MIPS: cevt-r4k: Cleanup c0_compare_interrupt.
[deliverable/linux.git] / arch / mips / kernel / perf_event_mipsxx.c
CommitLineData
e5dcb58a
DD
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
82091564 5 * Copyright (C) 2011 Cavium Networks, Inc.
e5dcb58a
DD
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
e5dcb58a 30#define MIPS_MAX_HWEVENTS 4
a7911a8f
AC
31#define MIPS_TCS_PER_COUNTER 2
32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
e5dcb58a
DD
33
34struct cpu_hw_events {
35 /* Array of events on this cpu. */
36 struct perf_event *events[MIPS_MAX_HWEVENTS];
37
38 /*
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
41 */
42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
e5dcb58a
DD
44 /*
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
48 */
49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .saved_ctrl = {0},
53};
54
55/* The description of MIPS performance events. */
56struct mips_perf_event {
57 unsigned int event_id;
58 /*
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
61 * even numbers.
62 */
63 unsigned int cntr_mask;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
82091564 66 #define CNTR_ALL 0xffffffff
e5dcb58a
DD
67#ifdef CONFIG_MIPS_MT_SMP
68 enum {
69 T = 0,
70 V = 1,
71 P = 2,
72 } range;
73#else
74 #define T
75 #define V
76 #define P
77#endif
78};
79
80static struct mips_perf_event raw_event;
81static DEFINE_MUTEX(raw_event_mutex);
82
e5dcb58a
DD
83#define C(x) PERF_COUNT_HW_CACHE_##x
84
85struct mips_pmu {
82091564
DD
86 u64 max_period;
87 u64 valid_count;
88 u64 overflow;
e5dcb58a
DD
89 const char *name;
90 int irq;
e5dcb58a
DD
91 u64 (*read_counter)(unsigned int idx);
92 void (*write_counter)(unsigned int idx, u64 val);
e5dcb58a
DD
93 const struct mips_perf_event *(*map_raw_event)(u64 config);
94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 const struct mips_perf_event (*cache_event_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 unsigned int num_counters;
100};
101
82091564
DD
102static struct mips_pmu mipspmu;
103
104#define M_CONFIG1_PC (1 << 4)
105
70342287
RB
106#define M_PERFCTL_EXL (1 << 0)
107#define M_PERFCTL_KERNEL (1 << 1)
108#define M_PERFCTL_SUPERVISOR (1 << 2)
109#define M_PERFCTL_USER (1 << 3)
110#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
82091564 111#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
70342287 112#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
a7911a8f
AC
113
114#ifdef CONFIG_CPU_BMIPS5000
115#define M_PERFCTL_MT_EN(filter) 0
116#else /* !CONFIG_CPU_BMIPS5000 */
82091564 117#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
a7911a8f
AC
118#endif /* CONFIG_CPU_BMIPS5000 */
119
70342287
RB
120#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
121#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
122#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
123#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
124#define M_PERFCTL_WIDE (1 << 30)
125#define M_PERFCTL_MORE (1 << 31)
126#define M_PERFCTL_TC (1 << 30)
82091564
DD
127
128#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
129 M_PERFCTL_KERNEL | \
130 M_PERFCTL_USER | \
131 M_PERFCTL_SUPERVISOR | \
132 M_PERFCTL_INTERRUPT_ENABLE)
133
134#ifdef CONFIG_MIPS_MT_SMP
135#define M_PERFCTL_CONFIG_MASK 0x3fff801f
136#else
137#define M_PERFCTL_CONFIG_MASK 0x1f
138#endif
139#define M_PERFCTL_EVENT_MASK 0xfe0
140
141
399aaa25 142#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
143static int cpu_has_mipsmt_pertccounters;
144
145static DEFINE_RWLOCK(pmuint_rwlock);
146
a7911a8f
AC
147#if defined(CONFIG_CPU_BMIPS5000)
148#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
149 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150#else
82091564
DD
151/*
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154 */
82091564 155#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
a7911a8f
AC
156 0 : smp_processor_id())
157#endif
82091564
DD
158
159/* Copied from op_model_mipsxx.c */
160static unsigned int vpe_shift(void)
161{
162 if (num_possible_cpus() > 1)
163 return 1;
164
165 return 0;
166}
167
168static unsigned int counters_total_to_per_cpu(unsigned int counters)
169{
170 return counters >> vpe_shift();
171}
172
399aaa25 173#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
82091564
DD
174#define vpe_id() 0
175
399aaa25 176#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
82091564
DD
177
178static void resume_local_counters(void);
179static void pause_local_counters(void);
180static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181static int mipsxx_pmu_handle_shared_irq(void);
182
183static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184{
185 if (vpe_id() == 1)
186 idx = (idx + 2) & 3;
187 return idx;
188}
189
190static u64 mipsxx_pmu_read_counter(unsigned int idx)
191{
192 idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194 switch (idx) {
195 case 0:
196 /*
197 * The counters are unsigned, we must cast to truncate
198 * off the high bits.
199 */
200 return (u32)read_c0_perfcntr0();
201 case 1:
202 return (u32)read_c0_perfcntr1();
203 case 2:
204 return (u32)read_c0_perfcntr2();
205 case 3:
206 return (u32)read_c0_perfcntr3();
207 default:
208 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209 return 0;
210 }
211}
212
213static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214{
215 idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217 switch (idx) {
218 case 0:
219 return read_c0_perfcntr0_64();
220 case 1:
221 return read_c0_perfcntr1_64();
222 case 2:
223 return read_c0_perfcntr2_64();
224 case 3:
225 return read_c0_perfcntr3_64();
226 default:
227 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228 return 0;
229 }
230}
231
232static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233{
234 idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236 switch (idx) {
237 case 0:
238 write_c0_perfcntr0(val);
239 return;
240 case 1:
241 write_c0_perfcntr1(val);
242 return;
243 case 2:
244 write_c0_perfcntr2(val);
245 return;
246 case 3:
247 write_c0_perfcntr3(val);
248 return;
249 }
250}
251
252static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253{
254 idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256 switch (idx) {
257 case 0:
258 write_c0_perfcntr0_64(val);
259 return;
260 case 1:
261 write_c0_perfcntr1_64(val);
262 return;
263 case 2:
264 write_c0_perfcntr2_64(val);
265 return;
266 case 3:
267 write_c0_perfcntr3_64(val);
268 return;
269 }
270}
271
272static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273{
274 idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276 switch (idx) {
277 case 0:
278 return read_c0_perfctrl0();
279 case 1:
280 return read_c0_perfctrl1();
281 case 2:
282 return read_c0_perfctrl2();
283 case 3:
284 return read_c0_perfctrl3();
285 default:
286 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287 return 0;
288 }
289}
290
291static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292{
293 idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295 switch (idx) {
296 case 0:
297 write_c0_perfctrl0(val);
298 return;
299 case 1:
300 write_c0_perfctrl1(val);
301 return;
302 case 2:
303 write_c0_perfctrl2(val);
304 return;
305 case 3:
306 write_c0_perfctrl3(val);
307 return;
308 }
309}
310
311static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312 struct hw_perf_event *hwc)
313{
314 int i;
315
316 /*
317 * We only need to care the counter mask. The range has been
318 * checked definitely.
