[MIPS] SMTC: Fix TLB sizing bug for TLB of 64 >= entries
[deliverable/linux.git] / arch / mips / kernel / smtc.c
CommitLineData
41c594ab
RB
1/* Copyright (C) 2004 Mips Technologies, Inc */
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/cpumask.h>
6#include <linux/interrupt.h>
7
8#include <asm/cpu.h>
9#include <asm/processor.h>
10#include <asm/atomic.h>
11#include <asm/system.h>
12#include <asm/hardirq.h>
13#include <asm/hazards.h>
14#include <asm/mmu_context.h>
15#include <asm/smp.h>
16#include <asm/mipsregs.h>
17#include <asm/cacheflush.h>
18#include <asm/time.h>
19#include <asm/addrspace.h>
20#include <asm/smtc.h>
21#include <asm/smtc_ipi.h>
22#include <asm/smtc_proc.h>
23
24/*
25 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
26 */
27
28/*
29 * MIPSCPU_INT_BASE is identically defined in both
30 * asm-mips/mips-boards/maltaint.h and asm-mips/mips-boards/simint.h,
31 * but as yet there's no properly organized include structure that
32 * will ensure that the right *int.h file will be included for a
33 * given platform build.
34 */
35
36#define MIPSCPU_INT_BASE 16
37
38#define MIPS_CPU_IPI_IRQ 1
39
40#define LOCK_MT_PRA() \
41 local_irq_save(flags); \
42 mtflags = dmt()
43
44#define UNLOCK_MT_PRA() \
45 emt(mtflags); \
46 local_irq_restore(flags)
47
48#define LOCK_CORE_PRA() \
49 local_irq_save(flags); \
50 mtflags = dvpe()
51
52#define UNLOCK_CORE_PRA() \
53 evpe(mtflags); \
54 local_irq_restore(flags)
55
56/*
57 * Data structures purely associated with SMTC parallelism
58 */
59
60
61/*
62 * Table for tracking ASIDs whose lifetime is prolonged.
63 */
64
65asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
66
67/*
68 * Clock interrupt "latch" buffers, per "CPU"
69 */
70
71unsigned int ipi_timer_latch[NR_CPUS];
72
73/*
74 * Number of InterProcessor Interupt (IPI) message buffers to allocate
75 */
76
77#define IPIBUF_PER_CPU 4
78
79struct smtc_ipi_q IPIQ[NR_CPUS];
80struct smtc_ipi_q freeIPIq;
81
82
83/* Forward declarations */
84
937a8015 85void ipi_decode(struct smtc_ipi *);
41c594ab
RB
86void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
87void setup_cross_vpe_interrupts(void);
88void init_smtc_stats(void);
89
90/* Global SMTC Status */
91
92unsigned int smtc_status = 0;
93
94/* Boot command line configuration overrides */
95
96static int vpelimit = 0;
97static int tclimit = 0;
98static int ipibuffers = 0;
99static int nostlb = 0;
100static int asidmask = 0;
101unsigned long smtc_asid_mask = 0xff;
102
103static int __init maxvpes(char *str)
104{
105 get_option(&str, &vpelimit);
106 return 1;
107}
108
109static int __init maxtcs(char *str)
110{
111 get_option(&str, &tclimit);
112 return 1;
113}
114
115static int __init ipibufs(char *str)
116{
117 get_option(&str, &ipibuffers);
118 return 1;
119}
120
121static int __init stlb_disable(char *s)
122{
123 nostlb = 1;
124 return 1;
125}
126
127static int __init asidmask_set(char *str)
128{
129 get_option(&str, &asidmask);
4bf42d42 130 switch (asidmask) {
41c594ab
RB
131 case 0x1:
132 case 0x3:
133 case 0x7:
134 case 0xf:
135 case 0x1f:
136 case 0x3f:
137 case 0x7f:
138 case 0xff:
139 smtc_asid_mask = (unsigned long)asidmask;
140 break;
141 default:
142 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143 }
144 return 1;
145}
146
147__setup("maxvpes=", maxvpes);
148__setup("maxtcs=", maxtcs);
149__setup("ipibufs=", ipibufs);
150__setup("nostlb", stlb_disable);
151__setup("asidmask=", asidmask_set);
152
153/* Enable additional debug checks before going into CPU idle loop */
154#define SMTC_IDLE_HOOK_DEBUG
155
156#ifdef SMTC_IDLE_HOOK_DEBUG
157
158static int hang_trig = 0;
159
160static int __init hangtrig_enable(char *s)
161{
162 hang_trig = 1;
163 return 1;
164}
165
166
167__setup("hangtrig", hangtrig_enable);
168
169#define DEFAULT_BLOCKED_IPI_LIMIT 32
170
171static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
172
173static int __init tintq(char *str)
174{
175 get_option(&str, &timerq_limit);
176 return 1;
177}
178
179__setup("tintq=", tintq);
180
181int imstuckcount[2][8];
182/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
183int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
184int tcnoprog[NR_CPUS];
185static atomic_t idle_hook_initialized = {0};
186static int clock_hang_reported[NR_CPUS];
187
188#endif /* SMTC_IDLE_HOOK_DEBUG */
189
190/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
191
192void __init sanitize_tlb_entries(void)
193{
194 printk("Deprecated sanitize_tlb_entries() invoked\n");
195}
196
197
198/*
199 * Configure shared TLB - VPC configuration bit must be set by caller
200 */
201
202void smtc_configure_tlb(void)
203{
204 int i,tlbsiz,vpes;
205 unsigned long mvpconf0;
206 unsigned long config1val;
207
208 /* Set up ASID preservation table */
209 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
210 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
211 smtc_live_asid[vpes][i] = 0;
212 }
213 }
214 mvpconf0 = read_c0_mvpconf0();
215
216 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
217 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
218 /* If we have multiple VPEs, try to share the TLB */
219 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
220 /*
221 * If TLB sizing is programmable, shared TLB
222 * size is the total available complement.
