Merge head 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/shaggy/jfs-2.6
[deliverable/linux.git] / arch / i386 / mach-voyager / voyager_smp.c
CommitLineData
1da177e4
LT
1/* -*- mode: c; c-basic-offset: 8 -*- */
2
3/* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * linux/arch/i386/kernel/voyager_smp.c
8 *
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
11 */
12#include <linux/config.h>
13#include <linux/mm.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/mc146818rtc.h>
17#include <linux/cache.h>
18#include <linux/interrupt.h>
19#include <linux/smp_lock.h>
20#include <linux/init.h>
21#include <linux/kernel.h>
22#include <linux/bootmem.h>
23#include <linux/completion.h>
24#include <asm/desc.h>
25#include <asm/voyager.h>
26#include <asm/vic.h>
27#include <asm/mtrr.h>
28#include <asm/pgalloc.h>
29#include <asm/tlbflush.h>
30#include <asm/arch_hooks.h>
31
32#include <linux/irq.h>
33
34/* TLB state -- visible externally, indexed physically */
35DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
36
37/* CPU IRQ affinity -- set to all ones initially */
38static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
39
40/* per CPU data structure (for /proc/cpuinfo et al), visible externally
41 * indexed physically */
42struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
43
44/* physical ID of the CPU used to boot the system */
45unsigned char boot_cpu_id;
46
47/* The memory line addresses for the Quad CPIs */
48struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
49
50/* The masks for the Extended VIC processors, filled in by cat_init */
51__u32 voyager_extended_vic_processors = 0;
52
53/* Masks for the extended Quad processors which cannot be VIC booted */
54__u32 voyager_allowed_boot_processors = 0;
55
56/* The mask for the Quad Processors (both extended and non-extended) */
57__u32 voyager_quad_processors = 0;
58
59/* Total count of live CPUs, used in process.c to display
60 * the CPU information and in irq.c for the per CPU irq
61 * activity count. Finally exported by i386_ksyms.c */
62static int voyager_extended_cpus = 1;
63
64/* Have we found an SMP box - used by time.c to do the profiling
65 interrupt for timeslicing; do not set to 1 until the per CPU timer
66 interrupt is active */
67int smp_found_config = 0;
68
69/* Used for the invalidate map that's also checked in the spinlock */
70static volatile unsigned long smp_invalidate_needed;
71
72/* Bitmask of currently online CPUs - used by setup.c for
73 /proc/cpuinfo, visible externally but still physical */
74cpumask_t cpu_online_map = CPU_MASK_NONE;
75
76/* Bitmask of CPUs present in the system - exported by i386_syms.c, used
77 * by scheduler but indexed physically */
78cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
79
80
81/* The internal functions */
82static void send_CPI(__u32 cpuset, __u8 cpi);
83static void ack_CPI(__u8 cpi);
84static int ack_QIC_CPI(__u8 cpi);
85static void ack_special_QIC_CPI(__u8 cpi);
86static void ack_VIC_CPI(__u8 cpi);
87static void send_CPI_allbutself(__u8 cpi);
88static void enable_vic_irq(unsigned int irq);
89static void disable_vic_irq(unsigned int irq);
90static unsigned int startup_vic_irq(unsigned int irq);
91static void enable_local_vic_irq(unsigned int irq);
92static void disable_local_vic_irq(unsigned int irq);
93static void before_handle_vic_irq(unsigned int irq);
94static void after_handle_vic_irq(unsigned int irq);
95static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
96static void ack_vic_irq(unsigned int irq);
97static void vic_enable_cpi(void);
98static void do_boot_cpu(__u8 cpuid);
99static void do_quad_bootstrap(void);
1da177e4
LT
100
101int hard_smp_processor_id(void);
102
103/* Inline functions */
104static inline void
105send_one_QIC_CPI(__u8 cpu, __u8 cpi)
106{
107 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
108 (smp_processor_id() << 16) + cpi;
109}
110
111static inline void
112send_QIC_CPI(__u32 cpuset, __u8 cpi)
113{
114 int cpu;
115
116 for_each_online_cpu(cpu) {
117 if(cpuset & (1<<cpu)) {
118#ifdef VOYAGER_DEBUG
119 if(!cpu_isset(cpu, cpu_online_map))
120 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
121#endif
122 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
123 }
124 }
125}
126
6431e6a2
DH
127static inline void
128wrapper_smp_local_timer_interrupt(struct pt_regs *regs)
129{
130 irq_enter();
131 smp_local_timer_interrupt(regs);
132 irq_exit();
133}
134
1da177e4
LT
135static inline void
136send_one_CPI(__u8 cpu, __u8 cpi)
137{
138 if(voyager_quad_processors & (1<<cpu))
139 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
140 else
141 send_CPI(1<<cpu, cpi);
142}
143
144static inline void
145send_CPI_allbutself(__u8 cpi)
146{
147 __u8 cpu = smp_processor_id();
148 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
149 send_CPI(mask, cpi);
150}
151
152static inline int
153is_cpu_quad(void)
154{
155 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
156 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
157}
158
159static inline int
160is_cpu_extended(void)
161{
162 __u8 cpu = hard_smp_processor_id();
163
164 return(voyager_extended_vic_processors & (1<<cpu));
165}
166
167static inline int
168is_cpu_vic_boot(void)
169{
170 __u8 cpu = hard_smp_processor_id();
171
172 return(voyager_extended_vic_processors
173 & voyager_allowed_boot_processors & (1<<cpu));
174}
175
176
177static inline void
178ack_CPI(__u8 cpi)
179{
180 switch(cpi) {
181 case VIC_CPU_BOOT_CPI:
182 if(is_cpu_quad() && !is_cpu_vic_boot())
183 ack_QIC_CPI(cpi);
184 else
185 ack_VIC_CPI(cpi);
186 break;
187 case VIC_SYS_INT:
188 case VIC_CMN_INT:
189 /* These are slightly strange. Even on the Quad card,
190 * They are vectored as VIC CPIs */
191 if(is_cpu_quad())
192 ack_special_QIC_CPI(cpi);
193 else
194 ack_VIC_CPI(cpi);
195 break;
196 default:
197 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
198 break;
199 }
200}
201
202/* local variables */
203
204/* The VIC IRQ descriptors -- these look almost identical to the
205 * 8259 IRQs except that masks and things must be kept per processor
206 */
207static struct hw_interrupt_type vic_irq_type = {
208 .typename = "VIC-level",
209 .startup = startup_vic_irq,
210 .shutdown = disable_vic_irq,
211 .enable = enable_vic_irq,
212 .disable = disable_vic_irq,
213 .ack = before_handle_vic_irq,
214 .end = after_handle_vic_irq,
215 .set_affinity = set_vic_irq_affinity,
216};
217
218/* used to count up as CPUs are brought on line (starts at 0) */
219static int cpucount = 0;
220
221/* steal a page from the bottom of memory for the trampoline and
222 * squirrel its address away here. This will be in kernel virtual
223 * space */
224static __u32 trampoline_base;
225
226/* The per cpu profile stuff - used in smp_local_timer_interrupt */
227static DEFINE_PER_CPU(int, prof_multiplier) = 1;
228static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
229static DEFINE_PER_CPU(int, prof_counter) = 1;
230
231/* the map used to check if a CPU has booted */
232static __u32 cpu_booted_map;
233
234/* the synchronize flag used to hold all secondary CPUs spinning in
235 * a tight loop until the boot sequence is ready for them */
236static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
237
238/* This is for the new dynamic CPU boot code */
239cpumask_t cpu_callin_map = CPU_MASK_NONE;
240cpumask_t cpu_callout_map = CPU_MASK_NONE;
241
242/* The per processor IRQ masks (these are usually kept in sync) */
243static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
244
245/* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
246static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
247
248/* Lock for enable/disable of VIC interrupts */
249static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
250
251/* The boot processor is correctly set up in PC mode when it
252 * comes up, but the secondaries need their master/slave 8259