319 */
320 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323 /*
324 * Note that some MIPS perf events can be counted by both
325 * even and odd counters, wheresas many other are only by
326 * even _or_ odd counters. This introduces an issue that
327 * when the former kind of event takes the counter the
328 * latter kind of event wants to use, then the "counter
329 * allocation" for the latter event will fail. In fact if
330 * they can be dynamically swapped, they both feel happy.
331 * But here we leave this issue alone for now.
332 */
333 if (test_bit(i, &cntr_mask) &&
334 !test_and_set_bit(i, cpuc->used_mask))
335 return i;
336 }
337
338 return -EAGAIN;
339}
340
341static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342{
35898716 343 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564
DD
344
345 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349 /* Make sure interrupt enabled. */
350 M_PERFCTL_INTERRUPT_ENABLE;
a7911a8f
AC
351 if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352 /* enable the counter for the calling thread */
353 cpuc->saved_ctrl[idx] |=
354 (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
82091564
DD
356 /*
357 * We do not actually let the counter run. Leave it until start().
358 */
359}
360
361static void mipsxx_pmu_disable_event(int idx)
362{
35898716 363 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564
DD
364 unsigned long flags;
365
366 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368 local_irq_save(flags);
369 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372 local_irq_restore(flags);
373}
e5dcb58a
DD
374
375static int mipspmu_event_set_period(struct perf_event *event,
376 struct hw_perf_event *hwc,
377 int idx)
378{
82091564
DD
379 u64 left = local64_read(&hwc->period_left);
380 u64 period = hwc->sample_period;
e5dcb58a 381 int ret = 0;
e5dcb58a 382
82091564
DD
383 if (unlikely((left + period) & (1ULL << 63))) {
384 /* left underflowed by more than period. */
e5dcb58a
DD
385 left = period;
386 local64_set(&hwc->period_left, left);
387 hwc->last_period = period;
388 ret = 1;
82091564
DD
389 } else if (unlikely((left + period) <= period)) {
390 /* left underflowed by less than period. */
e5dcb58a
DD
391 left += period;
392 local64_set(&hwc->period_left, left);
393 hwc->last_period = period;
394 ret = 1;
395 }
396
82091564
DD
397 if (left > mipspmu.max_period) {
398 left = mipspmu.max_period;
399 local64_set(&hwc->period_left, left);
400 }
e5dcb58a 401
82091564 402 local64_set(&hwc->prev_count, mipspmu.overflow - left);
e5dcb58a 403
82091564 404 mipspmu.write_counter(idx, mipspmu.overflow - left);
e5dcb58a
DD
405
406 perf_event_update_userpage(event);
407
408 return ret;
409}
410
411static void mipspmu_event_update(struct perf_event *event,
412 struct hw_perf_event *hwc,
413 int idx)
414{
82091564 415 u64 prev_raw_count, new_raw_count;
e5dcb58a
DD
416 u64 delta;
417
418again:
419 prev_raw_count = local64_read(&hwc->prev_count);
82091564 420 new_raw_count = mipspmu.read_counter(idx);
e5dcb58a
DD
421
422 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423 new_raw_count) != prev_raw_count)
424 goto again;
425
82091564 426 delta = new_raw_count - prev_raw_count;
e5dcb58a
DD
427
428 local64_add(delta, &event->count);
429 local64_sub(delta, &hwc->period_left);
430}
431
432static void mipspmu_start(struct perf_event *event, int flags)
433{
434 struct hw_perf_event *hwc = &event->hw;
435
e5dcb58a
DD
436 if (flags & PERF_EF_RELOAD)
437 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439 hwc->state = 0;
440
441 /* Set the period for the event. */
442 mipspmu_event_set_period(event, hwc, hwc->idx);
443
444 /* Enable the event. */
82091564 445 mipsxx_pmu_enable_event(hwc, hwc->idx);
e5dcb58a
DD
446}
447
448static void mipspmu_stop(struct perf_event *event, int flags)
449{
450 struct hw_perf_event *hwc = &event->hw;
451
e5dcb58a
DD
452 if (!(hwc->state & PERF_HES_STOPPED)) {
453 /* We are working on a local event. */
82091564 454 mipsxx_pmu_disable_event(hwc->idx);
e5dcb58a
DD
455 barrier();
456 mipspmu_event_update(event, hwc, hwc->idx);
457 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458 }
459}
460
461static int mipspmu_add(struct perf_event *event, int flags)
462{
35898716 463 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
e5dcb58a
DD
464 struct hw_perf_event *hwc = &event->hw;
465 int idx;
466 int err = 0;
467
468 perf_pmu_disable(event->pmu);
469
470 /* To look for a free counter for this event. */
82091564 471 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
e5dcb58a
DD
472 if (idx < 0) {
473 err = idx;
474 goto out;
475 }
476
477 /*
478 * If there is an event in the counter we are going to use then
479 * make sure it is disabled.