223 * Otherwise, we have to take the sum of all
224 * static VPE TLB entries.
225 */
226 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
227 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
228 /*
229 * If there's more than one VPE, there had better
230 * be more than one TC, because we need one to bind
231 * to each VPE in turn to be able to read
232 * its configuration state!
233 */
234 settc(1);
235 /* Stop the TC from doing anything foolish */
236 write_tc_c0_tchalt(TCHALT_H);
237 mips_ihb();
238 /* No need to un-Halt - that happens later anyway */
239 for (i=0; i < vpes; i++) {
240 write_tc_c0_tcbind(i);
241 /*
242 * To be 100% sure we're really getting the right
243 * information, we exit the configuration state
244 * and do an IHB after each rebinding.
245 */
246 write_c0_mvpcontrol(
247 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
248 mips_ihb();
249 /*
250 * Only count if the MMU Type indicated is TLB
251 */
4bf42d42 252 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
41c594ab
RB
253 config1val = read_vpe_c0_config1();
254 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
255 }
256
257 /* Put core back in configuration state */
258 write_c0_mvpcontrol(
259 read_c0_mvpcontrol() | MVPCONTROL_VPC );
260 mips_ihb();
261 }
262 }
263 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
c80697b3 264 ehb();
41c594ab
RB
265
266 /*
267 * Setup kernel data structures to use software total,
268 * rather than read the per-VPE Config1 value. The values
269 * for "CPU 0" gets copied to all the other CPUs as part
270 * of their initialization in smtc_cpu_setup().
271 */
272
a0b62180
RB
273 /* MIPS32 limits TLB indices to 64 */
274 if (tlbsiz > 64)
275 tlbsiz = 64;
276 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
41c594ab 277 smtc_status |= SMTC_TLB_SHARED;
a0b62180 278 local_flush_tlb_all();
41c594ab
RB
279
280 printk("TLB of %d entry pairs shared by %d VPEs\n",
281 tlbsiz, vpes);
282 } else {
283 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
284 }
285 }
286}
287
288
289/*
290 * Incrementally build the CPU map out of constituent MIPS MT cores,
291 * using the specified available VPEs and TCs. Plaform code needs
292 * to ensure that each MIPS MT core invokes this routine on reset,
293 * one at a time(!).
294 *
295 * This version of the build_cpu_map and prepare_cpus routines assumes
296 * that *all* TCs of a MIPS MT core will be used for Linux, and that
297 * they will be spread across *all* available VPEs (to minimise the
298 * loss of efficiency due to exception service serialization).
299 * An improved version would pick up configuration information and
300 * possibly leave some TCs/VPEs as "slave" processors.
301 *
302 * Use c0_MVPConf0 to find out how many TCs are available, setting up
303 * phys_cpu_present_map and the logical/physical mappings.
304 */
305
306int __init mipsmt_build_cpu_map(int start_cpu_slot)
307{
308 int i, ntcs;
309
310 /*
311 * The CPU map isn't actually used for anything at this point,
312 * so it's not clear what else we should do apart from set
313 * everything up so that "logical" = "physical".
314 */
315 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
316 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
317 cpu_set(i, phys_cpu_present_map);
318 __cpu_number_map[i] = i;
319 __cpu_logical_map[i] = i;
320 }
321 /* Initialize map of CPUs with FPUs */
322 cpus_clear(mt_fpu_cpumask);
323
324 /* One of those TC's is the one booting, and not a secondary... */
325 printk("%i available secondary CPU TC(s)\n", i - 1);
326
327 return i;
328}
329
330/*
331 * Common setup before any secondaries are started
332 * Make sure all CPU's are in a sensible state before we boot any of the
333 * secondaries.
334 *
335 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
336 * as possible across the available VPEs.
337 */
338
339static void smtc_tc_setup(int vpe, int tc, int cpu)
340{
341 settc(tc);
342 write_tc_c0_tchalt(TCHALT_H);
343 mips_ihb();
344 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
345 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
346 | TCSTATUS_A);
347 write_tc_c0_tccontext(0);
348 /* Bind tc to vpe */
349 write_tc_c0_tcbind(vpe);
350 /* In general, all TCs should have the same cpu_data indications */
351 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
352 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
353 if (cpu_data[0].cputype == CPU_34K)
354 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
355 cpu_data[cpu].vpe_id = vpe;
356 cpu_data[cpu].tc_id = tc;
357}
358
359
360void mipsmt_prepare_cpus(void)
361{
362 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
363 unsigned long flags;
364 unsigned long val;
365 int nipi;
366 struct smtc_ipi *pipi;
367
368 /* disable interrupts so we can disable MT */
369 local_irq_save(flags);
370 /* disable MT so we can configure */
371 dvpe();
372 dmt();
373
34af946a 374 spin_lock_init(&freeIPIq.lock);
41c594ab
RB
375
376 /*
377 * We probably don't have as many VPEs as we do SMP "CPUs",
378 * but it's possible - and in any case we'll never use more!