253 * pairs initializing correctly */
254
255/* Interrupt counters (per cpu) and total - used to try to
256 * even up the interrupt handling routines */
257static long vic_intr_total = 0;
258static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
259static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
260
261/* Since we can only use CPI0, we fake all the other CPIs */
262static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
263
264/* debugging routine to read the isr of the cpu's pic */
265static inline __u16
266vic_read_isr(void)
267{
268 __u16 isr;
269
270 outb(0x0b, 0xa0);
271 isr = inb(0xa0) << 8;
272 outb(0x0b, 0x20);
273 isr |= inb(0x20);
274
275 return isr;
276}
277
278static __init void
279qic_setup(void)
280{
281 if(!is_cpu_quad()) {
282 /* not a quad, no setup */
283 return;
284 }
285 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
286 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
287
288 if(is_cpu_extended()) {
289 /* the QIC duplicate of the VIC base register */
290 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
291 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
292
293 /* FIXME: should set up the QIC timer and memory parity
294 * error vectors here */
295 }
296}
297
298static __init void
299vic_setup_pic(void)
300{
301 outb(1, VIC_REDIRECT_REGISTER_1);
302 /* clear the claim registers for dynamic routing */
303 outb(0, VIC_CLAIM_REGISTER_0);
304 outb(0, VIC_CLAIM_REGISTER_1);
305
306 outb(0, VIC_PRIORITY_REGISTER);
307 /* Set the Primary and Secondary Microchannel vector
308 * bases to be the same as the ordinary interrupts
309 *
310 * FIXME: This would be more efficient using separate
311 * vectors. */
312 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
313 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
314 /* Now initiallise the master PIC belonging to this CPU by
315 * sending the four ICWs */
316
317 /* ICW1: level triggered, ICW4 needed */
318 outb(0x19, 0x20);
319
320 /* ICW2: vector base */
321 outb(FIRST_EXTERNAL_VECTOR, 0x21);
322
323 /* ICW3: slave at line 2 */
324 outb(0x04, 0x21);
325
326 /* ICW4: 8086 mode */
327 outb(0x01, 0x21);
328
329 /* now the same for the slave PIC */
330
331 /* ICW1: level trigger, ICW4 needed */
332 outb(0x19, 0xA0);
333
334 /* ICW2: slave vector base */
335 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
336
337 /* ICW3: slave ID */
338 outb(0x02, 0xA1);
339
340 /* ICW4: 8086 mode */
341 outb(0x01, 0xA1);
342}
343
344static void
345do_quad_bootstrap(void)
346{
347 if(is_cpu_quad() && is_cpu_vic_boot()) {
348 int i;
349 unsigned long flags;
350 __u8 cpuid = hard_smp_processor_id();
351
352 local_irq_save(flags);
353
354 for(i = 0; i<4; i++) {
355 /* FIXME: this would be >>3 &0x7 on the 32 way */
356 if(((cpuid >> 2) & 0x03) == i)
357 /* don't lower our own mask! */
358 continue;
359
360 /* masquerade as local Quad CPU */
361 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
362 /* enable the startup CPI */
363 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
364 /* restore cpu id */
365 outb(0, QIC_PROCESSOR_ID);
366 }
367 local_irq_restore(flags);
368 }
369}
370
371
372/* Set up all the basic stuff: read the SMP config and make all the
373 * SMP information reflect only the boot cpu. All others will be
374 * brought on-line later. */
375void __init
376find_smp_config(void)
377{
378 int i;
379
380 boot_cpu_id = hard_smp_processor_id();
381
382 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
383
384 /* initialize the CPU structures (moved from smp_boot_cpus) */
385 for(i=0; i<NR_CPUS; i++) {
386 cpu_irq_affinity[i] = ~0;
387 }
388 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
389
390 /* The boot CPU must be extended */
391 voyager_extended_vic_processors = 1<<boot_cpu_id;
392 /* initially, all of the first 8 cpu's can boot */
393 voyager_allowed_boot_processors = 0xff;
394 /* set up everything for just this CPU, we can alter
395 * this as we start the other CPUs later */
396 /* now get the CPU disposition from the extended CMOS */
397 cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
398 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
399 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
400 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
401 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
402 /* Here we set up the VIC to enable SMP */
403 /* enable the CPIs by writing the base vector to their register */
404 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
405 outb(1, VIC_REDIRECT_REGISTER_1);
406 /* set the claim registers for static routing --- Boot CPU gets
407 * all interrupts untill all other CPUs started */
408 outb(0xff, VIC_CLAIM_REGISTER_0);
409 outb(0xff, VIC_CLAIM_REGISTER_1);
410 /* Set the Primary and Secondary Microchannel vector
411 * bases to be the same as the ordinary interrupts
412 *
413 * FIXME: This would be more efficient using separate
414 * vectors. */
415 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
416 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
417
418 /* Finally tell the firmware that we're driving */
419 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
420 VOYAGER_SUS_IN_CONTROL_PORT);
421
422 current_thread_info()->cpu = boot_cpu_id;
423}
424
425/*
426 * The bootstrap kernel entry code has set these up. Save them
427 * for a given CPU, id is physical */
428void __init
429smp_store_cpu_info(int id)
430{
431 struct cpuinfo_x86 *c=&cpu_data[id];
432
433 *c = boot_cpu_data;
434
435 identify_cpu(c);
436}
437
438/* set up the trampoline and return the physical address of the code */
439static __u32 __init
440setup_trampoline(void)
441{
442 /* these two are global symbols in trampoline.S */
443 extern __u8 trampoline_end[];
444 extern __u8 trampoline_data[];
445
446 memcpy((__u8 *)trampoline_base, trampoline_data,
447 trampoline_end - trampoline_data);
448 return virt_to_phys((__u8 *)trampoline_base);
449}
450
451/* Routine initially called when a non-boot CPU is brought online */
452static void __init
453start_secondary(void *unused)
454{
455 __u8 cpuid = hard_smp_processor_id();
456 /* external functions not defined in the headers */
457 extern void calibrate_delay(void);
458
459 cpu_init();
460
461 /* OK, we're in the routine */
462 ack_CPI(VIC_CPU_BOOT_CPI);
463
464 /* setup the 8259 master slave pair belonging to this CPU ---
465 * we won't actually receive any until the boot CPU
466 * relinquishes it's static routing mask */
467 vic_setup_pic();
468
469 qic_setup();
470
471 if(is_cpu_quad() && !is_cpu_vic_boot()) {
472 /* clear the boot CPI */
473 __u8 dummy;
474
475 dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
476 printk("read dummy %d\n", dummy);
477 }
478
479 /* lower the mask to receive CPIs */
480 vic_enable_cpi();
481
482 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
483
484 /* enable interrupts */
485 local_irq_enable();
486
487 /* get our bogomips */
488 calibrate_delay();
489
490 /* save our processor parameters */
491 smp_store_cpu_info(cpuid);
492
493 /* if we're a quad, we may need to bootstrap other CPUs */
494 do_quad_bootstrap();
495
496 /* FIXME: this is rather a poor hack to prevent the CPU
497 * activating softirqs while it's supposed to be waiting for
498 * permission to proceed. Without this, the new per CPU stuff
499 * in the softirqs will fail */
500 local_irq_disable();
501 cpu_set(cpuid, cpu_callin_map);
502
503 /* signal that we're done */
504 cpu_booted_map = 1;
505
506 while (!cpu_isset(cpuid, smp_commenced_mask))
507 rep_nop();
508 local_irq_enable();
509
510 local_flush_tlb();
511
512 cpu_set(cpuid, cpu_online_map);
513 wmb();
514 cpu_idle();
515}
516
517
518/* Routine to kick start the given CPU and wait for it to report ready
519 * (or timeout in startup). When this routine returns, the requested
520 * CPU is either fully running and configured or known to be dead.
