More AP / SP bits for the 34K, the Malta bits and things. Still wants
[deliverable/linux.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
3b2396d9 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
1da177e4
LT
13 */
14#include <linux/config.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/sched.h>
19#include <linux/smp.h>
20#include <linux/smp_lock.h>
21#include <linux/spinlock.h>
22#include <linux/kallsyms.h>
e01402b1 23#include <linux/bootmem.h>
1da177e4
LT
24
25#include <asm/bootinfo.h>
26#include <asm/branch.h>
27#include <asm/break.h>
28#include <asm/cpu.h>
e50c0a8f 29#include <asm/dsp.h>
1da177e4
LT
30#include <asm/fpu.h>
31#include <asm/module.h>
32#include <asm/pgtable.h>
33#include <asm/ptrace.h>
34#include <asm/sections.h>
35#include <asm/system.h>
36#include <asm/tlbdebug.h>
37#include <asm/traps.h>
38#include <asm/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/watch.h>
41#include <asm/types.h>
42
43extern asmlinkage void handle_tlbm(void);
44extern asmlinkage void handle_tlbl(void);
45extern asmlinkage void handle_tlbs(void);
46extern asmlinkage void handle_adel(void);
47extern asmlinkage void handle_ades(void);
48extern asmlinkage void handle_ibe(void);
49extern asmlinkage void handle_dbe(void);
50extern asmlinkage void handle_sys(void);
51extern asmlinkage void handle_bp(void);
52extern asmlinkage void handle_ri(void);
53extern asmlinkage void handle_cpu(void);
54extern asmlinkage void handle_ov(void);
55extern asmlinkage void handle_tr(void);
56extern asmlinkage void handle_fpe(void);
57extern asmlinkage void handle_mdmx(void);
58extern asmlinkage void handle_watch(void);
e50c0a8f 59extern asmlinkage void handle_dsp(void);
1da177e4
LT
60extern asmlinkage void handle_mcheck(void);
61extern asmlinkage void handle_reserved(void);
62
63extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
64 struct mips_fpu_soft_struct *ctx);
65
66void (*board_be_init)(void);
67int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
68void (*board_nmi_handler_setup)(void);
69void (*board_ejtag_handler_setup)(void);
70void (*board_bind_eic_interrupt)(int irq, int regset);
1da177e4
LT
71
72/*
73 * These constant is for searching for possible module text segments.
74 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
75 */
76#define MODULE_RANGE (8*1024*1024)
77
78/*
79 * This routine abuses get_user()/put_user() to reference pointers
80 * with at least a bit of error checking ...
81 */
82void show_stack(struct task_struct *task, unsigned long *sp)
83{
84 const int field = 2 * sizeof(unsigned long);
85 long stackdata;
86 int i;
87
88 if (!sp) {
89 if (task && task != current)
90 sp = (unsigned long *) task->thread.reg29;
91 else
92 sp = (unsigned long *) &sp;
93 }
94
95 printk("Stack :");
96 i = 0;
97 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
98 if (i && ((i % (64 / field)) == 0))
99 printk("\n ");
100 if (i > 39) {
101 printk(" ...");
102 break;
103 }
104
105 if (__get_user(stackdata, sp++)) {
106 printk(" (Bad stack address)");
107 break;
108 }
109
110 printk(" %0*lx", field, stackdata);
111 i++;
112 }
113 printk("\n");
114}
115
116void show_trace(struct task_struct *task, unsigned long *stack)
117{
118 const int field = 2 * sizeof(unsigned long);
119 unsigned long addr;
120
121 if (!stack) {
122 if (task && task != current)
123 stack = (unsigned long *) task->thread.reg29;
124 else
125 stack = (unsigned long *) &stack;
126 }
127
128 printk("Call Trace:");
129#ifdef CONFIG_KALLSYMS
130 printk("\n");
131#endif
132 while (!kstack_end(stack)) {
133 addr = *stack++;
134 if (__kernel_text_address(addr)) {
135 printk(" [<%0*lx>] ", field, addr);
136 print_symbol("%s\n", addr);
137 }
138 }
139 printk("\n");
140}
141
142/*
143 * The architecture-independent dump_stack generator
144 */
145void dump_stack(void)
146{
147 unsigned long stack;
148
149 show_trace(current, &stack);
150}
151
152EXPORT_SYMBOL(dump_stack);
153
154void show_code(unsigned int *pc)
155{
156 long i;
157
158 printk("\nCode:");
159
160 for(i = -3 ; i < 6 ; i++) {
161 unsigned int insn;
162 if (__get_user(insn, pc + i)) {
163 printk(" (Bad address in epc)\n");
164 break;
165 }
166 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
167 }
168}
169
170void show_regs(struct pt_regs *regs)
171{
172 const int field = 2 * sizeof(unsigned long);
173 unsigned int cause = regs->cp0_cause;
174 int i;
175
176 printk("Cpu %d\n", smp_processor_id());
177
178 /*
179 * Saved main processor registers
180 */
181 for (i = 0; i < 32; ) {