379 */
380 for (i=0; i<NR_CPUS; i++) {
381 IPIQ[i].head = IPIQ[i].tail = NULL;
34af946a 382 spin_lock_init(&IPIQ[i].lock);
41c594ab
RB
383 IPIQ[i].depth = 0;
384 ipi_timer_latch[i] = 0;
385 }
386
387 /* cpu_data index starts at zero */
388 cpu = 0;
389 cpu_data[cpu].vpe_id = 0;
390 cpu_data[cpu].tc_id = 0;
391 cpu++;
392
393 /* Report on boot-time options */
394 mips_mt_set_cpuoptions ();
395 if (vpelimit > 0)
396 printk("Limit of %d VPEs set\n", vpelimit);
397 if (tclimit > 0)
398 printk("Limit of %d TCs set\n", tclimit);
399 if (nostlb) {
400 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
401 }
402 if (asidmask)
403 printk("ASID mask value override to 0x%x\n", asidmask);
404
405 /* Temporary */
406#ifdef SMTC_IDLE_HOOK_DEBUG
407 if (hang_trig)
408 printk("Logic Analyser Trigger on suspected TC hang\n");
409#endif /* SMTC_IDLE_HOOK_DEBUG */
410
411 /* Put MVPE's into 'configuration state' */
412 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
413
414 val = read_c0_mvpconf0();
415 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
416 if (vpelimit > 0 && nvpe > vpelimit)
417 nvpe = vpelimit;
418 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
419 if (ntc > NR_CPUS)
420 ntc = NR_CPUS;
421 if (tclimit > 0 && ntc > tclimit)
422 ntc = tclimit;
423 tcpervpe = ntc / nvpe;
424 slop = ntc % nvpe; /* Residual TCs, < NVPE */
425
426 /* Set up shared TLB */
427 smtc_configure_tlb();
428
429 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
430 /*
431 * Set the MVP bits.
432 */
433 settc(tc);
434 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
435 if (vpe != 0)
436 printk(", ");
437 printk("VPE %d: TC", vpe);
438 for (i = 0; i < tcpervpe; i++) {
439 /*
440 * TC 0 is bound to VPE 0 at reset,
441 * and is presumably executing this
442 * code. Leave it alone!
443 */
444 if (tc != 0) {
445 smtc_tc_setup(vpe,tc, cpu);
446 cpu++;
447 }
448 printk(" %d", tc);
449 tc++;
450 }
451 if (slop) {
452 if (tc != 0) {
453 smtc_tc_setup(vpe,tc, cpu);
454 cpu++;
455 }
456 printk(" %d", tc);
457 tc++;
458 slop--;
459 }
460 if (vpe != 0) {
461 /*
462 * Clear any stale software interrupts from VPE's Cause
463 */
464 write_vpe_c0_cause(0);
465
466 /*
467 * Clear ERL/EXL of VPEs other than 0
468 * and set restricted interrupt enable/mask.
469 */
470 write_vpe_c0_status((read_vpe_c0_status()
471 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
472 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
473 | ST0_IE));
474 /*
475 * set config to be the same as vpe0,
476 * particularly kseg0 coherency alg
477 */
478 write_vpe_c0_config(read_c0_config());
479 /* Clear any pending timer interrupt */
480 write_vpe_c0_compare(0);
481 /* Propagate Config7 */
482 write_vpe_c0_config7(read_c0_config7());
64c590b7 483 write_vpe_c0_count(read_c0_count());
41c594ab
RB
484 }
485 /* enable multi-threading within VPE */
486 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
487 /* enable the VPE */
488 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
489 }
490
491 /*
492 * Pull any physically present but unused TCs out of circulation.
493 */
494 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
495 cpu_clear(tc, phys_cpu_present_map);
496 cpu_clear(tc, cpu_present_map);
497 tc++;
498 }
499
500 /* release config state */
501 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
502
503 printk("\n");
504
505 /* Set up coprocessor affinity CPU mask(s) */
506
507 for (tc = 0; tc < ntc; tc++) {
4bf42d42 508 if (cpu_data[tc].options & MIPS_CPU_FPU)
41c594ab
RB
509 cpu_set(tc, mt_fpu_cpumask);
510 }
511
512 /* set up ipi interrupts... */
513
514 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
515
516 if (nvpe > 1)
517 setup_cross_vpe_interrupts();
518
519 /* Set up queue of free IPI "messages". */
520 nipi = NR_CPUS * IPIBUF_PER_CPU;
521 if (ipibuffers > 0)
522 nipi = ipibuffers;
523
524 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
525 if (pipi == NULL)
526 panic("kmalloc of IPI message buffers failed\n");
527 else
528 printk("IPI buffer pool of %d buffers\n", nipi);
529 for (i = 0; i < nipi; i++) {
530 smtc_ipi_nq(&freeIPIq, pipi);
531 pipi++;
532 }
533
534 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
535 emt(EMT_ENABLE);
536 evpe(EVPE_ENABLE);
537 local_irq_restore(flags);
538 /* Initialize SMTC /proc statistics/diagnostics */
539 init_smtc_stats();
540}
541
542
543/*
544 * Setup the PC, SP, and GP of a secondary processor and start it
545 * running!