521 *
522 * We call this routine sequentially 1 CPU at a time, so no need for
523 * locking */
524
525static void __init
526do_boot_cpu(__u8 cpu)
527{
528 struct task_struct *idle;
529 int timeout;
530 unsigned long flags;
531 int quad_boot = (1<<cpu) & voyager_quad_processors
532 & ~( voyager_extended_vic_processors
533 & voyager_allowed_boot_processors);
534
535 /* For the 486, we can't use the 4Mb page table trick, so
536 * must map a region of memory */
537#ifdef CONFIG_M486
538 int i;
539 unsigned long *page_table_copies = (unsigned long *)
540 __get_free_page(GFP_KERNEL);
541#endif
542 pgd_t orig_swapper_pg_dir0;
543
544 /* This is an area in head.S which was used to set up the
545 * initial kernel stack. We need to alter this to give the
546 * booting CPU a new stack (taken from its idle process) */
547 extern struct {
548 __u8 *esp;
549 unsigned short ss;
550 } stack_start;
551 /* This is the format of the CPI IDT gate (in real mode) which
552 * we're hijacking to boot the CPU */
553 union IDTFormat {
554 struct seg {
555 __u16 Offset;
556 __u16 Segment;
557 } idt;
558 __u32 val;
559 } hijack_source;
560
561 __u32 *hijack_vector;
562 __u32 start_phys_address = setup_trampoline();
563
564 /* There's a clever trick to this: The linux trampoline is
565 * compiled to begin at absolute location zero, so make the
566 * address zero but have the data segment selector compensate
567 * for the actual address */
568 hijack_source.idt.Offset = start_phys_address & 0x000F;
569 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
570
571 cpucount++;
572 idle = fork_idle(cpu);
573 if(IS_ERR(idle))
574 panic("failed fork for CPU%d", cpu);
575 idle->thread.eip = (unsigned long) start_secondary;
576 /* init_tasks (in sched.c) is indexed logically */
577 stack_start.esp = (void *) idle->thread.esp;
578
579 irq_ctx_init(cpu);
580
581 /* Note: Don't modify initial ss override */
582 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
583 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
584 hijack_source.idt.Offset, stack_start.esp));
585 /* set the original swapper_pg_dir[0] to map 0 to 4Mb transparently
586 * (so that the booting CPU can find start_32 */
587 orig_swapper_pg_dir0 = swapper_pg_dir[0];
588#ifdef CONFIG_M486
589 if(page_table_copies == NULL)
590 panic("No free memory for 486 page tables\n");
591 for(i = 0; i < PAGE_SIZE/sizeof(unsigned long); i++)
592 page_table_copies[i] = (i * PAGE_SIZE)
593 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
594
595 ((unsigned long *)swapper_pg_dir)[0] =
596 ((virt_to_phys(page_table_copies)) & PAGE_MASK)
597 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
598#else
599 ((unsigned long *)swapper_pg_dir)[0] =
600 (virt_to_phys(pg0) & PAGE_MASK)
601 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
602#endif
603
604 if(quad_boot) {
605 printk("CPU %d: non extended Quad boot\n", cpu);
606 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
607 *hijack_vector = hijack_source.val;
608 } else {
609 printk("CPU%d: extended VIC boot\n", cpu);
610 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
611 *hijack_vector = hijack_source.val;
612 /* VIC errata, may also receive interrupt at this address */
613 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
614 *hijack_vector = hijack_source.val;
615 }
616 /* All non-boot CPUs start with interrupts fully masked. Need
617 * to lower the mask of the CPI we're about to send. We do
618 * this in the VIC by masquerading as the processor we're
619 * about to boot and lowering its interrupt mask */
620 local_irq_save(flags);
621 if(quad_boot) {
622 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
623 } else {
624 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
625 /* here we're altering registers belonging to `cpu' */
626
627 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
628 /* now go back to our original identity */
629 outb(boot_cpu_id, VIC_PROCESSOR_ID);
630
631 /* and boot the CPU */
632
633 send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
634 }
635 cpu_booted_map = 0;
636 local_irq_restore(flags);
637
638 /* now wait for it to become ready (or timeout) */
639 for(timeout = 0; timeout < 50000; timeout++) {
640 if(cpu_booted_map)
641 break;
642 udelay(100);
643 }
644 /* reset the page table */
645 swapper_pg_dir[0] = orig_swapper_pg_dir0;
646 local_flush_tlb();
647#ifdef CONFIG_M486
648 free_page((unsigned long)page_table_copies);
649#endif
650
651 if (cpu_booted_map) {
652 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
653 cpu, smp_processor_id()));
654
655 printk("CPU%d: ", cpu);
656 print_cpu_info(&cpu_data[cpu]);
657 wmb();
658 cpu_set(cpu, cpu_callout_map);
659 }
660 else {
661 printk("CPU%d FAILED TO BOOT: ", cpu);
662 if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
663 printk("Stuck.\n");
664 else
665 printk("Not responding.\n");
666
667 cpucount--;
668 }
669}
670
671void __init
672smp_boot_cpus(void)
673{
674 int i;
675
676 /* CAT BUS initialisation must be done after the memory */
677 /* FIXME: The L4 has a catbus too, it just needs to be
678 * accessed in a totally different way */
679 if(voyager_level == 5) {
680 voyager_cat_init();
681
682 /* now that the cat has probed the Voyager System Bus, sanity
683 * check the cpu map */
684 if( ((voyager_quad_processors | voyager_extended_vic_processors)
685 & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
686 /* should panic */
687 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
688 }
689 } else if(voyager_level == 4)
690 voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
691
692 /* this sets up the idle task to run on the current cpu */
693 voyager_extended_cpus = 1;
694 /* Remove the global_irq_holder setting, it triggers a BUG() on
695 * schedule at the moment */
696 //global_irq_holder = boot_cpu_id;
697
698 /* FIXME: Need to do something about this but currently only works
699 * on CPUs with a tsc which none of mine have.