182 if ((i % 4) == 0)
183 printk("$%2d :", i);
184 if (i == 0)
185 printk(" %0*lx", field, 0UL);
186 else if (i == 26 || i == 27)
187 printk(" %*s", field, "");
188 else
189 printk(" %0*lx", field, regs->regs[i]);
190
191 i++;
192 if ((i % 4) == 0)
193 printk("\n");
194 }
195
196 printk("Hi : %0*lx\n", field, regs->hi);
197 printk("Lo : %0*lx\n", field, regs->lo);
198
199 /*
200 * Saved cp0 registers
201 */
202 printk("epc : %0*lx ", field, regs->cp0_epc);
203 print_symbol("%s ", regs->cp0_epc);
204 printk(" %s\n", print_tainted());
205 printk("ra : %0*lx ", field, regs->regs[31]);
206 print_symbol("%s\n", regs->regs[31]);
207
208 printk("Status: %08x ", (uint32_t) regs->cp0_status);
209
3b2396d9
MR
210 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
211 if (regs->cp0_status & ST0_KUO)
212 printk("KUo ");
213 if (regs->cp0_status & ST0_IEO)
214 printk("IEo ");
215 if (regs->cp0_status & ST0_KUP)
216 printk("KUp ");
217 if (regs->cp0_status & ST0_IEP)
218 printk("IEp ");
219 if (regs->cp0_status & ST0_KUC)
220 printk("KUc ");
221 if (regs->cp0_status & ST0_IEC)
222 printk("IEc ");
223 } else {
224 if (regs->cp0_status & ST0_KX)
225 printk("KX ");
226 if (regs->cp0_status & ST0_SX)
227 printk("SX ");
228 if (regs->cp0_status & ST0_UX)
229 printk("UX ");
230 switch (regs->cp0_status & ST0_KSU) {
231 case KSU_USER:
232 printk("USER ");
233 break;
234 case KSU_SUPERVISOR:
235 printk("SUPERVISOR ");
236 break;
237 case KSU_KERNEL:
238 printk("KERNEL ");
239 break;
240 default:
241 printk("BAD_MODE ");
242 break;
243 }
244 if (regs->cp0_status & ST0_ERL)
245 printk("ERL ");
246 if (regs->cp0_status & ST0_EXL)
247 printk("EXL ");
248 if (regs->cp0_status & ST0_IE)
249 printk("IE ");
1da177e4 250 }
1da177e4
LT
251 printk("\n");
252
253 printk("Cause : %08x\n", cause);
254
255 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
256 if (1 <= cause && cause <= 5)
257 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
258
259 printk("PrId : %08x\n", read_c0_prid());
260}
261
262void show_registers(struct pt_regs *regs)
263{
264 show_regs(regs);
265 print_modules();
266 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
267 current->comm, current->pid, current_thread_info(), current);
268 show_stack(current, (long *) regs->regs[29]);
269 show_trace(current, (long *) regs->regs[29]);
270 show_code((unsigned int *) regs->cp0_epc);
271 printk("\n");
272}
273
274static DEFINE_SPINLOCK(die_lock);
275
260c9673
MR
276NORET_TYPE void ATTRIB_NORET __die(const char * str, struct pt_regs * regs,
277 const char * file, const char * func,
278 unsigned long line)
1da177e4
LT
279{
280 static int die_counter;
281
282 console_verbose();
283 spin_lock_irq(&die_lock);
284 printk("%s", str);
285 if (file && func)
286 printk(" in %s:%s, line %ld", file, func, line);
287 printk("[#%d]:\n", ++die_counter);
288 show_registers(regs);
289 spin_unlock_irq(&die_lock);
290 do_exit(SIGSEGV);
291}
292
293void __die_if_kernel(const char * str, struct pt_regs * regs,
294 const char * file, const char * func, unsigned long line)
295{
296 if (!user_mode(regs))
297 __die(str, regs, file, func, line);
298}
299
300extern const struct exception_table_entry __start___dbe_table[];
301extern const struct exception_table_entry __stop___dbe_table[];
302
303void __declare_dbe_table(void)
304{
305 __asm__ __volatile__(
306 ".section\t__dbe_table,\"a\"\n\t"
307 ".previous"
308 );
309}
310
311/* Given an address, look for it in the exception tables. */
312static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
313{
314 const struct exception_table_entry *e;
315
316 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
317 if (!e)
318 e = search_module_dbetables(addr);
319 return e;
320}
321
322asmlinkage void do_be(struct pt_regs *regs)
323{
324 const int field = 2 * sizeof(unsigned long);
325 const struct exception_table_entry *fixup = NULL;
326 int data = regs->cp0_cause & 4;
327 int action = MIPS_BE_FATAL;
328
329 /* XXX For now. Fixme, this searches the wrong table ... */
330 if (data && !user_mode(regs))
331 fixup = search_dbe_tables(exception_epc(regs));
332
333 if (fixup)
334 action = MIPS_BE_FIXUP;
335
336 if (board_be_handler)
337 action = board_be_handler(regs, fixup != 0);
338
339 switch (action) {
340 case MIPS_BE_DISCARD:
341 return;
342 case MIPS_BE_FIXUP:
343 if (fixup) {
344 regs->cp0_epc = fixup->nextinsn;
345 return;
346 }
347 break;
348 default:
349 break;
350 }
351
352 /*
353 * Assume it would be too dangerous to continue ...