546 * smp_bootstrap is the place to resume from
547 * __KSTK_TOS(idle) is apparently the stack pointer
548 * (unsigned long)idle->thread_info the gp
549 *
550 */
551void smtc_boot_secondary(int cpu, struct task_struct *idle)
552{
553 extern u32 kernelsp[NR_CPUS];
554 long flags;
555 int mtflags;
556
557 LOCK_MT_PRA();
558 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
559 dvpe();
560 }
561 settc(cpu_data[cpu].tc_id);
562
563 /* pc */
564 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
565
566 /* stack pointer */
567 kernelsp[cpu] = __KSTK_TOS(idle);
568 write_tc_gpr_sp(__KSTK_TOS(idle));
569
570 /* global pointer */
571 write_tc_gpr_gp((unsigned long)idle->thread_info);
572
573 smtc_status |= SMTC_MTC_ACTIVE;
574 write_tc_c0_tchalt(0);
575 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
576 evpe(EVPE_ENABLE);
577 }
578 UNLOCK_MT_PRA();
579}
580
581void smtc_init_secondary(void)
582{
583 /*
584 * Start timer on secondary VPEs if necessary.
54d0a216 585 * plat_timer_setup has already have been invoked by init/main
41c594ab
RB
586 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
587 * SMTC init code assigns TCs consdecutively and in ascending order
588 * to across available VPEs.
589 */
4bf42d42
RB
590 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
591 ((read_c0_tcbind() & TCBIND_CURVPE)
41c594ab
RB
592 != cpu_data[smp_processor_id() - 1].vpe_id)){
593 write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
594 }
595
596 local_irq_enable();
597}
598
599void smtc_smp_finish(void)
600{
601 printk("TC %d going on-line as CPU %d\n",
602 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
603}
604
605void smtc_cpus_done(void)
606{
607}
608
609/*
610 * Support for SMTC-optimized driver IRQ registration
611 */
612
613/*
614 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
615 * in do_IRQ. These are passed in setup_irq_smtc() and stored
616 * in this table.
617 */
618
619int setup_irq_smtc(unsigned int irq, struct irqaction * new,
620 unsigned long hwmask)
621{
622 irq_hwmask[irq] = hwmask;
623
624 return setup_irq(irq, new);
625}
626
627/*
628 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
629 * Within a VPE one TC can interrupt another by different approaches.
630 * The easiest to get right would probably be to make all TCs except
631 * the target IXMT and set a software interrupt, but an IXMT-based
632 * scheme requires that a handler must run before a new IPI could
633 * be sent, which would break the "broadcast" loops in MIPS MT.
634 * A more gonzo approach within a VPE is to halt the TC, extract
635 * its Restart, Status, and a couple of GPRs, and program the Restart
636 * address to emulate an interrupt.
637 *
638 * Within a VPE, one can be confident that the target TC isn't in
639 * a critical EXL state when halted, since the write to the Halt
640 * register could not have issued on the writing thread if the
641 * halting thread had EXL set. So k0 and k1 of the target TC
642 * can be used by the injection code. Across VPEs, one can't
643 * be certain that the target TC isn't in a critical exception
644 * state. So we try a two-step process of sending a software
645 * interrupt to the target VPE, which either handles the event
646 * itself (if it was the target) or injects the event within
647 * the VPE.
648 */
649
650void smtc_ipi_qdump(void)
651{
652 int i;
653
654 for (i = 0; i < NR_CPUS ;i++) {
655 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
656 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
657 IPIQ[i].depth);
658 }
659}
660
661/*
662 * The standard atomic.h primitives don't quite do what we want
663 * here: We need an atomic add-and-return-previous-value (which
664 * could be done with atomic_add_return and a decrement) and an
665 * atomic set/zero-and-return-previous-value (which can't really
666 * be done with the atomic.h primitives). And since this is
667 * MIPS MT, we can assume that we have LL/SC.
668 */
669static __inline__ int atomic_postincrement(unsigned int *pv)
670{
671 unsigned long result;
672
673 unsigned long temp;
674
675 __asm__ __volatile__(
676 "1: ll %0, %2 \n"
677 " addu %1, %0, 1 \n"
678 " sc %1, %2 \n"
679 " beqz %1, 1b \n"
680 " sync \n"
681 : "=&r" (result), "=&r" (temp), "=m" (*pv)
682 : "m" (*pv)
683 : "memory");
684
685 return result;
686}
687
688/* No longer used in IPI dispatch, but retained for future recycling */
689
690static __inline__ int atomic_postclear(unsigned int *pv)
691{
692 unsigned long result;
693
694 unsigned long temp;
695
696 __asm__ __volatile__(
697 "1: ll %0, %2 \n"
698 " or %1, $0, $0 \n"
699 " sc %1, %2 \n"
700 " beqz %1, 1b \n"
701 " sync \n"
702 : "=&r" (result), "=&r" (temp), "=m" (*pv)
703 : "m" (*pv)
704 : "memory");
705
706 return result;
707}
708
709
710void smtc_send_ipi(int cpu, int type, unsigned int action)
711{
712 int tcstatus;
713 struct smtc_ipi *pipi;
714 long flags;
715 int mtflags;
716
717 if (cpu == smp_processor_id()) {
718 printk("Cannot Send IPI to self!\n");
719 return;
720 }
721 /* Set up a descriptor, to be delivered either promptly or queued */
722 pipi = smtc_ipi_dq(&freeIPIq);
723 if (pipi == NULL) {
724 bust_spinlocks(1);
725 mips_mt_regdump(dvpe());
726 panic("IPI Msg. Buffers Depleted\n");
727 }
728 pipi->type = type;
729 pipi->arg = (void *)action;
730 pipi->dest = cpu;
731 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
732 /* If not on same VPE, enqueue and send cross-VPE interupt */
733 smtc_ipi_nq(&IPIQ[cpu], pipi);
734 LOCK_CORE_PRA();
735 settc(cpu_data[cpu].tc_id);
736 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
737 UNLOCK_CORE_PRA();
738 } else {
739 /*
740 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
741 * since ASID shootdown on the other VPE may
742 * collide with this operation.