700 smp_tune_scheduling();
701 */
702 smp_store_cpu_info(boot_cpu_id);
703 printk("CPU%d: ", boot_cpu_id);
704 print_cpu_info(&cpu_data[boot_cpu_id]);
705
706 if(is_cpu_quad()) {
707 /* booting on a Quad CPU */
708 printk("VOYAGER SMP: Boot CPU is Quad\n");
709 qic_setup();
710 do_quad_bootstrap();
711 }
712
713 /* enable our own CPIs */
714 vic_enable_cpi();
715
716 cpu_set(boot_cpu_id, cpu_online_map);
717 cpu_set(boot_cpu_id, cpu_callout_map);
718
719 /* loop over all the extended VIC CPUs and boot them. The
720 * Quad CPUs must be bootstrapped by their extended VIC cpu */
721 for(i = 0; i < NR_CPUS; i++) {
722 if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
723 continue;
724 do_boot_cpu(i);
725 /* This udelay seems to be needed for the Quad boots
726 * don't remove unless you know what you're doing */
727 udelay(1000);
728 }
729 /* we could compute the total bogomips here, but why bother?,
730 * Code added from smpboot.c */
731 {
732 unsigned long bogosum = 0;
733 for (i = 0; i < NR_CPUS; i++)
734 if (cpu_isset(i, cpu_online_map))
735 bogosum += cpu_data[i].loops_per_jiffy;
736 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
737 cpucount+1,
738 bogosum/(500000/HZ),
739 (bogosum/(5000/HZ))%100);
740 }
741 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
742 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
743 /* that's it, switch to symmetric mode */
744 outb(0, VIC_PRIORITY_REGISTER);
745 outb(0, VIC_CLAIM_REGISTER_0);
746 outb(0, VIC_CLAIM_REGISTER_1);
747
748 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
749}
750
751/* Reload the secondary CPUs task structure (this function does not
752 * return ) */
753void __init
754initialize_secondary(void)
755{
756#if 0
757 // AC kernels only
758 set_current(hard_get_current());
759#endif
760
761 /*
762 * We don't actually need to load the full TSS,
763 * basically just the stack pointer and the eip.
764 */
765
766 asm volatile(
767 "movl %0,%%esp\n\t"
768 "jmp *%1"
769 :
770 :"r" (current->thread.esp),"r" (current->thread.eip));
771}
772
773/* handle a Voyager SYS_INT -- If we don't, the base board will
774 * panic the system.
775 *
776 * System interrupts occur because some problem was detected on the
777 * various busses. To find out what you have to probe all the
778 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
779fastcall void
780smp_vic_sys_interrupt(struct pt_regs *regs)
781{
782 ack_CPI(VIC_SYS_INT);
783 printk("Voyager SYSTEM INTERRUPT\n");
784}
785
786/* Handle a voyager CMN_INT; These interrupts occur either because of
787 * a system status change or because a single bit memory error
788 * occurred. FIXME: At the moment, ignore all this. */
789fastcall void
790smp_vic_cmn_interrupt(struct pt_regs *regs)
791{
792 static __u8 in_cmn_int = 0;
793 static DEFINE_SPINLOCK(cmn_int_lock);
794
795 /* common ints are broadcast, so make sure we only do this once */
796 _raw_spin_lock(&cmn_int_lock);
797 if(in_cmn_int)
798 goto unlock_end;
799
800 in_cmn_int++;
801 _raw_spin_unlock(&cmn_int_lock);
802
803 VDEBUG(("Voyager COMMON INTERRUPT\n"));
804
805 if(voyager_level == 5)
806 voyager_cat_do_common_interrupt();
807
808 _raw_spin_lock(&cmn_int_lock);
809 in_cmn_int = 0;
810 unlock_end:
811 _raw_spin_unlock(&cmn_int_lock);
812 ack_CPI(VIC_CMN_INT);
813}
814
815/*
816 * Reschedule call back. Nothing to do, all the work is done
817 * automatically when we return from the interrupt. */
818static void
819smp_reschedule_interrupt(void)
820{
821 /* do nothing */
822}
823
824static struct mm_struct * flush_mm;
825static unsigned long flush_va;
826static DEFINE_SPINLOCK(tlbstate_lock);
827#define FLUSH_ALL 0xffffffff
828
829/*
830 * We cannot call mmdrop() because we are in interrupt context,
831 * instead update mm->cpu_vm_mask.
832 *
833 * We need to reload %cr3 since the page tables may be going
834 * away from under us..
835 */
836static inline void
837leave_mm (unsigned long cpu)
838{
839 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
840 BUG();
841 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
842 load_cr3(swapper_pg_dir);
843}
844
845
846/*
847 * Invalidate call-back
848 */
849static void
850smp_invalidate_interrupt(void)
851{
852 __u8 cpu = smp_processor_id();
853
854 if (!test_bit(cpu, &smp_invalidate_needed))
855 return;
856 /* This will flood messages. Don't uncomment unless you see
857 * Problems with cross cpu invalidation
858 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
859 smp_processor_id()));
860 */
861
862 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
863 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
864 if (flush_va == FLUSH_ALL)
865 local_flush_tlb();
866 else
867 __flush_tlb_one(flush_va);
868 } else
869 leave_mm(cpu);
870 }
871 smp_mb__before_clear_bit();
872 clear_bit(cpu, &smp_invalidate_needed);
873 smp_mb__after_clear_bit();
874}
875
876/* All the new flush operations for 2.4 */
877
878
879/* This routine is called with a physical cpu mask */
880static void
881flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
882 unsigned long va)
883{
884 int stuck = 50000;
885
886 if (!cpumask)
887 BUG();
888 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
889 BUG();
890 if (cpumask & (1 << smp_processor_id()))
891 BUG();
892 if (!mm)
893 BUG();
894
895 spin_lock(&tlbstate_lock);
896
897 flush_mm = mm;
898 flush_va = va;
899 atomic_set_mask(cpumask, &smp_invalidate_needed);
900 /*
901 * We have to send the CPI only to
902 * CPUs affected.