354 */
355 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
356 data ? "Data" : "Instruction",
357 field, regs->cp0_epc, field, regs->regs[31]);
358 die_if_kernel("Oops", regs);
359 force_sig(SIGBUS, current);
360}
361
362static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
363{
fe00f943 364 unsigned int __user *epc;
1da177e4 365
fe00f943 366 epc = (unsigned int __user *) regs->cp0_epc +
1da177e4
LT
367 ((regs->cp0_cause & CAUSEF_BD) != 0);
368 if (!get_user(*opcode, epc))
369 return 0;
370
371 force_sig(SIGSEGV, current);
372 return 1;
373}
374
375/*
376 * ll/sc emulation
377 */
378
379#define OPCODE 0xfc000000
380#define BASE 0x03e00000
381#define RT 0x001f0000
382#define OFFSET 0x0000ffff
383#define LL 0xc0000000
384#define SC 0xe0000000
3c37026d
RB
385#define SPEC3 0x7c000000
386#define RD 0x0000f800
387#define FUNC 0x0000003f
388#define RDHWR 0x0000003b
1da177e4
LT
389
390/*
391 * The ll_bit is cleared by r*_switch.S
392 */
393
394unsigned long ll_bit;
395
396static struct task_struct *ll_task = NULL;
397
398static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
399{
fe00f943 400 unsigned long value, __user *vaddr;
1da177e4
LT
401 long offset;
402 int signal = 0;
403
404 /*
405 * analyse the ll instruction that just caused a ri exception
406 * and put the referenced address to addr.
407 */
408
409 /* sign extend offset */
410 offset = opcode & OFFSET;
411 offset <<= 16;
412 offset >>= 16;
413
fe00f943
RB
414 vaddr = (unsigned long __user *)
415 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
416
417 if ((unsigned long)vaddr & 3) {
418 signal = SIGBUS;
419 goto sig;
420 }
421 if (get_user(value, vaddr)) {
422 signal = SIGSEGV;
423 goto sig;
424 }
425
426 preempt_disable();
427
428 if (ll_task == NULL || ll_task == current) {
429 ll_bit = 1;
430 } else {
431 ll_bit = 0;
432 }
433 ll_task = current;
434
435 preempt_enable();
436
6dd04688
RB
437 compute_return_epc(regs);
438
1da177e4
LT
439 regs->regs[(opcode & RT) >> 16] = value;
440
1da177e4
LT
441 return;
442
443sig:
444 force_sig(signal, current);
445}
446
447static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
448{
fe00f943
RB
449 unsigned long __user *vaddr;
450 unsigned long reg;
1da177e4
LT
451 long offset;
452 int signal = 0;
453
454 /*
455 * analyse the sc instruction that just caused a ri exception
456 * and put the referenced address to addr.
457 */
458
459 /* sign extend offset */
460 offset = opcode & OFFSET;
461 offset <<= 16;
462 offset >>= 16;
463
fe00f943
RB
464 vaddr = (unsigned long __user *)
465 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
466 reg = (opcode & RT) >> 16;
467
468 if ((unsigned long)vaddr & 3) {
469 signal = SIGBUS;
470 goto sig;
471 }
472
473 preempt_disable();
474
475 if (ll_bit == 0 || ll_task != current) {
05b8042a 476 compute_return_epc(regs);
1da177e4
LT
477 regs->regs[reg] = 0;
478 preempt_enable();
1da177e4
LT
479 return;
480 }
481
482 preempt_enable();
483
484 if (put_user(regs->regs[reg], vaddr)) {
485 signal = SIGSEGV;
486 goto sig;
487 }
488
6dd04688 489 compute_return_epc(regs);
1da177e4
LT
490 regs->regs[reg] = 1;
491
1da177e4
LT
492 return;
493
494sig:
495 force_sig(signal, current);
496}
497
498/*
499 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
500 * opcodes are supposed to result in coprocessor unusable exceptions if
501 * executed on ll/sc-less processors. That's the theory. In practice a
502 * few processors such as NEC's VR4100 throw reserved instruction exceptions
503 * instead, so we're doing the emulation thing in both exception handlers.
504 */
505static inline int simulate_llsc(struct pt_regs *regs)
506{
507 unsigned int opcode;
508
509 if (unlikely(get_insn_opcode(regs, &opcode)))
510 return -EFAULT;
511
512 if ((opcode & OPCODE) == LL) {
513 simulate_ll(regs, opcode);
514 return 0;
515 }
516 if ((opcode & OPCODE) == SC) {
517 simulate_sc(regs, opcode);
518 return 0;
519 }
520
521 return -EFAULT; /* Strange things going on ... */
522}
523
3c37026d
RB
524/*
525 * Simulate trapping 'rdhwr' instructions to provide user accessible
526 * registers not implemented in hardware. The only current use of this
527 * is the thread area pointer.