743 */
744 LOCK_CORE_PRA();
745 settc(cpu_data[cpu].tc_id);
746 /* Halt the targeted TC */
747 write_tc_c0_tchalt(TCHALT_H);
748 mips_ihb();
749
750 /*
751 * Inspect TCStatus - if IXMT is set, we have to queue
752 * a message. Otherwise, we set up the "interrupt"
753 * of the other TC
754 */
755 tcstatus = read_tc_c0_tcstatus();
756
757 if ((tcstatus & TCSTATUS_IXMT) != 0) {
758 /*
759 * Spin-waiting here can deadlock,
760 * so we queue the message for the target TC.
761 */
762 write_tc_c0_tchalt(0);
763 UNLOCK_CORE_PRA();
764 /* Try to reduce redundant timer interrupt messages */
4bf42d42
RB
765 if (type == SMTC_CLOCK_TICK) {
766 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
41c594ab
RB
767 smtc_ipi_nq(&freeIPIq, pipi);
768 return;
769 }
770 }
771 smtc_ipi_nq(&IPIQ[cpu], pipi);
772 } else {
773 post_direct_ipi(cpu, pipi);
774 write_tc_c0_tchalt(0);
775 UNLOCK_CORE_PRA();
776 }
777 }
778}
779
780/*
781 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
782 */
783void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
784{
785 struct pt_regs *kstack;
786 unsigned long tcstatus;
787 unsigned long tcrestart;
788 extern u32 kernelsp[NR_CPUS];
789 extern void __smtc_ipi_vector(void);
790
791 /* Extract Status, EPC from halted TC */
792 tcstatus = read_tc_c0_tcstatus();
793 tcrestart = read_tc_c0_tcrestart();
794 /* If TCRestart indicates a WAIT instruction, advance the PC */
795 if ((tcrestart & 0x80000000)
796 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
797 tcrestart += 4;
798 }
799 /*
800 * Save on TC's future kernel stack
801 *
802 * CU bit of Status is indicator that TC was
803 * already running on a kernel stack...
804 */
4bf42d42 805 if (tcstatus & ST0_CU0) {
41c594ab
RB
806 /* Note that this "- 1" is pointer arithmetic */
807 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
808 } else {
809 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
810 }
811
812 kstack->cp0_epc = (long)tcrestart;
813 /* Save TCStatus */
814 kstack->cp0_tcstatus = tcstatus;
815 /* Pass token of operation to be performed kernel stack pad area */
816 kstack->pad0[4] = (unsigned long)pipi;
817 /* Pass address of function to be called likewise */
818 kstack->pad0[5] = (unsigned long)&ipi_decode;
819 /* Set interrupt exempt and kernel mode */
820 tcstatus |= TCSTATUS_IXMT;
821 tcstatus &= ~TCSTATUS_TKSU;
822 write_tc_c0_tcstatus(tcstatus);
823 ehb();
824 /* Set TC Restart address to be SMTC IPI vector */
825 write_tc_c0_tcrestart(__smtc_ipi_vector);
826}
827
937a8015 828static void ipi_resched_interrupt(void)
41c594ab
RB
829{
830 /* Return from interrupt should be enough to cause scheduler check */
831}
832
833
937a8015 834static void ipi_call_interrupt(void)
41c594ab
RB
835{
836 /* Invoke generic function invocation code in smp.c */
837 smp_call_function_interrupt();
838}
839
937a8015 840void ipi_decode(struct smtc_ipi *pipi)
41c594ab
RB
841{
842 void *arg_copy = pipi->arg;
843 int type_copy = pipi->type;
844 int dest_copy = pipi->dest;
845
846 smtc_ipi_nq(&freeIPIq, pipi);
847 switch (type_copy) {
4bf42d42
RB
848 case SMTC_CLOCK_TICK:
849 /* Invoke Clock "Interrupt" */
850 ipi_timer_latch[dest_copy] = 0;
41c594ab 851#ifdef SMTC_IDLE_HOOK_DEBUG
4bf42d42 852 clock_hang_reported[dest_copy] = 0;
41c594ab 853#endif /* SMTC_IDLE_HOOK_DEBUG */
937a8015 854 local_timer_interrupt(0, NULL);
4bf42d42
RB
855 break;
856 case LINUX_SMP_IPI:
857 switch ((int)arg_copy) {
858 case SMP_RESCHEDULE_YOURSELF:
937a8015 859 ipi_resched_interrupt();
41c594ab 860 break;
4bf42d42 861 case SMP_CALL_FUNCTION:
937a8015 862 ipi_call_interrupt();
41c594ab
RB
863 break;
864 default:
4bf42d42
RB
865 printk("Impossible SMTC IPI Argument 0x%x\n",
866 (int)arg_copy);
41c594ab 867 break;
4bf42d42
RB
868 }
869 break;
870 default:
871 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
872 break;
41c594ab
RB
873 }
874}
875
937a8015 876void deferred_smtc_ipi(void)
41c594ab
RB
877{
878 struct smtc_ipi *pipi;
879 unsigned long flags;
880/* DEBUG */
881 int q = smp_processor_id();
882
883 /*
884 * Test is not atomic, but much faster than a dequeue,
885 * and the vast majority of invocations will have a null queue.
