[PATCH] fix scaled & unscaled cputime accounting
[deliverable/linux.git] / arch / ia64 / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
1da177e4
LT
11
12#include <linux/cpu.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/profile.h>
17#include <linux/sched.h>
18#include <linux/time.h>
19#include <linux/interrupt.h>
20#include <linux/efi.h>
1da177e4 21#include <linux/timex.h>
0aa366f3 22#include <linux/clocksource.h>
1da177e4
LT
23
24#include <asm/machvec.h>
25#include <asm/delay.h>
26#include <asm/hw_irq.h>
00d21d82 27#include <asm/paravirt.h>
1da177e4
LT
28#include <asm/ptrace.h>
29#include <asm/sal.h>
30#include <asm/sections.h>
31#include <asm/system.h>
32
0aa366f3
TL
33#include "fsyscall_gtod_data.h"
34
35static cycle_t itc_get_cycles(void);
36
37struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38 .lock = SEQLOCK_UNLOCKED,
39};
40
41struct itc_jitter_data_t itc_jitter_data;
42
ff741906 43volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
1da177e4
LT
44
45#ifdef CONFIG_IA64_DEBUG_IRQ
46
47unsigned long last_cli_ip;
48EXPORT_SYMBOL(last_cli_ip);
49
50#endif
51
00d21d82
IY
52#ifdef CONFIG_PARAVIRT
53static void
54paravirt_clocksource_resume(void)
55{
56 if (pv_time_ops.clocksource_resume)
57 pv_time_ops.clocksource_resume();
58}
59#endif
60
0aa366f3 61static struct clocksource clocksource_itc = {
3eb05676
LZ
62 .name = "itc",
63 .rating = 350,
64 .read = itc_get_cycles,
65 .mask = CLOCKSOURCE_MASK(64),
66 .mult = 0, /*to be calculated*/
67 .shift = 16,
68 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
00d21d82
IY
69#ifdef CONFIG_PARAVIRT
70 .resume = paravirt_clocksource_resume,
71#endif
1da177e4 72};
0aa366f3 73static struct clocksource *itc_clocksource;
1da177e4 74
b64f34cd
HS
75#ifdef CONFIG_VIRT_CPU_ACCOUNTING
76
77#include <linux/kernel_stat.h>
78
79extern cputime_t cycle_to_cputime(u64 cyc);
80
81/*
82 * Called from the context switch with interrupts disabled, to charge all
83 * accumulated times to the current process, and to prepare accounting on
84 * the next process.
85 */
86void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
87{
88 struct thread_info *pi = task_thread_info(prev);
89 struct thread_info *ni = task_thread_info(next);
90 cputime_t delta_stime, delta_utime;
91 __u64 now;
92
93 now = ia64_get_itc();
94
95 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
457533a7 96 account_system_time(prev, 0, delta_stime, delta_stime);
b64f34cd
HS
97
98 if (pi->ac_utime) {
99 delta_utime = cycle_to_cputime(pi->ac_utime);
457533a7 100 account_user_time(prev, delta_utime, delta_utime);
b64f34cd
HS
101 }
102
103 pi->ac_stamp = ni->ac_stamp = now;
104 ni->ac_stime = ni->ac_utime = 0;
105}
106
107/*
108 * Account time for a transition between system, hard irq or soft irq state.
109 * Note that this function is called with interrupts enabled.
110 */
111void account_system_vtime(struct task_struct *tsk)
112{
113 struct thread_info *ti = task_thread_info(tsk);
114 unsigned long flags;
115 cputime_t delta_stime;
116 __u64 now;
117
118 local_irq_save(flags);
119
120 now = ia64_get_itc();
121
122 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
457533a7 123 account_system_time(tsk, 0, delta_stime, delta_stime);
b64f34cd
HS
124 ti->ac_stime = 0;
125
126 ti->ac_stamp = now;
127
128 local_irq_restore(flags);
129}
3a677d21 130EXPORT_SYMBOL_GPL(account_system_vtime);
b64f34cd
HS
131
132/*
133 * Called from the timer interrupt handler to charge accumulated user time
134 * to the current process. Must be called with interrupts disabled.