528 */
529static inline int simulate_rdhwr(struct pt_regs *regs)
530{
531 struct thread_info *ti = current->thread_info;
532 unsigned int opcode;
533
534 if (unlikely(get_insn_opcode(regs, &opcode)))
535 return -EFAULT;
536
537 if (unlikely(compute_return_epc(regs)))
538 return -EFAULT;
539
540 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
541 int rd = (opcode & RD) >> 11;
542 int rt = (opcode & RT) >> 16;
543 switch (rd) {
544 case 29:
545 regs->regs[rt] = ti->tp_value;
546 break;
547 default:
548 return -EFAULT;
549 }
550 }
551
552 return 0;
553}
554
1da177e4
LT
555asmlinkage void do_ov(struct pt_regs *regs)
556{
557 siginfo_t info;
558
559 info.si_code = FPE_INTOVF;
560 info.si_signo = SIGFPE;
561 info.si_errno = 0;
fe00f943 562 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
563 force_sig_info(SIGFPE, &info, current);
564}
565
566/*
567 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
568 */
569asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
570{
571 if (fcr31 & FPU_CSR_UNI_X) {
572 int sig;
573
574 preempt_disable();
575
cd21dfcf
RB
576#ifdef CONFIG_PREEMPT
577 if (!is_fpu_owner()) {
578 /* We might lose fpu before disabling preempt... */
579 own_fpu();
580 BUG_ON(!used_math());
581 restore_fp(current);
582 }
583#endif
1da177e4
LT
584 /*
585 * Unimplemented operation exception. If we've got the full
586 * software emulator on-board, let's use it...
587 *
588 * Force FPU to dump state into task/thread context. We're
589 * moving a lot of data here for what is probably a single
590 * instruction, but the alternative is to pre-decode the FP
591 * register operands before invoking the emulator, which seems
592 * a bit extreme for what should be an infrequent event.
593 */
594 save_fp(current);
cd21dfcf
RB
595 /* Ensure 'resume' not overwrite saved fp context again. */
596 lose_fpu();
597
598 preempt_enable();
1da177e4
LT
599
600 /* Run the emulator */
601 sig = fpu_emulator_cop1Handler (0, regs,
602 &current->thread.fpu.soft);
603
cd21dfcf
RB
604 preempt_disable();
605
606 own_fpu(); /* Using the FPU again. */
1da177e4
LT
607 /*
608 * We can't allow the emulated instruction to leave any of
609 * the cause bit set in $fcr31.
610 */
611 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
612
613 /* Restore the hardware register state */
614 restore_fp(current);
615
616 preempt_enable();
617
618 /* If something went wrong, signal */
619 if (sig)
620 force_sig(sig, current);
621
622 return;
623 }
624
625 force_sig(SIGFPE, current);
626}
627
628asmlinkage void do_bp(struct pt_regs *regs)
629{
630 unsigned int opcode, bcode;
631 siginfo_t info;
632
633 die_if_kernel("Break instruction in kernel code", regs);
634
635 if (get_insn_opcode(regs, &opcode))
636 return;
637
638 /*
639 * There is the ancient bug in the MIPS assemblers that the break
640 * code starts left to bit 16 instead to bit 6 in the opcode.
641 * Gas is bug-compatible, but not always, grrr...
642 * We handle both cases with a simple heuristics. --macro
643 */
644 bcode = ((opcode >> 6) & ((1 << 20) - 1));
645 if (bcode < (1 << 10))
646 bcode <<= 10;
647
648 /*
649 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
650 * insns, even for break codes that indicate arithmetic failures.
651 * Weird ...)
652 * But should we continue the brokenness??? --macro
653 */
654 switch (bcode) {
655 case BRK_OVERFLOW << 10:
656 case BRK_DIVZERO << 10:
657 if (bcode == (BRK_DIVZERO << 10))
658 info.si_code = FPE_INTDIV;
659 else
660 info.si_code = FPE_INTOVF;
661 info.si_signo = SIGFPE;
662 info.si_errno = 0;
fe00f943 663 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
664 force_sig_info(SIGFPE, &info, current);
665 break;
666 default:
667 force_sig(SIGTRAP, current);
668 }
669}
670
671asmlinkage void do_tr(struct pt_regs *regs)
672{
673 unsigned int opcode, tcode = 0;
674 siginfo_t info;
675
676 die_if_kernel("Trap instruction in kernel code", regs);
677
678 if (get_insn_opcode(regs, &opcode))
679 return;
680
681 /* Immediate versions don't provide a code. */
682 if (!(opcode & OPCODE))
683 tcode = ((opcode >> 6) & ((1 << 10) - 1));
684
685 /*
686 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
687 * insns, even for trap codes that indicate arithmetic failures.
688 * Weird ...)