480 */
481 event->hw.idx = idx;
82091564 482 mipsxx_pmu_disable_event(idx);
e5dcb58a
DD
483 cpuc->events[idx] = event;
484
485 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486 if (flags & PERF_EF_START)
487 mipspmu_start(event, PERF_EF_RELOAD);
488
489 /* Propagate our changes to the userspace mapping. */
490 perf_event_update_userpage(event);
491
492out:
493 perf_pmu_enable(event->pmu);
494 return err;
495}
496
497static void mipspmu_del(struct perf_event *event, int flags)
498{
35898716 499 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
e5dcb58a
DD
500 struct hw_perf_event *hwc = &event->hw;
501 int idx = hwc->idx;
502
82091564 503 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
e5dcb58a
DD
504
505 mipspmu_stop(event, PERF_EF_UPDATE);
506 cpuc->events[idx] = NULL;
507 clear_bit(idx, cpuc->used_mask);
508
509 perf_event_update_userpage(event);
510}
511
512static void mipspmu_read(struct perf_event *event)
513{
514 struct hw_perf_event *hwc = &event->hw;
515
516 /* Don't read disabled counters! */
517 if (hwc->idx < 0)
518 return;
519
520 mipspmu_event_update(event, hwc, hwc->idx);
521}
522
523static void mipspmu_enable(struct pmu *pmu)
524{
399aaa25 525#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
526 write_unlock(&pmuint_rwlock);
527#endif
528 resume_local_counters();
e5dcb58a
DD
529}
530
82091564
DD
531/*
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed accross CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
541 */
e5dcb58a
DD
542static void mipspmu_disable(struct pmu *pmu)
543{
82091564 544 pause_local_counters();
399aaa25 545#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
546 write_lock(&pmuint_rwlock);
547#endif
e5dcb58a
DD
548}
549
550static atomic_t active_events = ATOMIC_INIT(0);
551static DEFINE_MUTEX(pmu_reserve_mutex);
552static int (*save_perf_irq)(void);
553
554static int mipspmu_get_irq(void)
555{
556 int err;
557
82091564 558 if (mipspmu.irq >= 0) {
e5dcb58a 559 /* Request my own irq handler. */
82091564 560 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
ec756d45 561 IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD,
e5dcb58a
DD
562 "mips_perf_pmu", NULL);
563 if (err) {
7178d2cd
JP
564 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
565 mipspmu.irq);
e5dcb58a
DD
566 }
567 } else if (cp0_perfcount_irq < 0) {
568 /*
569 * We are sharing the irq number with the timer interrupt.
570 */
571 save_perf_irq = perf_irq;
82091564 572 perf_irq = mipsxx_pmu_handle_shared_irq;
e5dcb58a
DD
573 err = 0;
574 } else {
7178d2cd 575 pr_warn("The platform hasn't properly defined its interrupt controller\n");
e5dcb58a
DD
576 err = -ENOENT;
577 }
578
579 return err;
580}
581
582static void mipspmu_free_irq(void)
583{
82091564
DD
584 if (mipspmu.irq >= 0)
585 free_irq(mipspmu.irq, NULL);
e5dcb58a
DD
586 else if (cp0_perfcount_irq < 0)
587 perf_irq = save_perf_irq;
588}
589
590/*
591 * mipsxx/rm9000/loongson2 have different performance counters, they have
592 * specific low-level init routines.
593 */
594static void reset_counters(void *arg);
595static int __hw_perf_event_init(struct perf_event *event);
596
597static void hw_perf_event_destroy(struct perf_event *event)
598{
599 if (atomic_dec_and_mutex_lock(&active_events,
600 &pmu_reserve_mutex)) {
601 /*
602 * We must not call the destroy function with interrupts
603 * disabled.
604 */
605 on_each_cpu(reset_counters,
82091564 606 (void *)(long)mipspmu.num_counters, 1);
e5dcb58a
DD
607 mipspmu_free_irq();
608 mutex_unlock(&pmu_reserve_mutex);
609 }
610}
611
612static int mipspmu_event_init(struct perf_event *event)
613{
614 int err = 0;
615
2481c5fa
SE
616 /* does not support taken branch sampling */
617 if (has_branch_stack(event))
618 return -EOPNOTSUPP;
619
e5dcb58a
DD
620 switch (event->attr.type) {
621 case PERF_TYPE_RAW:
622 case PERF_TYPE_HARDWARE:
623 case PERF_TYPE_HW_CACHE:
624 break;
625
626 default:
627 return -ENOENT;
628 }
629
82091564
DD
630 if (event->cpu >= nr_cpumask_bits ||
631 (event->cpu >= 0 && !cpu_online(event->cpu)))
e5dcb58a
DD
632 return -ENODEV;
633
634 if (!atomic_inc_not_zero(&active_events)) {
e5dcb58a
DD
635 mutex_lock(&pmu_reserve_mutex);
636 if (atomic_read(&active_events) == 0)
637 err = mipspmu_get_irq();
638
639 if (!err)
640 atomic_inc(&active_events);
641 mutex_unlock(&pmu_reserve_mutex);
642 }
643
644 if (err)
645 return err;
646
ff5d7265 647 return __hw_perf_event_init(event);
e5dcb58a
DD
648}
649
650static struct pmu pmu = {
651 .pmu_enable = mipspmu_enable,
652 .pmu_disable = mipspmu_disable,
653 .event_init = mipspmu_event_init,
654 .add = mipspmu_add,
655 .del = mipspmu_del,
656 .start = mipspmu_start,
657 .stop = mipspmu_stop,
658 .read = mipspmu_read,
659};
660
661static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
662{
663/*
664 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
665 * event_id.