903 */
904 send_CPI(cpumask, VIC_INVALIDATE_CPI);
905
906 while (smp_invalidate_needed) {
907 mb();
908 if(--stuck == 0) {
909 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
910 break;
911 }
912 }
913
914 /* Uncomment only to debug invalidation problems
915 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
916 */
917
918 flush_mm = NULL;
919 flush_va = 0;
920 spin_unlock(&tlbstate_lock);
921}
922
923void
924flush_tlb_current_task(void)
925{
926 struct mm_struct *mm = current->mm;
927 unsigned long cpu_mask;
928
929 preempt_disable();
930
931 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
932 local_flush_tlb();
933 if (cpu_mask)
934 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
935
936 preempt_enable();
937}
938
939
940void
941flush_tlb_mm (struct mm_struct * mm)
942{
943 unsigned long cpu_mask;
944
945 preempt_disable();
946
947 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
948
949 if (current->active_mm == mm) {
950 if (current->mm)
951 local_flush_tlb();
952 else
953 leave_mm(smp_processor_id());
954 }
955 if (cpu_mask)
956 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
957
958 preempt_enable();
959}
960
961void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
962{
963 struct mm_struct *mm = vma->vm_mm;
964 unsigned long cpu_mask;
965
966 preempt_disable();
967
968 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
969 if (current->active_mm == mm) {
970 if(current->mm)
971 __flush_tlb_one(va);
972 else
973 leave_mm(smp_processor_id());
974 }
975
976 if (cpu_mask)
977 flush_tlb_others(cpu_mask, mm, va);
978
979 preempt_enable();
980}
981
982/* enable the requested IRQs */
983static void
984smp_enable_irq_interrupt(void)
985{
986 __u8 irq;
987 __u8 cpu = get_cpu();
988
989 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
990 vic_irq_enable_mask[cpu]));
991
992 spin_lock(&vic_irq_lock);
993 for(irq = 0; irq < 16; irq++) {
994 if(vic_irq_enable_mask[cpu] & (1<<irq))
995 enable_local_vic_irq(irq);
996 }
997 vic_irq_enable_mask[cpu] = 0;
998 spin_unlock(&vic_irq_lock);
999
1000 put_cpu_no_resched();
1001}
1002
1003/*
1004 * CPU halt call-back
1005 */
1006static void
1007smp_stop_cpu_function(void *dummy)
1008{
1009 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
1010 cpu_clear(smp_processor_id(), cpu_online_map);
1011 local_irq_disable();
1012 for(;;)
1013 __asm__("hlt");
1014}
1015
1016static DEFINE_SPINLOCK(call_lock);
1017
1018struct call_data_struct {
1019 void (*func) (void *info);
1020 void *info;
1021 volatile unsigned long started;
1022 volatile unsigned long finished;
1023 int wait;
1024};
1025
1026static struct call_data_struct * call_data;
1027
1028/* execute a thread on a new CPU. The function to be called must be
1029 * previously set up. This is used to schedule a function for
1030 * execution on all CPU's - set up the function then broadcast a
1031 * function_interrupt CPI to come here on each CPU */
1032static void
1033smp_call_function_interrupt(void)
1034{
1035 void (*func) (void *info) = call_data->func;
1036 void *info = call_data->info;
1037 /* must take copy of wait because call_data may be replaced
1038 * unless the function is waiting for us to finish */
1039 int wait = call_data->wait;
1040 __u8 cpu = smp_processor_id();
1041
1042 /*
1043 * Notify initiating CPU that I've grabbed the data and am
1044 * about to execute the function
1045 */
1046 mb();
1047 if(!test_and_clear_bit(cpu, &call_data->started)) {
1048 /* If the bit wasn't set, this could be a replay */
1049 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1050 return;
1051 }
1052 /*
1053 * At this point the info structure may be out of scope unless wait==1
1054 */
1055 irq_enter();
1056 (*func)(info);
1057 irq_exit();
1058 if (wait) {
1059 mb();
1060 clear_bit(cpu, &call_data->finished);
1061 }
1062}
1063
1064/* Call this function on all CPUs using the function_interrupt above
1065 <func> The function to run. This must be fast and non-blocking.
1066 <info> An arbitrary pointer to pass to the function.
1067 <retry> If true, keep retrying until ready.
1068 <wait> If true, wait until function has completed on other CPUs.
1069 [RETURNS] 0 on success, else a negative status code. Does not return until
1070 remote CPUs are nearly ready to execute <<func>> or are or have executed.
1071*/
1072int
1073smp_call_function (void (*func) (void *info), void *info, int retry,
1074 int wait)
1075{
1076 struct call_data_struct data;
1077 __u32 mask = cpus_addr(cpu_online_map)[0];
1078
1079 mask &= ~(1<<smp_processor_id());
1080
1081 if (!mask)
1082 return 0;
1083
1084 /* Can deadlock when called with interrupts disabled */
1085 WARN_ON(irqs_disabled());
1086
1087 data.func = func;
1088 data.info = info;
1089 data.started = mask;
1090 data.wait = wait;
1091 if (wait)
1092 data.finished = mask;
1093
1094 spin_lock(&call_lock);
1095 call_data = &data;
1096 wmb();
1097 /* Send a message to all other CPUs and wait for them to respond */
1098 send_CPI_allbutself(VIC_CALL_FUNCTION_CPI);
1099
1100 /* Wait for response */
1101 while (data.started)
1102 barrier();
1103
1104 if (wait)
1105 while (data.finished)
1106 barrier();
1107
1108 spin_unlock(&call_lock);
1109
1110 return 0;
1111}
1112
1113/* Sorry about the name. In an APIC based system, the APICs
1114 * themselves are programmed to send a timer interrupt. This is used
1115 * by linux to reschedule the processor. Voyager doesn't have this,
1116 * so we use the system clock to interrupt one processor, which in
1117 * turn, broadcasts a timer CPI to all the others --- we receive that
1118 * CPI here. We don't use this actually for counting so losing
1119 * ticks doesn't matter
1120 *
1121 * FIXME: For those CPU's which actually have a local APIC, we could
1122 * try to use it to trigger this interrupt instead of having to
1123 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1124 * no local APIC, so I can't do this
1125 *
1126 * This function is currently a placeholder and is unused in the code */
1127fastcall void
1128smp_apic_timer_interrupt(struct pt_regs *regs)
1129{
1130 wrapper_smp_local_timer_interrupt(regs);
1131}
1132
1133/* All of the QUAD interrupt GATES */
1134fastcall void
1135smp_qic_timer_interrupt(struct pt_regs *regs)
1136{
1137 ack_QIC_CPI(QIC_TIMER_CPI);
1138 wrapper_smp_local_timer_interrupt(regs);
1139}
1140
1141fastcall void
1142smp_qic_invalidate_interrupt(struct pt_regs *regs)
1143{
1144 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1145 smp_invalidate_interrupt();
1146}
1147
1148fastcall void
1149smp_qic_reschedule_interrupt(struct pt_regs *regs)
1150{
1151 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1152 smp_reschedule_interrupt();
1153}
1154
1155fastcall void
1156smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1157{
1158 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1159 smp_enable_irq_interrupt();
1160}
1161
1162fastcall void
1163smp_qic_call_function_interrupt(struct pt_regs *regs)
1164{
1165 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1166 smp_call_function_interrupt();
1167}
1168
1169fastcall void
1170smp_vic_cpi_interrupt(struct pt_regs *regs)
1171{
1172 __u8 cpu = smp_processor_id();
1173
1174 if(is_cpu_quad())
1175 ack_QIC_CPI(VIC_CPI_LEVEL0);
1176 else
1177 ack_VIC_CPI(VIC_CPI_LEVEL0);
1178
1179 if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1180 wrapper_smp_local_timer_interrupt(regs);
1181 if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1182 smp_invalidate_interrupt();
1183 if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1184 smp_reschedule_interrupt();
1185 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1186 smp_enable_irq_interrupt();
1187 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1188 smp_call_function_interrupt();
1189}
1190
1191static void
1192do_flush_tlb_all(void* info)
1193{
1194 unsigned long cpu = smp_processor_id();
1195
1196 __flush_tlb_all();
1197 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1198 leave_mm(cpu);
1199}
1200
1201
1202/* flush the TLB of every active CPU in the system */
1203void
1204flush_tlb_all(void)
1205{
1206 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1207}
1208
1209/* used to set up the trampoline for other CPUs when the memory manager
1210 * is sorted out */
1211void __init
1212smp_alloc_memory(void)
1213{
1214 trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1215 if(__pa(trampoline_base) >= 0x93000)
1216 BUG();
1217}
1218
1219/* send a reschedule CPI to one CPU by physical CPU number*/
1220void
1221smp_send_reschedule(int cpu)
1222{
1223 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1224}
1225
1226
1227int
1228hard_smp_processor_id(void)
1229{
1230 __u8 i;
1231 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1232 if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1233 return cpumask & 0x1F;
1234
1235 for(i = 0; i < 8; i++) {
1236 if(cpumask & (1<<i))
1237 return i;
1238 }
1239 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1240 return 0;
1241}
1242
1243/* broadcast a halt to all other CPUs */
1244void
1245smp_send_stop(void)
1246{
1247 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1248}
1249
1250/* this function is triggered in time.c when a clock tick fires
1251 * we need to re-broadcast the tick to all CPUs */
1252void
1253smp_vic_timer_interrupt(struct pt_regs *regs)
1254{
1255 send_CPI_allbutself(VIC_TIMER_CPI);
1256 smp_local_timer_interrupt(regs);
1257}
1258
1da177e4
LT
1259/* local (per CPU) timer interrupt. It does both profiling and
1260 * process statistics/rescheduling.