689 * But should we continue the brokenness??? --macro
690 */
691 switch (tcode) {
692 case BRK_OVERFLOW:
693 case BRK_DIVZERO:
694 if (tcode == BRK_DIVZERO)
695 info.si_code = FPE_INTDIV;
696 else
697 info.si_code = FPE_INTOVF;
698 info.si_signo = SIGFPE;
699 info.si_errno = 0;
fe00f943 700 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
701 force_sig_info(SIGFPE, &info, current);
702 break;
703 default:
704 force_sig(SIGTRAP, current);
705 }
706}
707
708asmlinkage void do_ri(struct pt_regs *regs)
709{
710 die_if_kernel("Reserved instruction in kernel code", regs);
711
712 if (!cpu_has_llsc)
713 if (!simulate_llsc(regs))
714 return;
715
3c37026d
RB
716 if (!simulate_rdhwr(regs))
717 return;
718
1da177e4
LT
719 force_sig(SIGILL, current);
720}
721
722asmlinkage void do_cpu(struct pt_regs *regs)
723{
724 unsigned int cpid;
725
726 die_if_kernel("do_cpu invoked from kernel context!", regs);
727
728 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
729
730 switch (cpid) {
731 case 0:
3c37026d
RB
732 if (!cpu_has_llsc)
733 if (!simulate_llsc(regs))
734 return;
1da177e4 735
3c37026d 736 if (!simulate_rdhwr(regs))
1da177e4 737 return;
3c37026d 738
1da177e4
LT
739 break;
740
741 case 1:
742 preempt_disable();
743
744 own_fpu();
745 if (used_math()) { /* Using the FPU again. */
746 restore_fp(current);
747 } else { /* First time FPU user. */
748 init_fpu();
749 set_used_math();
750 }
751
cd21dfcf
RB
752 preempt_enable();
753
1da177e4
LT
754 if (!cpu_has_fpu) {
755 int sig = fpu_emulator_cop1Handler(0, regs,
756 &current->thread.fpu.soft);
757 if (sig)
758 force_sig(sig, current);
759 }
760
1da177e4
LT
761 return;
762
763 case 2:
764 case 3:
765 break;
766 }
767
768 force_sig(SIGILL, current);
769}
770
771asmlinkage void do_mdmx(struct pt_regs *regs)
772{
773 force_sig(SIGILL, current);
774}
775
776asmlinkage void do_watch(struct pt_regs *regs)
777{
778 /*
779 * We use the watch exception where available to detect stack
780 * overflows.
781 */
782 dump_tlb_all();
783 show_regs(regs);
784 panic("Caught WATCH exception - probably caused by stack overflow.");
785}
786
787asmlinkage void do_mcheck(struct pt_regs *regs)
788{
789 show_regs(regs);
790 dump_tlb_all();
791 /*
792 * Some chips may have other causes of machine check (e.g. SB1
793 * graduation timer)
794 */
795 panic("Caught Machine Check exception - %scaused by multiple "
796 "matching entries in the TLB.",
797 (regs->cp0_status & ST0_TS) ? "" : "not ");
798}
799
e50c0a8f
RB
800asmlinkage void do_dsp(struct pt_regs *regs)
801{
802 if (cpu_has_dsp)
803 panic("Unexpected DSP exception\n");
804
805 force_sig(SIGILL, current);
806}
807
1da177e4
LT
808asmlinkage void do_reserved(struct pt_regs *regs)
809{
810 /*
811 * Game over - no way to handle this if it ever occurs. Most probably
812 * caused by a new unknown cpu type or after another deadly
813 * hard/software error.
814 */
815 show_regs(regs);
816 panic("Caught reserved exception %ld - should not happen.",
817 (regs->cp0_cause & 0x7f) >> 2);
818}
819
e01402b1
RB
820asmlinkage void do_default_vi(struct pt_regs *regs)
821{
822 show_regs(regs);
823 panic("Caught unexpected vectored interrupt.");
824}
825
1da177e4
LT
826/*
827 * Some MIPS CPUs can enable/disable for cache parity detection, but do
828 * it different ways.
829 */
830static inline void parity_protection_init(void)
831{
832 switch (current_cpu_data.cputype) {
833 case CPU_24K:
1da177e4 834 case CPU_5KC:
14f18b7f
RB
835 write_c0_ecc(0x80000000);
836 back_to_back_c0_hazard();
837 /* Set the PE bit (bit 31) in the c0_errctl register. */
838 printk(KERN_INFO "Cache parity protection %sabled\n",
839 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
840 break;
841 case CPU_20KC:
842 case CPU_25KF:
843 /* Clear the DE bit (bit 16) in the c0_status register. */
844 printk(KERN_INFO "Enable cache parity protection for "
845 "MIPS 20KC/25KF CPUs.\n");
846 clear_c0_status(ST0_DE);
847 break;
848 default:
849 break;
850 }
851}
852
853asmlinkage void cache_parity_error(void)
854{
855 const int field = 2 * sizeof(unsigned long);
856 unsigned int reg_val;
857
858 /* For the moment, report the problem and hang. */
859 printk("Cache error exception:\n");
860 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
861 reg_val = read_c0_cacheerr();
862 printk("c0_cacheerr == %08x\n", reg_val);
863
864 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
865 reg_val & (1<<30) ? "secondary" : "primary",
866 reg_val & (1<<31) ? "data" : "insn");
867 printk("Error bits: %s%s%s%s%s%s%s\n",
868 reg_val & (1<<29) ? "ED " : "",
869 reg_val & (1<<28) ? "ET " : "",
870 reg_val & (1<<26) ? "EE " : "",
871 reg_val & (1<<25) ? "EB " : "",
872 reg_val & (1<<24) ? "EI " : "",
873 reg_val & (1<<23) ? "E1 " : "",
874 reg_val & (1<<22) ? "E0 " : "");
875 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
876
6e760c8d 877#if defined(CONFIG_CPU_MIPS32_R1) || defined(CONFIG_CPU_MIPS64_R1)
1da177e4
LT
878 if (reg_val & (1<<22))
879 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
880
881 if (reg_val & (1<<23))
882 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
883#endif
884
885 panic("Can't handle the cache error!");
886}
887
888/*
889 * SDBBP EJTAG debug exception handler.