666 */
667#ifdef CONFIG_MIPS_MT_SMP
668 return ((unsigned int)pev->range << 24) |
669 (pev->cntr_mask & 0xffff00) |
670 (pev->event_id & 0xff);
671#else
672 return (pev->cntr_mask & 0xffff00) |
673 (pev->event_id & 0xff);
674#endif
675}
676
677static const struct mips_perf_event *mipspmu_map_general_event(int idx)
678{
e5dcb58a 679
c5600b2d
AC
680 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
681 return ERR_PTR(-EOPNOTSUPP);
682 return &(*mipspmu.general_event_map)[idx];
e5dcb58a
DD
683}
684
685static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
686{
687 unsigned int cache_type, cache_op, cache_result;
688 const struct mips_perf_event *pev;
689
690 cache_type = (config >> 0) & 0xff;
691 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
692 return ERR_PTR(-EINVAL);
693
694 cache_op = (config >> 8) & 0xff;
695 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
696 return ERR_PTR(-EINVAL);
697
698 cache_result = (config >> 16) & 0xff;
699 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
700 return ERR_PTR(-EINVAL);
701
82091564 702 pev = &((*mipspmu.cache_event_map)
e5dcb58a
DD
703 [cache_type]
704 [cache_op]
705 [cache_result]);
706
c5600b2d 707 if (pev->cntr_mask == 0)
e5dcb58a
DD
708 return ERR_PTR(-EOPNOTSUPP);
709
710 return pev;
711
712}
713
e5dcb58a
DD
714static int validate_group(struct perf_event *event)
715{
716 struct perf_event *sibling, *leader = event->group_leader;
717 struct cpu_hw_events fake_cpuc;
718
719 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
720
266623b7 721 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
aa2bc1ad 722 return -EINVAL;
e5dcb58a
DD
723
724 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
266623b7 725 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
aa2bc1ad 726 return -EINVAL;
e5dcb58a
DD
727 }
728
266623b7 729 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
aa2bc1ad 730 return -EINVAL;
e5dcb58a
DD
731
732 return 0;
733}
734
735/* This is needed by specific irq handlers in perf_event_*.c */
736static void handle_associated_event(struct cpu_hw_events *cpuc,
737 int idx, struct perf_sample_data *data,
738 struct pt_regs *regs)
739{
740 struct perf_event *event = cpuc->events[idx];
741 struct hw_perf_event *hwc = &event->hw;
742
743 mipspmu_event_update(event, hwc, idx);
744 data->period = event->hw.last_period;
745 if (!mipspmu_event_set_period(event, hwc, idx))
746 return;
747
748 if (perf_event_overflow(event, data, regs))
82091564 749 mipsxx_pmu_disable_event(idx);
e5dcb58a 750}
3a9ab99e 751
3a9ab99e 752
4409af37 753static int __n_counters(void)
3a9ab99e
DCZ
754{
755 if (!(read_c0_config1() & M_CONFIG1_PC))
756 return 0;
757 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
758 return 1;
759 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
760 return 2;
761 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
762 return 3;
763
764 return 4;
765}
766
4409af37 767static int n_counters(void)
3a9ab99e
DCZ
768{
769 int counters;
770
771 switch (current_cpu_type()) {
772 case CPU_R10000:
773 counters = 2;
774 break;
775
776 case CPU_R12000:
777 case CPU_R14000:
778 counters = 4;
779 break;
780
781 default:
782 counters = __n_counters();
783 }
784
785 return counters;
786}
787
788static void reset_counters(void *arg)
789{
790 int counters = (int)(long)arg;
791 switch (counters) {
792 case 4:
82091564
DD
793 mipsxx_pmu_write_control(3, 0);
794 mipspmu.write_counter(3, 0);
3a9ab99e 795 case 3:
82091564
DD
796 mipsxx_pmu_write_control(2, 0);
797 mipspmu.write_counter(2, 0);
3a9ab99e 798 case 2:
82091564
DD
799 mipsxx_pmu_write_control(1, 0);
800 mipspmu.write_counter(1, 0);
3a9ab99e 801 case 1:
82091564
DD
802 mipsxx_pmu_write_control(0, 0);
803 mipspmu.write_counter(0, 0);
3a9ab99e
DCZ
804 }
805}
806
9597e432 807/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
3a9ab99e
DCZ
808static const struct mips_perf_event mipsxxcore_event_map
809 [PERF_COUNT_HW_MAX] = {
810 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
811 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
3a9ab99e
DCZ
812 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
813 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
3a9ab99e
DCZ
814};
815
c52068bd 816/* 74K/proAptiv core has different branch event code. */
6b0b8429 817static const struct mips_perf_event mipsxxcore_event_map2
3a9ab99e
DCZ
818 [PERF_COUNT_HW_MAX] = {
819 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
820 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
3a9ab99e
DCZ
821 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
822 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
3a9ab99e
DCZ
823};
824
939991cf
DD
825static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
826 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
827 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
828 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
70342287 829 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
939991cf
DD
830 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
831 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
832 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
833};
834
a7911a8f
AC
835static const struct mips_perf_event bmips5000_event_map
836 [PERF_COUNT_HW_MAX] = {
837 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
838 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
839 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
840};
841
4be3d2f3
ZSL
842static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
843 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
844 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
845 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
846 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
847 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
848 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
4be3d2f3
ZSL
849};
850
9597e432 851/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
3a9ab99e
DCZ
852static const struct mips_perf_event mipsxxcore_cache_map
853 [PERF_COUNT_HW_CACHE_MAX]
854 [PERF_COUNT_HW_CACHE_OP_MAX]
855 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
856[C(L1D)] = {
857 /*
858 * Like some other architectures (e.g. ARM), the performance
859 * counters don't differentiate between read and write
860 * accesses/misses, so this isn't strictly correct, but it's the
861 * best we can do. Writes and reads get combined.
862 */
863 [C(OP_READ)] = {
864 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
865 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
866 },
867 [C(OP_WRITE)] = {
868 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
869 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
870 },
3a9ab99e
DCZ
871},
872[C(L1I)] = {
873 [C(OP_READ)] = {
874 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
875 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
876 },
877 [C(OP_WRITE)] = {
878 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
879 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
880 },
881 [C(OP_PREFETCH)] = {
882 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
883 /*
884 * Note that MIPS has only "hit" events countable for
885 * the prefetch operation.
886 */
3a9ab99e
DCZ
887 },
888},
889[C(LL)] = {
890 [C(OP_READ)] = {
891 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
892 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
893 },
894 [C(OP_WRITE)] = {
895 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
896 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
897 },
3a9ab99e
DCZ
898},
899[C(DTLB)] = {
900 [C(OP_READ)] = {
901 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
902 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
903 },
904 [C(OP_WRITE)] = {
905 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
906 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
907 },
3a9ab99e
DCZ
908},
909[C(ITLB)] = {
910 [C(OP_READ)] = {
911 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
912 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
913 },
914 [C(OP_WRITE)] = {
915 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
916 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
917 },
3a9ab99e
DCZ
918},
919[C(BPU)] = {
920 /* Using the same code for *HW_BRANCH* */
921 [C(OP_READ)] = {
922 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
923 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
924 },
925 [C(OP_WRITE)] = {
926 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
927 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
928 },
89d6c0b5 929},
3a9ab99e
DCZ
930};
931
c52068bd 932/* 74K/proAptiv core has completely different cache event map. */
6b0b8429 933static const struct mips_perf_event mipsxxcore_cache_map2
3a9ab99e
DCZ
934 [PERF_COUNT_HW_CACHE_MAX]
935 [PERF_COUNT_HW_CACHE_OP_MAX]
936 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
937[C(L1D)] = {
938 /*
939 * Like some other architectures (e.g. ARM), the performance
940 * counters don't differentiate between read and write
941 * accesses/misses, so this isn't strictly correct, but it's the
942 * best we can do. Writes and reads get combined.