135 */
136void account_process_tick(struct task_struct *p, int user_tick)
137{
138 struct thread_info *ti = task_thread_info(p);
139 cputime_t delta_utime;
140
141 if (ti->ac_utime) {
142 delta_utime = cycle_to_cputime(ti->ac_utime);
457533a7 143 account_user_time(p, delta_utime, delta_utime);
b64f34cd
HS
144 ti->ac_utime = 0;
145 }
146}
147
148#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
149
1da177e4 150static irqreturn_t
7d12e780 151timer_interrupt (int irq, void *dev_id)
1da177e4
LT
152{
153 unsigned long new_itm;
154
155 if (unlikely(cpu_is_offline(smp_processor_id()))) {
156 return IRQ_HANDLED;
157 }
158
7d12e780 159 platform_timer_interrupt(irq, dev_id);
1da177e4
LT
160
161 new_itm = local_cpu_data->itm_next;
162
163 if (!time_after(ia64_get_itc(), new_itm))
164 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
165 ia64_get_itc(), new_itm);
166
7d12e780 167 profile_tick(CPU_PROFILING);
1da177e4 168
00d21d82
IY
169 if (paravirt_do_steal_accounting(&new_itm))
170 goto skip_process_time_accounting;
171
1da177e4 172 while (1) {
7d12e780 173 update_process_times(user_mode(get_irq_regs()));
1da177e4
LT
174
175 new_itm += local_cpu_data->itm_delta;
176
ff741906 177 if (smp_processor_id() == time_keeper_id) {
1da177e4
LT
178 /*
179 * Here we are in the timer irq handler. We have irqs locally
180 * disabled, but we don't know if the timer_bh is running on
181 * another CPU. We need to avoid to SMP race by acquiring the
182 * xtime_lock.
183 */
184 write_seqlock(&xtime_lock);
3171a030 185 do_timer(1);
1da177e4
LT
186 local_cpu_data->itm_next = new_itm;
187 write_sequnlock(&xtime_lock);
188 } else
189 local_cpu_data->itm_next = new_itm;
190
191 if (time_after(new_itm, ia64_get_itc()))
192 break;
accaddb2
JS
193
194 /*
195 * Allow IPIs to interrupt the timer loop.
196 */
197 local_irq_enable();
198 local_irq_disable();
1da177e4
LT
199 }
200
00d21d82
IY
201skip_process_time_accounting:
202
1da177e4
LT
203 do {
204 /*
205 * If we're too close to the next clock tick for
206 * comfort, we increase the safety margin by
207 * intentionally dropping the next tick(s). We do NOT
208 * update itm.next because that would force us to call
209 * do_timer() which in turn would let our clock run
210 * too fast (with the potentially devastating effect
211 * of losing monotony of time).
212 */
213 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
214 new_itm += local_cpu_data->itm_delta;
215 ia64_set_itm(new_itm);
216 /* double check, in case we got hit by a (slow) PMI: */
217 } while (time_after_eq(ia64_get_itc(), new_itm));
218 return IRQ_HANDLED;
219}
220
221/*
222 * Encapsulate access to the itm structure for SMP.
223 */
224void
225ia64_cpu_local_tick (void)
226{
227 int cpu = smp_processor_id();
228 unsigned long shift = 0, delta;
229
230 /* arrange for the cycle counter to generate a timer interrupt: */
231 ia64_set_itv(IA64_TIMER_VECTOR);
232
233 delta = local_cpu_data->itm_delta;
234 /*
235 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
236 * same time:
237 */
238 if (cpu) {
239 unsigned long hi = 1UL << ia64_fls(cpu);
240 shift = (2*(cpu - hi) + 1) * delta/hi/2;
241 }
242 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
243 ia64_set_itm(local_cpu_data->itm_next);
244}
245
246static int nojitter;
247
248static int __init nojitter_setup(char *str)
249{
250 nojitter = 1;
251 printk("Jitter checking for ITC timers disabled\n");
252 return 1;
253}
254
255__setup("nojitter", nojitter_setup);
256
257
258void __devinit
259ia64_init_itm (void)
260{
261 unsigned long platform_base_freq, itc_freq;
262 struct pal_freq_ratio itc_ratio, proc_ratio;
263 long status, platform_base_drift, itc_drift;
264
265 /*
266 * According to SAL v2.6, we need to use a SAL call to determine the platform base
267 * frequency and then a PAL call to determine the frequency ratio between the ITC
268 * and the base frequency.
269 */
270 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
271 &platform_base_freq, &platform_base_drift);
272 if (status != 0) {
273 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
274 } else {
275 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
276 if (status != 0)
277 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
278 }
279 if (status != 0) {
280 /* invent "random" values */
281 printk(KERN_ERR
282 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
283 platform_base_freq = 100000000;
284 platform_base_drift = -1; /* no drift info */
285 itc_ratio.num = 3;
286 itc_ratio.den = 1;
287 }
288 if (platform_base_freq < 40000000) {
289 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
290 platform_base_freq);
291 platform_base_freq = 75000000;
292 platform_base_drift = -1;
293 }
294 if (!proc_ratio.den)
295 proc_ratio.den = 1; /* avoid division by zero */
296 if (!itc_ratio.den)
297 itc_ratio.den = 1; /* avoid division by zero */
298
299 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
300
301 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
2ab9391d 302 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
1da177e4
LT
303 "ITC freq=%lu.%03luMHz", smp_processor_id(),
304 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
305 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
306
307 if (platform_base_drift != -1) {
308 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
309 printk("+/-%ldppm\n", itc_drift);
310 } else {
311 itc_drift = -1;
312 printk("\n");
313 }
314
315 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
316 local_cpu_data->itc_freq = itc_freq;
317 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
318 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
319 + itc_freq/2)/itc_freq;
320
321 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
1da177e4
LT
322#ifdef CONFIG_SMP
323 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
324 * Jitter compensation requires a cmpxchg which may limit
325 * the scalability of the syscalls for retrieving time.