890 * We skip the instruction and return to the next instruction.
891 */
892void ejtag_exception_handler(struct pt_regs *regs)
893{
894 const int field = 2 * sizeof(unsigned long);
895 unsigned long depc, old_epc;
896 unsigned int debug;
897
898 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
899 depc = read_c0_depc();
900 debug = read_c0_debug();
901 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
902 if (debug & 0x80000000) {
903 /*
904 * In branch delay slot.
905 * We cheat a little bit here and use EPC to calculate the
906 * debug return address (DEPC). EPC is restored after the
907 * calculation.
908 */
909 old_epc = regs->cp0_epc;
910 regs->cp0_epc = depc;
911 __compute_return_epc(regs);
912 depc = regs->cp0_epc;
913 regs->cp0_epc = old_epc;
914 } else
915 depc += 4;
916 write_c0_depc(depc);
917
918#if 0
919 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
920 write_c0_debug(debug | 0x100);
921#endif
922}
923
924/*
925 * NMI exception handler.
926 */
927void nmi_exception_handler(struct pt_regs *regs)
928{
929 printk("NMI taken!!!!\n");
930 die("NMI", regs);
931 while(1) ;
932}
933
e01402b1
RB
934#define VECTORSPACING 0x100 /* for EI/VI mode */
935
936unsigned long ebase;
1da177e4 937unsigned long exception_handlers[32];
e01402b1 938unsigned long vi_handlers[64];
1da177e4
LT
939
940/*
941 * As a side effect of the way this is implemented we're limited
942 * to interrupt handlers in the address range from
943 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
944 */
945void *set_except_vector(int n, void *addr)
946{
947 unsigned long handler = (unsigned long) addr;
948 unsigned long old_handler = exception_handlers[n];
949
950 exception_handlers[n] = handler;
951 if (n == 0 && cpu_has_divec) {
e01402b1 952 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1da177e4 953 (0x03ffffff & (handler >> 2));
e01402b1
RB
954 flush_icache_range(ebase + 0x200, ebase + 0x204);
955 }
956 return (void *)old_handler;
957}
958
959#ifdef CONFIG_CPU_MIPSR2
960/*
961 * Shadow register allocation
962 * FIXME: SMP...
963 */
964
965/* MIPSR2 shadow register sets */
966struct shadow_registers {
967 spinlock_t sr_lock; /* */
968 int sr_supported; /* Number of shadow register sets supported */
969 int sr_allocated; /* Bitmap of allocated shadow registers */
970} shadow_registers;
971
972void mips_srs_init(void)
973{
974#ifdef CONFIG_CPU_MIPSR2_SRS
975 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
976 printk ("%d MIPSR2 register sets available\n", shadow_registers.sr_supported);
977#else
978 shadow_registers.sr_supported = 1;
979#endif
980 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
981 spin_lock_init(&shadow_registers.sr_lock);
982}
983
984int mips_srs_max(void)
985{
986 return shadow_registers.sr_supported;
987}
988
989int mips_srs_alloc (void)
990{
991 struct shadow_registers *sr = &shadow_registers;
992 unsigned long flags;
993 int set;
994
995 spin_lock_irqsave(&sr->sr_lock, flags);
996
997 for (set = 0; set < sr->sr_supported; set++) {
998 if ((sr->sr_allocated & (1 << set)) == 0) {
999 sr->sr_allocated |= 1 << set;
1000 spin_unlock_irqrestore(&sr->sr_lock, flags);
1001 return set;
1002 }
1003 }
1004
1005 /* None available */
1006 spin_unlock_irqrestore(&sr->sr_lock, flags);
1007 return -1;
1008}
1009
1010void mips_srs_free (int set)
1011{
1012 struct shadow_registers *sr = &shadow_registers;
1013 unsigned long flags;
1014
1015 spin_lock_irqsave(&sr->sr_lock, flags);
1016 sr->sr_allocated &= ~(1 << set);
1017 spin_unlock_irqrestore(&sr->sr_lock, flags);
1018}
1019
1020void *set_vi_srs_handler (int n, void *addr, int srs)
1021{
1022 unsigned long handler;
1023 unsigned long old_handler = vi_handlers[n];
1024 u32 *w;
1025 unsigned char *b;
1026
1027 if (!cpu_has_veic && !cpu_has_vint)
1028 BUG();
1029
1030 if (addr == NULL) {
1031 handler = (unsigned long) do_default_vi;
1032 srs = 0;
1033 }
1034 else
1035 handler = (unsigned long) addr;
1036 vi_handlers[n] = (unsigned long) addr;
1037
1038 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1039
1040 if (srs >= mips_srs_max())
1041 panic("Shadow register set %d not supported", srs);
1042
1043 if (cpu_has_veic) {
1044 if (board_bind_eic_interrupt)
1045 board_bind_eic_interrupt (n, srs);
1046 }
1047 else if (cpu_has_vint) {