943 */
944 [C(OP_READ)] = {
945 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
946 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
947 },
948 [C(OP_WRITE)] = {
949 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
950 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
951 },
3a9ab99e
DCZ
952},
953[C(L1I)] = {
954 [C(OP_READ)] = {
955 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
956 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
957 },
958 [C(OP_WRITE)] = {
959 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
960 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
961 },
962 [C(OP_PREFETCH)] = {
963 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
964 /*
965 * Note that MIPS has only "hit" events countable for
966 * the prefetch operation.
967 */
3a9ab99e
DCZ
968 },
969},
970[C(LL)] = {
971 [C(OP_READ)] = {
972 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
7f081f17 973 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
3a9ab99e
DCZ
974 },
975 [C(OP_WRITE)] = {
976 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
7f081f17 977 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
3a9ab99e 978 },
3a9ab99e 979},
c52068bd
DCZ
980/*
981 * 74K core does not have specific DTLB events. proAptiv core has
982 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
983 * not included here. One can use raw events if really needed.
984 */
3a9ab99e
DCZ
985[C(ITLB)] = {
986 [C(OP_READ)] = {
987 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
988 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
989 },
990 [C(OP_WRITE)] = {
991 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
992 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
993 },
3a9ab99e
DCZ
994},
995[C(BPU)] = {
996 /* Using the same code for *HW_BRANCH* */
997 [C(OP_READ)] = {
998 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
999 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1000 },
1001 [C(OP_WRITE)] = {
1002 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1003 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1004 },
89d6c0b5 1005},
3a9ab99e
DCZ
1006};
1007
a7911a8f
AC
1008/* BMIPS5000 */
1009static const struct mips_perf_event bmips5000_cache_map
1010 [PERF_COUNT_HW_CACHE_MAX]
1011 [PERF_COUNT_HW_CACHE_OP_MAX]
1012 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1013[C(L1D)] = {
1014 /*
1015 * Like some other architectures (e.g. ARM), the performance
1016 * counters don't differentiate between read and write
1017 * accesses/misses, so this isn't strictly correct, but it's the
1018 * best we can do. Writes and reads get combined.
1019 */
1020 [C(OP_READ)] = {
1021 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1022 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1023 },
1024 [C(OP_WRITE)] = {
1025 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1026 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1027 },
1028},
1029[C(L1I)] = {
1030 [C(OP_READ)] = {
1031 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1032 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1033 },
1034 [C(OP_WRITE)] = {
1035 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1036 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1037 },
1038 [C(OP_PREFETCH)] = {
1039 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1040 /*
1041 * Note that MIPS has only "hit" events countable for
1042 * the prefetch operation.
1043 */
1044 },
1045},
1046[C(LL)] = {
1047 [C(OP_READ)] = {
1048 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1049 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1050 },
1051 [C(OP_WRITE)] = {
1052 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1053 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1054 },
1055},
1056[C(BPU)] = {
1057 /* Using the same code for *HW_BRANCH* */
1058 [C(OP_READ)] = {
1059 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1060 },
1061 [C(OP_WRITE)] = {
1062 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1063 },
1064},
1065};
1066
939991cf
DD
1067
1068static const struct mips_perf_event octeon_cache_map
1069 [PERF_COUNT_HW_CACHE_MAX]
1070 [PERF_COUNT_HW_CACHE_OP_MAX]
1071 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1072[C(L1D)] = {
1073 [C(OP_READ)] = {
1074 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1075 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1076 },
1077 [C(OP_WRITE)] = {
1078 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
939991cf
DD
1079 },
1080},
1081[C(L1I)] = {
1082 [C(OP_READ)] = {
1083 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
939991cf
DD
1084 },
1085 [C(OP_PREFETCH)] = {
1086 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
939991cf
DD
1087 },
1088},
1089[C(DTLB)] = {
1090 /*
1091 * Only general DTLB misses are counted use the same event for
1092 * read and write.
1093 */
1094 [C(OP_READ)] = {
939991cf
DD
1095 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1096 },
1097 [C(OP_WRITE)] = {
939991cf
DD
1098 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1099 },
939991cf
DD
1100},
1101[C(ITLB)] = {
1102 [C(OP_READ)] = {
939991cf
DD
1103 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1104 },
939991cf
DD
1105},
1106};
1107
4be3d2f3
ZSL
1108static const struct mips_perf_event xlp_cache_map
1109 [PERF_COUNT_HW_CACHE_MAX]
1110 [PERF_COUNT_HW_CACHE_OP_MAX]
1111 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1112[C(L1D)] = {
1113 [C(OP_READ)] = {
1114 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1115 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1116 },
1117 [C(OP_WRITE)] = {
1118 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1119 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1120 },
4be3d2f3
ZSL
1121},
1122[C(L1I)] = {
1123 [C(OP_READ)] = {
1124 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1125 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1126 },
4be3d2f3
ZSL
1127},
1128[C(LL)] = {
1129 [C(OP_READ)] = {
1130 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1131 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1132 },
1133 [C(OP_WRITE)] = {
1134 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1135 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1136 },
4be3d2f3
ZSL
1137},
1138[C(DTLB)] = {
1139 /*
1140 * Only general DTLB misses are counted use the same event for
1141 * read and write.
1142 */
1143 [C(OP_READ)] = {
4be3d2f3
ZSL
1144 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1145 },
1146 [C(OP_WRITE)] = {
4be3d2f3
ZSL
1147 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1148 },
4be3d2f3
ZSL
1149},
1150[C(ITLB)] = {
1151 [C(OP_READ)] = {
4be3d2f3
ZSL
1152 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1153 },
1154 [C(OP_WRITE)] = {
4be3d2f3
ZSL
1155 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1156 },
4be3d2f3
ZSL
1157},
1158[C(BPU)] = {
1159 [C(OP_READ)] = {
4be3d2f3
ZSL
1160 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1161 },
4be3d2f3
ZSL
1162},
1163};
1164
3a9ab99e 1165#ifdef CONFIG_MIPS_MT_SMP
4409af37
DD
1166static void check_and_calc_range(struct perf_event *event,
1167 const struct mips_perf_event *pev)
3a9ab99e
DCZ
1168{
1169 struct hw_perf_event *hwc = &event->hw;
1170
1171 if (event->cpu >= 0) {
1172 if (pev->range > V) {
1173 /*
1174 * The user selected an event that is processor
1175 * wide, while expecting it to be VPE wide.