886 */
4bf42d42 887 if (IPIQ[q].head != NULL) {
41c594ab
RB
888 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
889 /* ipi_decode() should be called with interrupts off */
890 local_irq_save(flags);
937a8015 891 ipi_decode(pipi);
41c594ab
RB
892 local_irq_restore(flags);
893 }
894 }
895}
896
897/*
898 * Send clock tick to all TCs except the one executing the funtion
899 */
900
901void smtc_timer_broadcast(int vpe)
902{
903 int cpu;
904 int myTC = cpu_data[smp_processor_id()].tc_id;
905 int myVPE = cpu_data[smp_processor_id()].vpe_id;
906
907 smtc_cpu_stats[smp_processor_id()].timerints++;
908
909 for_each_online_cpu(cpu) {
910 if (cpu_data[cpu].vpe_id == myVPE &&
911 cpu_data[cpu].tc_id != myTC)
912 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
913 }
914}
915
916/*
917 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
918 * set via cross-VPE MTTR manipulation of the Cause register. It would be
919 * in some regards preferable to have external logic for "doorbell" hardware
920 * interrupts.
921 */
922
923static int cpu_ipi_irq = MIPSCPU_INT_BASE + MIPS_CPU_IPI_IRQ;
924
937a8015 925static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
41c594ab
RB
926{
927 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
928 int my_tc = cpu_data[smp_processor_id()].tc_id;
929 int cpu;
930 struct smtc_ipi *pipi;
931 unsigned long tcstatus;
932 int sent;
933 long flags;
934 unsigned int mtflags;
935 unsigned int vpflags;
936
937 /*
938 * So long as cross-VPE interrupts are done via
939 * MFTR/MTTR read-modify-writes of Cause, we need
940 * to stop other VPEs whenever the local VPE does
941 * anything similar.
942 */
943 local_irq_save(flags);
944 vpflags = dvpe();
945 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
946 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
947 irq_enable_hazard();
948 evpe(vpflags);
949 local_irq_restore(flags);
950
951 /*
952 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
953 * queued for TCs on this VPE other than the current one.
954 * Return-from-interrupt should cause us to drain the queue
955 * for the current TC, so we ought not to have to do it explicitly here.
956 */
957
958 for_each_online_cpu(cpu) {
959 if (cpu_data[cpu].vpe_id != my_vpe)
960 continue;
961
962 pipi = smtc_ipi_dq(&IPIQ[cpu]);
963 if (pipi != NULL) {
964 if (cpu_data[cpu].tc_id != my_tc) {
965 sent = 0;
966 LOCK_MT_PRA();
967 settc(cpu_data[cpu].tc_id);
968 write_tc_c0_tchalt(TCHALT_H);
969 mips_ihb();
970 tcstatus = read_tc_c0_tcstatus();
971 if ((tcstatus & TCSTATUS_IXMT) == 0) {
972 post_direct_ipi(cpu, pipi);
973 sent = 1;
974 }
975 write_tc_c0_tchalt(0);
976 UNLOCK_MT_PRA();
977 if (!sent) {
978 smtc_ipi_req(&IPIQ[cpu], pipi);
979 }
980 } else {
981 /*
982 * ipi_decode() should be called
983 * with interrupts off
984 */
985 local_irq_save(flags);
937a8015 986 ipi_decode(pipi);
41c594ab
RB
987 local_irq_restore(flags);
988 }
989 }
990 }
991
992 return IRQ_HANDLED;
993}
994
937a8015 995static void ipi_irq_dispatch(void)
41c594ab 996{
937a8015 997 do_IRQ(cpu_ipi_irq);
41c594ab
RB
998}
999
1000static struct irqaction irq_ipi;
1001
1002void setup_cross_vpe_interrupts(void)
1003{
1004 if (!cpu_has_vint)
1005 panic("SMTC Kernel requires Vectored Interupt support");
1006
1007 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1008
1009 irq_ipi.handler = ipi_interrupt;
f40298fd 1010 irq_ipi.flags = IRQF_DISABLED;
41c594ab
RB
1011 irq_ipi.name = "SMTC_IPI";
1012
1013 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1014
1015 irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
1417836e 1016 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
41c594ab
RB
1017}
1018
1019/*
1020 * SMTC-specific hacks invoked from elsewhere in the kernel.
1021 */
1022
ac8be955
RB
1023void smtc_ipi_replay(void)
1024{
1025 /*
1026 * To the extent that we've ever turned interrupts off,
1027 * we may have accumulated deferred IPIs. This is subtle.
