if(isr != 0) {
1906 int irq;
1907 for(irq=0; irq<16; irq++) {
1908 if(isr & (1<<irq)) {
1909 printk("\tCPU%d: ack irq %d\n",
1910 cpu, irq);
1911 local_irq_save(flags);
1912 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1913 VIC_PROCESSOR_ID);
1914 ack_vic_irq(irq);
1915 outb(old_cpu, VIC_PROCESSOR_ID);
1916 local_irq_restore(flags);
1917 }
1918 }
1919 }
1920#endif
1921 }
1922}
1923
1924void
1925smp_voyager_power_off(void *dummy)
1926{
1927 if(smp_processor_id() == boot_cpu_id)
1928 voyager_power_off();
1929 else
1930 smp_stop_cpu_function(NULL);
1931}
1932
1933void __init
1934smp_prepare_cpus(unsigned int max_cpus)
1935{
1936 /* FIXME: ignore max_cpus for now */
1937 smp_boot_cpus();
1938}
1939
1940void __devinit smp_prepare_boot_cpu(void)
1941{
1942 cpu_set(smp_processor_id(), cpu_online_map);
1943 cpu_set(smp_processor_id(), cpu_callout_map);
4ad8d383 1944 cpu_set(smp_processor_id(), cpu_possible_map);
3c101cf0 1945 cpu_set(smp_processor_id(), cpu_present_map);
1da177e4
LT
1946}
1947
1948int __devinit
1949__cpu_up(unsigned int cpu)
1950{
1951 /* This only works at boot for x86. See "rewrite" above. */
1952 if (cpu_isset(cpu, smp_commenced_mask))
1953 return -ENOSYS;
1954
1955 /* In case one didn't come up */
1956 if (!cpu_isset(cpu, cpu_callin_map))
1957 return -EIO;
1958 /* Unleash the CPU! */
1959 cpu_set(cpu, smp_commenced_mask);
1960 while (!cpu_isset(cpu, cpu_online_map))
1961 mb();
1962 return 0;
1963}
1964
1965void __init
1966smp_cpus_done(unsigned int max_cpus)
1967{
1968 zap_low_mappings();
1969}
033ab7f8
AM
1970
1971void __init
1972smp_setup_processor_id(void)
1973{
1974 current_thread_info()->cpu = hard_smp_processor_id();
62111195 1975 write_pda(cpu_number, hard_smp_processor_id());
033ab7f8 1976}
This page took 0.346847 seconds and 5 git commands to generate.