1176 */
1177 hwc->config_base |= M_TC_EN_ALL;
1178 } else {
1179 /*
1180 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1181 * for both CPUs.
1182 */
1183 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1184 hwc->config_base |= M_TC_EN_VPE;
1185 }
1186 } else
1187 hwc->config_base |= M_TC_EN_ALL;
1188}
1189#else
4409af37
DD
1190static void check_and_calc_range(struct perf_event *event,
1191 const struct mips_perf_event *pev)
3a9ab99e
DCZ
1192{
1193}
1194#endif
1195
1196static int __hw_perf_event_init(struct perf_event *event)
1197{
1198 struct perf_event_attr *attr = &event->attr;
1199 struct hw_perf_event *hwc = &event->hw;
1200 const struct mips_perf_event *pev;
1201 int err;
1202
1203 /* Returning MIPS event descriptor for generic perf event. */
1204 if (PERF_TYPE_HARDWARE == event->attr.type) {
1205 if (event->attr.config >= PERF_COUNT_HW_MAX)
1206 return -EINVAL;
1207 pev = mipspmu_map_general_event(event->attr.config);
1208 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1209 pev = mipspmu_map_cache_event(event->attr.config);
1210 } else if (PERF_TYPE_RAW == event->attr.type) {
1211 /* We are working on the global raw event. */
1212 mutex_lock(&raw_event_mutex);
82091564 1213 pev = mipspmu.map_raw_event(event->attr.config);
3a9ab99e
DCZ
1214 } else {
1215 /* The event type is not (yet) supported. */
1216 return -EOPNOTSUPP;
1217 }
1218
1219 if (IS_ERR(pev)) {
1220 if (PERF_TYPE_RAW == event->attr.type)
1221 mutex_unlock(&raw_event_mutex);
1222 return PTR_ERR(pev);
1223 }
1224
1225 /*
1226 * We allow max flexibility on how each individual counter shared
1227 * by the single CPU operates (the mode exclusion and the range).
1228 */
1229 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1230
1231 /* Calculate range bits and validate it. */
1232 if (num_possible_cpus() > 1)
1233 check_and_calc_range(event, pev);
1234
1235 hwc->event_base = mipspmu_perf_event_encode(pev);
1236 if (PERF_TYPE_RAW == event->attr.type)
1237 mutex_unlock(&raw_event_mutex);
1238
1239 if (!attr->exclude_user)
1240 hwc->config_base |= M_PERFCTL_USER;
1241 if (!attr->exclude_kernel) {
1242 hwc->config_base |= M_PERFCTL_KERNEL;
1243 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1244 hwc->config_base |= M_PERFCTL_EXL;
1245 }
1246 if (!attr->exclude_hv)
1247 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1248
1249 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1250 /*
1251 * The event can belong to another cpu. We do not assign a local
1252 * counter for it for now.
1253 */
1254 hwc->idx = -1;
1255 hwc->config = 0;
1256
1257 if (!hwc->sample_period) {
82091564 1258 hwc->sample_period = mipspmu.max_period;
3a9ab99e
DCZ
1259 hwc->last_period = hwc->sample_period;
1260 local64_set(&hwc->period_left, hwc->sample_period);
1261 }
1262
1263 err = 0;
ff5d7265 1264 if (event->group_leader != event)
3a9ab99e 1265 err = validate_group(event);
3a9ab99e
DCZ
1266
1267 event->destroy = hw_perf_event_destroy;
ff5d7265
DCZ
1268
1269 if (err)
1270 event->destroy(event);
1271
3a9ab99e
DCZ
1272 return err;
1273}
1274
1275static void pause_local_counters(void)
1276{
35898716 1277 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564 1278 int ctr = mipspmu.num_counters;
3a9ab99e
DCZ
1279 unsigned long flags;
1280
1281 local_irq_save(flags);
82091564
DD
1282 do {
1283 ctr--;
1284 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1285 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1286 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1287 } while (ctr > 0);
3a9ab99e
DCZ
1288 local_irq_restore(flags);
1289}
1290
1291static void resume_local_counters(void)
1292{
35898716 1293 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564 1294 int ctr = mipspmu.num_counters;
3a9ab99e 1295
82091564
DD
1296 do {
1297 ctr--;
1298 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1299 } while (ctr > 0);
3a9ab99e
DCZ
1300}
1301
1302static int mipsxx_pmu_handle_shared_irq(void)
1303{
35898716 1304 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3a9ab99e 1305 struct perf_sample_data data;
82091564
DD
1306 unsigned int counters = mipspmu.num_counters;
1307 u64 counter;
3a9ab99e
DCZ
1308 int handled = IRQ_NONE;
1309 struct pt_regs *regs;
1310
da4b62cd 1311 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
3a9ab99e 1312 return handled;
3a9ab99e
DCZ
1313 /*
1314 * First we pause the local counters, so that when we are locked
1315 * here, the counters are all paused. When it gets locked due to
1316 * perf_disable(), the timer interrupt handler will be delayed.
1317 *
1318 * See also mipsxx_pmu_start().
1319 */
1320 pause_local_counters();
399aaa25 1321#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1322 read_lock(&pmuint_rwlock);
1323#endif
1324
1325 regs = get_irq_regs();
1326
fd0d000b 1327 perf_sample_data_init(&data, 0, 0);
3a9ab99e
DCZ
1328
1329 switch (counters) {
1330#define HANDLE_COUNTER(n) \
1331 case n + 1: \
1332 if (test_bit(n, cpuc->used_mask)) { \
82091564
DD
1333 counter = mipspmu.read_counter(n); \
1334 if (counter & mipspmu.overflow) { \
1335 handle_associated_event(cpuc, n, &data, regs); \
3a9ab99e
DCZ
1336 handled = IRQ_HANDLED; \
1337 } \
1338 }
1339 HANDLE_COUNTER(3)
1340 HANDLE_COUNTER(2)
1341 HANDLE_COUNTER(1)
1342 HANDLE_COUNTER(0)
1343 }
1344
1345 /*
1346 * Do all the work for the pending perf events. We can do this
1347 * in here because the performance counter interrupt is a regular
1348 * interrupt, not NMI.