1048 /* SRSMap is only defined if shadow sets are implemented */
1049 if (mips_srs_max() > 1)
1050 change_c0_srsmap (0xf << n*4, srs << n*4);
1051 }
1052
1053 if (srs == 0) {
1054 /*
1055 * If no shadow set is selected then use the default handler
1056 * that does normal register saving and a standard interrupt exit
1057 */
1058
1059 extern char except_vec_vi, except_vec_vi_lui;
1060 extern char except_vec_vi_ori, except_vec_vi_end;
1061 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1062 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1063 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1064
1065 if (handler_len > VECTORSPACING) {
1066 /*
1067 * Sigh... panicing won't help as the console
1068 * is probably not configured :(
1069 */
1070 panic ("VECTORSPACING too small");
1071 }
1072
1073 memcpy (b, &except_vec_vi, handler_len);
1074 w = (u32 *)(b + lui_offset);
1075 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1076 w = (u32 *)(b + ori_offset);
1077 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1078 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1079 }
1080 else {
1081 /*
1082 * In other cases jump directly to the interrupt handler
1083 *
1084 * It is the handlers responsibility to save registers if required
1085 * (eg hi/lo) and return from the exception using "eret"
1086 */
1087 w = (u32 *)b;
1088 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1089 *w = 0;
1090 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1da177e4 1091 }
e01402b1 1092
1da177e4
LT
1093 return (void *)old_handler;
1094}
1095
e01402b1
RB
1096void *set_vi_handler (int n, void *addr)
1097{
1098 return set_vi_srs_handler (n, addr, 0);
1099}
1100#endif
1101
1da177e4
LT
1102/*
1103 * This is used by native signal handling
1104 */
1105asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1106asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1107
1108extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1109extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1110
1111extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1112extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1113
1114static inline void signal_init(void)
1115{
1116 if (cpu_has_fpu) {
1117 save_fp_context = _save_fp_context;
1118 restore_fp_context = _restore_fp_context;
1119 } else {
1120 save_fp_context = fpu_emulator_save_context;
1121 restore_fp_context = fpu_emulator_restore_context;
1122 }
1123}
1124
1125#ifdef CONFIG_MIPS32_COMPAT
1126
1127/*
1128 * This is used by 32-bit signal stuff on the 64-bit kernel
1129 */
1130asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1131asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1132
1133extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1134extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1135
1136extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1137extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1138
1139static inline void signal32_init(void)
1140{
1141 if (cpu_has_fpu) {
1142 save_fp_context32 = _save_fp_context32;
1143 restore_fp_context32 = _restore_fp_context32;
1144 } else {
1145 save_fp_context32 = fpu_emulator_save_context32;
1146 restore_fp_context32 = fpu_emulator_restore_context32;
1147 }
1148}
1149#endif
1150
1151extern void cpu_cache_init(void);
1152extern void tlb_init(void);
1153
1154void __init per_cpu_trap_init(void)
1155{
1156 unsigned int cpu = smp_processor_id();
1157 unsigned int status_set = ST0_CU0;
1158
1159 /*
1160 * Disable coprocessors and select 32-bit or 64-bit addressing
1161 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1162 * flag that some firmware may have left set and the TS bit (for
1163 * IP27). Set XX for ISA IV code to work.
1164 */
875d43e7 1165#ifdef CONFIG_64BIT
1da177e4
LT
1166 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1167#endif
1168 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1169 status_set |= ST0_XX;
e50c0a8f 1170 change_c0_status(ST0_CU|ST0_MX|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1171 status_set);
1172
e50c0a8f
RB
1173 if (cpu_has_dsp)
1174 set_c0_status(ST0_MX);
1175
e01402b1
RB
1176#ifdef CONFIG_CPU_MIPSR2
1177 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1178#endif
1179
1da177e4 1180 /*
e01402b1 1181 * Interrupt handling.