1261 *
1262 * We do profiling in every local tick, statistics/rescheduling
1263 * happen only every 'profiling multiplier' ticks. The default
1264 * multiplier is 1 and it can be changed by writing the new multiplier
1265 * value into /proc/profile.
1266 */
1267void
1268smp_local_timer_interrupt(struct pt_regs * regs)
1269{
1270 int cpu = smp_processor_id();
1271 long weight;
1272
1273 profile_tick(CPU_PROFILING, regs);
1274 if (--per_cpu(prof_counter, cpu) <= 0) {
1275 /*
1276 * The multiplier may have changed since the last time we got
1277 * to this point as a result of the user writing to
1278 * /proc/profile. In this case we need to adjust the APIC
1279 * timer accordingly.
1280 *
1281 * Interrupts are already masked off at this point.
1282 */
1283 per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1284 if (per_cpu(prof_counter, cpu) !=
1285 per_cpu(prof_old_multiplier, cpu)) {
1286 /* FIXME: need to update the vic timer tick here */
1287 per_cpu(prof_old_multiplier, cpu) =
1288 per_cpu(prof_counter, cpu);
1289 }
1290
fa1e1bdf 1291 update_process_times(user_mode_vm(regs));
1da177e4
LT
1292 }
1293
1294 if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1295 /* only extended VIC processors participate in
1296 * interrupt distribution */
1297 return;
1298
1299 /*
1300 * We take the 'long' return path, and there every subsystem
1301 * grabs the apropriate locks (kernel lock/ irq lock).
1302 *
1303 * we might want to decouple profiling from the 'long path',
1304 * and do the profiling totally in assembly.
1305 *
1306 * Currently this isn't too much of an issue (performance wise),
1307 * we can take more than 100K local irqs per second on a 100 MHz P5.
1308 */
1309
1310 if((++vic_tick[cpu] & 0x7) != 0)
1311 return;
1312 /* get here every 16 ticks (about every 1/6 of a second) */
1313
1314 /* Change our priority to give someone else a chance at getting
1315 * the IRQ. The algorithm goes like this:
1316 *
1317 * In the VIC, the dynamically routed interrupt is always
1318 * handled by the lowest priority eligible (i.e. receiving
1319 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1320 * lowest processor number gets it.
1321 *
1322 * The priority of a CPU is controlled by a special per-CPU
1323 * VIC priority register which is 3 bits wide 0 being lowest
1324 * and 7 highest priority..
1325 *
1326 * Therefore we subtract the average number of interrupts from
1327 * the number we've fielded. If this number is negative, we
1328 * lower the activity count and if it is positive, we raise
1329 * it.
1330 *
1331 * I'm afraid this still leads to odd looking interrupt counts:
1332 * the totals are all roughly equal, but the individual ones
1333 * look rather skewed.
1334 *
1335 * FIXME: This algorithm is total crap when mixed with SMP
1336 * affinity code since we now try to even up the interrupt
1337 * counts when an affinity binding is keeping them on a
1338 * particular CPU*/
1339 weight = (vic_intr_count[cpu]*voyager_extended_cpus
1340 - vic_intr_total) >> 4;
1341 weight += 4;
1342 if(weight > 7)
1343 weight = 7;
1344 if(weight < 0)
1345 weight = 0;
1346
1347 outb((__u8)weight, VIC_PRIORITY_REGISTER);
1348
1349#ifdef VOYAGER_DEBUG
1350 if((vic_tick[cpu] & 0xFFF) == 0) {
1351 /* print this message roughly every 25 secs */
1352 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1353 cpu, vic_tick[cpu], weight);
1354 }
1355#endif
1356}
1357
1358/* setup the profiling timer */
1359int
1360setup_profiling_timer(unsigned int multiplier)
1361{
1362 int i;
1363
1364 if ( (!multiplier))
1365 return -EINVAL;
1366
1367 /*
1368 * Set the new multiplier for each CPU. CPUs don't start using the
1369 * new values until the next timer interrupt in which they do process
1370 * accounting.
1371 */
1372 for (i = 0; i < NR_CPUS; ++i)
1373 per_cpu(prof_multiplier, i) = multiplier;
1374
1375 return 0;
1376}
1377
1378
1379/* The CPIs are handled in the per cpu 8259s, so they must be
1380 * enabled to be received: FIX: enabling the CPIs in the early
1381 * boot sequence interferes with bug checking; enable them later
1382 * on in smp_init */
1383#define VIC_SET_GATE(cpi, vector) \
1384 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1385#define QIC_SET_GATE(cpi, vector) \
1386 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1387
1388void __init
1389smp_intr_init(void)
1390{
1391 int i;
1392
1393 /* initialize the per cpu irq mask to all disabled */
1394 for(i = 0; i < NR_CPUS; i++)
1395 vic_irq_mask[i] = 0xFFFF;
1396
1397 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1398
1399 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1400 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1401
1402 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1403 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1404 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1405 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1406 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1407
1408
1409 /* now put the VIC descriptor into the first 48 IRQs
1410 *
1411 * This is for later: first 16 correspond to PC IRQs; next 16
1412 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1413 for(i = 0; i < 48; i++)
1414 irq_desc[i].handler = &vic_irq_type;
1415}
1416
1417/* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1418 * processor to receive CPI */
1419static void
1420send_CPI(__u32 cpuset, __u8 cpi)
1421{
1422 int cpu;
1423 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1424
1425 if(cpi < VIC_START_FAKE_CPI) {
1426 /* fake CPI are only used for booting, so send to the
1427 * extended quads as well---Quads must be VIC booted */
1428 outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1429 return;
1430 }
1431 if(quad_cpuset)
1432 send_QIC_CPI(quad_cpuset, cpi);
1433 cpuset &= ~quad_cpuset;
1434 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1435 if(cpuset == 0)
1436 return;
1437 for_each_online_cpu(cpu) {
1438 if(cpuset & (1<<cpu))
1439 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1440 }
1441 if(cpuset)
1442 outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1443}
1444
1445/* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1446 * set the cache line to shared by reading it.
1447 *
1448 * DON'T make this inline otherwise the cache line read will be
1449 * optimised away
1450 * */
1451static int
1452ack_QIC_CPI(__u8 cpi) {
1453 __u8 cpu = hard_smp_processor_id();
1454
1455 cpi &= 7;
1456
1457 outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1458 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1459}
1460
1461static void
1462ack_special_QIC_CPI(__u8 cpi)
1463{
1464 switch(cpi) {
1465 case VIC_CMN_INT:
1466 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1467 break;
1468 case VIC_SYS_INT:
1469 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1470 break;
1471 }
1472 /* also clear at the VIC, just in case (nop for non-extended proc) */
1473 ack_VIC_CPI(cpi);
1474}
1475
1476/* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1477static void
1478ack_VIC_CPI(__u8 cpi)
1479{
1480#ifdef VOYAGER_DEBUG
1481 unsigned long flags;
1482 __u16 isr;
1483 __u8 cpu = smp_processor_id();
1484
1485 local_irq_save(flags);
1486 isr = vic_read_isr();
1487 if((isr & (1<<(cpi &7))) == 0) {
1488 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1489 }
1490#endif
1491 /* send specific EOI; the two system interrupts have
1492 * bit 4 set for a separate vector but behave as the
1493 * corresponding 3 bit intr */
1494 outb_p(0x60|(cpi & 7),0x20);
1495
1496#ifdef VOYAGER_DEBUG
1497 if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1498 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1499 }
1500 local_irq_restore(flags);
1501#endif
1502}
1503
1504/* cribbed with thanks from irq.c */
1505#define __byte(x,y) (((unsigned char *)&(y))[x])
1506#define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1507#define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1508
1509static unsigned int
1510startup_vic_irq(unsigned int irq)
1511{
1512 enable_vic_irq(irq);
1513
1514 return 0;
1515}
1516
1517/* The enable and disable routines. This is where we run into
1518 * conflicting architectural philosophy. Fundamentally, the voyager
1519 * architecture does not expect to have to disable interrupts globally
1520 * (the IRQ controllers belong to each CPU). The processor masquerade
1521 * which is used to start the system shouldn't be used in a running OS
1522 * since it will cause great confusion if two separate CPUs drive to
1523 * the same IRQ controller (I know, I've tried it).