1349 */
1350 if (handled == IRQ_HANDLED)
91f01737 1351 irq_work_run();
3a9ab99e 1352
399aaa25 1353#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1354 read_unlock(&pmuint_rwlock);
1355#endif
1356 resume_local_counters();
1357 return handled;
1358}
1359
4409af37 1360static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
3a9ab99e
DCZ
1361{
1362 return mipsxx_pmu_handle_shared_irq();
1363}
1364
3a9ab99e 1365/* 24K */
3a9ab99e
DCZ
1366#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1367 ((b) == 0 || (b) == 1 || (b) == 11)
1368
1369/* 34K */
3a9ab99e
DCZ
1370#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1371 ((b) == 0 || (b) == 1 || (b) == 11)
1372#ifdef CONFIG_MIPS_MT_SMP
1373#define IS_RANGE_P_34K_EVENT(r, b) \
1374 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1375 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1376 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1377 ((b) >= 64 && (b) <= 67))
70342287 1378#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
3a9ab99e
DCZ
1379#endif
1380
1381/* 74K */
3a9ab99e
DCZ
1382#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1383 ((b) == 0 || (b) == 1)
1384
c52068bd
DCZ
1385/* proAptiv */
1386#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1387 ((b) == 0 || (b) == 1)
560b461b
JH
1388/* P5600 */
1389#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1390 ((b) == 0 || (b) == 1)
c52068bd 1391
3a9ab99e 1392/* 1004K */
3a9ab99e
DCZ
1393#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1394 ((b) == 0 || (b) == 1 || (b) == 11)
1395#ifdef CONFIG_MIPS_MT_SMP
1396#define IS_RANGE_P_1004K_EVENT(r, b) \
1397 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1398 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1399 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1400 (r) == 188 || (b) == 61 || (b) == 62 || \
1401 ((b) >= 64 && (b) <= 67))
1402#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1403#endif
1404
9597e432
DCZ
1405/* interAptiv */
1406#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1407 ((b) == 0 || (b) == 1 || (b) == 11)
1408#ifdef CONFIG_MIPS_MT_SMP
1409/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1410#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1411 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1412 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1413 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1414 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1415 ((b) >= 64 && (b) <= 67))
1416#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1417#endif
1418
a7911a8f
AC
1419/* BMIPS5000 */
1420#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1421 ((b) == 0 || (b) == 1)
1422
1423
3a9ab99e 1424/*
67dca667
JH
1425 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1426 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1427 * indicate the even/odd bank selector. So, for example, when user wants to take
1428 * the Event Num of 15 for odd counters (by referring to the user manual), then
1429 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1430 * to be used.
1431 *
1432 * Some newer cores have even more events, in which case the user can use raw
1433 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1434 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
3a9ab99e 1435 */
4409af37 1436static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
3a9ab99e 1437{
67dca667 1438 /* currently most cores have 7-bit event numbers */
3a9ab99e
DCZ
1439 unsigned int raw_id = config & 0xff;
1440 unsigned int base_id = raw_id & 0x7f;
1441
1442 switch (current_cpu_type()) {
1443 case CPU_24K:
3a9ab99e
DCZ
1444 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1445 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1446 else
1447 raw_event.cntr_mask =
1448 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1449#ifdef CONFIG_MIPS_MT_SMP
1450 /*
1451 * This is actually doing nothing. Non-multithreading
1452 * CPUs will not check and calculate the range.
1453 */
1454 raw_event.range = P;
1455#endif
1456 break;
1457 case CPU_34K:
3a9ab99e
DCZ
1458 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1459 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1460 else
1461 raw_event.cntr_mask =
1462 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1463#ifdef CONFIG_MIPS_MT_SMP
1464 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1465 raw_event.range = P;
1466 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1467 raw_event.range = V;
1468 else
1469 raw_event.range = T;
1470#endif
1471 break;
1472 case CPU_74K:
442e14a2 1473 case CPU_1074K:
3a9ab99e
DCZ
1474 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1475 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1476 else
1477 raw_event.cntr_mask =
1478 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1479#ifdef CONFIG_MIPS_MT_SMP
1480 raw_event.range = P;
c52068bd
DCZ
1481#endif
1482 break;
1483 case CPU_PROAPTIV:
1484 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1485 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1486 else
1487 raw_event.cntr_mask =
1488 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1489#ifdef CONFIG_MIPS_MT_SMP
1490 raw_event.range = P;
560b461b
JH
1491#endif
1492 break;
1493 case CPU_P5600:
1494 /* 8-bit event numbers */
1495 raw_id = config & 0x1ff;
1496 base_id = raw_id & 0xff;
1497 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1498 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1499 else
1500 raw_event.cntr_mask =
1501 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1502#ifdef CONFIG_MIPS_MT_SMP
1503 raw_event.range = P;
3a9ab99e
DCZ
1504#endif
1505 break;
1506 case CPU_1004K:
3a9ab99e
DCZ
1507 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1508 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1509 else
1510 raw_event.cntr_mask =
1511 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1512#ifdef CONFIG_MIPS_MT_SMP
1513 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1514 raw_event.range = P;
1515 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1516 raw_event.range = V;
1517 else
1518 raw_event.range = T;
9597e432
DCZ
1519#endif
1520 break;
1521 case CPU_INTERAPTIV:
1522 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1523 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1524 else
1525 raw_event.cntr_mask =
1526 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1527#ifdef CONFIG_MIPS_MT_SMP