1da177e4 1182 */
e01402b1
RB
1183 if (cpu_has_veic || cpu_has_vint) {
1184 write_c0_ebase (ebase);
1185 /* Setting vector spacing enables EI/VI mode */
1186 change_c0_intctl (0x3e0, VECTORSPACING);
1187 }
1da177e4
LT
1188 if (cpu_has_divec)
1189 set_c0_cause(CAUSEF_IV);
1190
1191 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1192 TLBMISS_HANDLER_SETUP();
1193
1194 atomic_inc(&init_mm.mm_count);
1195 current->active_mm = &init_mm;
1196 BUG_ON(current->mm);
1197 enter_lazy_tlb(&init_mm, current);
1198
1199 cpu_cache_init();
1200 tlb_init();
1201}
1202
e01402b1
RB
1203/* Install CPU exception handler */
1204void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1205{
1206 memcpy((void *)(ebase + offset), addr, size);
1207 flush_icache_range(ebase + offset, ebase + offset + size);
1208}
1209
1210/* Install uncached CPU exception handler */
1211void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1212{
1213#ifdef CONFIG_32BIT
1214 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1215#endif
1216#ifdef CONFIG_64BIT
1217 unsigned long uncached_ebase = TO_UNCAC(ebase);
1218#endif
1219
1220 memcpy((void *)(uncached_ebase + offset), addr, size);
1221}
1222
1da177e4
LT
1223void __init trap_init(void)
1224{
1225 extern char except_vec3_generic, except_vec3_r4000;
1da177e4
LT
1226 extern char except_vec4;
1227 unsigned long i;
1228
e01402b1
RB
1229 if (cpu_has_veic || cpu_has_vint)
1230 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1231 else
1232 ebase = CAC_BASE;
1233
1234#ifdef CONFIG_CPU_MIPSR2
1235 mips_srs_init();
1236#endif
1237
1da177e4
LT
1238 per_cpu_trap_init();
1239
1240 /*
1241 * Copy the generic exception handlers to their final destination.
1242 * This will be overriden later as suitable for a particular
1243 * configuration.
1244 */
e01402b1 1245 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1246
1247 /*
1248 * Setup default vectors
1249 */
1250 for (i = 0; i <= 31; i++)
1251 set_except_vector(i, handle_reserved);
1252
1253 /*
1254 * Copy the EJTAG debug exception vector handler code to it's final
1255 * destination.
1256 */
e01402b1
RB
1257 if (cpu_has_ejtag && board_ejtag_handler_setup)
1258 board_ejtag_handler_setup ();
1da177e4
LT
1259
1260 /*
1261 * Only some CPUs have the watch exceptions.
1262 */
1263 if (cpu_has_watch)
1264 set_except_vector(23, handle_watch);
1265
1266 /*
e01402b1 1267 * Initialise interrupt handlers
1da177e4 1268 */
e01402b1
RB
1269 if (cpu_has_veic || cpu_has_vint) {
1270 int nvec = cpu_has_veic ? 64 : 8;
1271 for (i = 0; i < nvec; i++)
1272 set_vi_handler (i, NULL);
1273 }
1274 else if (cpu_has_divec)
1275 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1276
1277 /*
1278 * Some CPUs can enable/disable for cache parity detection, but does
1279 * it different ways.
1280 */
1281 parity_protection_init();
1282
1283 /*
1284 * The Data Bus Errors / Instruction Bus Errors are signaled
1285 * by external hardware. Therefore these two exceptions
1286 * may have board specific handlers.
1287 */
1288 if (board_be_init)
1289 board_be_init();
1290
1291 set_except_vector(1, handle_tlbm);
1292 set_except_vector(2, handle_tlbl);
1293 set_except_vector(3, handle_tlbs);
1294
1295 set_except_vector(4, handle_adel);
1296 set_except_vector(5, handle_ades);
1297
1298 set_except_vector(6, handle_ibe);
1299 set_except_vector(7, handle_dbe);
1300
1301 set_except_vector(8, handle_sys);
1302 set_except_vector(9, handle_bp);
1303 set_except_vector(10, handle_ri);
1304 set_except_vector(11, handle_cpu);
1305 set_except_vector(12, handle_ov);
1306 set_except_vector(13, handle_tr);
1da177e4
LT
1307
1308 if (current_cpu_data.cputype == CPU_R6000 ||
1309 current_cpu_data.cputype == CPU_R6000A) {
1310 /*
1311 * The R6000 is the only R-series CPU that features a machine
1312 * check exception (similar to the R4000 cache error) and
1313 * unaligned ldc1/sdc1 exception. The handlers have not been
1314 * written yet. Well, anyway there is no R6000 machine on the
1315 * current list of targets for Linux/MIPS.
1316 * (Duh, crap, there is someone with a triple R6k machine)
1317 */
1318 //set_except_vector(14, handle_mc);
1319 //set_except_vector(15, handle_ndc);
1320 }
1321
e01402b1
RB
1322
1323 if (board_nmi_handler_setup)
1324 board_nmi_handler_setup();
1325
e50c0a8f
RB
1326 if (cpu_has_fpu && !cpu_has_nofpuex)
1327 set_except_vector(15, handle_fpe);
1328
1329 set_except_vector(22, handle_mdmx);
1330
1331 if (cpu_has_mcheck)
1332 set_except_vector(24, handle_mcheck);
1333
1334 if (cpu_has_dsp)
1335 set_except_vector(26, handle_dsp);
1336
1337 if (cpu_has_vce)
1338 /* Special exception: R4[04]00 uses also the divec space. */
1339 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1340 else if (cpu_has_4kex)
1341 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1342 else
1343 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1344
1da177e4
LT
1345 signal_init();
1346#ifdef CONFIG_MIPS32_COMPAT
1347 signal32_init();
1348#endif
1349
e01402b1 1350 flush_icache_range(ebase, ebase + 0x400);
1da177e4 1351}
This page took 0.119575 seconds and 5 git commands to generate.