1524 *
1525 * The solution is a variant on the NCR lazy SPL design:
1526 *
1527 * 1) To disable an interrupt, do nothing (other than set the
1528 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1529 *
1530 * 2) If the interrupt dares to come in, raise the local mask against
1531 * it (this will result in all the CPU masks being raised
1532 * eventually).
1533 *
1534 * 3) To enable the interrupt, lower the mask on the local CPU and
1535 * broadcast an Interrupt enable CPI which causes all other CPUs to
1536 * adjust their masks accordingly. */
1537
1538static void
1539enable_vic_irq(unsigned int irq)
1540{
1541 /* linux doesn't to processor-irq affinity, so enable on
1542 * all CPUs we know about */
1543 int cpu = smp_processor_id(), real_cpu;
1544 __u16 mask = (1<<irq);
1545 __u32 processorList = 0;
1546 unsigned long flags;
1547
1548 VDEBUG(("VOYAGER: enable_vic_irq(%d) CPU%d affinity 0x%lx\n",
1549 irq, cpu, cpu_irq_affinity[cpu]));
1550 spin_lock_irqsave(&vic_irq_lock, flags);
1551 for_each_online_cpu(real_cpu) {
1552 if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1553 continue;
1554 if(!(cpu_irq_affinity[real_cpu] & mask)) {
1555 /* irq has no affinity for this CPU, ignore */
1556 continue;
1557 }
1558 if(real_cpu == cpu) {
1559 enable_local_vic_irq(irq);
1560 }
1561 else if(vic_irq_mask[real_cpu] & mask) {
1562 vic_irq_enable_mask[real_cpu] |= mask;
1563 processorList |= (1<<real_cpu);
1564 }
1565 }
1566 spin_unlock_irqrestore(&vic_irq_lock, flags);
1567 if(processorList)
1568 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1569}
1570
1571static void
1572disable_vic_irq(unsigned int irq)
1573{
1574 /* lazy disable, do nothing */
1575}
1576
1577static void
1578enable_local_vic_irq(unsigned int irq)
1579{
1580 __u8 cpu = smp_processor_id();
1581 __u16 mask = ~(1 << irq);
1582 __u16 old_mask = vic_irq_mask[cpu];
1583
1584 vic_irq_mask[cpu] &= mask;
1585 if(vic_irq_mask[cpu] == old_mask)
1586 return;
1587
1588 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1589 irq, cpu));
1590
1591 if (irq & 8) {
1592 outb_p(cached_A1(cpu),0xA1);
1593 (void)inb_p(0xA1);
1594 }
1595 else {
1596 outb_p(cached_21(cpu),0x21);
1597 (void)inb_p(0x21);
1598 }
1599}
1600
1601static void
1602disable_local_vic_irq(unsigned int irq)
1603{
1604 __u8 cpu = smp_processor_id();
1605 __u16 mask = (1 << irq);
1606 __u16 old_mask = vic_irq_mask[cpu];
1607
1608 if(irq == 7)
1609 return;
1610
1611 vic_irq_mask[cpu] |= mask;
1612 if(old_mask == vic_irq_mask[cpu])
1613 return;
1614
1615 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1616 irq, cpu));
1617
1618 if (irq & 8) {
1619 outb_p(cached_A1(cpu),0xA1);
1620 (void)inb_p(0xA1);
1621 }
1622 else {
1623 outb_p(cached_21(cpu),0x21);
1624 (void)inb_p(0x21);
1625 }
1626}
1627
1628/* The VIC is level triggered, so the ack can only be issued after the
1629 * interrupt completes. However, we do Voyager lazy interrupt
1630 * handling here: It is an extremely expensive operation to mask an
1631 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1632 * this interrupt actually comes in, then we mask and ack here to push
1633 * the interrupt off to another CPU */
1634static void
1635before_handle_vic_irq(unsigned int irq)
1636{
1637 irq_desc_t *desc = irq_desc + irq;
1638 __u8 cpu = smp_processor_id();
1639
1640 _raw_spin_lock(&vic_irq_lock);
1641 vic_intr_total++;
1642 vic_intr_count[cpu]++;
1643
1644 if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1645 /* The irq is not in our affinity mask, push it off
1646 * onto another CPU */
1647 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1648 irq, cpu));
1649 disable_local_vic_irq(irq);
1650 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1651 * actually calling the interrupt routine */
1652 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1653 } else if(desc->status & IRQ_DISABLED) {
1654 /* Damn, the interrupt actually arrived, do the lazy
1655 * disable thing. The interrupt routine in irq.c will
1656 * not handle a IRQ_DISABLED interrupt, so nothing more
1657 * need be done here */
1658 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1659 irq, cpu));
1660 disable_local_vic_irq(irq);
1661 desc->status |= IRQ_REPLAY;
1662 } else {
1663 desc->status &= ~IRQ_REPLAY;
1664 }
1665
1666 _raw_spin_unlock(&vic_irq_lock);
1667}
1668
1669/* Finish the VIC interrupt: basically mask */
1670static void
1671after_handle_vic_irq(unsigned int irq)
1672{
1673 irq_desc_t *desc = irq_desc + irq;
1674
1675 _raw_spin_lock(&vic_irq_lock);
1676 {
1677 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1678#ifdef VOYAGER_DEBUG
1679 __u16 isr;
1680#endif
1681
1682 desc->status = status;
1683 if ((status & IRQ_DISABLED))
1684 disable_local_vic_irq(irq);
1685#ifdef VOYAGER_DEBUG
1686 /* DEBUG: before we ack, check what's in progress */
1687 isr = vic_read_isr();
1688 if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1689 int i;
1690 __u8 cpu = smp_processor_id();
1691 __u8 real_cpu;
1692 int mask; /* Um... initialize me??? --RR */
1693
1694 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1695 cpu, irq);
1696 for_each_cpu(real_cpu, mask) {
1697
1698 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1699 VIC_PROCESSOR_ID);
1700 isr = vic_read_isr();
1701 if(isr & (1<<irq)) {
1702 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1703 real_cpu, irq);
1704 ack_vic_irq(irq);
1705 }
1706 outb(cpu, VIC_PROCESSOR_ID);
1707 }
1708 }
1709#endif /* VOYAGER_DEBUG */
1710 /* as soon as we ack, the interrupt is eligible for
1711 * receipt by another CPU so everything must be in
1712 * order here */
1713 ack_vic_irq(irq);
1714 if(status & IRQ_REPLAY) {
1715 /* replay is set if we disable the interrupt
1716 * in the before_handle_vic_irq() routine, so
1717 * clear the in progress bit here to allow the
1718 * next CPU to handle this correctly */
1719 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1720 }
1721#ifdef VOYAGER_DEBUG
1722 isr = vic_read_isr();
1723 if((isr & (1<<irq)) != 0)
1724 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1725 irq, isr);
1726#endif /* VOYAGER_DEBUG */
1727 }
1728 _raw_spin_unlock(&vic_irq_lock);
1729
1730 /* All code after this point is out of the main path - the IRQ
1731 * may be intercepted by another CPU if reasserted */
1732}
1733
1734
1735/* Linux processor - interrupt affinity manipulations.