326 * The ITC synchronization is usually successful to within a few
327 * ITC ticks but this is not a sure thing. If you need to improve
328 * timer performance in SMP situations then boot the kernel with the
329 * "nojitter" option. However, doing so may result in time fluctuating (maybe
330 * even going backward) if the ITC offsets between the individual CPUs
331 * are too large.
332 */
0aa366f3
TL
333 if (!nojitter)
334 itc_jitter_data.itc_jitter = 1;
1da177e4 335#endif
b718f91c
CL
336 } else
337 /*
338 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
339 * ITC values may fluctuate significantly between processors.
340 * Clock should not be used for hrtimers. Mark itc as only
341 * useful for boot and testing.
342 *
343 * Note that jitter compensation is off! There is no point of
344 * synchronizing ITCs since they may be large differentials
345 * that change over time.
346 *
347 * The only way to fix this would be to repeatedly sync the
348 * ITCs. Until that time we have to avoid ITC.
349 */
350 clocksource_itc.rating = 50;
1da177e4 351
00d21d82
IY
352 paravirt_init_missing_ticks_accounting(smp_processor_id());
353
354 /* avoid softlock up message when cpu is unplug and plugged again. */
355 touch_softlockup_watchdog();
356
1da177e4
LT
357 /* Setup the CPU local timer tick */
358 ia64_cpu_local_tick();
0aa366f3
TL
359
360 if (!itc_clocksource) {
361 /* Sort out mult/shift values: */
362 clocksource_itc.mult =
363 clocksource_hz2mult(local_cpu_data->itc_freq,
364 clocksource_itc.shift);
365 clocksource_register(&clocksource_itc);
366 itc_clocksource = &clocksource_itc;
367 }
1da177e4
LT
368}
369
8dc94630 370static cycle_t itc_get_cycles(void)
0aa366f3
TL
371{
372 u64 lcycle, now, ret;
373
374 if (!itc_jitter_data.itc_jitter)
375 return get_cycles();
376
377 lcycle = itc_jitter_data.itc_lastcycle;
378 now = get_cycles();
379 if (lcycle && time_after(lcycle, now))
380 return lcycle;
381
382 /*
383 * Keep track of the last timer value returned.
384 * In an SMP environment, you could lose out in contention of
385 * cmpxchg. If so, your cmpxchg returns new value which the
386 * winner of contention updated to. Use the new value instead.
387 */
388 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
389 if (unlikely(ret != lcycle))
390 return ret;
391
392 return now;
393}
394
395
1da177e4
LT
396static struct irqaction timer_irqaction = {
397 .handler = timer_interrupt,
d217c265 398 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
1da177e4
LT
399 .name = "timer"
400};
401
402void __init
403time_init (void)
404{
405 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
406 efi_gettimeofday(&xtime);
407 ia64_init_itm();
408
409 /*
410 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
411 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
412 */
413 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
414}
f5899b5d 415
defbb2c9 416/*
417 * Generic udelay assumes that if preemption is allowed and the thread
418 * migrates to another CPU, that the ITC values are synchronized across
419 * all CPUs.
420 */
421static void
422ia64_itc_udelay (unsigned long usecs)
f5899b5d 423{
defbb2c9 424 unsigned long start = ia64_get_itc();
425 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
f5899b5d 426
defbb2c9 427 while (time_before(ia64_get_itc(), end))
428 cpu_relax();
429}
f5899b5d 430
defbb2c9 431void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
f5899b5d 432
defbb2c9 433void
434udelay (unsigned long usecs)
435{
436 (*ia64_udelay)(usecs);
f5899b5d
JH
437}
438EXPORT_SYMBOL(udelay);
d6e56a2a 439
2c622148
TB
440/* IA64 doesn't cache the timezone */
441void update_vsyscall_tz(void)
442{
443}
444
0aa366f3
TL
445void update_vsyscall(struct timespec *wall, struct clocksource *c)
446{
447 unsigned long flags;
448
449 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
450
451 /* copy fsyscall clock data */
452 fsyscall_gtod_data.clk_mask = c->mask;
453 fsyscall_gtod_data.clk_mult = c->mult;
454 fsyscall_gtod_data.clk_shift = c->shift;
455 fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
456 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
457
458 /* copy kernel time structures */
459 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
460 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
461 fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
462 + wall->tv_sec;
463 fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
464 + wall->tv_nsec;
465
466 /* normalize */
467 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
468 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
469 fsyscall_gtod_data.monotonic_time.tv_sec++;
470 }
471
472 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
473}
474
This page took 0.384628 seconds and 5 git commands to generate.