1028 * If we use the smtc_ipi_qdepth() macro, we'll get an
1029 * exact number - but we'll also disable interrupts
1030 * and create a window of failure where a new IPI gets
1031 * queued after we test the depth but before we re-enable
1032 * interrupts. So long as IXMT never gets set, however,
1033 * we should be OK: If we pick up something and dispatch
1034 * it here, that's great. If we see nothing, but concurrent
1035 * with this operation, another TC sends us an IPI, IXMT
1036 * is clear, and we'll handle it as a real pseudo-interrupt
1037 * and not a pseudo-pseudo interrupt.
1038 */
1039 if (IPIQ[smp_processor_id()].depth > 0) {
1040 struct smtc_ipi *pipi;
1041 extern void self_ipi(struct smtc_ipi *);
1042
1043 while ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()]))) {
1044 self_ipi(pipi);
1045 smtc_cpu_stats[smp_processor_id()].selfipis++;
1046 }
1047 }
1048}
1049
41c594ab
RB
1050void smtc_idle_loop_hook(void)
1051{
1052#ifdef SMTC_IDLE_HOOK_DEBUG
1053 int im;
1054 int flags;
1055 int mtflags;
1056 int bit;
1057 int vpe;
1058 int tc;
1059 int hook_ntcs;
1060 /*
1061 * printk within DMT-protected regions can deadlock,
1062 * so buffer diagnostic messages for later output.
1063 */
1064 char *pdb_msg;
1065 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1066
1067 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1068 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1069 int mvpconf0;
1070 /* Tedious stuff to just do once */
1071 mvpconf0 = read_c0_mvpconf0();
1072 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1073 if (hook_ntcs > NR_CPUS)
1074 hook_ntcs = NR_CPUS;
1075 for (tc = 0; tc < hook_ntcs; tc++) {
1076 tcnoprog[tc] = 0;
1077 clock_hang_reported[tc] = 0;
1078 }
1079 for (vpe = 0; vpe < 2; vpe++)
1080 for (im = 0; im < 8; im++)
1081 imstuckcount[vpe][im] = 0;
1082 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1083 atomic_set(&idle_hook_initialized, 1000);
1084 } else {
1085 /* Someone else is initializing in parallel - let 'em finish */
1086 while (atomic_read(&idle_hook_initialized) < 1000)
1087 ;
1088 }
1089 }
1090
1091 /* Have we stupidly left IXMT set somewhere? */
1092 if (read_c0_tcstatus() & 0x400) {
1093 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1094 ehb();
1095 printk("Dangling IXMT in cpu_idle()\n");
1096 }
1097
1098 /* Have we stupidly left an IM bit turned off? */
1099#define IM_LIMIT 2000
1100 local_irq_save(flags);
1101 mtflags = dmt();
1102 pdb_msg = &id_ho_db_msg[0];
1103 im = read_c0_status();
1104 vpe = cpu_data[smp_processor_id()].vpe_id;
1105 for (bit = 0; bit < 8; bit++) {
1106 /*
1107 * In current prototype, I/O interrupts
1108 * are masked for VPE > 0
1109 */
1110 if (vpemask[vpe][bit]) {
1111 if (!(im & (0x100 << bit)))
1112 imstuckcount[vpe][bit]++;
1113 else
1114 imstuckcount[vpe][bit] = 0;
1115 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1116 set_c0_status(0x100 << bit);
1117 ehb();
1118 imstuckcount[vpe][bit] = 0;
1119 pdb_msg += sprintf(pdb_msg,
1120 "Dangling IM %d fixed for VPE %d\n", bit,
1121 vpe);
1122 }
1123 }
1124 }
1125
1126 /*
1127 * Now that we limit outstanding timer IPIs, check for hung TC
1128 */
1129 for (tc = 0; tc < NR_CPUS; tc++) {
1130 /* Don't check ourself - we'll dequeue IPIs just below */
1131 if ((tc != smp_processor_id()) &&
1132 ipi_timer_latch[tc] > timerq_limit) {
1133 if (clock_hang_reported[tc] == 0) {
1134 pdb_msg += sprintf(pdb_msg,
1135 "TC %d looks hung with timer latch at %d\n",
1136 tc, ipi_timer_latch[tc]);
1137 clock_hang_reported[tc]++;
1138 }
1139 }
1140 }
1141 emt(mtflags);
1142 local_irq_restore(flags);
1143 if (pdb_msg != &id_ho_db_msg[0])
1144 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1145#endif /* SMTC_IDLE_HOOK_DEBUG */
ac8be955 1146
41c594ab 1147 /*
ac8be955
RB
1148 * Replay any accumulated deferred IPIs. If "Instant Replay"
1149 * is in use, there should never be any.
41c594ab 1150 */
ac8be955
RB
1151#ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1152 smtc_ipi_replay();
1153#endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
41c594ab
RB
1154}
1155
1156void smtc_soft_dump(void)
1157{
1158 int i;
1159
1160 printk("Counter Interrupts taken per CPU (TC)\n");
1161 for (i=0; i < NR_CPUS; i++) {
1162 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1163 }
1164 printk("Self-IPI invocations:\n");
1165 for (i=0; i < NR_CPUS; i++) {
1166 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1167 }
1168 smtc_ipi_qdump();
1169 printk("Timer IPI Backlogs:\n");
1170 for (i=0; i < NR_CPUS; i++) {
1171 printk("%d: %d\n", i, ipi_timer_latch[i]);
1172 }
1173 printk("%d Recoveries of \"stolen\" FPU\n",
1174 atomic_read(&smtc_fpu_recoveries));
1175}
1176
1177
1178/*
1179 * TLB management routines special to SMTC
1180 */
1181
1182void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1183{
1184 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1185 int tlb, i;
1186
1187 /*
1188 * It would be nice to be able to use a spinlock here,
1189 * but this is invoked from within TLB flush routines
1190 * that protect themselves with DVPE, so if a lock is
1191 * held by another TC, it'll never be freed.