1736 *
1737 * For each processor, we maintain a 32 bit irq affinity mask.
1738 * Initially it is set to all 1's so every processor accepts every
1739 * interrupt. In this call, we change the processor's affinity mask:
1740 *
1741 * Change from enable to disable:
1742 *
1743 * If the interrupt ever comes in to the processor, we will disable it
1744 * and ack it to push it off to another CPU, so just accept the mask here.
1745 *
1746 * Change from disable to enable:
1747 *
1748 * change the mask and then do an interrupt enable CPI to re-enable on
1749 * the selected processors */
1750
1751void
1752set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1753{
1754 /* Only extended processors handle interrupts */
1755 unsigned long real_mask;
1756 unsigned long irq_mask = 1 << irq;
1757 int cpu;
1758
1759 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1760
1761 if(cpus_addr(mask)[0] == 0)
1762 /* can't have no cpu's to accept the interrupt -- extremely
1763 * bad things will happen */
1764 return;
1765
1766 if(irq == 0)
1767 /* can't change the affinity of the timer IRQ. This
1768 * is due to the constraint in the voyager
1769 * architecture that the CPI also comes in on and IRQ
1770 * line and we have chosen IRQ0 for this. If you
1771 * raise the mask on this interrupt, the processor
1772 * will no-longer be able to accept VIC CPIs */
1773 return;
1774
1775 if(irq >= 32)
1776 /* You can only have 32 interrupts in a voyager system
1777 * (and 32 only if you have a secondary microchannel
1778 * bus) */
1779 return;
1780
1781 for_each_online_cpu(cpu) {
1782 unsigned long cpu_mask = 1 << cpu;
1783
1784 if(cpu_mask & real_mask) {
1785 /* enable the interrupt for this cpu */
1786 cpu_irq_affinity[cpu] |= irq_mask;
1787 } else {
1788 /* disable the interrupt for this cpu */
1789 cpu_irq_affinity[cpu] &= ~irq_mask;
1790 }
1791 }
1792 /* this is magic, we now have the correct affinity maps, so
1793 * enable the interrupt. This will send an enable CPI to
1794 * those cpu's who need to enable it in their local masks,
1795 * causing them to correct for the new affinity . If the
1796 * interrupt is currently globally disabled, it will simply be
1797 * disabled again as it comes in (voyager lazy disable). If
1798 * the affinity map is tightened to disable the interrupt on a
1799 * cpu, it will be pushed off when it comes in */
1800 enable_vic_irq(irq);
1801}
1802
1803static void
1804ack_vic_irq(unsigned int irq)
1805{
1806 if (irq & 8) {
1807 outb(0x62,0x20); /* Specific EOI to cascade */
1808 outb(0x60|(irq & 7),0xA0);
1809 } else {
1810 outb(0x60 | (irq & 7),0x20);
1811 }
1812}
1813
1814/* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1815 * but are not vectored by it. This means that the 8259 mask must be
1816 * lowered to receive them */
1817static __init void
1818vic_enable_cpi(void)
1819{
1820 __u8 cpu = smp_processor_id();
1821
1822 /* just take a copy of the current mask (nop for boot cpu) */
1823 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1824
1825 enable_local_vic_irq(VIC_CPI_LEVEL0);
1826 enable_local_vic_irq(VIC_CPI_LEVEL1);
1827 /* for sys int and cmn int */
1828 enable_local_vic_irq(7);
1829
1830 if(is_cpu_quad()) {
1831 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1832 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1833 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1834 cpu, QIC_CPI_ENABLE));
1835 }
1836
1837 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1838 cpu, vic_irq_mask[cpu]));
1839}
1840
1841void
1842voyager_smp_dump()
1843{
1844 int old_cpu = smp_processor_id(), cpu;
1845
1846 /* dump the interrupt masks of each processor */
1847 for_each_online_cpu(cpu) {
1848 __u16 imr, isr, irr;
1849 unsigned long flags;
1850
1851 local_irq_save(flags);
1852 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1853 imr = (inb(0xa1) << 8) | inb(0x21);
1854 outb(0x0a, 0xa0);
1855 irr = inb(0xa0) << 8;
1856 outb(0x0a, 0x20);
1857 irr |= inb(0x20);
1858 outb(0x0b, 0xa0);
1859 isr = inb(0xa0) << 8;
1860 outb(0x0b, 0x20);
1861 isr |= inb(0x20);
1862 outb(old_cpu, VIC_PROCESSOR_ID);
1863 local_irq_restore(flags);
1864 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1865 cpu, vic_irq_mask[cpu], imr, irr, isr);
1866#if 0
1867 /* These lines are put in to try to unstick an un ack'd irq */
1868 if(isr != 0) {
1869 int irq;
1870 for(irq=0; irq<16; irq++) {
1871 if(isr & (1<<irq)) {
1872 printk("\tCPU%d: ack irq %d\n",
1873 cpu, irq);
1874 local_irq_save(flags);
1875 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1876 VIC_PROCESSOR_ID);
1877 ack_vic_irq(irq);
1878 outb(old_cpu, VIC_PROCESSOR_ID);
1879 local_irq_restore(flags);
1880 }
1881 }
1882 }
1883#endif
1884 }
1885}
1886
1887void
1888smp_voyager_power_off(void *dummy)
1889{
1890 if(smp_processor_id() == boot_cpu_id)
1891 voyager_power_off();
1892 else
1893 smp_stop_cpu_function(NULL);
1894}
1895
1896void __init
1897smp_prepare_cpus(unsigned int max_cpus)
1898{
1899 /* FIXME: ignore max_cpus for now */
1900 smp_boot_cpus();
1901}
1902
1903void __devinit smp_prepare_boot_cpu(void)
1904{
1905 cpu_set(smp_processor_id(), cpu_online_map);
1906 cpu_set(smp_processor_id(), cpu_callout_map);
1907}
1908
1909int __devinit
1910__cpu_up(unsigned int cpu)
1911{
1912 /* This only works at boot for x86. See "rewrite" above. */
1913 if (cpu_isset(cpu, smp_commenced_mask))
1914 return -ENOSYS;
1915
1916 /* In case one didn't come up */
1917 if (!cpu_isset(cpu, cpu_callin_map))
1918 return -EIO;
1919 /* Unleash the CPU! */
1920 cpu_set(cpu, smp_commenced_mask);
1921 while (!cpu_isset(cpu, cpu_online_map))
1922 mb();
1923 return 0;
1924}
1925
1926void __init
1927smp_cpus_done(unsigned int max_cpus)
1928{
1929 zap_low_mappings();
1930}
This page took 0.118141 seconds and 5 git commands to generate.