1528 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1529 raw_event.range = P;
1530 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1531 raw_event.range = V;
1532 else
1533 raw_event.range = T;
3a9ab99e
DCZ
1534#endif
1535 break;
a7911a8f
AC
1536 case CPU_BMIPS5000:
1537 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1538 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1539 else
1540 raw_event.cntr_mask =
1541 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
3a9ab99e
DCZ
1542 }
1543
67dca667
JH
1544 raw_event.event_id = base_id;
1545
3a9ab99e
DCZ
1546 return &raw_event;
1547}
1548
939991cf
DD
1549static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1550{
1551 unsigned int raw_id = config & 0xff;
1552 unsigned int base_id = raw_id & 0x7f;
1553
1554
1555 raw_event.cntr_mask = CNTR_ALL;
1556 raw_event.event_id = base_id;
1557
1558 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1559 if (base_id > 0x42)
1560 return ERR_PTR(-EOPNOTSUPP);
1561 } else {
1562 if (base_id > 0x3a)
1563 return ERR_PTR(-EOPNOTSUPP);
1564 }
1565
1566 switch (base_id) {
1567 case 0x00:
1568 case 0x0f:
1569 case 0x1e:
1570 case 0x1f:
1571 case 0x2f:
1572 case 0x34:
1573 case 0x3b ... 0x3f:
1574 return ERR_PTR(-EOPNOTSUPP);
1575 default:
1576 break;
1577 }
1578
1579 return &raw_event;
1580}
1581
4be3d2f3
ZSL
1582static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1583{
1584 unsigned int raw_id = config & 0xff;
1585
1586 /* Only 1-63 are defined */
1587 if ((raw_id < 0x01) || (raw_id > 0x3f))
1588 return ERR_PTR(-EOPNOTSUPP);
1589
1590 raw_event.cntr_mask = CNTR_ALL;
1591 raw_event.event_id = raw_id;
1592
1593 return &raw_event;
1594}
1595
3a9ab99e
DCZ
1596static int __init
1597init_hw_perf_events(void)
1598{
1599 int counters, irq;
82091564 1600 int counter_bits;
3a9ab99e
DCZ
1601
1602 pr_info("Performance counters: ");
1603
1604 counters = n_counters();
1605 if (counters == 0) {
1606 pr_cont("No available PMU.\n");
1607 return -ENODEV;
1608 }
1609
399aaa25 1610#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1611 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1612 if (!cpu_has_mipsmt_pertccounters)
1613 counters = counters_total_to_per_cpu(counters);
1614#endif
1615
a669efc4
AB
1616 if (get_c0_perfcount_int)
1617 irq = get_c0_perfcount_int();
7eca5b14 1618 else if (cp0_perfcount_irq >= 0)
a669efc4
AB
1619 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1620 else
1621 irq = -1;
3a9ab99e 1622
82091564 1623 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
3a9ab99e
DCZ
1624
1625 switch (current_cpu_type()) {
1626 case CPU_24K:
82091564
DD
1627 mipspmu.name = "mips/24K";
1628 mipspmu.general_event_map = &mipsxxcore_event_map;
1629 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e
DCZ
1630 break;
1631 case CPU_34K:
82091564
DD
1632 mipspmu.name = "mips/34K";
1633 mipspmu.general_event_map = &mipsxxcore_event_map;
1634 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e
DCZ
1635 break;
1636 case CPU_74K:
82091564 1637 mipspmu.name = "mips/74K";
6b0b8429
DCZ
1638 mipspmu.general_event_map = &mipsxxcore_event_map2;
1639 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
3a9ab99e 1640 break;
c52068bd
DCZ
1641 case CPU_PROAPTIV:
1642 mipspmu.name = "mips/proAptiv";
1643 mipspmu.general_event_map = &mipsxxcore_event_map2;
1644 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1645 break;
560b461b
JH
1646 case CPU_P5600:
1647 mipspmu.name = "mips/P5600";
1648 mipspmu.general_event_map = &mipsxxcore_event_map2;
1649 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1650 break;
3a9ab99e 1651 case CPU_1004K:
82091564
DD
1652 mipspmu.name = "mips/1004K";
1653 mipspmu.general_event_map = &mipsxxcore_event_map;
1654 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e 1655 break;
442e14a2
SH
1656 case CPU_1074K:
1657 mipspmu.name = "mips/1074K";
1658 mipspmu.general_event_map = &mipsxxcore_event_map;
1659 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1660 break;
9597e432
DCZ
1661 case CPU_INTERAPTIV:
1662 mipspmu.name = "mips/interAptiv";
1663 mipspmu.general_event_map = &mipsxxcore_event_map;
1664 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1665 break;
2fa36399
KC
1666 case CPU_LOONGSON1:
1667 mipspmu.name = "mips/loongson1";
1668 mipspmu.general_event_map = &mipsxxcore_event_map;
1669 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1670 break;
939991cf
DD
1671 case CPU_CAVIUM_OCTEON:
1672 case CPU_CAVIUM_OCTEON_PLUS:
1673 case CPU_CAVIUM_OCTEON2:
1674 mipspmu.name = "octeon";
1675 mipspmu.general_event_map = &octeon_event_map;
1676 mipspmu.cache_event_map = &octeon_cache_map;
1677 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1678 break;
a7911a8f
AC
1679 case CPU_BMIPS5000:
1680 mipspmu.name = "BMIPS5000";
1681 mipspmu.general_event_map = &bmips5000_event_map;
1682 mipspmu.cache_event_map = &bmips5000_cache_map;
1683 break;
4be3d2f3
ZSL
1684 case CPU_XLP:
1685 mipspmu.name = "xlp";
1686 mipspmu.general_event_map = &xlp_event_map;
1687 mipspmu.cache_event_map = &xlp_cache_map;
1688 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1689 break;
3a9ab99e
DCZ
1690 default:
1691 pr_cont("Either hardware does not support performance "
1692 "counters, or not yet implemented.\n");
1693 return -ENODEV;
1694 }
1695
82091564
DD
1696 mipspmu.num_counters = counters;
1697 mipspmu.irq = irq;
1698
1699 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1700 mipspmu.max_period = (1ULL << 63) - 1;
1701 mipspmu.valid_count = (1ULL << 63) - 1;
1702 mipspmu.overflow = 1ULL << 63;
1703 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1704 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1705 counter_bits = 64;
1706 } else {
1707 mipspmu.max_period = (1ULL << 31) - 1;
1708 mipspmu.valid_count = (1ULL << 31) - 1;
1709 mipspmu.overflow = 1ULL << 31;
1710 mipspmu.read_counter = mipsxx_pmu_read_counter;
1711 mipspmu.write_counter = mipsxx_pmu_write_counter;
1712 counter_bits = 32;
1713 }
1714
1715 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1716
1717 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1718 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1719 irq < 0 ? " (share with timer interrupt)" : "");
3a9ab99e 1720
404ff638
DCZ
1721 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1722
3a9ab99e
DCZ
1723 return 0;
1724}
004417a6 1725early_initcall(init_hw_perf_events);
This page took 0.272014 seconds and 5 git commands to generate.