1192 *
1193 * DVPE/DMT must not be done with interrupts enabled,
1194 * so even so most callers will already have disabled
1195 * them, let's be really careful...
1196 */
1197
1198 local_irq_save(flags);
1199 if (smtc_status & SMTC_TLB_SHARED) {
1200 mtflags = dvpe();
1201 tlb = 0;
1202 } else {
1203 mtflags = dmt();
1204 tlb = cpu_data[cpu].vpe_id;
1205 }
1206 asid = asid_cache(cpu);
1207
1208 do {
1209 if (!((asid += ASID_INC) & ASID_MASK) ) {
1210 if (cpu_has_vtag_icache)
1211 flush_icache_all();
1212 /* Traverse all online CPUs (hack requires contigous range) */
1213 for (i = 0; i < num_online_cpus(); i++) {
1214 /*
1215 * We don't need to worry about our own CPU, nor those of
1216 * CPUs who don't share our TLB.
1217 */
1218 if ((i != smp_processor_id()) &&
1219 ((smtc_status & SMTC_TLB_SHARED) ||
1220 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1221 settc(cpu_data[i].tc_id);
1222 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1223 if (!prevhalt) {
1224 write_tc_c0_tchalt(TCHALT_H);
1225 mips_ihb();
1226 }
1227 tcstat = read_tc_c0_tcstatus();
1228 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1229 if (!prevhalt)
1230 write_tc_c0_tchalt(0);
1231 }
1232 }
1233 if (!asid) /* fix version if needed */
1234 asid = ASID_FIRST_VERSION;
1235 local_flush_tlb_all(); /* start new asid cycle */
1236 }
1237 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1238
1239 /*
1240 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1241 */
1242 for (i = 0; i < num_online_cpus(); i++) {
1243 if ((smtc_status & SMTC_TLB_SHARED) ||
1244 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1245 cpu_context(i, mm) = asid_cache(i) = asid;
1246 }
1247
1248 if (smtc_status & SMTC_TLB_SHARED)
1249 evpe(mtflags);
1250 else
1251 emt(mtflags);
1252 local_irq_restore(flags);
1253}
1254
1255/*
1256 * Invoked from macros defined in mmu_context.h
1257 * which must already have disabled interrupts
1258 * and done a DVPE or DMT as appropriate.
1259 */
1260
1261void smtc_flush_tlb_asid(unsigned long asid)
1262{
1263 int entry;
1264 unsigned long ehi;
1265
1266 entry = read_c0_wired();
1267
1268 /* Traverse all non-wired entries */
1269 while (entry < current_cpu_data.tlbsize) {
1270 write_c0_index(entry);
1271 ehb();
1272 tlb_read();
1273 ehb();
1274 ehi = read_c0_entryhi();
4bf42d42 1275 if ((ehi & ASID_MASK) == asid) {
41c594ab
RB
1276 /*
1277 * Invalidate only entries with specified ASID,
1278 * makiing sure all entries differ.
1279 */
1280 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1281 write_c0_entrylo0(0);
1282 write_c0_entrylo1(0);
1283 mtc0_tlbw_hazard();
1284 tlb_write_indexed();
1285 }
1286 entry++;
1287 }
1288 write_c0_index(PARKED_INDEX);
1289 tlbw_use_hazard();
1290}
1291
1292/*
1293 * Support for single-threading cache flush operations.
1294 */
1295
1296int halt_state_save[NR_CPUS];
1297
1298/*
1299 * To really, really be sure that nothing is being done
1300 * by other TCs, halt them all. This code assumes that
1301 * a DVPE has already been done, so while their Halted
1302 * state is theoretically architecturally unstable, in
1303 * practice, it's not going to change while we're looking
1304 * at it.
1305 */
1306
1307void smtc_cflush_lockdown(void)
1308{
1309 int cpu;
1310
1311 for_each_online_cpu(cpu) {
1312 if (cpu != smp_processor_id()) {
1313 settc(cpu_data[cpu].tc_id);
1314 halt_state_save[cpu] = read_tc_c0_tchalt();
1315 write_tc_c0_tchalt(TCHALT_H);
1316 }
1317 }
1318 mips_ihb();
1319}
1320
1321/* It would be cheating to change the cpu_online states during a flush! */
1322
1323void smtc_cflush_release(void)
1324{
1325 int cpu;
1326
1327 /*
1328 * Start with a hazard barrier to ensure
1329 * that all CACHE ops have played through.
1330 */
1331 mips_ihb();
1332
1333 for_each_online_cpu(cpu) {
1334 if (cpu != smp_processor_id()) {
1335 settc(cpu_data[cpu].tc_id);
1336 write_tc_c0_tchalt(halt_state_save[cpu]);
1337 }
1338 }
1339 mips_ihb();
1340}
This page took 0.158969 seconds and 5 git commands to generate.